WO2015132891A1 - Secondary battery module - Google Patents

Secondary battery module Download PDF

Info

Publication number
WO2015132891A1
WO2015132891A1 PCT/JP2014/055540 JP2014055540W WO2015132891A1 WO 2015132891 A1 WO2015132891 A1 WO 2015132891A1 JP 2014055540 W JP2014055540 W JP 2014055540W WO 2015132891 A1 WO2015132891 A1 WO 2015132891A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state determination
batteries
charge
discharge device
Prior art date
Application number
PCT/JP2014/055540
Other languages
French (fr)
Japanese (ja)
Inventor
耕平 本蔵
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/055540 priority Critical patent/WO2015132891A1/en
Publication of WO2015132891A1 publication Critical patent/WO2015132891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery module.
  • Patent Document 1 describes a method for quantitatively evaluating the deterioration states of the positive electrode, the negative electrode, and the electrolyte solution in a nondestructive manner by using a charge / discharge curve of a secondary battery.
  • Patent Document 1 describes a method for determining the state of a secondary battery.
  • the charge / discharge curve of the secondary battery is reproduced by calculation based on the charge / discharge curve of the positive electrode / negative electrode alone stored in advance, A method is described in which the effective weight of the active material, the effective weight of the negative electrode active material, the capacity deviation between the positive electrode and the negative electrode, or the values of parameters corresponding to these are obtained.
  • the state determination method described in Patent Document 1 it is necessary to eliminate as much as possible the influence of the internal resistance included in the charge / discharge curve of the secondary battery. Therefore, the current value at the time of measuring the charge / discharge curve has to be reduced, and the measurement requires a long time of 10 hours or more.
  • the secondary battery cannot be used for its original purpose. Therefore, since the deterioration state of the secondary battery cannot be determined and updated on a daily basis, there is a problem that the effect of suppressing the deterioration of the characteristics of the secondary battery is limited.
  • Patent Document 1 does not disclose means for solving this problem.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide means for routinely and accurately determining the deterioration state of the cells constituting the assembled battery.
  • the means for solving the above problems are as follows, for example.
  • a battery module having an assembled battery having a plurality of secondary batteries connected in series or in parallel, a charging / discharging device for charging / discharging the assembled battery, and one or more spare batteries, and constituting the assembled battery Among the plurality of secondary batteries, one or more state determination batteries are predetermined, and the connection between the state determination battery and the charge / discharge device and the connection between the spare battery and the charge / discharge device are selectively switched.
  • the secondary battery module which has a switch and controls charging / discharging of the battery for state determination separated from the assembled battery by the switch independently of charging / discharging of the assembled battery.
  • 1 illustrates a secondary battery module according to an embodiment of the present invention. It is a flowchart which shows operation
  • 1 illustrates a secondary battery module according to an embodiment of the present invention.
  • 1 illustrates a secondary battery module according to an embodiment of the present invention. It is a flowchart which shows operation
  • the discharge curve of the cell contained in a secondary battery module is shown.
  • the change of the positive electrode potential with respect to the battery voltage of 3.9 V is shown with respect to the number of operating days.
  • the discharge curve of the cell contained in a secondary battery module is shown.
  • FIG. 1 shows a secondary battery module according to an embodiment of the present invention.
  • a lithium ion secondary battery will be described as a secondary battery, but the present invention is not limited to this.
  • a secondary battery module 500 includes an assembled battery 300 formed by connecting a plurality of single cells including predetermined state determination batteries B1 and B2 in series and in parallel, a spare battery A, switches S1 to S8, The charging / discharging device 400 and an arbitrary information holding mechanism 600 are included.
  • all the assembled batteries 300 are composed of single cells having the same initial characteristics. Moreover, as the spare battery A, it is desirable to use a single battery having the same initial characteristics as the single battery constituting the assembled battery 300.
  • the switches S1 and S2 and the switches S3 and S4 have a function of switching the electrical connection between the state determination batteries B1 and B2 and the spare battery A. Further, the switches S5 and S6 have a function of selecting which state determination battery is switched to the spare battery A. The switches S7 and S8 have a function of selecting a battery to be connected to the charging / discharging device 400 from the spare battery A and the state determination batteries B1 and B2.
  • the charging / discharging device 400 has a function of charging and discharging the connected state determination batteries B ⁇ b> 1 and B ⁇ b> 2 by predetermined control means independently of charging and discharging of the assembled battery 300.
  • the switches S1 to S8 can selectively switch the connection between the state determination batteries B1 and B2 and the charge / discharge device 400 and the connection between the spare battery A and the charge / discharge device 400.
  • the information holding mechanism 600 is connected to the charge / discharge device 400.
  • the information holding mechanism 600 determines the deterioration state of the state determination batteries B1 and B2 by charging and discharging the state determination batteries B1 and B2 separated from the assembled battery 300, and holds the determination result.
  • a secondary battery cell is configured by installing an electrode group including a positive electrode, a separator, and a negative electrode in a battery case.
  • the electrode group has a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked and wound, or a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked.
  • the shape of the battery includes a cylindrical shape, a flat oval shape, and a square shape when the electrode group is wound, and a rectangular shape and a laminate shape when the electrode group is wound. The shape may be selected.
  • the positive electrode and the negative electrode are arranged away from each other through the electrolytic solution.
  • the electrolytic solution for example, a non-aqueous solution in which 1 mol / l of lithium hexafluorophosphate as a lithium salt is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 is injected.
  • the positive electrode includes a positive electrode active material made of a lithium-containing oxide that can reversibly insert and desorb lithium ions.
  • the positive electrode active material include layered transition metal oxides with or without substitution elements, lithium transition metal phosphates, and spinel type transition metal oxides.
  • the layered transition metal oxide lithium nickelate LiNiO 2 or lithium cobaltate LiCoO 2
  • the transition metal lithium phosphate iron lithium LiFePO 4 manganese manganese phosphate LiMnPO 4
  • spinel type transition metal oxide examples thereof include lithium manganate LiMn 2 O 4 .
  • One kind or two or more kinds of the above materials may be contained as the positive electrode active material.
  • lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode are inserted in the discharging process.
  • the negative electrode is, for example, a carbon material capable of reversibly inserting and extracting lithium ions, silicon-based material Si, SiO, lithium titanate with or without a substitution element, lithium vanadium composite oxide, lithium and metal, for example,
  • the negative electrode active material which consists of an alloy with tin, aluminum, antimony, etc. is included.
  • a carbon material as a raw material, natural graphite, a composite carbonaceous material obtained by forming a film on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing.
  • the above materials may be contained singly or in combination of two or more as the negative electrode active material.
  • the negative electrode active material in the negative electrode undergoes insertion / extraction reaction or conversion reaction of lithium ions during the charge / discharge process.
  • a polypropylene separator is used as the separator used between the positive electrode and the negative electrode.
  • a microporous film or non-woven fabric made of polyolefin such as polyethylene can be used.
  • the spare battery A is disconnected from the assembled battery 300, and the state determining batteries B1 and B2 are included in the unit cell group constituting the assembled battery 300.
  • the switches S1 and S2 are connected to the state determination battery B1 side, and the switches S3 and S4 are connected to the state determination battery B2 side.
  • the switches S7 and S8 are connected to the spare battery A side.
  • the assembled battery 300 including the state determination batteries B1 and B2 is used for original power supply and regeneration.
  • the spare battery A is paused, adjusted to an arbitrary voltage using the charge / discharge device 400 as necessary, or charged / discharged by a predetermined procedure necessary for determining the deterioration state.
  • the switches S5 and S6 are not connected to either the state determination battery B1 side or the state determination battery B2 side.
  • the state determination battery B1 When determining the deterioration state of the state determination battery B1, the state determination battery B1 is disconnected from the assembled battery 300, and the spare battery A is incorporated in the assembled battery 300 instead.
  • the switches S1 and S2 are connected to the spare battery A
  • the switches S3 and S4 are connected to the state determination battery B2
  • the switches S5 and S6 are connected to the state determination battery B1.
  • the switches S7 and S8 are connected to the state determination battery B1 side.
  • the assembled battery 300 including the spare battery A and the state determination battery B2 is used for original power supply and regeneration.
  • the state determination battery B1 is charged / discharged by the charging / discharging device 400 in a predetermined procedure necessary for determining the deterioration state.
  • the state determination battery B2 is disconnected from the assembled battery 300, and the spare battery A is incorporated in the assembled battery 300 instead.
  • the switches S1 and S2 are connected to the state determination battery B1
  • the switches S3 and S4 are connected to the spare battery A
  • the switches S5 and S6 are connected to the state determination battery B2.
  • the switches S7 and S8 are connected to the state determination battery B2. The operation in this configuration is the same as that for determining the deterioration state of the state determination battery B1. The same applies to the case where there are three or more state determination batteries.
  • FIG. 2 is a flowchart showing an operation in the state determination.
  • the battery module 500 In the initial state, the battery module 500 is normally connected, the state determination batteries B1, B2,..., Bn are incorporated in the assembled battery 300, and the spare battery A is disconnected from the assembled battery 300.
  • the determination of the deterioration state of the state determination batteries B1, B2,..., Bn is started by receiving a signal from the host system or reaching a predetermined time limit stored in the battery module 500.
  • the control unit of the assembled battery 300 determines the operating state of the assembled battery 300. At this time, for example, when the assembled battery 300 is subjected to irregular voltage fluctuations, such as when the automobile is running, and the state determination battery B1 constituting the assembled battery 300 cannot be switched to the spare battery A, the predetermined battery After waiting for the time, the operating state of the assembled battery 300 is determined again.
  • the voltage of the battery pack 300 does not fluctuate or is regular, such as when the automobile is stopped, for example, it is determined that the state determination battery B1 and the spare battery A can be switched, and the next step Proceed to Alternatively, when the assembled battery 300 is constantly exposed to irregular voltage fluctuations such as load level of natural energy, the operation of the entire assembled battery 300 is temporarily stopped in this step, and the state determination battery B1 and the spare battery A state where A can be switched may be forcibly created.
  • the voltage of the spare battery A is matched with the voltage of the state determination battery B1.
  • the charging / discharging device 400 is used for determining the voltage and state of the spare battery A before the connection between the state determination battery B1 and the charging / discharging device 400 and the connection between the spare battery A and the charging / discharging device 400 are switched. Control is performed so that the voltages of the battery B match. This is for suppressing the voltage fluctuation of the assembled battery 300 before and after switching the battery.
  • the voltage of the state determination battery B1 is determined by a method such as reading from a voltmeter connected to the state determination battery B1 or estimating from the voltage of the entire assembled battery 300.
  • the reserve battery A is charged / discharged using the state determination charging / discharging device 400 to match the voltage of the state determination battery B1.
  • the voltage change of the state determination battery Bi is predicted so that the voltages of the state determination battery B1 and the standby battery A match.
  • the spare battery A is charged / discharged.
  • the switch is operated to switch between the spare battery A and the state determination battery Bi.
  • the spare battery A functions as a single battery constituting the assembled battery 300, and the state determination battery B1 is separated from the assembled battery.
  • the switch is operated to connect the state determination charging / discharging device 400 and the battery B1.
  • the state determination battery B1 is charged and discharged in a predetermined procedure to determine the deterioration state.
  • a determination procedure for example, there is a method in which a capacity obtained by discharging the state determination battery B1 from a predetermined upper limit voltage to a lower limit voltage with a predetermined current value is compared with a reference value.
  • the state determination in which the charging / discharging device 400 is disconnected from the assembled battery 300.
  • the state determination battery B1 at a predetermined open circuit voltage is charged / discharged at a predetermined current value for a predetermined time, and the internal resistance is obtained from the difference between the closed circuit voltage and the open circuit voltage, and compared with the reference value.
  • the state determination battery B ⁇ b> 1 is switched to the connection between the charging / discharging device 400 and the spare battery A, the state determination in which the charging / discharging device 400 is disconnected from the assembled battery 300.
  • the deterioration state of the state determination battery B1 is determined. . This can shorten the measurement time.
  • the individual charge / discharge characteristics of the positive electrode and the negative electrode constituting the state determination battery B1 may be referred to.
  • a discharge curve obtained by discharging the state determination battery B1 from a predetermined upper limit voltage to a lower limit voltage with a small current of 10 hours or less is used as the positive electrode Analyze based on the discharge curve of each negative electrode, estimate positive electrode capacity, negative electrode capacity, capacity balance between positive electrode and negative electrode, and compare with reference value, and positive electrode potential / negative electrode potential with respect to battery voltage
  • a method of analysis using a discharge curve is disclosed in Patent Document 1.
  • Information related to charging / discharging of the battery for state determination B1 separated from the assembled battery 300 and the deterioration state of the battery for state determination B1 obtained by the above-described determination procedure are either transmitted to the upper system or a secondary battery. It is recorded in the information holding mechanism 600 in the module 500.
  • the control unit of the assembled battery 300 determines the operating state of the assembled battery 300 including the spare battery A.
  • the operation state of the assembled battery 300 is determined again after waiting for a predetermined time. If there is no voltage variation of the assembled battery 300 or it is regular, it is determined that the state determination battery B1 and the spare battery A can be switched, and the process proceeds to the next step.
  • the assembled battery 300 is constantly exposed to irregular voltage fluctuations, the operation of the entire assembled battery 300 is temporarily stopped in this step, and a state in which the state determination battery B1 and the spare battery A can be switched is forcibly set. You may create it.
  • the voltage of the state determination battery B1 is matched with the voltage of the spare battery A.
  • the voltage of the spare battery A is determined by a method such as reading from a voltmeter connected to the spare battery A or estimating from the voltage of the entire assembled battery 300.
  • the state determination battery B1 is charged / discharged using the state determination charging / discharging device 400 to match the voltage of the spare battery A.
  • the standby battery A and the state determination battery B1 are switched by operating a switch.
  • the state determination battery B1 functions as a single battery constituting the assembled battery 300, and the spare battery A is separated from the assembled battery 300.
  • the switch is operated to connect the state determination charging / discharging device 400 to the spare battery A.
  • the process proceeds to determination of the state determination battery B2.
  • the operation for determining the deterioration state of the state determination battery B2 is the same as the operation for determining the deterioration state of the state determination battery B1.
  • the determination of the deterioration state is ended.
  • the state determination batteries B1, B2,..., Bn constituting the assembled battery 300 in the battery module 500.
  • the state determination batteries B1, B2,..., Bn are originally used in the assembled battery 300 by the spare battery A, so that the assembled battery 300 is used for original power supply / regeneration and the like. Can continue. Accordingly, it is possible to perform highly accurate deterioration determination that requires a long time on a daily basis, and update the deterioration state of the secondary battery more frequently than the conventional high-accuracy deterioration determination method. Thereby, control of the assembled battery 300 based on a state determination result becomes more suitable than before, and the assembled battery 300 can be made highly safe and have a long life.
  • the assembled battery 300 can be made highly safe and have a long life by control such as reducing the load on the unit cell that has deteriorated.
  • the battery module 500 including the assembled battery 300 configured by connecting the single battery group connected in series with the spare battery A as one has been described.
  • the configuration of the assembled battery 300 may be a battery group in which single battery groups connected in parallel are connected in series, or single batteries connected in series. A group may be sufficient and the cell connected in parallel may be sufficient.
  • the positions of the state determination batteries B1, B2,..., Bn in the battery module 500 may be arbitrarily determined, but in general, the central portion of the battery module 500 is relatively high temperature and the peripheral portion is relatively low temperature.
  • the cells located at the center and the periphery of the battery module 500 are the state determination batteries B1, B2,. More desirably, it is desirable to select a plurality of single cells located on a diagonal line connecting the center and corner of the battery module 500.
  • FIG. 3 shows another embodiment of the battery module according to the present invention.
  • a battery group in which single cells are connected in parallel is connected in series to form an assembled battery.
  • the secondary battery module 500 includes an assembled battery 300 formed by connecting a plurality of unit cells including predetermined state determination batteries B1 and B2 in series and in parallel, a spare battery A, switches S1 to S8, The charging / discharging device 400 is included. Also in the assembled battery 300 having this configuration, the operation for determining the deterioration state of the state determination batteries B1 and B2 and the operation of the assembled battery being determined can be performed in exactly the same manner as in the first embodiment of the present invention. .
  • the voltage between adjacent batteries is leveled, so that the tolerance of deterioration variation between the batteries connected in parallel is greater than in the case of series connection. . Even when the state judgment battery and the spare battery are in different deterioration states, the effect of the effect can be taken on the batteries connected in parallel.
  • FIG. 4 shows another embodiment of the battery module according to the present invention.
  • the battery module 500 includes the same number of spare batteries as the number of state determination batteries.
  • the secondary battery module includes an assembled battery 300, spare batteries A1, A2, and switches S1 to S4 formed by connecting a plurality of unit cells including predetermined state determination batteries B1, B2 in series and in parallel.
  • the charging / discharging device 400 is included.
  • the switches S1 and S2 have a function of switching the electrical connection between the state determination battery B1 and the spare battery A1. At the same time, it has a function of connecting the battery disconnected from the assembled battery 300 to the charging / discharging device 400 out of the spare battery A1 and the state determination battery B1.
  • the switches S3 and S4 have a function of switching the electrical connection between the state determination battery B2 and the spare battery A2. At the same time, the battery is provided with a function of connecting the battery disconnected from the assembled battery 300 to the charging / discharging device 400 among the spare battery A2 and the state determination battery B2.
  • the charging / discharging device 400 has a function of charging / discharging a plurality of single cells independently.
  • the spare batteries A 1 and A 2 are disconnected from the assembled battery 300, and the state determination batteries B 1 and B 2 are included in the unit cell group constituting the assembled battery 300.
  • the switches S1 and S2 connect the state determination battery B1 to the assembled battery 300
  • the spare battery A1 is connected to the charging / discharging device 400 side
  • the switches S3 and S4 connect the state determination battery B2 to the assembled battery 300.
  • the spare battery A2 is connected to the charge / discharge device 400 side.
  • the assembled battery 300 including the state determination batteries B1 and B2 is used for original power supply and regeneration.
  • the spare batteries A1 and A2 are paused, adjusted to an arbitrary voltage using the charge / discharge device 300 as necessary, and charged / discharged according to a predetermined procedure necessary for determining the deterioration state.
  • the state determination batteries B1 and B2 When determining the deterioration state of the state determination batteries B1 and B2, the state determination batteries B1 and B2 are disconnected from the assembled battery 300, and the spare batteries A1 and A2 are incorporated into the assembled battery 300 instead. .
  • the switches S1 and S2 connect the spare battery A1 to the assembled battery 300, and connect the state determination battery B1 to the charge / discharge device side 400.
  • the switches S3 and S4 connect the spare battery A2 to the assembled battery 300 and connect the state determination battery B2 to the charge / discharge device 400 side.
  • the assembled battery 300 including the spare batteries A1 and A2 is used for original power supply and regeneration.
  • the state determination batteries B ⁇ b> 1 and B ⁇ b> 2 are charged and discharged by the charging / discharging device 400 according to a predetermined procedure necessary for determining the deterioration state.
  • FIG. 5 is a flowchart showing an operation in the state determination in the present embodiment.
  • n batteries B1, B2,..., Bn for state determination
  • n batteries B1, A2, for state determination
  • the battery module 500 In the initial state, the battery module 500 is normally connected, the state determination batteries B1, B2,..., Bn are incorporated in the assembled battery, and the spare batteries A1, A2,. ing.
  • the determination of the deterioration state of the state determination batteries B1, B2,..., Bn is started by receiving a signal from the host system or reaching a predetermined time limit stored in the battery module 500.
  • the control unit of the assembled battery 300 determines the operating state of the assembled battery 300. If the state determination batteries B1, B2,..., Bn cannot be switched to the spare batteries A1, A2,..., An due to voltage fluctuations of the assembled battery 300, etc., after waiting for a predetermined time, Determine the operating state. When the state determination batteries B1, B2,..., Bn and the spare batteries A1, A2,. When the assembled battery 300 is constantly exposed to irregular voltage fluctuations, the operation of the entire assembled battery 300 is temporarily stopped in this step, and the state determination batteries B1, B2,..., Bn and the spare batteries A1, A2 ..., An may be forcibly created.
  • the voltages of the spare batteries A1, A2,..., An are matched with the voltages of the state determination batteries B1, B2,.
  • the standby batteries A1, A2,..., An and state determination batteries B1, B2, As a result, the spare batteries A 1, A 2,..., An function as a single battery constituting the assembled battery 300, and the state determination batteries B 1, B 2,.
  • the switch is operated to connect the charging / discharging device 400 and the state determination batteries B1, B2,..., Bn.
  • the state determination charging / discharging device 400 is used to charge and discharge the state determination batteries B1, B2,.
  • a determination procedure for example, there is a method in which the capacity obtained by discharging the state determination batteries B1, B2,..., Bn from a predetermined upper limit voltage to a lower limit voltage with a predetermined current value is compared with a reference value. Further, for example, the state determination batteries B1, B2,..., Bn at a predetermined open circuit voltage are charged / discharged at a predetermined current value for a predetermined time, and the internal resistance is determined from the difference between the closed circuit voltage and the open circuit voltage. There is a method of obtaining and comparing with a reference value.
  • a state in which a discharge curve obtained by discharging the state determination batteries B1, B2,..., Bn from a predetermined upper limit voltage to a lower limit voltage with a small constant current of 10 hours or less is stored in advance.
  • a method of analysis using a discharge curve is disclosed in Patent Document 1.
  • the control unit of the assembled battery 300 determines the operating state of the assembled battery 300 including the spare batteries A1, A2,.
  • the assembled battery 300 is subjected to irregular voltage fluctuations and the standby batteries A1, A2,..., An and the state determination batteries B1, B2,. Later, the operating state of the assembled battery 300 is determined again. If the voltage of the battery pack 300 does not change or is regular, it is determined that the state determination batteries B1, B2,..., Bn and the spare batteries A1, A2,. Proceed to When the assembled battery 300 is always exposed to irregular voltage fluctuations, the operation of the entire assembled battery 300 is temporarily stopped in this step, and the state determination batteries B1, B2,..., Bn and the spare batteries A, A2 ..., An may be forcibly created.
  • the voltages of the state determination batteries B1, B2,..., Bn are matched with the voltages of the standby batteries A1, A2,.
  • the voltages of the spare batteries A1, A2,..., An are determined by a method such as reading from a voltmeter connected to the unit cell or estimating from the voltage of the entire assembled battery 300.
  • the state determination batteries B1, B2,..., Bn are charged / discharged using the state determination charging / discharging device 400 to match the voltages of the spare batteries A, A2,.
  • the standby batteries A1, A2,..., An and state determination batteries B1, B2, As a result, the state determination batteries B 1, B 2,..., Bn function as unit cells constituting the assembled battery 300, and the spare batteries A 1, A 2,.
  • the switch is operated to connect the state determination charging / discharging device 400 to the spare batteries A, A2,.
  • FIG. 6 shows an analysis of the discharge curve in the initial state of the unit cell included in the assembled battery produced by the inventor, the discharge curve after deterioration after operation for two years, and the respective discharge curves by the method of Patent Document 1.
  • the discharge curve of the obtained positive electrode and negative electrode is shown.
  • the remaining battery capacity, the positive electrode potential, and the negative electrode potential for the same battery voltage are different between the initial state and the deteriorated state.
  • FIG. 7 shows the change of the positive electrode potential with respect to the battery voltage of 3.9 V with respect to the operation days.
  • the positive electrode potential for the same battery voltage increases as the number of operating days increases.
  • the use of the positive electrode at a high potential is undesirable for the life and safety of the battery, and therefore it is necessary to grasp the positive electrode potential as accurately as possible when controlling the battery.
  • the deterioration state of the battery can be determined every two weeks.
  • the difference between the positive electrode potential assumed for control and the actual positive electrode potential can be suppressed to 0.008 V at the maximum as estimated from the change in the positive electrode potential in FIG.
  • FIG. 8 shows a discharge curve obtained by averaging the discharge curve of the assembled battery produced by the inventor per unit cell, the discharge curve of the state determination battery located in the periphery of the secondary battery module, and the secondary battery module.
  • the discharge curve of the battery for state determination located in a center part is shown.
  • the deterioration states of the individual cells in the secondary battery module are different.
  • the entire assembled battery is determined to be in a deteriorated state corresponding to the average discharge curve in FIG.
  • the state of each single cell can be determined.
  • Table 1 shows the positive electrode potential with respect to the battery voltage of 3.9 V for the average of the assembled batteries, the peripheral unit cells, and the central unit cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Disclosed is a battery module that has: a battery pack having a plurality of secondary batteries connected in series or parallel; a charge/discharge device for charging/discharging the battery pack; and one or more auxiliary batteries. One or more state determining batteries are predetermined among the secondary batteries that constitute the battery pack, and the secondary battery module has a switch that performs selective switching between connection between the state determining battery and the charge/discharge device, and connection between the auxiliary battery and the charge/discharge device. The charge/discharge device independently controls charge/discharge of the state determining battery from the charge/discharge of the battery pack, said state determining battery being separated from the battery pack by means of the switch.

Description

二次電池モジュールSecondary battery module
 本発明は、二次電池モジュールに関する。 The present invention relates to a secondary battery module.
 近年、リチウムイオン電池などの二次電池を車両の搭載用電源やスマートハウスの蓄電用電源に使用することにより、効率的にエネルギーを利用する取り組みが進められている。だだし、二次電池は充放電および保管によって特性劣化を生じることが知られている。上記用途の電源はその利用期間が長期に及ぶことが想定されるため、二次電池の特性劣化を抑制することが重要である。 In recent years, efforts have been made to efficiently use energy by using secondary batteries such as lithium-ion batteries as power sources for mounting on vehicles and power sources for power storage in smart houses. However, it is known that the secondary battery is deteriorated in characteristics by charging / discharging and storage. Since it is assumed that the power source for the above uses will last for a long time, it is important to suppress the deterioration of the characteristics of the secondary battery.
 劣化抑制の手段として、二次電池における正極・負極の劣化状態を正確に検出し、検出した劣化状態に応じて最適な電池使用方法を選択することが有効である。例えば特許文献1には、二次電池の充放電曲線を利用することにより、正極・負極・電解液の劣化状態を非破壊でそれぞれ定量評価する方法が記載されている。 As a means for suppressing deterioration, it is effective to accurately detect the deterioration state of the positive electrode and the negative electrode in the secondary battery and select an optimum battery usage method according to the detected deterioration state. For example, Patent Document 1 describes a method for quantitatively evaluating the deterioration states of the positive electrode, the negative electrode, and the electrolyte solution in a nondestructive manner by using a charge / discharge curve of a secondary battery.
特開2009-80093号公報JP 2009-80093 A
 特許文献1には二次電池の状態判定方法が記載されており、予め記憶した正極・負極単独の充放電曲線に基づいて当該二次電池の充放電曲線を計算で再現し、その過程で正極活物質の有効重量、負極活物質の有効重量、正極・負極間の容量ずれ、またはこれらに対応するパラメータの値を取得する方法が記載されている。ただし、上記特許文献1に記載された状態判定方法では、二次電池の充放電曲線に含まれる内部抵抗の影響を可能な限り排除する必要がある。そのため、充放電曲線を測定する際の電流値を小さくせざるを得ず、測定に10時間以上の長い時間を必要とした。この間、二次電池を本来の目的に使用することができない。したがって、日常的に二次電池の劣化状態を判定して更新することができないため、二次電池の特性劣化を抑制する効果が限定的であるという問題があった。 Patent Document 1 describes a method for determining the state of a secondary battery. The charge / discharge curve of the secondary battery is reproduced by calculation based on the charge / discharge curve of the positive electrode / negative electrode alone stored in advance, A method is described in which the effective weight of the active material, the effective weight of the negative electrode active material, the capacity deviation between the positive electrode and the negative electrode, or the values of parameters corresponding to these are obtained. However, in the state determination method described in Patent Document 1, it is necessary to eliminate as much as possible the influence of the internal resistance included in the charge / discharge curve of the secondary battery. Therefore, the current value at the time of measuring the charge / discharge curve has to be reduced, and the measurement requires a long time of 10 hours or more. During this time, the secondary battery cannot be used for its original purpose. Therefore, since the deterioration state of the secondary battery cannot be determined and updated on a daily basis, there is a problem that the effect of suppressing the deterioration of the characteristics of the secondary battery is limited.
 また、上記特許文献1に記載された方法を組電池に適用する場合、組電池全体の充放電曲線を対象にすると、組電池を構成する単電池間の劣化のばらつきを評価できない。このため、二次電池の特性劣化を抑制する効果が限定的になる。しかし上記特許文献1にはこの問題を解決する手段が開示されていない。 In addition, when the method described in Patent Document 1 is applied to an assembled battery, if the charging / discharging curve of the entire assembled battery is targeted, the variation in deterioration among the single cells constituting the assembled battery cannot be evaluated. For this reason, the effect which suppresses the characteristic deterioration of a secondary battery becomes limited. However, Patent Document 1 does not disclose means for solving this problem.
 本発明はかかる課題に鑑みてなされたものであり、組電池を構成する単電池の劣化状態を日常的かつ正確に判定する手段を提供することを目的とするものである。 The present invention has been made in view of such a problem, and an object of the present invention is to provide means for routinely and accurately determining the deterioration state of the cells constituting the assembled battery.
 上記課題を解決する手段は、例えば次の通りである。 The means for solving the above problems are as follows, for example.
 直列または並列に接続された複数の二次電池を有する組電池と、組電池を充放電する充放電装置と、1つ以上の予備電池と、を有する電池モジュールであって、組電池を構成する複数の二次電池のうちに、1つ以上の状態判定用電池が予め定められており、状態判定用電池と充放電装置との接続および予備電池と充放電装置との接続を選択的に切り替えるスイッチを有し、充放電装置は、スイッチにより組電池から切り離された状態判定用電池の充放電を、組電池の充放電とは独立して制御する二次電池モジュール。 A battery module having an assembled battery having a plurality of secondary batteries connected in series or in parallel, a charging / discharging device for charging / discharging the assembled battery, and one or more spare batteries, and constituting the assembled battery Among the plurality of secondary batteries, one or more state determination batteries are predetermined, and the connection between the state determination battery and the charge / discharge device and the connection between the spare battery and the charge / discharge device are selectively switched. The secondary battery module which has a switch and controls charging / discharging of the battery for state determination separated from the assembled battery by the switch independently of charging / discharging of the assembled battery.
 本発明によれば、組電池を構成する単電池の劣化状態を日常的かつ正確に判定することが可能な二次電池モジュールを提供できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a secondary battery module that can routinely and accurately determine the deterioration state of the cells constituting the assembled battery. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施形態における二次電池モジュールを示したものである。1 illustrates a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態における二次電池モジュールの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the secondary battery module in one Embodiment of this invention. 本発明の一実施形態における二次電池モジュールを示したものである。1 illustrates a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態における二次電池モジュールを示したものである。1 illustrates a secondary battery module according to an embodiment of the present invention. 本発明の一実施形態における二次電池モジュールの動作を示すフローチャートである。It is a flowchart which shows operation | movement of the secondary battery module in one Embodiment of this invention. 二次電池モジュールに含まれる単電池の放電曲線を示したものである。The discharge curve of the cell contained in a secondary battery module is shown. 電池電圧3.9Vに対する正極電位の変化を運用日数に対して示したものである。The change of the positive electrode potential with respect to the battery voltage of 3.9 V is shown with respect to the number of operating days. 二次電池モジュールに含まれる単電池の放電曲線を示したものである。The discharge curve of the cell contained in a secondary battery module is shown.
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
<全体構成および各部の動作の概略>
 図1は、本発明の一実施形態における二次電池モジュールを示したものである。以下では二次電池としてリチウムイオン二次電池について説明するが、これに限らない。
<Overview of overall configuration and operation of each part>
FIG. 1 shows a secondary battery module according to an embodiment of the present invention. Hereinafter, a lithium ion secondary battery will be described as a secondary battery, but the present invention is not limited to this.
 図1において、二次電池モジュール500は、予め定められた状態判定用電池B1、B2を含む複数の単電池を直列・並列に接続してなる組電池300、予備電池A、スイッチS1~S8、充放電装置400、任意の情報保持機構600を含む構成である。 In FIG. 1, a secondary battery module 500 includes an assembled battery 300 formed by connecting a plurality of single cells including predetermined state determination batteries B1 and B2 in series and in parallel, a spare battery A, switches S1 to S8, The charging / discharging device 400 and an arbitrary information holding mechanism 600 are included.
 組電池300は全て、同一の初期特性を持つ単電池から構成されていることが望ましい。また、予備電池Aとしては、組電池300を構成する単電池と同一の初期特性を持つ単電池が使われることが望ましい。 It is desirable that all the assembled batteries 300 are composed of single cells having the same initial characteristics. Moreover, as the spare battery A, it is desirable to use a single battery having the same initial characteristics as the single battery constituting the assembled battery 300.
 スイッチS1、S2およびスイッチS3、S4は、状態判定用電池B1、B2と予備電池Aの電気的な接続を切り替える機能を備えている。また、スイッチS5、S6は、どの状態判定用電池を予備電池Aと切り替えるか選択する機能を備えている。また、スイッチS7、S8は、充放電装置400と接続する電池を予備電池Aと状態判定用電池B1、B2から選択する機能を備えている。 The switches S1 and S2 and the switches S3 and S4 have a function of switching the electrical connection between the state determination batteries B1 and B2 and the spare battery A. Further, the switches S5 and S6 have a function of selecting which state determination battery is switched to the spare battery A. The switches S7 and S8 have a function of selecting a battery to be connected to the charging / discharging device 400 from the spare battery A and the state determination batteries B1 and B2.
 充放電装置400は、接続された状態判定用電池B1、B2を、組電池300の充放電とは独立に所定の制御手段によって充放電する機能を備えている。スイッチS1~S8により、状態判定用電池B1、B2と充放電装置400との接続および予備電池Aと充放電装置400との接続を選択的に切り替えることができる。 The charging / discharging device 400 has a function of charging and discharging the connected state determination batteries B <b> 1 and B <b> 2 by predetermined control means independently of charging and discharging of the assembled battery 300. The switches S1 to S8 can selectively switch the connection between the state determination batteries B1 and B2 and the charge / discharge device 400 and the connection between the spare battery A and the charge / discharge device 400.
 情報保持機構600は充放電装置400に接続されている。情報保持機構600は、組電池300と切り離された状態判定用電池B1、B2の充放電により状態判定用電池B1、B2の劣化状態を判定し、その判定結果を保持する。 The information holding mechanism 600 is connected to the charge / discharge device 400. The information holding mechanism 600 determines the deterioration state of the state determination batteries B1 and B2 by charging and discharging the state determination batteries B1 and B2 separated from the assembled battery 300, and holds the determination result.
 二次電池の単電池は、正極、セパレータ、負極を含む電極群が電池ケース内に設置され構成されている。電極群は正極、セパレータ、負極、セパレータを交互に重ね合わせて捲回した構成、または、正極、セパレータ、負極、セパレータを交互に重ね合わせて積層した構成となっている。電池の形状は、電極群が捲回された構成の場合、円筒型、偏平長円形型、角型であり、電極群が捲回された構成の場合、角型、ラミネート型などがあり、いずれの形状を選択してもよい。 A secondary battery cell is configured by installing an electrode group including a positive electrode, a separator, and a negative electrode in a battery case. The electrode group has a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked and wound, or a configuration in which positive electrodes, separators, negative electrodes, and separators are alternately stacked. The shape of the battery includes a cylindrical shape, a flat oval shape, and a square shape when the electrode group is wound, and a rectangular shape and a laminate shape when the electrode group is wound. The shape may be selected.
 正極、負極は、電解液を通じて互いに離れて配置されている。電解液として、例えば体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に、リチウム塩として六フッ化リン酸リチウムを1mol/l溶解させた非水溶液が、注入される。 The positive electrode and the negative electrode are arranged away from each other through the electrolytic solution. As the electrolytic solution, for example, a non-aqueous solution in which 1 mol / l of lithium hexafluorophosphate as a lithium salt is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 is injected.
 正極は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有酸化物からなる正極活物質を含んでいる。正極活物質として、置換元素ありまたは置換元素無しの層状遷移金属酸化物、リン酸遷移金属リチウム、スピネル型遷移金属酸化物などが挙げられる。例えば、層状遷移金属酸化物としては、ニッケル酸リチウムLiNiO2や、コバルト酸リチウムLiCoO2、リン酸遷移金属リチウムとしてはリン酸鉄リチウムLiFePO4、リン酸マンガンリチウムLiMnPO4、スピネル型遷移金属酸化物としては、マンガン酸リチウムLiMn24などが挙げられる。正極活物質として上記の材料が一種単独または二種以上含まれていてもよい。正極中の正極活物質は、充電過程においてリチウムイオンが脱離し、放電過程において、負極中の負極活物質から脱離したリチウムイオンが挿入される。 The positive electrode includes a positive electrode active material made of a lithium-containing oxide that can reversibly insert and desorb lithium ions. Examples of the positive electrode active material include layered transition metal oxides with or without substitution elements, lithium transition metal phosphates, and spinel type transition metal oxides. For example, as the layered transition metal oxide, lithium nickelate LiNiO 2 or lithium cobaltate LiCoO 2 , as the transition metal lithium phosphate iron lithium LiFePO 4 , manganese manganese phosphate LiMnPO 4 , spinel type transition metal oxide Examples thereof include lithium manganate LiMn 2 O 4 . One kind or two or more kinds of the above materials may be contained as the positive electrode active material. In the positive electrode active material in the positive electrode, lithium ions are desorbed in the charging process, and lithium ions desorbed from the negative electrode active material in the negative electrode are inserted in the discharging process.
 負極は、例えば、リチウムイオンを可逆的に挿入脱離可能な炭素材料、シリコン系材料Si、SiO、置換元素ありまたは置換元素無しのチタン酸リチウム、リチウムバナジウム複合酸化物、リチウムと金属、例えば、スズ、アルミニウム、アンチモンなどとの合金からなる負極活物質を含んでいる。炭素材料として、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレイ法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、難黒鉛化炭素材などが挙げられる。負極活物質として上記の材料が一種単独または二種以上含まれていてもよい。負極中の負極活物質は、充放電過程において、リチウムイオンが挿入脱離反応、もしくは、コンバージョン反応が進行する。 The negative electrode is, for example, a carbon material capable of reversibly inserting and extracting lithium ions, silicon-based material Si, SiO, lithium titanate with or without a substitution element, lithium vanadium composite oxide, lithium and metal, for example, The negative electrode active material which consists of an alloy with tin, aluminum, antimony, etc. is included. As a carbon material, as a raw material, natural graphite, a composite carbonaceous material obtained by forming a film on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a pitch-based material obtained from petroleum or coal Examples thereof include artificial graphite and non-graphitizable carbon material produced by firing. The above materials may be contained singly or in combination of two or more as the negative electrode active material. The negative electrode active material in the negative electrode undergoes insertion / extraction reaction or conversion reaction of lithium ions during the charge / discharge process.
 正極と負極との間に用いるセパレータには、例えばポリプロピレン製のセパレータを用いる。ポリプロピレン製以外にも、ポリエチレンなどのポリオレフィン製の微孔性フィルムや不織布などを用いることができる。 For example, a polypropylene separator is used as the separator used between the positive electrode and the negative electrode. In addition to polypropylene, a microporous film or non-woven fabric made of polyolefin such as polyethylene can be used.
 状態判定をしない通常時には、予備電池Aは組電池300から切り離されており、状態判定用電池B1、B2は組電池300を構成する単電池群に含まれている。このとき、スイッチS1、S2は状態判定用電池B1側に接続されており、スイッチS3、S4は状態判定用電池B2側に接続されている。また、スイッチS7、S8は予備電池A側に接続されている。この構成では、状態判定用電池B1、B2を含む組電池300を本来の電源供給・回生等の用途に使用する。一方で、予備電池Aは休止したり、必要に応じて充放電装置400を用いて任意の電圧に調整したり、劣化状態の判定に必要な所定の手順で充放電したりさせる。スイッチS5、S6は状態判定用電池B1側、状態判定用電池B2側、どちらの側にも接続されていない。 During normal times when the state is not determined, the spare battery A is disconnected from the assembled battery 300, and the state determining batteries B1 and B2 are included in the unit cell group constituting the assembled battery 300. At this time, the switches S1 and S2 are connected to the state determination battery B1 side, and the switches S3 and S4 are connected to the state determination battery B2 side. The switches S7 and S8 are connected to the spare battery A side. In this configuration, the assembled battery 300 including the state determination batteries B1 and B2 is used for original power supply and regeneration. On the other hand, the spare battery A is paused, adjusted to an arbitrary voltage using the charge / discharge device 400 as necessary, or charged / discharged by a predetermined procedure necessary for determining the deterioration state. The switches S5 and S6 are not connected to either the state determination battery B1 side or the state determination battery B2 side.
 状態判定用電池B1の劣化状態を判定する場合には、状態判定用電池B1は組電池300から切り離されており、代わりに予備電池Aが組電池300に組み込まれている。このとき、スイッチS1、S2は予備電池A側に、スイッチS3、S4は状態判定用電池B2側に、スイッチS5、S6は状態判定用電池B1側に接続されている。また、スイッチS7、S8は状態判定用電池B1側に接続されている。この構成では、予備電池A、状態判定用電池B2を含む組電池300を本来の電源供給・回生等の用途に使用する。一方で、状態判定用電池B1は、充放電装置400によって、劣化状態の判定に必要な所定の手順で充放電される。 When determining the deterioration state of the state determination battery B1, the state determination battery B1 is disconnected from the assembled battery 300, and the spare battery A is incorporated in the assembled battery 300 instead. At this time, the switches S1 and S2 are connected to the spare battery A, the switches S3 and S4 are connected to the state determination battery B2, and the switches S5 and S6 are connected to the state determination battery B1. The switches S7 and S8 are connected to the state determination battery B1 side. In this configuration, the assembled battery 300 including the spare battery A and the state determination battery B2 is used for original power supply and regeneration. On the other hand, the state determination battery B1 is charged / discharged by the charging / discharging device 400 in a predetermined procedure necessary for determining the deterioration state.
 また、状態判定用電池B2の劣化状態を判定する場合には、状態判定用電池B2が組電池300から切り離され、代わりに予備電池Aが組電池300に組み込まれる。このとき、スイッチS1、S2は状態判定用電池B1側に、スイッチS3、S4は予備電池A側に、スイッチS5、S6は状態判定用電池B2側に接続されている。またスイッチS7、S8は状態判定用電池B2側に接続されている。この構成における動作は状態判定用電池B1の劣化状態を判定する場合と同じである。状態判定用電池が3個以上ある場合についても同様である。 Further, when determining the deterioration state of the state determination battery B2, the state determination battery B2 is disconnected from the assembled battery 300, and the spare battery A is incorporated in the assembled battery 300 instead. At this time, the switches S1 and S2 are connected to the state determination battery B1, the switches S3 and S4 are connected to the spare battery A, and the switches S5 and S6 are connected to the state determination battery B2. The switches S7 and S8 are connected to the state determination battery B2. The operation in this configuration is the same as that for determining the deterioration state of the state determination battery B1. The same applies to the case where there are three or more state determination batteries.
<劣化状態判定時の動作について>
 以下、図2を参照して、本発明の電池モジュールにおける状態判定用電池の劣化状態を判定する際の動作を具体的に説明する。図2は、状態判定の際の動作を示すフローチャートである。なお以下では、状態判定用電池は電池B1、B2、…、Bnのn本あり、予備電池は予備電池Aの1本として説明する。
<Operation when judging the deterioration state>
Hereinafter, with reference to FIG. 2, the operation | movement at the time of determining the deterioration state of the battery for state determination in the battery module of this invention is demonstrated concretely. FIG. 2 is a flowchart showing an operation in the state determination. In the following description, there are n state determination batteries B, B2,..., Bn, and the spare battery is one spare battery A.
 初期状態では電池モジュール500は通常時の接続にあり、状態判定用電池B1、B2、…、Bnは組電池300に組み込まれており、予備電池Aは組電池300から切り離されている。上位システムからの信号を受ける、あるいは電池モジュール500内に記憶された所定の期限に到達する等により、状態判定用電池B1、B2、…、Bnの劣化状態の判定を開始する。 In the initial state, the battery module 500 is normally connected, the state determination batteries B1, B2,..., Bn are incorporated in the assembled battery 300, and the spare battery A is disconnected from the assembled battery 300. The determination of the deterioration state of the state determination batteries B1, B2,..., Bn is started by receiving a signal from the host system or reaching a predetermined time limit stored in the battery module 500.
 まず、最初のステップにおいて、組電池300の制御部は組電池300の動作状態を判定する。この際、例えば自動車の走行中など、組電池300が不規則な電圧変動を受ける状態にあり、組電池300を構成する状態判定用電池B1を予備電池Aと切り替えられない場合には、所定の時間だけ待機した後に再び組電池300の動作状態を判定する。また、この際、例えば自動車の停車中など、組電池300の電圧変動がないか規則的である場合には、状態判定用電池B1と予備電池Aを切り替えることが可能と判断して次のステップに進む。あるいは、自然エネルギーの負荷平準など、組電池300が常に不規則な電圧変動に晒される場合には、このステップにおいて一時的に組電池300全体の動作を停止させ、状態判定用電池B1と予備電池Aを切り替え可能な状態を強制的に作り出しても良い。 First, in the first step, the control unit of the assembled battery 300 determines the operating state of the assembled battery 300. At this time, for example, when the assembled battery 300 is subjected to irregular voltage fluctuations, such as when the automobile is running, and the state determination battery B1 constituting the assembled battery 300 cannot be switched to the spare battery A, the predetermined battery After waiting for the time, the operating state of the assembled battery 300 is determined again. At this time, if the voltage of the battery pack 300 does not fluctuate or is regular, such as when the automobile is stopped, for example, it is determined that the state determination battery B1 and the spare battery A can be switched, and the next step Proceed to Alternatively, when the assembled battery 300 is constantly exposed to irregular voltage fluctuations such as load level of natural energy, the operation of the entire assembled battery 300 is temporarily stopped in this step, and the state determination battery B1 and the spare battery A state where A can be switched may be forcibly created.
 次のステップでは、予備電池Aの電圧を状態判定用電池B1の電圧に一致させる。換言すれば、充放電装置400は、状態判定用電池B1と充放電装置400との接続および予備電池Aと充放電装置400との接続が切り替えられ前に、予備電池Aの電圧と状態判定用電池Bの電圧を一致させるように制御する。これは電池を切り替える前後の組電池300の電圧変動を抑制するためである。まず、状態判定用電池B1の電圧を、状態判定用電池B1に接続されている電圧計から読み取る、組電池300全体の電圧から推定する等の方法で決める。その後、状態判定用の充放電装置400を用いて予備電池Aを充放電して状態判定用電池B1の電圧と一致させる。なお、状態判定用電池B1の電圧が規則的に変化している場合には、状態判定用電池Biの電圧変化を予測して、状態判定用電池B1と予備電池Aの電圧が一致するように予備電池Aを充放電する。 In the next step, the voltage of the spare battery A is matched with the voltage of the state determination battery B1. In other words, the charging / discharging device 400 is used for determining the voltage and state of the spare battery A before the connection between the state determination battery B1 and the charging / discharging device 400 and the connection between the spare battery A and the charging / discharging device 400 are switched. Control is performed so that the voltages of the battery B match. This is for suppressing the voltage fluctuation of the assembled battery 300 before and after switching the battery. First, the voltage of the state determination battery B1 is determined by a method such as reading from a voltmeter connected to the state determination battery B1 or estimating from the voltage of the entire assembled battery 300. Thereafter, the reserve battery A is charged / discharged using the state determination charging / discharging device 400 to match the voltage of the state determination battery B1. When the voltage of the state determination battery B1 changes regularly, the voltage change of the state determination battery Bi is predicted so that the voltages of the state determination battery B1 and the standby battery A match. The spare battery A is charged / discharged.
 次のステップでは、スイッチを操作して予備電池Aと状態判定用電池Biを切り替える。この結果、予備電池Aは組電池300を構成する単電池として機能するようになり、状態判定用電池B1は組電池とは切り離される。また、このステップではスイッチを操作して状態判定用の充放電装置400と電池B1とを接続する。 In the next step, the switch is operated to switch between the spare battery A and the state determination battery Bi. As a result, the spare battery A functions as a single battery constituting the assembled battery 300, and the state determination battery B1 is separated from the assembled battery. In this step, the switch is operated to connect the state determination charging / discharging device 400 and the battery B1.
 次のステップでは、状態判定用の充放電装置400を用いて、所定の手順で状態判定用電池B1を充放電して劣化状態を判定する。判定の手順としては、例えば、所定の電流値によって状態判定用電池B1を所定の上限電圧から下限電圧まで放電して得られた容量を基準値と比較する方法がある。一例として、充放電装置400と状態判定用電池B1との接続が充放電装置400と予備電池Aとの接続に切り替えられた後に、充放電装置400が、組電池300とは切り離された状態判定用電池B1を、状態判定用電池B1の電池容量に対して10時間率以下の一定電流で所定の条件を満たすまで、充電または放電することにより、状態判定用電池B1の劣化状態が判定される。 In the next step, using the state determination charging / discharging device 400, the state determination battery B1 is charged and discharged in a predetermined procedure to determine the deterioration state. As a determination procedure, for example, there is a method in which a capacity obtained by discharging the state determination battery B1 from a predetermined upper limit voltage to a lower limit voltage with a predetermined current value is compared with a reference value. As an example, after the connection between the charging / discharging device 400 and the state determination battery B <b> 1 is switched to the connection between the charging / discharging device 400 and the spare battery A, the state determination in which the charging / discharging device 400 is disconnected from the assembled battery 300. By charging or discharging the battery B1 until a predetermined condition is satisfied at a constant current of 10 hours or less with respect to the battery capacity of the state determination battery B1, the deterioration state of the state determination battery B1 is determined. .
 また、例えば、所定の開回路電圧にある状態判定用電池B1を所定の電流値で一定時間だけ充放電して、閉回路電圧と開回路電圧との差から内部抵抗を求め、基準値と比較する方法がある。一例として、充放電装置400と状態判定用電池B1との接続が充放電装置400と予備電池Aとの接続に切り替えられた後に、充放電装置400が、組電池300とは切り離された状態判定用電池B1を、状態判定用電池B1の電池容量に対して10時間率以下の一定電流で所定の条件を満たすまで、充電または放電することにより、状態判定用電池B1の劣化状態が判定される。これにより測定時間を短くできる。 Further, for example, the state determination battery B1 at a predetermined open circuit voltage is charged / discharged at a predetermined current value for a predetermined time, and the internal resistance is obtained from the difference between the closed circuit voltage and the open circuit voltage, and compared with the reference value. There is a way to do it. As an example, after the connection between the charging / discharging device 400 and the state determination battery B <b> 1 is switched to the connection between the charging / discharging device 400 and the spare battery A, the state determination in which the charging / discharging device 400 is disconnected from the assembled battery 300. By charging or discharging the battery B1 until a predetermined condition is satisfied at a constant current of 10 hours or less with respect to the battery capacity of the state determination battery B1, the deterioration state of the state determination battery B1 is determined. . This can shorten the measurement time.
 また、状態判定用電池B1の劣化状態を判定する際に、状態判定用電池B1を構成する正極および負極のそれぞれ単独の充放電特性を参照してもよい。例えば、10時間率以下の微小な電流で状態判定用電池B1を所定の上限電圧から下限電圧まで放電して得られた放電曲線を、予め記憶してある状態判定用電池B1に用いた正極・負極それぞれ単独の放電曲線に基づいて解析して、正極の容量、負極の容量、正極と負極の容量バランスのずれ等を推定して基準値と比較したり、電池電圧に対する正極電位・負極電位を推定して基準値と比較したりする方法がある。放電曲線を用いた解析の方法は、特許文献1に開示されている。組電池300と切り離された状態判定用電池B1の充放電に関する情報や、上記の判定の手順により得られた状態判定用電池B1の劣化状態は、上位システムに情報を送信するか、二次電池モジュール500内の情報保持機構600に記録される。 Further, when determining the deterioration state of the state determination battery B1, the individual charge / discharge characteristics of the positive electrode and the negative electrode constituting the state determination battery B1 may be referred to. For example, a discharge curve obtained by discharging the state determination battery B1 from a predetermined upper limit voltage to a lower limit voltage with a small current of 10 hours or less is used as the positive electrode Analyze based on the discharge curve of each negative electrode, estimate positive electrode capacity, negative electrode capacity, capacity balance between positive electrode and negative electrode, and compare with reference value, and positive electrode potential / negative electrode potential with respect to battery voltage There is a method of estimating and comparing with a reference value. A method of analysis using a discharge curve is disclosed in Patent Document 1. Information related to charging / discharging of the battery for state determination B1 separated from the assembled battery 300 and the deterioration state of the battery for state determination B1 obtained by the above-described determination procedure are either transmitted to the upper system or a secondary battery. It is recorded in the information holding mechanism 600 in the module 500.
 次のステップでは、組電池300の制御部は予備電池Aを含む組電池300の動作状態を判定する。組電池300が不規則な電圧変動を受ける状態にあり、予備電池Aと状態判定用電池B1を切り替えられない場合には、所定の時間だけ待機した後に再び組電池300の動作状態を判定する。組電池300の電圧変動がないか規則的である場合には、状態判定用電池B1と予備電池Aを切り替えることが可能と判断して次のステップに進む。組電池300が常に不規則な電圧変動に晒される場合には、このステップにおいて一時的に組電池300全体の動作を停止させ、状態判定用電池B1と予備電池Aを切り替え可能な状態を強制的に作り出しても良い。 In the next step, the control unit of the assembled battery 300 determines the operating state of the assembled battery 300 including the spare battery A. When the assembled battery 300 is subjected to irregular voltage fluctuations and the standby battery A and the state determination battery B1 cannot be switched, the operation state of the assembled battery 300 is determined again after waiting for a predetermined time. If there is no voltage variation of the assembled battery 300 or it is regular, it is determined that the state determination battery B1 and the spare battery A can be switched, and the process proceeds to the next step. When the assembled battery 300 is constantly exposed to irregular voltage fluctuations, the operation of the entire assembled battery 300 is temporarily stopped in this step, and a state in which the state determination battery B1 and the spare battery A can be switched is forcibly set. You may create it.
 次のステップでは、状態判定用電池B1の電圧を予備電池Aの電圧に一致させる。まず予備電池Aの電圧を、予備電池Aに接続されている電圧計から読み取る、組電池300全体の電圧から推定する等の方法で決める。その後、状態判定用の充放電装置400を用いて状態判定用電池B1を充放電して予備電池Aの電圧と一致させる。 In the next step, the voltage of the state determination battery B1 is matched with the voltage of the spare battery A. First, the voltage of the spare battery A is determined by a method such as reading from a voltmeter connected to the spare battery A or estimating from the voltage of the entire assembled battery 300. Thereafter, the state determination battery B1 is charged / discharged using the state determination charging / discharging device 400 to match the voltage of the spare battery A.
 次のステップでは、スイッチを操作して予備電池Aと状態判定用電池B1を切り替える。この結果、状態判定用電池B1は組電池300を構成する単電池として機能するようになり、予備電池Aは組電池300とは切り離される。また、このステップではスイッチを操作して状態判定用の充放電装置400と予備電池Aとを接続する。 In the next step, the standby battery A and the state determination battery B1 are switched by operating a switch. As a result, the state determination battery B1 functions as a single battery constituting the assembled battery 300, and the spare battery A is separated from the assembled battery 300. In this step, the switch is operated to connect the state determination charging / discharging device 400 to the spare battery A.
 次のステップでは、全ての状態判定用電池の劣化状態を判定し終わったかどうか判定する。本説明においては、まだ状態判定用電池B2、B3、…、Bnが未判定であるので、続いて状態判定用電池B2の判定に移る。状態判定用電池B2の劣化状態判定のための動作は、状態判定用電池B1の劣化状態を判定するための動作と同じである。以下同様に状態判定用電池B3、…、Bnまで劣化状態を判定し終わったら、劣化状態の判定を終了する。 In the next step, it is determined whether or not the state of deterioration of all state determination batteries has been determined. In this description, since the state determination batteries B2, B3,..., Bn are not yet determined, the process proceeds to determination of the state determination battery B2. The operation for determining the deterioration state of the state determination battery B2 is the same as the operation for determining the deterioration state of the state determination battery B1. Similarly, when the deterioration state is determined up to the state determination batteries B3,..., Bn, the determination of the deterioration state is ended.
 以上により、電池モジュール500内の組電池300を構成する状態判定用電池B1、B2、…、Bnの劣化状態を判定することができる。判定の間、状態判定用電池B1、B2、…、Bnが組電池300内で本来担う役割は予備電池Aによって代替されているので、組電池300を本来の電源供給・回生等の用途に使用し続けることができる。従って、長時間を要する高精度の劣化判定を日常的に実行し、従来の高精度劣化判定法よりも頻繁に二次電池の劣化状態を更新できる。これにより、状態判定結果に基づいた組電池300の制御が従来よりも適切になり、組電池300を高安全化および長寿命化することができる。また、この方法によれば、組電池300を構成する単電池の劣化状態が、電池モジュール500内の位置によってどの程度異なっているかを判定できる。これにより、劣化が進行した単電池への負荷を減らすなどの制御によって、組電池300を高安全化および長寿命化することができる。 From the above, it is possible to determine the deterioration state of the state determination batteries B1, B2,..., Bn constituting the assembled battery 300 in the battery module 500. During the determination, the state determination batteries B1, B2,..., Bn are originally used in the assembled battery 300 by the spare battery A, so that the assembled battery 300 is used for original power supply / regeneration and the like. Can continue. Accordingly, it is possible to perform highly accurate deterioration determination that requires a long time on a daily basis, and update the deterioration state of the secondary battery more frequently than the conventional high-accuracy deterioration determination method. Thereby, control of the assembled battery 300 based on a state determination result becomes more suitable than before, and the assembled battery 300 can be made highly safe and have a long life. Further, according to this method, it can be determined how much the deterioration state of the single cells constituting the assembled battery 300 differs depending on the position in the battery module 500. As a result, the assembled battery 300 can be made highly safe and have a long life by control such as reducing the load on the unit cell that has deteriorated.
 これまでの説明では、予備電池Aを1本として、直列に接続された単電池群を並列に接続して構成した組電池300を含む電池モジュール500に関して説明した。ただし、予備電池Aは複数であってもよく、また組電池300の構成は、並列に接続された単電池群を直列に接続した電池群であっても良いし、直列に接続された単電池群であっても良いし、並列に接続された単電池であっても良い。また、状態判定用電池B1、B2、…、Bnの電池モジュール500内における位置は任意に定めてよいが、一般的に電池モジュール500の中心部は比較的高温であり、周辺部は比較的低温であるので、劣化状態の分布を評価するためには、電池モジュール500の中心部と周縁部に位置する単電池を状態判定用電池B1、B2、…、Bnとすることが望ましい。より望ましくは、電池モジュール500の中心と隅を結ぶ対角線上に位置する単電池を複数選定することが望ましい。 In the description so far, the battery module 500 including the assembled battery 300 configured by connecting the single battery group connected in series with the spare battery A as one has been described. However, there may be a plurality of spare batteries A, and the configuration of the assembled battery 300 may be a battery group in which single battery groups connected in parallel are connected in series, or single batteries connected in series. A group may be sufficient and the cell connected in parallel may be sufficient. Further, the positions of the state determination batteries B1, B2,..., Bn in the battery module 500 may be arbitrarily determined, but in general, the central portion of the battery module 500 is relatively high temperature and the peripheral portion is relatively low temperature. Therefore, in order to evaluate the distribution of the deterioration state, it is desirable that the cells located at the center and the periphery of the battery module 500 are the state determination batteries B1, B2,. More desirably, it is desirable to select a plurality of single cells located on a diagonal line connecting the center and corner of the battery module 500.
 図3は、本発明に関わる電池モジュールの別の実施形態である。本実施形態では、単電池が並列接続された電池群が直列に接続されて組電池を構成している。図5において、二次電池モジュール500は、予め定められた状態判定用電池B1、B2を含む複数の単電池を直列・並列に接続してなる組電池300、予備電池A、スイッチS1~S8、充放電装置400を含む構成である。この構成の組電池300においても、状態判定用電池B1、B2の劣化状態の判定のための動作、および判定中の組電池の動作は、本発明の第一の実施形態と全く同様に実施できる。 FIG. 3 shows another embodiment of the battery module according to the present invention. In the present embodiment, a battery group in which single cells are connected in parallel is connected in series to form an assembled battery. In FIG. 5, the secondary battery module 500 includes an assembled battery 300 formed by connecting a plurality of unit cells including predetermined state determination batteries B1 and B2 in series and in parallel, a spare battery A, switches S1 to S8, The charging / discharging device 400 is included. Also in the assembled battery 300 having this configuration, the operation for determining the deterioration state of the state determination batteries B1 and B2 and the operation of the assembled battery being determined can be performed in exactly the same manner as in the first embodiment of the present invention. .
 本実施例のように並列接続の場合には、隣り合う電池と電圧が平準化されることから、並列接続されている電池の間の劣化ばらつきの許容度が、直列接続の場合よりも大きくなる。状態判定用電池と予備電池の劣化状態が違う場合でも,それによる影響を並列接続された電池も一緒に請け負うことができる。 In the case of parallel connection as in the present embodiment, the voltage between adjacent batteries is leveled, so that the tolerance of deterioration variation between the batteries connected in parallel is greater than in the case of series connection. . Even when the state judgment battery and the spare battery are in different deterioration states, the effect of the effect can be taken on the batteries connected in parallel.
 図4は、本発明に関わる電池モジュールの別の実施形態である。本実施形態では、電池モジュール500は予備電池を状態判定用電池と同数備えている。図4において、二次電池モジュールは、予め定められた状態判定用電池B1、B2を含む複数の単電池を直列・並列に接続してなる組電池300、予備電池A1、A2、スイッチS1~S4、充放電装置400を含む構成である。 FIG. 4 shows another embodiment of the battery module according to the present invention. In the present embodiment, the battery module 500 includes the same number of spare batteries as the number of state determination batteries. 4, the secondary battery module includes an assembled battery 300, spare batteries A1, A2, and switches S1 to S4 formed by connecting a plurality of unit cells including predetermined state determination batteries B1, B2 in series and in parallel. The charging / discharging device 400 is included.
 スイッチS1、S2は、状態判定用電池B1と予備電池A1の電気的な接続を切り替える機能を備えている。また同時に、予備電池A1と状態判定用電池B1のうち、組電池300から切り離されている電池を充放電装置400に接続する機能を備えている。スイッチS3、S4は、状態判定用電池B2と予備電池A2の電気的な接続を切り替える機能を備えている。また同時に、予備電池A2と状態判定用電池B2のうち、組電池300から切り離されている電池を充放電装置400に接続する機能を備えている。また、充放電装置400は複数の単電池を独立に充放電できる機能を備えている。 The switches S1 and S2 have a function of switching the electrical connection between the state determination battery B1 and the spare battery A1. At the same time, it has a function of connecting the battery disconnected from the assembled battery 300 to the charging / discharging device 400 out of the spare battery A1 and the state determination battery B1. The switches S3 and S4 have a function of switching the electrical connection between the state determination battery B2 and the spare battery A2. At the same time, the battery is provided with a function of connecting the battery disconnected from the assembled battery 300 to the charging / discharging device 400 among the spare battery A2 and the state determination battery B2. The charging / discharging device 400 has a function of charging / discharging a plurality of single cells independently.
 状態判定をしない通常時には、予備電池A1、A2は組電池300から切り離されており、状態判定用電池B1、B2は組電池300を構成する単電池群に含まれている。このとき、スイッチS1、S2は状態判定用電池B1を組電池300と接続し、予備電池A1を充放電装置400側に接続しており、スイッチS3、S4は状態判定用電池B2を組電池300と接続し、予備電池A2を充放電装置400側に接続している。この構成では、状態判定用電池B1、B2を含む組電池300を本来の電源供給・回生等の用途に使用する。一方で、予備電池A1、A2は休止したり、必要に応じて充放電装置300を用いて任意の電圧に調整したり、劣化状態の判定に必要な所定の手順で充放電したりさせる。 During normal times when state determination is not performed, the spare batteries A 1 and A 2 are disconnected from the assembled battery 300, and the state determination batteries B 1 and B 2 are included in the unit cell group constituting the assembled battery 300. At this time, the switches S1 and S2 connect the state determination battery B1 to the assembled battery 300, the spare battery A1 is connected to the charging / discharging device 400 side, and the switches S3 and S4 connect the state determination battery B2 to the assembled battery 300. And the spare battery A2 is connected to the charge / discharge device 400 side. In this configuration, the assembled battery 300 including the state determination batteries B1 and B2 is used for original power supply and regeneration. On the other hand, the spare batteries A1 and A2 are paused, adjusted to an arbitrary voltage using the charge / discharge device 300 as necessary, and charged / discharged according to a predetermined procedure necessary for determining the deterioration state.
 状態判定用電池B1、B2の劣化状態を判定する場合には、状態判定用電池B1、B2は組電池300から切り離されており、代わりに予備電池A1、A2が組電池300に組み込まれている。このとき、スイッチS1、S2は予備電池A1を組電池300と接続し、状態判定用電池B1を充放電装置側400に接続している。またスイッチS3、S4は予備電池A2を組電池300と接続し、状態判定用電池B2を充放電装置400側に接続している。この構成では、予備電池A1、A2を含む組電池300を本来の電源供給・回生等の用途に使用する。一方で、状態判定用電池B1、B2は、充放電装置400によって、劣化状態の判定に必要な所定の手順で充放電される。 When determining the deterioration state of the state determination batteries B1 and B2, the state determination batteries B1 and B2 are disconnected from the assembled battery 300, and the spare batteries A1 and A2 are incorporated into the assembled battery 300 instead. . At this time, the switches S1 and S2 connect the spare battery A1 to the assembled battery 300, and connect the state determination battery B1 to the charge / discharge device side 400. The switches S3 and S4 connect the spare battery A2 to the assembled battery 300 and connect the state determination battery B2 to the charge / discharge device 400 side. In this configuration, the assembled battery 300 including the spare batteries A1 and A2 is used for original power supply and regeneration. On the other hand, the state determination batteries B <b> 1 and B <b> 2 are charged and discharged by the charging / discharging device 400 according to a predetermined procedure necessary for determining the deterioration state.
 図5は、本実施形態における状態判定の際の動作を示すフローチャートである。なお以下では、状態判定用電池は電池B1、B2、…、Bnのn本あり、予備電池は電池A1、A2、…、Anのn本あるとして説明する。 FIG. 5 is a flowchart showing an operation in the state determination in the present embodiment. In the following description, it is assumed that there are n batteries B1, B2,..., Bn for state determination, and n batteries B1, A2,.
 初期状態では電池モジュール500は通常時の接続にあり、状態判定用電池B1、B2、…、Bnは組電池に組み込まれており、予備電池A1、A2、…、Anは組電池300から切り離されている。上位システムからの信号を受ける、あるいは電池モジュール500内に記憶された所定の期限に到達する等により、状態判定用電池B1、B2、…、Bnの劣化状態の判定を開始する。 In the initial state, the battery module 500 is normally connected, the state determination batteries B1, B2,..., Bn are incorporated in the assembled battery, and the spare batteries A1, A2,. ing. The determination of the deterioration state of the state determination batteries B1, B2,..., Bn is started by receiving a signal from the host system or reaching a predetermined time limit stored in the battery module 500.
 まず、最初のステップにおいて、組電池300の制御部は組電池300の動作状態を判定する。組電池300の電圧変動等によって、状態判定用電池B1、B2、…、Bnを予備電池A1、A2、…、Anと切り替えられない場合には、所定の時間だけ待機した後に再び組電池300の動作状態を判定する。状態判定用電池B1、B2、…、Bnと予備電池A1、A2、…、Anを切り替えることが可能な場合には次のステップに進む。組電池300が常に不規則な電圧変動に晒される場合には、このステップにおいて一時的に組電池300全体の動作を停止させ、状態判定用電池B1、B2、…、Bnと予備電池A1、A2、…、Anを切り替え可能な状態を強制的に作り出しても良い。 First, in the first step, the control unit of the assembled battery 300 determines the operating state of the assembled battery 300. If the state determination batteries B1, B2,..., Bn cannot be switched to the spare batteries A1, A2,..., An due to voltage fluctuations of the assembled battery 300, etc., after waiting for a predetermined time, Determine the operating state. When the state determination batteries B1, B2,..., Bn and the spare batteries A1, A2,. When the assembled battery 300 is constantly exposed to irregular voltage fluctuations, the operation of the entire assembled battery 300 is temporarily stopped in this step, and the state determination batteries B1, B2,..., Bn and the spare batteries A1, A2 ..., An may be forcibly created.
 次のステップでは、予備電池A1、A2、…、Anの電圧を状態判定用電池B1、B2、…、Bnの電圧にそれぞれ一致させる。 In the next step, the voltages of the spare batteries A1, A2,..., An are matched with the voltages of the state determination batteries B1, B2,.
 次のステップでは、スイッチを操作して予備電池A1、A2、…、Anと状態判定用電池B1、B2、…、Bnをそれぞれ切り替える。この結果、予備電池A1、A2、…、Anは組電池300を構成する単電池として機能するようになり、状態判定用電池B1、B2、…、Bnは組電池300とは切り離される。また、このステップではスイッチを操作して充放電装置400と状態判定用電池B1、B2、…、Bnとを接続する。 In the next step, the standby batteries A1, A2,..., An and state determination batteries B1, B2,. As a result, the spare batteries A 1, A 2,..., An function as a single battery constituting the assembled battery 300, and the state determination batteries B 1, B 2,. In this step, the switch is operated to connect the charging / discharging device 400 and the state determination batteries B1, B2,..., Bn.
 次のステップでは、状態判定用の充放電装置400を用いて、実施例1と同様に、所定の手順で状態判定用電池B1、B2、…、Bnを充放電して劣化状態を判定する。判定の手順としては、例えば、所定の電流値によって状態判定用電池B1、B2、…、Bnを所定の上限電圧から下限電圧まで放電して得られた容量を基準値と比較する方法がある。また、例えば、所定の開回路電圧にある状態判定用電池B1、B2、…、Bnを所定の電流値で一定時間だけ充放電して、閉回路電圧と開回路電圧との差から内部抵抗を求め、基準値と比較する方法がある。また、例えば、10時間率以下の微小な一定電流で状態判定用電池B1、B2、…、Bnを所定の上限電圧から下限電圧まで放電して得られた放電曲線を、予め記憶してある状態判定用電池B1、B2、…、Bnに用いた正極・負極それぞれ単独の放電曲線に基づいて解析して、正極の容量、負極の容量、正極と負極の容量バランスのずれ等を推定して基準値と比較したり、電池電圧に対する正極電位・負極電位を推定して基準値と比較したりする方法がある。放電曲線を用いた解析の方法は、特許文献1に開示されている。 In the next step, the state determination charging / discharging device 400 is used to charge and discharge the state determination batteries B1, B2,. As a determination procedure, for example, there is a method in which the capacity obtained by discharging the state determination batteries B1, B2,..., Bn from a predetermined upper limit voltage to a lower limit voltage with a predetermined current value is compared with a reference value. Further, for example, the state determination batteries B1, B2,..., Bn at a predetermined open circuit voltage are charged / discharged at a predetermined current value for a predetermined time, and the internal resistance is determined from the difference between the closed circuit voltage and the open circuit voltage. There is a method of obtaining and comparing with a reference value. Further, for example, a state in which a discharge curve obtained by discharging the state determination batteries B1, B2,..., Bn from a predetermined upper limit voltage to a lower limit voltage with a small constant current of 10 hours or less is stored in advance. Analyzes based on the discharge curves of the positive and negative electrodes used in the determination batteries B1, B2,..., Bn, and estimates and evaluates the positive electrode capacity, the negative electrode capacity, the capacity balance between the positive electrode and the negative electrode, etc. There is a method of comparing with a reference value by comparing with a value or estimating a positive electrode potential / negative electrode potential with respect to a battery voltage. A method of analysis using a discharge curve is disclosed in Patent Document 1.
 次のステップでは、組電池300の制御部は予備電池A1、A2、…、Anを含む組電池300の動作状態を判定する。組電池300が不規則な電圧変動を受ける状態にあり、予備電池A1、A2、…、Anと状態判定用電池B1、B2、…、Bnを切り替えられない場合には、所定の時間だけ待機した後に再び組電池300の動作状態を判定する。組電池300の電圧変動がないか規則的である場合には、状態判定用電池B1、B2、…、Bnと予備電池A1、A2、…、Anを切り替えることが可能と判断して次のステップに進む。組電池300が常に不規則な電圧変動に晒される場合には、このステップにおいて一時的に組電池300全体の動作を停止させ、状態判定用電池B1、B2、…、Bnと予備電池A、A2、…、Anを切り替え可能な状態を強制的に作り出しても良い。 In the next step, the control unit of the assembled battery 300 determines the operating state of the assembled battery 300 including the spare batteries A1, A2,. When the assembled battery 300 is subjected to irregular voltage fluctuations and the standby batteries A1, A2,..., An and the state determination batteries B1, B2,. Later, the operating state of the assembled battery 300 is determined again. If the voltage of the battery pack 300 does not change or is regular, it is determined that the state determination batteries B1, B2,..., Bn and the spare batteries A1, A2,. Proceed to When the assembled battery 300 is always exposed to irregular voltage fluctuations, the operation of the entire assembled battery 300 is temporarily stopped in this step, and the state determination batteries B1, B2,..., Bn and the spare batteries A, A2 ..., An may be forcibly created.
 次のステップでは、状態判定用電池B1、B2、…、Bnの電圧を予備電池A1、A2、…、Anの電圧に一致させる。まず予備電池A1、A2、…、Anの電圧を、単電池に接続されている電圧計から読み取る、組電池300全体の電圧から推定する等の方法で決める。その後、状態判定用の充放電装置400を用いて状態判定用電池B1、B2、…、Bnを充放電して予備電池A、A2、…、Anの電圧と一致させる。 In the next step, the voltages of the state determination batteries B1, B2,..., Bn are matched with the voltages of the standby batteries A1, A2,. First, the voltages of the spare batteries A1, A2,..., An are determined by a method such as reading from a voltmeter connected to the unit cell or estimating from the voltage of the entire assembled battery 300. Thereafter, the state determination batteries B1, B2,..., Bn are charged / discharged using the state determination charging / discharging device 400 to match the voltages of the spare batteries A, A2,.
 次のステップでは、スイッチを操作して予備電池A1、A2、…、Anと状態判定用電池B1、B2、…、Bnを切り替える。この結果、状態判定用電池B1、B2、…、Bnは組電池300を構成する単電池として機能するようになり、予備電池A1、A2、…、Anは組電池300とは切り離される。また、このステップではスイッチを操作して状態判定用の充放電装置400と予備電池A、A2、…、Anとを接続する。 In the next step, the standby batteries A1, A2,..., An and state determination batteries B1, B2,. As a result, the state determination batteries B 1, B 2,..., Bn function as unit cells constituting the assembled battery 300, and the spare batteries A 1, A 2,. In this step, the switch is operated to connect the state determination charging / discharging device 400 to the spare batteries A, A2,.
 以上により、二次電池モジュール内の組電池を構成する状態判定用電池B1、B2、…、Bnの劣化状態を判定することができる。本実施例では、複数の状態判定用電池の劣化状態を同時に判定することができる。 From the above, it is possible to determine the deterioration state of the state determination batteries B1, B2,..., Bn constituting the assembled battery in the secondary battery module. In this embodiment, it is possible to simultaneously determine the deterioration states of a plurality of state determination batteries.
 図6は、発明者が作製した組電池に含まれる単電池の初期状態の放電曲線と2年間運用した後の劣化後の放電曲線と、それぞれの放電曲線を特許文献1の方法で解析して得られた正極と負極の放電曲線を示す。図6のように、初期状態と劣化後では同じ電池電圧に対する電池の残存容量、正極電位、負極電位が異なっている。 FIG. 6 shows an analysis of the discharge curve in the initial state of the unit cell included in the assembled battery produced by the inventor, the discharge curve after deterioration after operation for two years, and the respective discharge curves by the method of Patent Document 1. The discharge curve of the obtained positive electrode and negative electrode is shown. As shown in FIG. 6, the remaining battery capacity, the positive electrode potential, and the negative electrode potential for the same battery voltage are different between the initial state and the deteriorated state.
 図7は、電池電圧3.9Vに対する正極電位の変化を運用日数に対して示したものである。図のように、運用日数の増加に対して同じ電池電圧に対する正極電位が増加する。正極を高電位で使用することは電池の寿命と安全性にとって望ましくないため、電池の制御に当たっては正極電位を可能な限り正確に把握する必要がある。 FIG. 7 shows the change of the positive electrode potential with respect to the battery voltage of 3.9 V with respect to the operation days. As shown in the figure, the positive electrode potential for the same battery voltage increases as the number of operating days increases. The use of the positive electrode at a high potential is undesirable for the life and safety of the battery, and therefore it is necessary to grasp the positive electrode potential as accurately as possible when controlling the battery.
 しかしながら、特許文献1に記載された従来の方法では、日常的な状態判定が難しいので、例えば2年毎の定期点検の際に正極電位を評価することになる。その場合、図7によれば2年後における制御上想定された正極電位と実際の正極電位の間には、4.050-3.994=0.056Vの差が生じることになる。 However, with the conventional method described in Patent Document 1, it is difficult to determine the state on a daily basis, and thus the positive electrode potential is evaluated, for example, during a periodic inspection every two years. In that case, according to FIG. 7, there is a difference of 4.050−3.994 = 0.056V between the positive electrode potential assumed for control in two years and the actual positive electrode potential.
 一方で、本発明の一実施形態によれば、例えば2週間毎に電池の劣化状態を判定することができる。その場合の制御上想定された正極電位と実際の正極電位の差は、図7の正極電位の変化から見積もって、最大でも0.008Vに抑制することができる。 On the other hand, according to one embodiment of the present invention, for example, the deterioration state of the battery can be determined every two weeks. In this case, the difference between the positive electrode potential assumed for control and the actual positive electrode potential can be suppressed to 0.008 V at the maximum as estimated from the change in the positive electrode potential in FIG.
 図8は、発明者が作製した組電池の放電曲線を単電池あたりに平均化した放電曲線と、二次電池モジュールの周辺部に位置する状態判定用電池の放電曲線と、二次電池モジュールの中央部に位置する状態判定用電池の放電曲線を示す。図のように、二次電池モジュール内の個々の単電池の劣化状態は異なる。 FIG. 8 shows a discharge curve obtained by averaging the discharge curve of the assembled battery produced by the inventor per unit cell, the discharge curve of the state determination battery located in the periphery of the secondary battery module, and the secondary battery module. The discharge curve of the battery for state determination located in a center part is shown. As shown in the figure, the deterioration states of the individual cells in the secondary battery module are different.
 予備電池を備えない二次電池モジュールの放電曲線を用いる従来の方法では、組電池全体が図8の平均の放電曲線に対応する劣化状態と判定される。一方、本発明の一実施形態における二次電池モジュールでは、個々の単電池の状態を判定することができる。表1は、組電池の平均、周辺部の単電池、中央部の単電池それぞれについて、電池電圧3.9Vに対する正極電位を示す。 In the conventional method using the discharge curve of the secondary battery module that does not include a spare battery, the entire assembled battery is determined to be in a deteriorated state corresponding to the average discharge curve in FIG. On the other hand, in the secondary battery module in one embodiment of the present invention, the state of each single cell can be determined. Table 1 shows the positive electrode potential with respect to the battery voltage of 3.9 V for the average of the assembled batteries, the peripheral unit cells, and the central unit cells.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 従来の方法では、組電池を構成する単電池の制御上想定された正極電位と実際の正極電位との間に4.049-4.008=0.041Vの差が生じる。一方で本発明の一実施形態における方法では、この差は生じないため、より正確に単電池を制御することができる。 In the conventional method, a difference of 4.049−4.008 = 0.041V is generated between the positive electrode potential assumed for the control of the unit cells constituting the assembled battery and the actual positive electrode potential. On the other hand, in the method according to the embodiment of the present invention, this difference does not occur, so that the unit cell can be controlled more accurately.
300 組電池
400 充放電装置
500 電池モジュール
600 情報保持機構
300 battery pack 400 charge / discharge device 500 battery module 600 information holding mechanism

Claims (6)

  1.  直列または並列に接続された複数の二次電池を有する組電池と、
     前記組電池を充放電する充放電装置と、
     1つ以上の予備電池と、を有する電池モジュールであって、
     前記組電池を構成する複数の二次電池のうちに、1つ以上の状態判定用電池が予め定められており、
     前記状態判定用電池と前記充放電装置との接続および前記予備電池と前記充放電装置との接続を選択的に切り替えるスイッチを有し、
     前記充放電装置は、前記スイッチにより前記組電池から切り離された前記状態判定用電池の充放電を、前記組電池の充放電とは独立して制御する二次電池モジュール。
    An assembled battery having a plurality of secondary batteries connected in series or in parallel;
    A charge / discharge device for charging / discharging the assembled battery;
    A battery module having one or more spare batteries,
    Among the plurality of secondary batteries constituting the assembled battery, one or more state determination batteries are predetermined,
    A switch for selectively switching connection between the battery for state determination and the charge / discharge device and connection between the reserve battery and the charge / discharge device;
    The said charging / discharging apparatus is a secondary battery module which controls charging / discharging of the said battery for state determination separated from the said assembled battery with the said switch independently of charging / discharging of the said assembled battery.
  2.  請求項1において、
     前記組電池を構成する複数の二次電池のうちに、2つ以上の状態判定用電池が予め定められており、
     前記2つ以上の状態判定用電池が前記電池モジュールの中心部と周縁部に位置されている二次電池モジュール。
    In claim 1,
    Among the plurality of secondary batteries constituting the assembled battery, two or more state determination batteries are predetermined,
    The secondary battery module in which the two or more state determination batteries are positioned at a center part and a peripheral part of the battery module.
  3.  請求項1または2において、
     前記充放電装置は、前記状態判定用電池と前記充放電装置との接続および前記予備電池と前記充放電装置との接続が切り替えられ前に、前記予備電池の電圧と前記状態判定用電池の電圧を一致させるように制御する二次電池モジュール。
    In claim 1 or 2,
    The charge / discharge device is configured such that the connection between the state determination battery and the charge / discharge device and the connection between the reserve battery and the charge / discharge device are switched before the voltage of the reserve battery and the voltage of the state determination battery. Secondary battery module that controls to match.
  4.  請求項1乃至3のいずれかにおいて、
     前記充放電装置と前記状態判定用電池との接続が前記充放電装置と前記予備電池との接続に切り替えられた後に、前記充放電装置は、前記組電池とは切り離された前記状態判定用電池を、前記状態判定用電池の電池容量に対して10時間率以下の一定電流で所定の条件を満たすまで、充電または放電する二次電池モジュール。
    In any one of Claims 1 thru | or 3,
    After the connection between the charge / discharge device and the state determination battery is switched to the connection between the charge / discharge device and the reserve battery, the charge / discharge device is disconnected from the assembled battery. Is charged or discharged until a predetermined condition is satisfied at a constant current of 10 hours or less with respect to the battery capacity of the state determination battery.
  5.  請求項1乃至3のいずれかにおいて、
     前記充放電装置と前記状態判定用電池との接続が前記充放電装置と前記予備電池との切り替えられた後に、前記充放電装置は、前記組電池とは切り離された前記状態判定用電池に対して、前記状態判定用電池の電池容量に対して1/10以下の容量の充電または放電と充電または放電後の休止と、を、所定の条件を満たすまで繰り返す二次電池モジュール。
    In any one of Claims 1 thru | or 3,
    After the connection between the charge / discharge device and the state determination battery is switched between the charge / discharge device and the reserve battery, the charge / discharge device is connected to the state determination battery separated from the assembled battery. A secondary battery module that repeats charging or discharging with a capacity of 1/10 or less with respect to the battery capacity of the state determination battery and stopping after charging or discharging until a predetermined condition is satisfied.
  6.  請求項1乃至3のいずれかにおいて、
     前記状態判定用電池の劣化状態を判定する際に、前記状態判定用電池を構成する正極および負極のそれぞれ単独の充放電特性を参照する二次電池モジュール。
    In any one of Claims 1 thru | or 3,
    A secondary battery module that refers to the individual charge / discharge characteristics of the positive electrode and the negative electrode constituting the state determination battery when determining the deterioration state of the state determination battery.
PCT/JP2014/055540 2014-03-05 2014-03-05 Secondary battery module WO2015132891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055540 WO2015132891A1 (en) 2014-03-05 2014-03-05 Secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055540 WO2015132891A1 (en) 2014-03-05 2014-03-05 Secondary battery module

Publications (1)

Publication Number Publication Date
WO2015132891A1 true WO2015132891A1 (en) 2015-09-11

Family

ID=54054729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055540 WO2015132891A1 (en) 2014-03-05 2014-03-05 Secondary battery module

Country Status (1)

Country Link
WO (1) WO2015132891A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020101521A1 (en) * 2018-11-15 2020-05-22 Siemens Aktiengesellschaft Method and system for monitoring a battery cell state and a battery system state without interruption of functioning of a battery system
WO2021065443A1 (en) * 2019-10-02 2021-04-08 株式会社日立製作所 Battery state estimation device
CN112912747A (en) * 2018-07-30 2021-06-04 日本汽车能源株式会社 Battery state estimating device and battery control device
CN112952939A (en) * 2021-02-08 2021-06-11 阳光电源股份有限公司 Series battery pack and capacity balancing method thereof
US11277012B2 (en) * 2019-04-04 2022-03-15 Yazaki Corporation Battery control unit and battery system
US20220238952A1 (en) * 2019-05-24 2022-07-28 Avl List Gmbh Battery device for a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313604A (en) * 1995-05-22 1996-11-29 Kyushu Electric Power Co Inc Method and system for diagnosing service life of battery
JP2006271068A (en) * 2005-03-23 2006-10-05 Nec Corp Battery device
JP2012054220A (en) * 2010-08-04 2012-03-15 Nec Energy Devices Ltd Lithium secondary battery, control system thereof, and state detection method of lithium secondary battery
JP2012125122A (en) * 2010-12-10 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> Power system
WO2012133274A1 (en) * 2011-03-30 2012-10-04 三洋電機株式会社 Electrical storage system and mobile body
JP2013020915A (en) * 2011-07-14 2013-01-31 Toyota Motor Corp Solid-state battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313604A (en) * 1995-05-22 1996-11-29 Kyushu Electric Power Co Inc Method and system for diagnosing service life of battery
JP2006271068A (en) * 2005-03-23 2006-10-05 Nec Corp Battery device
JP2012054220A (en) * 2010-08-04 2012-03-15 Nec Energy Devices Ltd Lithium secondary battery, control system thereof, and state detection method of lithium secondary battery
JP2012125122A (en) * 2010-12-10 2012-06-28 Nippon Telegr & Teleph Corp <Ntt> Power system
WO2012133274A1 (en) * 2011-03-30 2012-10-04 三洋電機株式会社 Electrical storage system and mobile body
JP2013020915A (en) * 2011-07-14 2013-01-31 Toyota Motor Corp Solid-state battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112912747A (en) * 2018-07-30 2021-06-04 日本汽车能源株式会社 Battery state estimating device and battery control device
CN112912747B (en) * 2018-07-30 2023-07-11 日本汽车能源株式会社 Battery state estimating device and battery control device
WO2020101521A1 (en) * 2018-11-15 2020-05-22 Siemens Aktiengesellschaft Method and system for monitoring a battery cell state and a battery system state without interruption of functioning of a battery system
US11277012B2 (en) * 2019-04-04 2022-03-15 Yazaki Corporation Battery control unit and battery system
US20220238952A1 (en) * 2019-05-24 2022-07-28 Avl List Gmbh Battery device for a vehicle
WO2021065443A1 (en) * 2019-10-02 2021-04-08 株式会社日立製作所 Battery state estimation device
US11841402B2 (en) 2019-10-02 2023-12-12 Hitachi, Ltd. Battery state estimation device
CN112952939A (en) * 2021-02-08 2021-06-11 阳光电源股份有限公司 Series battery pack and capacity balancing method thereof
CN112952939B (en) * 2021-02-08 2024-05-14 阳光电源股份有限公司 Series battery pack and capacity balancing method thereof

Similar Documents

Publication Publication Date Title
US10483779B2 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
US10135267B2 (en) Secondary battery system
CN102655245B (en) Anomalously charged state detection device and test method for lithium secondary cell
CN107852013B (en) Monitoring and balancing capacity in lithium sulfur batteries arranged in series
WO2015132891A1 (en) Secondary battery module
JP5699970B2 (en) Lithium ion secondary battery system and deposition determination method
JP5904039B2 (en) Secondary battery control device
US9935342B2 (en) Li/metal battery with shape change control
JP2016091613A (en) Battery system and soc recovery method
JP2013092398A (en) Secondary battery deterioration determination system and deterioration determination method
WO2015049778A1 (en) Lithium ion secondary battery, lithium ion secondary battery system, method for detecting potential in lithium ion secondary battery, and method for controlling lithium ion secondary battery
JPWO2015059746A1 (en) Battery system
US9379416B2 (en) Method for performing cell balancing of a battery system based on cell capacity values
JP6493762B2 (en) Battery system
JP2017162721A (en) Cell balance circuit control apparatus and cell balance circuit control method
WO2022091673A1 (en) Abnormality detection method, abnormality detection device, power storage device, and computer program
WO2015075785A1 (en) Lithium-ion secondary battery system and method for diagnosing deterioration of lithium-ion secondary battery
WO2023032544A1 (en) Secondary battery control device, secondary battery system, and secondary battery capacity recovery method
WO2023157506A1 (en) Secondary battery control device and secondary battery system
WO2022034717A1 (en) Capacity restoration device and program
Polasek et al. Testing of batteries used in electric cars
KR20130129508A (en) Device for voltage balancing of battery pack and balancing process using the same
WO2022202318A1 (en) Estimating device, electricity storage module, estimating method, and computer program
WO2022168367A1 (en) Capacity recovery device and program
JP2023141511A (en) Non-aqueous secondary battery manufacturing method, non-aqueous secondary battery testing device, and non-aqueous secondary battery testing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP