JP2013092398A - Secondary battery deterioration determination system and deterioration determination method - Google Patents

Secondary battery deterioration determination system and deterioration determination method Download PDF

Info

Publication number
JP2013092398A
JP2013092398A JP2011233089A JP2011233089A JP2013092398A JP 2013092398 A JP2013092398 A JP 2013092398A JP 2011233089 A JP2011233089 A JP 2011233089A JP 2011233089 A JP2011233089 A JP 2011233089A JP 2013092398 A JP2013092398 A JP 2013092398A
Authority
JP
Japan
Prior art keywords
voltage
secondary battery
internal pressure
pressure
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011233089A
Other languages
Japanese (ja)
Other versions
JP5660003B2 (en
Inventor
Satoru Goto
哲 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011233089A priority Critical patent/JP5660003B2/en
Publication of JP2013092398A publication Critical patent/JP2013092398A/en
Application granted granted Critical
Publication of JP5660003B2 publication Critical patent/JP5660003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To appropriately determine capacity deterioration of a secondary battery even when the secondary battery is installed in a vehicle.SOLUTION: A secondary battery deterioration determination system of the present invention comprises: a voltage sensor for detecting a voltage of the secondary battery; a pressure sensor for detecting an internal pressure of the secondary battery; and a control device for calculating capacity deterioration of the secondary battery. The control device calculates capacity deterioration of the secondary battery according to pressure fluctuations between an internal pressure in a predetermined reference state corresponding to a voltage value detected by the voltage sensor and an internal pressure detected by the pressure sensor, by using first relation data of the voltage and the internal pressure of the secondary battery in the predetermined reference state and second relation data of the internal pressure and the battery capacity of the secondary battery.

Description

本発明は、リチウムイオン電池等の二次電池の劣化状態を判別する技術に関する。   The present invention relates to a technique for determining a deterioration state of a secondary battery such as a lithium ion battery.

リチウムイオン電池等の二次電池は、充放電を繰り返すことで劣化する。特許文献1では、定電流充電又は定電流放電時の電池電圧を逐次測定して所定時間あたりの電池電圧の変化を求め、電池電圧の変化が所定値以下である時間を劣化度合いとして算出している。   Secondary batteries such as lithium ion batteries are deteriorated by repeated charge and discharge. In Patent Document 1, the battery voltage during constant current charging or constant current discharging is sequentially measured to determine the change in battery voltage per predetermined time, and the time during which the change in battery voltage is less than or equal to a predetermined value is calculated as the degree of deterioration. Yes.

特許文献2では、二次電池を一度充電率が0%になるまで放電した後に、満充電状態まで充電した際の充電電流積算値を用いて、二次電池の電池容量を検出している。   In Patent Document 2, the battery capacity of the secondary battery is detected by using the charge current integrated value when the secondary battery is discharged until the charging rate reaches 0% and then fully charged.

特開2002−340997号公報JP 2002-340997 A 特開2008−278624号公報JP 2008-278624 A

特許文献1、2では、定電流充電時又は定電流放電時の状態で電池容量を検出したり、電池残存容量が0%から満充電状態まで充電するなどの特定条件で電池容量を検出しなければならない。このため、充放電を頻繁に繰り返すような車両に搭載されて使用されている環境下では、電池容量の劣化状態を判別することが難しい。   In Patent Documents 1 and 2, the battery capacity must be detected under specific conditions, such as when the battery capacity is detected during constant current charging or constant current discharging, or when the remaining battery capacity is charged from 0% to a fully charged state. I must. For this reason, it is difficult to determine the deterioration state of the battery capacity in an environment where the battery is mounted and used in a vehicle where charging and discharging are frequently repeated.

また、電池容量の劣化を検出するために、二次電池に特定条件での充電又は放電を行わせる必要があるので、電池容量の劣化検出のための充放電によって電池容量のさらなる劣化を生じさせてしまう。   In addition, in order to detect battery capacity deterioration, it is necessary to cause the secondary battery to be charged or discharged under specific conditions. Therefore, charging / discharging for battery capacity deterioration detection causes further battery capacity deterioration. End up.

本願第1の発明である二次電池の劣化状態判別システムは、二次電池の劣化状態判別システムであり、二次電池の電圧を検出する電圧センサ、二次電池の内部圧力を検出する圧力センサ、及び二次電池の容量劣化を算出する制御装置を含んで構成される。制御装置は、所定の基準状態における二次電池の電圧と内部圧力の第1関係データ及び二次電池の内部圧力と電池容量の第2関係データを用い、電圧センサによって検出された電圧値に対応する所定の基準状態の内部圧力と圧力センサによって検出された内部圧力との間の圧力変動に応じた二次電池の容量劣化を算出する。   The secondary battery deterioration state determination system according to the first aspect of the present invention is a secondary battery deterioration state determination system, a voltage sensor for detecting the voltage of the secondary battery, and a pressure sensor for detecting the internal pressure of the secondary battery. And a control device for calculating the capacity deterioration of the secondary battery. The control device corresponds to the voltage value detected by the voltage sensor using the first relation data of the voltage and internal pressure of the secondary battery and the second relation data of the internal pressure and battery capacity of the secondary battery in a predetermined reference state. The capacity deterioration of the secondary battery is calculated according to the pressure fluctuation between the internal pressure in the predetermined reference state and the internal pressure detected by the pressure sensor.

本願第1の発明によれば、二次電池の内部圧力の変動に起因する容量劣化を算出するので、二次電池に特定条件で動作させる(経験させる)ことなく二次電池の容量劣化を算出することができる。このため、使用されている環境下であっても適切に容量劣化を判別することができるとともに、二次電池を特定条件で動作させる場合に比べて短時間で容量劣化を判別することができ、かつ劣化状態判別に伴う充放電によって二次電池が劣化することを抑制できる。特に、二次電池が車両に搭載されて使用されている環境下(充放電を頻繁に繰り返すような環境下の二次電池)であっても容量劣化を判別することができる。   According to the first invention of this application, since the capacity deterioration due to the fluctuation of the internal pressure of the secondary battery is calculated, the capacity deterioration of the secondary battery is calculated without causing the secondary battery to operate (experience) under specific conditions. can do. For this reason, it is possible to appropriately determine the capacity deterioration even under the environment in which it is used, and it is possible to determine the capacity deterioration in a shorter time than when the secondary battery is operated under specific conditions, And it can suppress that a secondary battery deteriorates by charging / discharging accompanying deterioration state discrimination | determination. In particular, capacity degradation can be determined even in an environment where the secondary battery is mounted on a vehicle and used (secondary battery in an environment where charging and discharging are repeated frequently).

制御装置は、第1関係データに基づいて、電圧センサで検出された電圧値に対応する所定の基準状態の第1圧力値を算出するとともに、第2関係データに基づいて、第1圧力値に対応する第1電池容量と圧力センサによって検出された第2圧力値に対応する第2電池容量とを算出する。算出された第1電池容量と第2電池容量それぞれから、二次電池の容量劣化を算出することができる。   The control device calculates a first pressure value in a predetermined reference state corresponding to the voltage value detected by the voltage sensor based on the first relationship data, and calculates the first pressure value based on the second relationship data. A corresponding first battery capacity and a second battery capacity corresponding to the second pressure value detected by the pressure sensor are calculated. From the calculated first battery capacity and second battery capacity, the capacity deterioration of the secondary battery can be calculated.

二次電池の内部圧力は、二次電池を構成する電池要素の負極素子のみの圧力又は発電要素の負極素子及び正極素子それぞれの圧力を含むことができる。   The internal pressure of the secondary battery can include the pressure of only the negative electrode element of the battery element constituting the secondary battery or the pressure of each of the negative electrode element and the positive electrode element of the power generation element.

制御装置は、所定の基準電圧と第1関係データに基づく基準電圧に対応する基準内部圧力とを予め設定しておき、基準電圧時の内部圧力を圧力センサで検出することで二次電池の容量劣化を算出することができる。このとき、制御装置は、電圧センサによって検出される二次電池の電圧が基準電圧でない場合に基準電圧まで二次電池を充放電させるように制御することができる。   The control device presets a predetermined reference voltage and a reference internal pressure corresponding to the reference voltage based on the first relation data, and detects the internal pressure at the time of the reference voltage with a pressure sensor, whereby the capacity of the secondary battery is determined. Degradation can be calculated. At this time, the control device can perform control so that the secondary battery is charged and discharged to the reference voltage when the voltage of the secondary battery detected by the voltage sensor is not the reference voltage.

圧力センサは、二次電池を構成する電池要素を覆う外装部材の外周又は電池要素と外装部材との間に設けることができ、また、二次電池として、リチウムイオン二次電池を用いることができる。   The pressure sensor can be provided on the outer periphery of the exterior member that covers the battery element constituting the secondary battery or between the battery element and the exterior member, and a lithium ion secondary battery can be used as the secondary battery. .

本願第2の発明である二次電池の劣化状態判別方法は、二次電池の端子間電圧を検出するステップと、二次電池の内部圧力を検出するステップと、二次電池の容量劣化を算出するステップと、を含む。二次電池の容量劣化を算出するステップは、所定の基準状態における二次電池の電圧と内部圧力の関係データ及び二次電池の内部圧力と電池容量の関係データを用い、電圧センサによって検出された電圧値に対応する所定の基準状態の内部圧力と圧力センサによって検出された内部圧力との間の圧力変動に応じた二次電池の容量劣化を算出する。   A secondary battery deterioration state determination method according to a second invention of the present application is a step of detecting a voltage between terminals of a secondary battery, a step of detecting an internal pressure of the secondary battery, and calculating a capacity deterioration of the secondary battery. Including the steps of: The step of calculating the capacity deterioration of the secondary battery is detected by the voltage sensor using the relational data of the voltage and internal pressure of the secondary battery and the relational data of the internal pressure and battery capacity of the secondary battery in a predetermined reference state. The capacity deterioration of the secondary battery according to the pressure fluctuation between the internal pressure in a predetermined reference state corresponding to the voltage value and the internal pressure detected by the pressure sensor is calculated.

本願第2の発明によれば、使用されている環境下であっても適切に容量劣化を判別することができるとともに、二次電池を特定条件で動作させる場合に比べて短時間で容量劣化を判別することができ、かつ劣化状態判別に伴う充放電によって二次電池が劣化することを抑制できる。   According to the second invention of the present application, it is possible to appropriately determine the capacity deterioration even under the environment in which the battery is used, and the capacity deterioration can be shortened in a shorter time than when the secondary battery is operated under a specific condition. It can discriminate | determine and it can suppress that a secondary battery deteriorates by the charging / discharging accompanying degradation state discrimination | determination.

車両に搭載される電池システムの概略構成図である。It is a schematic block diagram of the battery system mounted in a vehicle. 圧力センサが設けられた単電池の一例を示す図である。It is a figure which shows an example of the cell provided with the pressure sensor. 単電池の電圧値と単電池の内部圧力の関係を示す図である。It is a figure which shows the relationship between the voltage value of a cell, and the internal pressure of a cell. 単電池の内部圧力と電池容量の関係を示す図である。It is a figure which shows the relationship between the internal pressure of a cell, and battery capacity. 電池容量の劣化状態判別動作を示すフローチャートである。It is a flowchart which shows the deterioration state discrimination | determination operation | movement of a battery capacity. 単電池の電圧値と単電池の正極圧力変動が考慮された内部圧力の関係を示す図である。It is a figure which shows the relationship between the voltage value of a cell, and the internal pressure in consideration of the positive electrode pressure fluctuation of the cell. 単電池の正極圧力変動が考慮された内部圧力と電池容量の関係を示す図である。It is a figure which shows the relationship between the internal pressure in consideration of the positive electrode pressure fluctuation | variation of the cell, and battery capacity.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
本発明の実施例1である二次電池の劣化状態判別システムについて説明する。図1は、本実施例の電池システムの構成を示す図である。
Example 1
A secondary battery deterioration state determination system that is Embodiment 1 of the present invention will be described. FIG. 1 is a diagram showing the configuration of the battery system of this example.

組電池10は、直列に接続された複数の単電池(二次電池に相当する)11を有する。組電池10を構成する単電池11の数は、要求出力などに基づいて、適宜設定することができる。また、組電池10は、並列に接続された複数の単電池11を含んでいてもよい。   The assembled battery 10 includes a plurality of single cells (corresponding to secondary batteries) 11 connected in series. The number of the single cells 11 constituting the assembled battery 10 can be set as appropriate based on the required output. The assembled battery 10 may include a plurality of unit cells 11 connected in parallel.

本実施例の組電池10は、車両に搭載することができる。車両としては、ハイブリッド自動車や電気自動車がある。ハイブリッド自動車は、車両を走行させるための動力源として、組電池10に加えて、エンジン又は燃料電池を備えている。電気自動車は、車両の動力源として、組電池10のみを備えている。   The assembled battery 10 of the present embodiment can be mounted on a vehicle. Vehicles include hybrid cars and electric cars. The hybrid vehicle includes an engine or a fuel cell in addition to the assembled battery 10 as a power source for running the vehicle. The electric vehicle includes only the assembled battery 10 as a power source of the vehicle.

組電池10は、負荷40に接続される。組電池10と負荷40との間にはリレー装置(システムメインリレー)31、32が設けられており、リレー装置31、32がコントローラ50からの制御信号を受けて、オン(接続状態)およびオフ(遮断状態)の間で切り替わることで、組電池10と負荷40との接続/非接続が制御される。   The assembled battery 10 is connected to a load 40. Relay devices (system main relays) 31 and 32 are provided between the assembled battery 10 and the load 40. The relay devices 31 and 32 receive a control signal from the controller 50, and are turned on (connected state) and turned off. The connection / disconnection between the assembled battery 10 and the load 40 is controlled by switching between (blocking states).

負荷40は、例えば、組電池10から供給される電力によって動作するモータ・ジェネレータを用いることができる。モータ・ジェネレータは、組電池10からの電力を受けて、車両を走行させるための運動エネルギを生成する。モータ・ジェネレータは、車輪と接続されており、モータ・ジェネレータによって生成された運動エネルギは、車輪に伝達される。   As the load 40, for example, a motor / generator that operates with electric power supplied from the assembled battery 10 can be used. The motor / generator receives electric power from the assembled battery 10 and generates kinetic energy for running the vehicle. The motor generator is connected to the wheels, and the kinetic energy generated by the motor generator is transmitted to the wheels.

車両を減速させたり、停止させたりするとき、モータ・ジェネレータは、車両の制動時に発生する運動エネルギを電気エネルギに変換する。モータ・ジェネレータによって生成された電力は、組電池10に出力される。これにより、回生電力を組電池10に蓄えることができる。   When the vehicle is decelerated or stopped, the motor generator converts kinetic energy generated during braking of the vehicle into electrical energy. The electric power generated by the motor / generator is output to the assembled battery 10. Thereby, regenerative electric power can be stored in the assembled battery 10.

負荷40は、昇圧コンバータ及びインバータを含むことができる。昇圧コンバータは、組電池10の出力電圧を昇圧して、昇圧後の電力をインバータに出力する。また、昇圧コンバータは、インバータの出力電圧を降圧して、降圧後の電力を組電池10に出力する。インバータは、昇圧コンバータから出力された直流電力を交流電力に変換して、交流電力をモータ・ジェネレータに出力する。また、インバータは、モータ・ジェネレータから出力された交流電力を直流電力に変換して、直流電力を昇圧コンバータに出力する。   The load 40 can include a boost converter and an inverter. The boost converter boosts the output voltage of the battery pack 10 and outputs the boosted power to the inverter. The boost converter steps down the output voltage of the inverter and outputs the reduced power to the assembled battery 10. The inverter converts the DC power output from the boost converter into AC power, and outputs the AC power to the motor / generator. The inverter converts AC power output from the motor / generator into DC power and outputs the DC power to the boost converter.

電圧監視IC20(電圧センサに相当)は、組電池10を構成する各単電池11それぞれの電圧を検出する。電圧監視IC20は、コントローラ50に接続され、単電池11の端子間電圧の検出値をコントローラ50に出力する。   The voltage monitoring IC 20 (corresponding to a voltage sensor) detects the voltage of each unit cell 11 constituting the assembled battery 10. The voltage monitoring IC 20 is connected to the controller 50 and outputs a detected value of the voltage between the terminals of the unit cell 11 to the controller 50.

圧力センサ21は、複数の単電池11それぞれに設けられ、単電池11の内部圧力を検出する。圧力センサ21は、圧電素子やピエゾ抵抗体等に加わる圧力を電気信号に変換して単電池11の内部圧力を検出する圧力検出手段である。圧力センサ21は、コントローラ50に接続され、検出結果をコントローラ50に出力する。なお、圧力センサ21は、電圧監視IC20に含まれるように構成することもでき、例えば、組電池10の電圧及び内部圧力を検出する監視ICとして構成できる。   The pressure sensor 21 is provided in each of the plurality of unit cells 11 and detects the internal pressure of the unit cell 11. The pressure sensor 21 is a pressure detection unit that detects the internal pressure of the unit cell 11 by converting the pressure applied to the piezoelectric element, the piezoresistor, and the like into an electric signal. The pressure sensor 21 is connected to the controller 50 and outputs a detection result to the controller 50. The pressure sensor 21 can also be configured to be included in the voltage monitoring IC 20, for example, can be configured as a monitoring IC that detects the voltage and internal pressure of the assembled battery 10.

図2は、圧力センサ21が設けられた単電池11の一例を示す図である。組電池10は、所定の方向に並んで配置され、複数の単電池11で構成することができる。隣り合う2つの単電池11は、不図示のバスバーによって電気的に接続される。図2(a)に示すように、所定の方向に並んで配置される隣り合う2つの単電池11の間には、絶縁材料で形成された仕切り部材13を設けることができ、圧力センサ21は、単電池11(外装部材16)と仕切り部材13の間に設けることができる。また、組電池10の両端に配置される不図示の一対のエンドプレートと単電池11との間に圧力センサ21を設けることができる。   FIG. 2 is a diagram illustrating an example of the unit cell 11 provided with the pressure sensor 21. The assembled battery 10 is arranged side by side in a predetermined direction, and can be composed of a plurality of unit cells 11. Two adjacent unit cells 11 are electrically connected by a bus bar (not shown). As shown in FIG. 2A, a partition member 13 made of an insulating material can be provided between two adjacent unit cells 11 arranged side by side in a predetermined direction. The cell 11 (the exterior member 16) and the partition member 13 can be provided. Moreover, the pressure sensor 21 can be provided between a pair of end plates (not shown) disposed at both ends of the assembled battery 10 and the unit cell 11.

単電池11は、発電要素(例えば、正電極体、負電極体、正電極体及び負電極体の間に配置されるセパレータ(電解液を含む)を積層して構成することができる)13を含んで構成されている。発電要素13(電池要素に相当する)は、外装部材12(発電要素13を収納する外装缶等のケース部材)によって覆われて密閉されている。外装部材12の上部には、発電要素13の正電極体が接続される正極端子14及び負電極体と接続する負極端子15が設けられている。   The unit cell 11 includes a power generation element (for example, a positive electrode body, a negative electrode body, a positive electrode body, and a separator (including an electrolytic solution) disposed between the negative electrode bodies can be stacked) 13. It is configured to include. The power generation element 13 (corresponding to a battery element) is covered and sealed with an exterior member 12 (a case member such as an exterior can that houses the power generation element 13). A positive electrode terminal 14 to which the positive electrode body of the power generation element 13 is connected and a negative electrode terminal 15 to be connected to the negative electrode body are provided on the exterior member 12.

正電極体に用いられる正活物質としては、リチウム−遷移元素複合酸化物であるLiCoO2、LiNiO2、LiMO2(MはCo、Ni、Fe、Cu及びMnよりなる群から選ばれた少なくとも2種の遷移元素)、LiMn24を例示的に挙げることができる。また、負電極体に用いられる負活物質としては、リチウムイオンを電気化学的に吸蔵及び放出することが可能なものであれば特に限定されない。具体的には、天然黒鉛、人造黒鉛、コークス、有機物焼成体、金属カルコゲン化物が挙げられる。 The positive active material used for the positive electrode body is a lithium-transition element composite oxide, LiCoO 2 , LiNiO 2 , LiMO 2 (M is at least 2 selected from the group consisting of Co, Ni, Fe, Cu and Mn). Species transition elements), LiMn 2 O 4 can be exemplified. Further, the negative active material used for the negative electrode body is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples include natural graphite, artificial graphite, coke, an organic fired body, and metal chalcogenide.

電解液の溶質として使用するリチウム塩としては、LiClO4、LiCF3SO3、LiPF6、LiN(CF3SO22、LiN(C25SO22、LiBF4 、LiSbF6及びLiAsF6などがある。リチウム塩を溶かすために使用する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状炭酸エステルと、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状炭酸エステルとの混合溶媒などがある。なお、電解液は、非水電解質以外にも固体電解質を用いることができ、固体電解質としては、無機固体電解質や高分子固体電解質を用いることができる。 Lithium salts used as the electrolyte solute include LiClO 4 , LiCF 3 SO 3 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiBF 4 , LiSbF 6 and LiAsF. There are 6 etc. The organic solvent used to dissolve the lithium salt is a mixed solvent of cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, and butylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. and so on. In addition, solid electrolyte can be used for electrolyte solution besides a non-aqueous electrolyte, and an inorganic solid electrolyte and a polymer solid electrolyte can be used as a solid electrolyte.

圧力センサ21は、図2(b)に示すように、発電要素13が収容される外装部材12の外周、例えば、単電池11の外装部材12の略中央部に設けることができる。また、図2(c)に示すように外装部材12内部、例えば、外装部材12と発電要素13との間に圧力センサ21を設けることができる。   As shown in FIG. 2B, the pressure sensor 21 can be provided at the outer periphery of the exterior member 12 in which the power generation element 13 is accommodated, for example, at the substantially central portion of the exterior member 12 of the unit cell 11. Further, as shown in FIG. 2C, a pressure sensor 21 can be provided inside the exterior member 12, for example, between the exterior member 12 and the power generation element 13.

図2の例のように配置された電圧センサ21は、充放電に伴う発電要素13(活物質)の膨張・収縮の圧力変動を検出する。組電池10を構成する複数の単電池11は、所定の拘束力で並び方向(積層方向)両側から拘束されている。各単電池11に一定の拘束力が加わっている状態での発電要素13の膨張(充電)・収縮(放電)による圧力変動を電圧センサ21によって検出する。なお、単電池11単体が二次電池として使用される場合、拘束力が加わっていない状態での発電要素13の膨張・収縮による圧力変動が電圧センサ21によって検出される。   The voltage sensor 21 arranged as in the example of FIG. 2 detects pressure fluctuations of expansion / contraction of the power generation element 13 (active material) accompanying charging / discharging. The plurality of single cells 11 constituting the assembled battery 10 are restrained from both sides in the arrangement direction (stacking direction) with a predetermined restraining force. The voltage sensor 21 detects pressure fluctuations due to expansion (charging) and contraction (discharging) of the power generation element 13 in a state where a certain restraining force is applied to each unit cell 11. When the single battery 11 is used as a secondary battery, the voltage sensor 21 detects pressure fluctuation due to expansion / contraction of the power generation element 13 in a state where no binding force is applied.

コントローラ50は、単電池11の劣化状態を判別する劣化状態判別を行う劣化状態判別部51と記憶部52を含んで構成される。電圧監視IC20(電圧センサ)、圧力センサ21及び劣化状態判別部51は、電池システムを構成する単電池11の劣化状態判別システムを構成している。   The controller 50 includes a deterioration state determination unit 51 and a storage unit 52 that perform deterioration state determination for determining the deterioration state of the unit cell 11. The voltage monitoring IC 20 (voltage sensor), the pressure sensor 21 and the deterioration state determination unit 51 constitute a deterioration state determination system for the unit cells 11 constituting the battery system.

なお、コントローラ50は、組電池10の充放電制御を行う制御装置として動作することができ、車両出力要求に基づいて負荷40に組電池10の電力を出力する放電制御、車両が減速したり、停止したりする際の車両制動時における回生電力を組電池10に充電する充電制御を行う。劣化状態判別部51は、コントローラ50とは別途の制御装置として構成することもできる。   The controller 50 can operate as a control device that performs charge / discharge control of the assembled battery 10, and discharge control that outputs the power of the assembled battery 10 to the load 40 based on the vehicle output request, the vehicle decelerates, Charge control is performed to charge the assembled battery 10 with regenerative electric power during vehicle braking when stopping. The deterioration state determination unit 51 can also be configured as a control device separate from the controller 50.

次に、本実施例の単電池11の劣化状態判別処理について詳細に説明する。単電池11の満充電容量は、充放電を繰り返すことにより劣化して製造時の初期状態の満充電容量よりも小さくなる。リチウムイオン二次電池を一例に説明すると、例えば、過充電(ハイレート充電、高充電状態(高SOC)からの充電、長時間充電の継続、低温での充電など)において、リチウムイオン二次電池の負極表面に、SEI(Solid Electrolyte interface)皮膜生成により固定化されてリチウム(Li)金属が析出することがあり、このリチウム金属の析出は、電池容量の劣化を招く要因として知られている。   Next, the deterioration state determination process of the battery cell 11 of the present embodiment will be described in detail. The full charge capacity of the unit cell 11 is deteriorated by repeated charge and discharge and becomes smaller than the full charge capacity in the initial state at the time of manufacture. A lithium ion secondary battery will be described as an example. For example, in the case of overcharge (high rate charge, charge from a high charge state (high SOC), continuous long charge, low temperature charge, etc.), Lithium (Li) metal is sometimes deposited on the negative electrode surface by SEI (Solid Electrolyte interface) film formation, and this deposition of lithium metal is known as a factor causing deterioration of battery capacity.

つまり、リチウムイオン二次電池では、充電の際に正電極体(正活物質)からリチウムイオンが負電極体(負活物質)へ移動して吸蔵され、放電の際には逆に負電極体から正電極体にリチウムイオンが戻るが、電極にリチウム(Li)金属が析出すると、電気伝導を担う電解質中のリチウムイオンが減少してしまい、電池容量が減少する。   That is, in a lithium ion secondary battery, lithium ions move from the positive electrode body (positive active material) to the negative electrode body (negative active material) during charging and are stored, and conversely during discharge, the negative electrode body. Lithium ions return to the positive electrode body, but when lithium (Li) metal is deposited on the electrodes, the lithium ions in the electrolyte responsible for electrical conduction are reduced, and the battery capacity is reduced.

このとき、単電池11が劣化して電気伝導を担う電解質中のリチウムイオンが減少することに伴って、単電池11の内部圧力が変化する。例えば、電解質内のリチウムイオンの密度が減少すると、電気伝導を担うリチウムイオンの移動が少なくなるので、充電時に負電極体に吸蔵されるリチウムイオンが減少し、負電極体の膨張が初期状態の単電池11に比べて小さくなる。このため、発電素子13の内部圧力が減少する。   At this time, the internal pressure of the unit cell 11 changes as the unit cell 11 deteriorates and the lithium ions in the electrolyte responsible for electrical conduction decrease. For example, when the density of lithium ions in the electrolyte decreases, the movement of lithium ions responsible for electrical conduction decreases, so the lithium ions stored in the negative electrode body during charging decrease, and the negative electrode body expands in the initial state. Smaller than the unit cell 11. For this reason, the internal pressure of the power generation element 13 decreases.

本実施例の単電池11の劣化状態判別は、未使用の劣化していない初期状態の単電池11、例えば、製造時の単電池11の基準状態として予め測定した各種のデータを用い、使用環境下にある単電池11で検出される電圧値及び圧力値に基づいて、単電池11の電池容量の劣化状態を算出、判別する。   The deterioration state determination of the cell 11 according to the present embodiment is performed by using various data measured in advance as a reference state of the unused cell 11 in an initial state that has not been deteriorated, for example, the cell 11 at the time of manufacture. Based on the voltage value and pressure value detected by the unit cell 11 below, the deterioration state of the battery capacity of the unit cell 11 is calculated and determined.

本実施例では、初期状態の単電池11の複数の異なるSOC状態それぞれにおける端子間電圧値(CCV:Closed Circuit Voltage)、内部圧力値をそれぞれ測定することで、初期状態の単電池11の電圧とSOCとの関係を示す電圧−SOC関係データ(V−S関係マップ)と、初期状態の単電池11の内部圧力とSOCとの関係を示す内部圧力−SOC関係データ(P−S関係マップ)と、を予め測定によって取得(作成)する。   In this embodiment, the voltage of the single cell 11 in the initial state is measured by measuring the inter-terminal voltage value (CCV: Closed Circuit Voltage) and the internal pressure value in each of a plurality of different SOC states of the single cell 11 in the initial state. Voltage-SOC relationship data (VS relationship map) indicating the relationship with the SOC, and internal pressure-SOC relationship data (PS relationship map) indicating the relationship between the internal pressure of the unit cell 11 and the SOC in the initial state, and Are previously obtained (created) by measurement.

取得された電圧−SOC関係データと内部圧力−SOC関係データの2つの関係データから、初期状態の単電池11の電圧と内部圧力との関係を示す電圧−内部圧力関係データ(V−P関係マップ:第1関係データに相当する)を取得することができる。なお、SOC(State of Charge)は、単電池11の満充電容量に対する現在充電容量の割合を示すものであり、単電池11のOCV(Open Circuit Voltage)から特定することができる。   Voltage-internal pressure relationship data (VP relationship map) indicating the relationship between the voltage of the unit cell 11 in the initial state and the internal pressure from the two relationship data of the acquired voltage-SOC relationship data and internal pressure-SOC relationship data. : Corresponding to the first relation data). The SOC (State of Charge) indicates the ratio of the current charge capacity to the full charge capacity of the unit cell 11 and can be specified from the OCV (Open Circuit Voltage) of the unit cell 11.

図3は、初期状態における単電池11の電圧値と内部圧力の関係を示した図である。横軸が単電池11の電圧(V)、縦軸が単電池11の内部圧力であり、単電池11の初期状態における電圧と内部圧力との関係が実線(V−P曲線)で表されている。   FIG. 3 is a diagram showing the relationship between the voltage value of the cell 11 and the internal pressure in the initial state. The horizontal axis represents the voltage (V) of the cell 11 and the vertical axis represents the internal pressure of the cell 11. The relationship between the voltage and the internal pressure in the initial state of the cell 11 is represented by a solid line (VP curve). Yes.

次に、上述した各関係マップとは別に、初期状態から単電池11を劣化させ、劣化状態の遷移に伴う単電池11の内部圧力の変動を測定する。まず、初期状態の電池容量C0は、初期値として予め算出又は測定することができ、電池容量C0における単電池11の内部圧力P0を測定する。続いて、初期状態にある単電池11を充放電させて劣化させ、電池容量C1となった際の単電池11の内部圧力P1を測定する。電池容量C1は、充電電流の積算値から算出することができる。   Next, separately from each of the relationship maps described above, the unit cell 11 is deteriorated from the initial state, and the fluctuation of the internal pressure of the unit cell 11 due to the transition of the deterioration state is measured. First, the battery capacity C0 in the initial state can be calculated or measured in advance as an initial value, and the internal pressure P0 of the cell 11 at the battery capacity C0 is measured. Subsequently, the cell 11 in the initial state is charged and discharged to be deteriorated, and the internal pressure P1 of the cell 11 when the battery capacity C1 is reached is measured. The battery capacity C1 can be calculated from the integrated value of the charging current.

具体的には、予め設定された上限SOCまで充電及び放電を繰り返し行う所定の充放電サイクルで単電池11を劣化させ、各充放電サイクルそれぞれで単電池11の電池容量及び内部圧力を取得する。例えば、単電池11の初期SOCが80%である場合、この初期状態における単電池11の圧力P0を圧力センサで検出する。このときの単電池11の満充電容量、すなわち、電池容量は、劣化前の電池容量C0となる。続いて、単電池11を放電させてSOCを一定の下限値(例えば、20%)まで低下させ、SOCが下限値の状態からSOCが同じ80%になるまで充電を行う。放電及び同じ上限SOCまでの充電を1サイクルとした充放電を繰り返し行い、電流センサによって検出される充電電流の積算値に基づいて満充電容量(Ah)を算出し、かつ各充放電サイクルにおいてSOCが80%の状態の単電池11の電池容量と内部圧力を測定する。   Specifically, the unit cell 11 is deteriorated in a predetermined charging / discharging cycle in which charging and discharging are repeatedly performed up to a preset upper limit SOC, and the battery capacity and internal pressure of the unit cell 11 are acquired in each charging / discharging cycle. For example, when the initial SOC of the unit cell 11 is 80%, the pressure P0 of the unit cell 11 in this initial state is detected by a pressure sensor. The full charge capacity of the unit cell 11 at this time, that is, the battery capacity is the battery capacity C0 before deterioration. Subsequently, the unit cell 11 is discharged to lower the SOC to a certain lower limit value (for example, 20%), and charging is performed from the state where the SOC is the lower limit value until the SOC reaches the same 80%. Charging / discharging with one cycle of discharging and charging up to the same upper limit SOC is repeated, the full charge capacity (Ah) is calculated based on the integrated value of the charging current detected by the current sensor, and the SOC in each charging / discharging cycle The battery capacity and the internal pressure of the unit cell 11 in the state of 80% are measured.

初期状態の電池容量C0から劣化させた各電池容量それぞれの単電池11の圧力を測定し、単電池11の内部圧力と電池容量との関係を示す内部圧力と電池容量の関係データ(P−C関係マップ:第2関係データに相当する)を作成することができる。   The pressure of the cell 11 of each battery capacity deteriorated from the battery capacity C0 in the initial state is measured, and the relational data (PC) of the internal pressure and the battery capacity indicating the relationship between the internal pressure of the cell 11 and the battery capacity. Relationship map: corresponding to second relationship data).

図4は、単電池11の内部圧力と電池容量の関係を示す図である。横軸が単電池11の電池容量(Ah)、縦軸が単電池11の内部圧力である。充放電させることで遷移した(劣化した)単電池11の電池容量とその電池容量における単電池11の内部圧力の関係が実線で表されている。   FIG. 4 is a diagram showing the relationship between the internal pressure of the single battery 11 and the battery capacity. The horizontal axis represents the battery capacity (Ah) of the unit cell 11, and the vertical axis represents the internal pressure of the unit cell 11. The solid line represents the relationship between the battery capacity of the unit cell 11 that has been transitioned (deteriorated) by charging and discharging, and the internal pressure of the unit cell 11 at that battery capacity.

なお、初期状態における単電池11の内部圧力の測定は、例えば、相手方の極が変動しないものを使用して発電要素13の正電極体及び負電極体それぞれの圧力を測定するが、負電極体の圧力の寄与が正電極体よりも十分に大きい場合、測定された負電極体の圧力変動のみを単電池11の内部圧力とすることができる。図3、図4の例は、測定された負電極体の圧力変動のみを含む内部圧力との関係を示したものである。   Note that the internal pressure of the cell 11 in the initial state is measured, for example, by measuring the pressure of each of the positive electrode body and the negative electrode body of the power generation element 13 using a battery whose counterpart pole does not change. When the pressure contribution is sufficiently larger than that of the positive electrode body, only the measured pressure fluctuation of the negative electrode body can be used as the internal pressure of the unit cell 11. The example of FIG. 3 and FIG. 4 shows the relationship with the internal pressure including only the pressure fluctuation of the measured negative electrode body.

本実施例の劣化状態判別は、図3に示した単電池11の初期状態における電圧と内部圧力の関係データと、図4に示した各劣化状態それぞれでの単電池11の電池容量と内部圧力の関係データと、を予め記憶部52に記憶しておき、単電池11の電圧値及び内部圧力を各センサで検出することで、使用されている環境下にある単電池11の電池容量の劣化状態を算出及び判別する。   In this embodiment, the deterioration state is determined by comparing the relationship between the voltage and internal pressure in the initial state of the cell 11 shown in FIG. 3, and the battery capacity and internal pressure of the cell 11 in each deterioration state shown in FIG. Is stored in the storage unit 52 in advance, and the voltage value and internal pressure of the unit cell 11 are detected by each sensor, thereby degrading the battery capacity of the unit cell 11 in the environment in use. Calculate and determine state.

図5は、本実施例の単電池11の劣化状態判別動作を示すフローチャートである。劣化状態判別は、劣化状態判別部51によって遂行される。劣化状態判別部51は、単電池11の電圧を検出する電圧監視IC20によって検出される検出値及び圧力センサ21によって検出される検出値を用いて、各単電池11の劣化状態を判別する劣化状態判別装置として機能する。   FIG. 5 is a flowchart showing the deterioration state determination operation of the cell 11 according to this embodiment. The deterioration state determination is performed by the deterioration state determination unit 51. The deterioration state determination unit 51 uses the detection value detected by the voltage monitoring IC 20 that detects the voltage of the single battery 11 and the detection value detected by the pressure sensor 21 to determine the deterioration state of each single battery 11. Functions as a discrimination device.

劣化状態判別部51は、車両のイグニッションスイッチがオフからオンに切り替わり、リレー装置31、32がオンされてコントローラ50によって充放電制御を開始できる状態(READY−ON状態)になった後の負荷40との間で充放電制御が行われていないとき、又はコントローラ50による充放電制御が終了する(READY−OFF状態)前の負荷40との間で充放電制御が行われていないときに、単電池11の劣化状態判別を行うことができる。   The deterioration state determination unit 51 switches the load 40 after the vehicle ignition switch is switched from OFF to ON, and the relay devices 31 and 32 are turned ON so that the controller 50 can start charge / discharge control (READY-ON state). When charge / discharge control is not performed between the load 40 and the load 40 before the charge / discharge control by the controller 50 ends (READY-OFF state), the charge / discharge control is not performed. The deterioration state of the battery 11 can be determined.

劣化状態判別部51は、単電池11の電圧値及び圧力値を電圧監視IC20及び圧力センサ21から取得する。つまり、負荷40と接続される使用環境下(使用状態)にある単電池11の実測電圧値V1及び実測圧力値P1を各センサから取得する(S101)。   The deterioration state determination unit 51 acquires the voltage value and pressure value of the unit cell 11 from the voltage monitoring IC 20 and the pressure sensor 21. That is, the actual measurement voltage value V1 and the actual measurement pressure value P1 of the cell 11 in the use environment (use state) connected to the load 40 are acquired from each sensor (S101).

ステップS102において、劣化状態判別部51は、記憶部52に記憶されている図3に示したV−P関係マップから電圧監視IC20で検出された実測電圧値V1に対応する初期状態の圧力値P0を算出する。   In step S102, the deterioration state determination unit 51 initializes the pressure value P0 in the initial state corresponding to the actually measured voltage value V1 detected by the voltage monitoring IC 20 from the VP relationship map shown in FIG. Is calculated.

ステップS103において、劣化状態判別部51は、記憶部52に記憶されている図4に示したP−C関係マップから、図3のV−P関係マップによって算出された初期状態の圧力値P0に対応する電池容量C0を算出するとともに、圧力センサ21で検出された実測圧力値P1に対応する電池容量C1を算出する。   In step S103, the deterioration state determination unit 51 uses the PC relationship map shown in FIG. 4 stored in the storage unit 52 as the initial state pressure value P0 calculated by the VP relationship map of FIG. A corresponding battery capacity C0 is calculated, and a battery capacity C1 corresponding to the actually measured pressure value P1 detected by the pressure sensor 21 is calculated.

ステップS104において、劣化状態判別部51は、実測電圧値V1に対して単電池11の内部圧力がP0からP1に変動した圧力変動に対応する電池容量の差分(C0−C1)を単電池11の劣化量として算出する。   In step S104, the deterioration state determination unit 51 determines the difference (C0−C1) in the battery capacity corresponding to the pressure fluctuation in which the internal pressure of the battery cell 11 has changed from P0 to P1 with respect to the actually measured voltage value V1. Calculated as the amount of deterioration.

算出された劣化量は、単電池11の劣化状態を判別する情報として用いることができる。例えば、算出された劣化量が0である場合、単電池11は初期状態から劣化していないと判別することができる。算出された劣化量から単電池11の電池容量が所定値以下である場合、組電池10の出力制限(例えば、組電池10の電力を用いた走行距離を制限したり、組電池10の充放電電流の入出力値を制限など)することができる。また、算出された劣化量から組電池10の寿命を推定することができる。   The calculated deterioration amount can be used as information for determining the deterioration state of the unit cell 11. For example, when the calculated deterioration amount is 0, it can be determined that the cell 11 has not deteriorated from the initial state. When the battery capacity of the single battery 11 is equal to or less than a predetermined value from the calculated deterioration amount, the output limit of the battery pack 10 (for example, the travel distance using the power of the battery pack 10 is limited, or the battery pack 10 is charged / discharged) Current input / output values can be limited). Moreover, the lifetime of the assembled battery 10 can be estimated from the calculated deterioration amount.

上述した図3及び図4の各関係データを用いた単電池11の電池容量の劣化状態判別は、劣化による単電池11の負電極体の変動に起因する電池容量の劣化状態、すなわち、負極電極体の圧力変動が正電極体よりも十分に大きい場合の電池容量の劣化状態を判別しているが、単電池11の正電極体の圧力変動が無視できない場合、正電極体の圧力変動分を加味した図3(電圧と内部圧力の関係データ)、図4(電池容量と内部圧力の関係データ)それぞれに対応する電圧と内部圧力の関係データ及び電池容量と内部圧力の関係データを作成することができる。   The determination of the deterioration state of the battery capacity of the single battery 11 using the relational data of FIG. 3 and FIG. 4 described above is the deterioration state of the battery capacity due to the fluctuation of the negative electrode body of the single battery 11 due to the deterioration, that is, the negative electrode. The battery capacity degradation state is determined when the body pressure fluctuation is sufficiently larger than the positive electrode body. If the pressure fluctuation of the positive electrode body of the unit cell 11 cannot be ignored, the pressure fluctuation amount of the positive electrode body is calculated. Create the relationship data of the voltage and internal pressure and the relationship data of the battery capacity and the internal pressure corresponding to FIG. 3 (relation data of the voltage and internal pressure) and FIG. 4 (relation data of the battery capacity and internal pressure). Can do.

図6は、単電池11の正電極体及び負電極体それぞれの電位とSOCとの関係を示す図である。縦軸は電位(V)、横軸はSOC(%)であり、実線が各SOCにおいて初期状態の正電極体及び負電極体それぞれの電位を表している。   FIG. 6 is a diagram illustrating the relationship between the potential of each of the positive electrode body and the negative electrode body of the unit cell 11 and the SOC. The vertical axis represents the potential (V), the horizontal axis represents the SOC (%), and the solid line represents the potential of the positive electrode body and the negative electrode body in the initial state in each SOC.

まず、初期状態の単電池11の正電極体及び負電極体それぞれの電位と内部圧力との関係を図3に示した例と同様に取得する。つまり、図6に示した正電極体及び負電極体それぞれの電位とSOCの関係データ(実線)と、不図示の単電池11の正電極体及び負電極体それぞれの圧力とSOCの関係データとをそれぞれ取得し、電圧(正電極体と負電極体との電位差)及び正電極体の圧力変動と負電極体の圧力変動を含む単電池11の内部圧力の関係データを作成する。図3において二点鎖線で示されたV−P曲線が、正電極体の圧力変動分が加味(加算)されたV−P関係マップである。   First, the relationship between the potential of each of the positive electrode body and the negative electrode body of the unit cell 11 in the initial state and the internal pressure is acquired in the same manner as the example shown in FIG. That is, the relationship data (solid line) between the potential of each of the positive electrode body and the negative electrode body and the SOC shown in FIG. 6 (solid line), and the relationship data between the pressure and SOC of each of the positive electrode body and the negative electrode body (not shown) Are respectively obtained, and the relational data of the internal pressure of the unit cell 11 including the voltage (potential difference between the positive electrode body and the negative electrode body) and the pressure fluctuation of the positive electrode body and the pressure fluctuation of the negative electrode body is created. A VP curve indicated by a two-dot chain line in FIG. 3 is a VP relationship map in which the pressure fluctuation of the positive electrode body is added (added).

図3の例において、二点鎖線で示した正電極体の圧力変動分が加味されたV−P関係マップは、負電極体の圧力変動のみを考慮した実線で示されたV−P関係マップよりも内部圧力が正電極体の圧力変動分上方にスライドしている。任意の電圧V1における単電池11の内部圧力は、P0に正電極体の圧力変動が加算されたPaとなる。   In the example of FIG. 3, the VP relationship map in which the pressure fluctuation of the positive electrode body indicated by the two-dot chain line is taken into consideration is the VP relation map indicated by the solid line considering only the pressure fluctuation of the negative electrode body. The internal pressure slides upward by the amount of pressure fluctuation of the positive electrode body. The internal pressure of the battery cell 11 at an arbitrary voltage V1 is Pa obtained by adding the pressure fluctuation of the positive electrode body to P0.

続いて、図4に対応する正電極体の圧力変動分が加味されたP−C関係マップを作成する。電池容量C0の初期状態(劣化していない状態)の単電池11を劣化させ、電池容量C1となった際の単電池11の任意のSOC(電圧V1)における正電極体及び負電極体それぞれの電位を算出する。   Subsequently, a P-C relationship map is created in consideration of the pressure fluctuation of the positive electrode body corresponding to FIG. The cell 11 in the initial state (not deteriorated) of the battery capacity C0 is deteriorated, and each of the positive electrode body and the negative electrode body in an arbitrary SOC (voltage V1) of the cell 11 when the battery capacity C1 is reached. Calculate the potential.

このとき、電池容量C0から電池容量C1に劣化した劣化量(C0−C1)の分、負電極体の充電量(放電量)が正電極体に対して少なくなる性質を利用することで、図6の点線で示す曲線を予め作成することができる。このため、電池容量C1に劣化した状態での負電極体の電位は、電池容量C1に劣化した状態の負電極体の電位の変動を図6の点線で示す曲線から算出することができる。図6の例のように負電極体の電位は、劣化によって正電極体の電位に対して右方向にスライドし、劣化量の分、電位が高くなる(正電極体と負電極体との電位差が小さくなる)。   At this time, by utilizing the property that the amount of charge (discharge amount) of the negative electrode body is smaller than that of the positive electrode body by the amount of deterioration (C0-C1) deteriorated from the battery capacity C0 to the battery capacity C1. A curve indicated by a dotted line 6 can be created in advance. For this reason, the potential of the negative electrode body in a state of being deteriorated to the battery capacity C1 can be calculated from the curve indicated by the dotted line in FIG. As in the example of FIG. 6, the potential of the negative electrode body slides to the right with respect to the potential of the positive electrode body due to deterioration, and the potential increases by the amount of deterioration (the potential difference between the positive electrode body and the negative electrode body). Becomes smaller).

このように任意のSOCにおける初期状態の電池容量C0から劣化させた各電池容量それぞれの単電池11の正極電体及び負電極体それぞれの電位を、図6に示した予め作成された電池容量の劣化に伴う単電池11の負電極体の電位変動マップから算出する。電池容量C0の初期状態における電圧差V1、電池容量C1に劣化した状態の電位差V2をそれぞれ求めると、各電圧差V1、V2に対応する単電池11の内部圧力が、図3の二点鎖線で示されたV−P曲線から算出することができ、正電極体の圧力変動分が加味されたP−C関係データを取得することができる。   As described above, the potentials of the positive electrode body and the negative electrode body of the unit cell 11 of each battery capacity deteriorated from the battery capacity C0 in the initial state in an arbitrary SOC are the same as the battery capacity created in advance shown in FIG. It is calculated from the potential fluctuation map of the negative electrode body of the unit cell 11 accompanying the deterioration. When the voltage difference V1 in the initial state of the battery capacity C0 and the potential difference V2 in the state deteriorated to the battery capacity C1 are obtained, the internal pressure of the cell 11 corresponding to each voltage difference V1 and V2 is indicated by a two-dot chain line in FIG. It can be calculated from the indicated VP curve, and the P-C related data can be acquired in consideration of the pressure fluctuation of the positive electrode body.

図7は、正電極体の圧力変動分が加味された単電池11の内部圧力と電池容量の関係を示す図である。横軸が単電池11の電池容量(Ah)、縦軸が単電池11の内部圧力である。充放電させることで遷移した(劣化した)単電池11の電池容量とその電池容量における正電極体の圧力変動分が加味された単電池11の内部圧力の関係が実線で表されている。   FIG. 7 is a diagram showing the relationship between the internal pressure of the unit cell 11 and the battery capacity in consideration of the pressure fluctuation of the positive electrode body. The horizontal axis represents the battery capacity (Ah) of the unit cell 11, and the vertical axis represents the internal pressure of the unit cell 11. The solid line represents the relationship between the battery capacity of the battery cell 11 that has been transitioned (deteriorated) by charging and discharging, and the internal pressure of the battery cell 11 that takes into account the pressure fluctuation of the positive electrode body in that battery capacity.

図7の例において、一点鎖線で示した関係データは、図4に示した負電極体の圧力変動のみを単電池11の内部圧力とした場合のP−C関係データである。図7に示すように、実線で示した正電極体の圧力変動分が加味されたP−C関係データは、負電極体の圧力変動のみを考慮した一点鎖線で示されたP−C関係データよりも内部圧力が正電極体の圧力変動分上方にスライドしている。各電池容量は、負電極体の圧力変動に正電極体の圧力変動が加算された内部圧力と関連付けられ、例えば、任意の電圧V1における初期状態の単電池11の内部圧力は、P0に正電極体の圧力変動が加算されたPaとなり、内部圧力Paに対して初期状態の電池容量C0が関連付けられることになる。電池容量C1についても図4に示した正電極体の圧力変動が加算されたPbが関連付けられることになる。   In the example of FIG. 7, the relational data indicated by the alternate long and short dash line is the PC relational data when only the pressure fluctuation of the negative electrode body shown in FIG. As shown in FIG. 7, the PC related data in which the pressure fluctuation of the positive electrode body indicated by the solid line is taken into account is the PC related data shown by the one-dot chain line considering only the pressure fluctuation of the negative electrode body. The internal pressure slides upward by the amount of pressure fluctuation of the positive electrode body. Each battery capacity is associated with the internal pressure obtained by adding the pressure fluctuation of the positive electrode body to the pressure fluctuation of the negative electrode body. For example, the internal pressure of the unit cell 11 in the initial state at an arbitrary voltage V1 is P0. The body pressure fluctuation is added to Pa, and the battery capacity C0 in the initial state is associated with the internal pressure Pa. The battery capacity C1 is also associated with Pb added with the pressure fluctuation of the positive electrode body shown in FIG.

なお、図3及び図4、図6及び図7に示した各関係データは、単電池11の電圧値は、CCV(Closed Circuit Voltage)が適用されて作成されており、使用環境下で検出される単電池11のCCVと内部圧力によって単電池11の劣化量を算出、判別しているが、これに限らず、OCV(Open Circuit Voltage)を適用して各関係データを作成し、電圧監視IC20によって取得される使用環境下で検出される単電池11のCCV(Closed Circuit Voltage)を用いて単電池11のOCVを算出することで、使用環境下における単電池11のOCVと検出された内部圧力によって単電池11の劣化量を算出、判別するように構成してもよい。   In addition, each relational data shown in FIG.3 and FIG.4, FIG.6 and FIG. 7 is created by applying CCV (Closed Circuit Voltage), and the voltage value of the cell 11 is detected in use environment. The amount of deterioration of the cell 11 is calculated and discriminated based on the CCV of the cell 11 and the internal pressure. However, the present invention is not limited to this, and each relationship data is created by applying OCV (Open Circuit Voltage), and the voltage monitoring IC 20 By calculating the OCV of the single cell 11 using the CCV (Closed Circuit Voltage) of the single cell 11 detected in the use environment acquired by the above, the OCV of the single cell 11 in the use environment and the detected internal pressure May be configured to calculate and determine the deterioration amount of the single battery 11.

次に、本実施例の劣化状態判別の変形例を説明する。例えば、予め任意の電圧(基準電圧)を決めておき、図3に示した初期状態のV−P関係マップから任意の電圧に対応する初期状態の単電池11の内部圧力を予め取得しておく。記憶部52には、図3に示したV−P関係マップの各データを全て記憶せずに、任意の電圧とそれに対応する単電池11の内部電圧のみを記憶しておくようにする。劣化状態判別部51は、電圧監視IC20によって検出される単電池11の電圧が予め決められた任意の電圧である場合に、劣化状態判別を行うように構成することができる。   Next, a modified example of the deterioration state determination of this embodiment will be described. For example, an arbitrary voltage (reference voltage) is determined in advance, and the internal pressure of the cell 11 in the initial state corresponding to the arbitrary voltage is acquired in advance from the VP relationship map in the initial state shown in FIG. . The storage unit 52 does not store all the data of the VP relationship map shown in FIG. 3, but stores only an arbitrary voltage and the internal voltage of the cell 11 corresponding thereto. The deterioration state determination unit 51 can be configured to perform deterioration state determination when the voltage of the unit cell 11 detected by the voltage monitoring IC 20 is an arbitrary voltage determined in advance.

この場合、劣化状態判別部51は、単電池11の電圧が予め決められた任意の電圧になった際の内部圧力を圧力センサ21で検出し、既に取得済みの任意の電圧に対する初期状態の内部圧力と検出された内部圧力とを用いて、図4のP−C関係データから単電池11の劣化量を算出することができる。また、劣化状態判別部51は、電圧監視IC20によって検出される単電池11の電圧が予め決められた任意の電圧でない場合、任意の電圧まで単電池11を充放電させることができる。劣化状態判別部51は、充放電制御後に任意の電圧になった際の圧力センサ21によって検出された内部圧力と既に取得済みの任意の電圧に対する初期状態の内部圧力とを用いて、図4のP−C関係データから単電池11の劣化量を算出することができる。   In this case, the deterioration state determination unit 51 detects the internal pressure when the voltage of the unit cell 11 becomes a predetermined arbitrary voltage with the pressure sensor 21, and the internal state in the initial state with respect to the already acquired arbitrary voltage. Using the pressure and the detected internal pressure, the deterioration amount of the unit cell 11 can be calculated from the PC relationship data of FIG. Further, when the voltage of the unit cell 11 detected by the voltage monitoring IC 20 is not a predetermined voltage, the deterioration state determination unit 51 can charge / discharge the unit cell 11 to an arbitrary voltage. The deterioration state determination unit 51 uses the internal pressure detected by the pressure sensor 21 when an arbitrary voltage is reached after charge / discharge control and the internal pressure in the initial state with respect to the already acquired arbitrary voltage, as shown in FIG. The deterioration amount of the unit cell 11 can be calculated from the PC related data.

この変形例では、処理手順(例えば、図7のステップS102)が簡略化されるとともに、記憶部52に図3に示した初期状態のV−P関係マップの全データを記憶させておく必要がないので記憶部52の記憶領域を小さくすることができる。   In this modification, the processing procedure (for example, step S102 in FIG. 7) is simplified, and all data of the initial state VP relationship map shown in FIG. 3 must be stored in the storage unit 52. Therefore, the storage area of the storage unit 52 can be reduced.

このように本実施例の二次電池の劣化状態判別システムは、単電池11の内部圧力の変動に起因した容量劣化を算出するので、容量劣化を算出するために単電池11に特定条件で動作させることなく二次電池の容量劣化を算出することができる。   As described above, the secondary battery deterioration state determination system according to the present embodiment calculates the capacity deterioration due to the fluctuation of the internal pressure of the single battery 11, and thus operates in a specific condition for the single battery 11 to calculate the capacity deterioration. It is possible to calculate the capacity deterioration of the secondary battery without causing it.

このため、使用されている環境下であっても適切に容量劣化を判別することができるとともに、単電池11を特定条件で動作させる場合に比べて短時間で容量劣化を判別することができ、かつ劣化状態判別に伴う充放電によって単電池11が劣化することを抑制できる。特に、単電池11が車両に搭載されて使用されている環境下(充放電を頻繁に繰り返すような環境下の単電池11)であっても劣化状態判別に伴う充放電によって単電池11が劣化することを抑制しつつ、容量劣化を算出するために単電池11に特定条件で動作させることなく短時間で適切に容量劣化を判別することができる。   For this reason, it is possible to appropriately determine the capacity deterioration even under the environment in which the battery is used, and to determine the capacity deterioration in a shorter time than when the unit cell 11 is operated under a specific condition. And it can suppress that the cell 11 deteriorates by the charge / discharge accompanying deterioration state determination. In particular, even in an environment where the unit cell 11 is mounted on a vehicle and used (the unit cell 11 in an environment in which charge and discharge are frequently repeated), the unit cell 11 is deteriorated due to charge / discharge accompanying the deterioration state determination. In order to calculate the capacity deterioration, it is possible to appropriately determine the capacity deterioration in a short time without causing the cell 11 to operate under a specific condition.

なお、単電池11の内部圧力の変動(単電池11の充放電に伴う膨張・収縮)に起因して算出された劣化量と、実際に電流センサで検出される充放電電流の積算値から算出される測定劣化量とを比較し、算出値と測定値との間で相違が場合に、単電池11の内部圧力の変動に起因した容量劣化以外の要因(例えば、正電極体の構造変化)による容量劣化が生じているものと判別することができる。   It is calculated from the amount of deterioration calculated due to fluctuations in the internal pressure of the cell 11 (expansion / contraction due to charging / discharging of the cell 11) and the integrated value of the charge / discharge current actually detected by the current sensor. The measured deterioration amount is compared, and when there is a difference between the calculated value and the measured value, factors other than the capacity deterioration due to the fluctuation of the internal pressure of the unit cell 11 (for example, the structure change of the positive electrode body) Therefore, it can be determined that the capacity deterioration due to has occurred.

10 組電池(電源装置)
11 単電池(二次電池)
12 外装部材
13 発電要素
14 正極端子
15 負極端子
16 仕切り部材
20 電圧監視IC(電圧センサ)
21 圧力センサ
31,32 リレー装置
40 負荷
50 コントローラ
51 劣化状態判別部
52 記憶部
10 battery pack (power supply)
11 Single battery (secondary battery)
12 exterior member 13 power generation element 14 positive electrode terminal 15 negative electrode terminal 16 partition member 20 voltage monitoring IC (voltage sensor)
21 Pressure sensors 31, 32 Relay device 40 Load 50 Controller 51 Degradation state determination unit 52 Storage unit

Claims (7)

二次電池の劣化状態判別システムであって、
前記二次電池の電圧を検出する電圧センサと、
前記二次電池の内部圧力を検出する圧力センサと、
所定の基準状態における前記二次電池の電圧と内部圧力の第1関係データ及び前記二次電池の内部圧力と電池容量の第2関係データを用い、前記電圧センサによって検出された電圧値に対応する前記所定の基準状態の内部圧力と前記圧力センサによって検出された内部圧力との間の圧力変動に応じた前記二次電池の容量劣化を算出する制御装置と、
を有することを特徴とする劣化状態判別システム。
A secondary battery degradation state determination system,
A voltage sensor for detecting a voltage of the secondary battery;
A pressure sensor for detecting an internal pressure of the secondary battery;
Corresponding to the voltage value detected by the voltage sensor using first relational data of the voltage and internal pressure of the secondary battery and second relational data of the internal pressure and battery capacity of the secondary battery in a predetermined reference state A control device that calculates capacity deterioration of the secondary battery in accordance with a pressure fluctuation between the internal pressure in the predetermined reference state and the internal pressure detected by the pressure sensor;
A degradation state determination system characterized by comprising:
前記制御装置は、前記第1関係データに基づいて、前記電圧センサで検出された電圧値に対応する前記所定の基準状態の第1圧力値を算出するとともに、前記第2関係データに基づいて、前記第1圧力値に対応する第1電池容量と前記圧力センサによって検出された第2圧力値に対応する第2電池容量とを算出し、前記第1電池容量と前記第2電池容量から前記容量劣化を算出することを特徴とする請求項1に記載の劣化状態判別システム。   The control device calculates a first pressure value of the predetermined reference state corresponding to the voltage value detected by the voltage sensor based on the first relation data, and based on the second relation data, A first battery capacity corresponding to the first pressure value and a second battery capacity corresponding to a second pressure value detected by the pressure sensor are calculated, and the capacity is calculated from the first battery capacity and the second battery capacity. The deterioration state determination system according to claim 1, wherein deterioration is calculated. 前記内部圧力は、前記二次電池を構成する電池要素の負極素子のみの圧力又は前記発電要素の負極素子及び正極素子それぞれの圧力を含むことを特徴とする請求項1又は2に記載の劣化状態判別システム。   3. The deterioration state according to claim 1, wherein the internal pressure includes a pressure of only a negative electrode element of a battery element constituting the secondary battery or a pressure of each of a negative electrode element and a positive electrode element of the power generation element. Discriminating system. 前記制御装置は、所定の基準電圧と前記第1関係データに基づく前記基準電圧に対応する基準内部圧力とを予め設定しておき、前記電圧センサによって検出される前記二次電池の電圧が前記基準電圧でない場合に前記基準電圧まで前記二次電池を充放電させ、前記基準電圧になった際の前記圧力センサによって検出された内部圧力と前記基準内部圧力との間の圧力変動に応じて前記容量劣化を算出することを特徴とする請求項1から3のいずれか1つに記載の劣化状態判別システム。   The control device presets a predetermined reference voltage and a reference internal pressure corresponding to the reference voltage based on the first relation data, and the voltage of the secondary battery detected by the voltage sensor is the reference voltage. When the voltage is not a voltage, the secondary battery is charged / discharged up to the reference voltage, and the capacity according to the pressure fluctuation between the internal pressure detected by the pressure sensor when the reference voltage is reached and the reference internal pressure The deterioration state determination system according to any one of claims 1 to 3, wherein the deterioration is calculated. 前記圧力センサは、前記二次電池を構成する電池要素を覆う外装部材の外周又は前記電池要素と前記外装部材との間に設けられていることを特徴とする請求項1から4のいずれか1つに記載の劣化状態判別システム。   The said pressure sensor is provided in the outer periphery of the exterior member which covers the battery element which comprises the said secondary battery, or between the said battery element and the said exterior member, The any one of Claim 1 to 4 characterized by the above-mentioned. Degradation state determination system described in 1. 前記二次電池は、リチウムイオン二次電池であることを特徴とする請求項1から5のいずれか1つに記載の劣化状態判別システム。   The deterioration state determination system according to any one of claims 1 to 5, wherein the secondary battery is a lithium ion secondary battery. 二次電池の劣化状態判別方法であって、
前記二次電池の電圧を検出するステップと、
前記二次電池の内部圧力を検出するステップと、
所定の基準状態における前記二次電池の電圧と内部圧力の関係データ及び前記二次電池の内部圧力と電池容量の関係データを用い、前記電圧センサによって検出された電圧値に対応する前記所定の基準状態の内部圧力と前記圧力センサによって検出された内部圧力との間の圧力変動に応じた前記二次電池の容量劣化を算出するステップと、
を含むことを特徴とする劣化状態判別方法。
A method for determining the deterioration state of a secondary battery,
Detecting a voltage of the secondary battery;
Detecting an internal pressure of the secondary battery;
Using the relationship data between the voltage and internal pressure of the secondary battery and the relationship data between the internal pressure and battery capacity of the secondary battery in a predetermined reference state, the predetermined reference corresponding to the voltage value detected by the voltage sensor Calculating the capacity deterioration of the secondary battery according to the pressure fluctuation between the internal pressure of the state and the internal pressure detected by the pressure sensor;
A degradation state determination method comprising:
JP2011233089A 2011-10-24 2011-10-24 A secondary battery deterioration state determination system and a deterioration state determination method. Active JP5660003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233089A JP5660003B2 (en) 2011-10-24 2011-10-24 A secondary battery deterioration state determination system and a deterioration state determination method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233089A JP5660003B2 (en) 2011-10-24 2011-10-24 A secondary battery deterioration state determination system and a deterioration state determination method.

Publications (2)

Publication Number Publication Date
JP2013092398A true JP2013092398A (en) 2013-05-16
JP5660003B2 JP5660003B2 (en) 2015-01-28

Family

ID=48615628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233089A Active JP5660003B2 (en) 2011-10-24 2011-10-24 A secondary battery deterioration state determination system and a deterioration state determination method.

Country Status (1)

Country Link
JP (1) JP5660003B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015103175A1 (en) * 2014-01-02 2015-07-09 Johnson Controls Technology Company Battery with life estimation
JP2015179006A (en) * 2014-03-19 2015-10-08 トヨタ自動車株式会社 Battery deterioration determination device
JP2016101048A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Capacity estimation device of on-vehicle secondary battery
JP2016122505A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery, and method for evaluation of in-battery gas generation amount with such battery
WO2016113278A1 (en) 2015-01-13 2016-07-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrochemical battery comprising an electronic module inside the casing
KR20170009995A (en) * 2014-07-10 2017-01-25 도요 고무 고교 가부시키가이샤 Sealed secondary batery deterioration diagnosis method and deterioration diagnosis system
JP2017085735A (en) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 Battery system
JP2017147021A (en) * 2016-02-15 2017-08-24 株式会社豊田自動織機 Power storage device and method of controlling battery module
KR20170107506A (en) 2015-02-26 2017-09-25 도요 고무 고교 가부시키가이샤 Deterioration Diagnosis Method and Degradation Diagnosis System of Sealed Rechargeable Battery
WO2017199326A1 (en) * 2016-05-17 2017-11-23 三菱電機株式会社 Battery protecting device and power storage system
CN107748338A (en) * 2017-12-07 2018-03-02 力信(江苏)能源科技有限责任公司 The detection means and appraisal procedure of a kind of cycle life of lithium ion battery
JP2018050405A (en) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 Secondary battery controller
CN108134149A (en) * 2018-02-06 2018-06-08 华霆(合肥)动力技术有限公司 Battery modules and battery management system
JP2019509003A (en) * 2016-02-17 2019-03-28 トヨタ・モーター・ヨーロッパToyota Motor Europe System and method for battery charge control
KR20190070262A (en) * 2017-12-12 2019-06-20 도요타 지도샤(주) Secondary battery system and method of estimating stress of active material of secondary battery
EP3432016A4 (en) * 2016-03-15 2019-11-13 Toyo Tire Corporation Sealed-type secondary battery remaining capacity prediction method, remaining capacity prediction system, battery internal information acquisition method, and battery control method
KR20190129754A (en) * 2018-05-11 2019-11-20 도요타 지도샤(주) Method of diagnosing lithium-ion battery and diagnostic apparatus for lithium-ion battery
CN112305428A (en) * 2019-07-29 2021-02-02 万向一二三股份公司 Method for simultaneously measuring mechanical response and electrochemical behavior of lithium ion battery
CN112731182A (en) * 2020-12-21 2021-04-30 天津力神电池股份有限公司 Method for rapidly evaluating cycle life of lithium ion battery
CN113054271A (en) * 2019-12-27 2021-06-29 北京车和家信息技术有限公司 Method and device for detecting safety state of battery
US11462917B1 (en) 2021-12-10 2022-10-04 NDSL, Inc. Methods, systems, and devices for maintenance and optimization of battery cabinets
US11689048B1 (en) 2021-12-10 2023-06-27 NDSL, Inc. Methods, systems, and devices for maintenance and optimization of battery cabinets
WO2023120940A1 (en) * 2021-12-24 2023-06-29 주식회사 엘지에너지솔루션 Battery system and battery cell assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001A (en) * 1852-06-08 Keflector-lamp
JP2001196099A (en) * 2000-01-07 2001-07-19 Matsushita Electric Ind Co Ltd Lifetime mearuring method for nickel-hydrogen battery and battery block
JP2002042896A (en) * 2000-07-19 2002-02-08 Honda Motor Co Ltd Battery state detector
JP2006012761A (en) * 2004-05-25 2006-01-12 Toyota Motor Corp State estimation method of secondary battery and its system
JP2009199774A (en) * 2008-02-19 2009-09-03 Sanyo Electric Co Ltd Charging/discharging method for secondary battery
JP2010032412A (en) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd Power supply for vehicle
JP2010166752A (en) * 2009-01-19 2010-07-29 Sony Corp Battery pack and method of controlling charging and discharging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001A (en) * 1852-06-08 Keflector-lamp
JP2001196099A (en) * 2000-01-07 2001-07-19 Matsushita Electric Ind Co Ltd Lifetime mearuring method for nickel-hydrogen battery and battery block
JP2002042896A (en) * 2000-07-19 2002-02-08 Honda Motor Co Ltd Battery state detector
JP2006012761A (en) * 2004-05-25 2006-01-12 Toyota Motor Corp State estimation method of secondary battery and its system
JP2009199774A (en) * 2008-02-19 2009-09-03 Sanyo Electric Co Ltd Charging/discharging method for secondary battery
JP2010032412A (en) * 2008-07-30 2010-02-12 Sanyo Electric Co Ltd Power supply for vehicle
JP2010166752A (en) * 2009-01-19 2010-07-29 Sony Corp Battery pack and method of controlling charging and discharging

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10833376B2 (en) 2014-01-02 2020-11-10 Cps Technology Holdings Llc Battery with life estimation
WO2015103175A1 (en) * 2014-01-02 2015-07-09 Johnson Controls Technology Company Battery with life estimation
JP2015179006A (en) * 2014-03-19 2015-10-08 トヨタ自動車株式会社 Battery deterioration determination device
DE102015101969B4 (en) * 2014-03-19 2020-02-20 Toyota Jidosha Kabushiki Kaisha Deterioration determining device for a battery
DE102015101969B8 (en) * 2014-03-19 2020-04-23 Toyota Jidosha Kabushiki Kaisha Deterioration determining device for a battery
KR20170009995A (en) * 2014-07-10 2017-01-25 도요 고무 고교 가부시키가이샤 Sealed secondary batery deterioration diagnosis method and deterioration diagnosis system
EP3168632A4 (en) * 2014-07-10 2017-08-09 Toyo Tire & Rubber Co., Ltd. Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
JP2016101048A (en) * 2014-11-26 2016-05-30 トヨタ自動車株式会社 Capacity estimation device of on-vehicle secondary battery
JP2016122505A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Nonaqueous electrolyte secondary battery, and method for evaluation of in-battery gas generation amount with such battery
WO2016113278A1 (en) 2015-01-13 2016-07-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrochemical battery comprising an electronic module inside the casing
KR20170107506A (en) 2015-02-26 2017-09-25 도요 고무 고교 가부시키가이샤 Deterioration Diagnosis Method and Degradation Diagnosis System of Sealed Rechargeable Battery
KR101868588B1 (en) * 2015-02-26 2018-06-19 도요 고무 고교 가부시키가이샤 Deterioration Diagnosis Method and Degradation Diagnosis System of Sealed Rechargeable Battery
JP2017085735A (en) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 Battery system
JP2017147021A (en) * 2016-02-15 2017-08-24 株式会社豊田自動織機 Power storage device and method of controlling battery module
JP2019509003A (en) * 2016-02-17 2019-03-28 トヨタ・モーター・ヨーロッパToyota Motor Europe System and method for battery charge control
EP3432016A4 (en) * 2016-03-15 2019-11-13 Toyo Tire Corporation Sealed-type secondary battery remaining capacity prediction method, remaining capacity prediction system, battery internal information acquisition method, and battery control method
JPWO2017199326A1 (en) * 2016-05-17 2018-09-13 三菱電機株式会社 Storage battery protection device and power storage system
WO2017199326A1 (en) * 2016-05-17 2017-11-23 三菱電機株式会社 Battery protecting device and power storage system
WO2018055915A1 (en) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 Secondary battery control device
US11346890B2 (en) 2016-09-21 2022-05-31 Vehicle Energy Japan Inc. Secondary battery control device
JP2018050405A (en) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 Secondary battery controller
CN107748338A (en) * 2017-12-07 2018-03-02 力信(江苏)能源科技有限责任公司 The detection means and appraisal procedure of a kind of cycle life of lithium ion battery
KR102084416B1 (en) 2017-12-12 2020-04-20 도요타 지도샤(주) Secondary battery system and method of estimating stress of active material of secondary battery
KR20190070262A (en) * 2017-12-12 2019-06-20 도요타 지도샤(주) Secondary battery system and method of estimating stress of active material of secondary battery
CN108134149A (en) * 2018-02-06 2018-06-08 华霆(合肥)动力技术有限公司 Battery modules and battery management system
KR20190129754A (en) * 2018-05-11 2019-11-20 도요타 지도샤(주) Method of diagnosing lithium-ion battery and diagnostic apparatus for lithium-ion battery
KR102211032B1 (en) 2018-05-11 2021-02-02 도요타 지도샤(주) Method of diagnosing lithium-ion battery and diagnostic apparatus for lithium-ion battery
CN112305428A (en) * 2019-07-29 2021-02-02 万向一二三股份公司 Method for simultaneously measuring mechanical response and electrochemical behavior of lithium ion battery
CN113054271A (en) * 2019-12-27 2021-06-29 北京车和家信息技术有限公司 Method and device for detecting safety state of battery
CN112731182A (en) * 2020-12-21 2021-04-30 天津力神电池股份有限公司 Method for rapidly evaluating cycle life of lithium ion battery
US11462917B1 (en) 2021-12-10 2022-10-04 NDSL, Inc. Methods, systems, and devices for maintenance and optimization of battery cabinets
US11689048B1 (en) 2021-12-10 2023-06-27 NDSL, Inc. Methods, systems, and devices for maintenance and optimization of battery cabinets
WO2023120940A1 (en) * 2021-12-24 2023-06-29 주식회사 엘지에너지솔루션 Battery system and battery cell assembly

Also Published As

Publication number Publication date
JP5660003B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5660003B2 (en) A secondary battery deterioration state determination system and a deterioration state determination method.
TWI814765B (en) Abnormality detection device, abnormality detection method, charge state estimation method, charge state estimation device and computer-readable medium for secondary battery
EP2762907B1 (en) Apparatus and method for estimating state of charge of battery
KR101337153B1 (en) Device for detecting abnormality of state of charge in a lithium secondary battery and method for testing the same
EP3016235B1 (en) Secondary battery system
JP5904039B2 (en) Secondary battery control device
US8674659B2 (en) Charge control device and vehicle equipped with the same
US20140335387A1 (en) Electric storage system
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
US10483598B2 (en) Lithium replenishment cell to enhance beginning of life capacity
JP2013019709A (en) Secondary battery system and vehicle
JP2017133870A (en) Device for detecting abnormal degradation of lithium ion secondary battery and method for detecting abnormal degradation
US9551753B2 (en) Electric storage system determining operation of current breaker
EP2291669B1 (en) Method of diagnosing a malfunction in an abnormal voltage detecting apparatus, secondary battery system, and hybrid vehicle
KR20210059637A (en) Method for charging battery and charging system
JP7131002B2 (en) Secondary battery deterioration estimation device
JP2018073755A (en) Inspection method of lithium ion secondary battery
JP6090750B2 (en) Power storage device
US20180254529A1 (en) Lithium replenishment for containing capacity loss in li ion batteries
JP2021082425A (en) Method and system for charging battery
JP2013037863A (en) Battery pack
JP5779914B2 (en) Non-aqueous electrolyte type secondary battery system and vehicle
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
WO2017179347A1 (en) Secondary battery system
JP2017143635A (en) Power source system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5660003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151