JP3754254B2 - Battery charge / discharge control method - Google Patents

Battery charge / discharge control method Download PDF

Info

Publication number
JP3754254B2
JP3754254B2 JP33595699A JP33595699A JP3754254B2 JP 3754254 B2 JP3754254 B2 JP 3754254B2 JP 33595699 A JP33595699 A JP 33595699A JP 33595699 A JP33595699 A JP 33595699A JP 3754254 B2 JP3754254 B2 JP 3754254B2
Authority
JP
Japan
Prior art keywords
battery
charge
capacity
limit value
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33595699A
Other languages
Japanese (ja)
Other versions
JP2001157369A (en
Inventor
忠司 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33595699A priority Critical patent/JP3754254B2/en
Publication of JP2001157369A publication Critical patent/JP2001157369A/en
Application granted granted Critical
Publication of JP3754254B2 publication Critical patent/JP3754254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池の残存容量が所定の範囲になるように制御しながら充放電させる方法に関する。
【0002】
【従来の技術】
電池は、過充電し、あるいは過放電させると電気性能が著しく低下する。電池を長い期間にわたって使用するには、過充電と過放電を防止することに加えて、残存容量が最大充電容量よりも小さいときに充電を停止し、いいかえると満充電しない状態で充電を停止し、また、残存容量が0になる前、すなわち完全に放電させない状態で放電を停止することが大切である。
【0003】
本明細書において、電池の「最大充電容量」とは、満充電した二次電池を完全に放電するときに出力できる最大の容量を意味するものとする。新しいは電池は、定格容量が最大充電容量となる。ただ、充放電させるにしたがって、電池が劣化して最大充電容量は減少する。
【0004】
過充電と過放電とを防止して、電池の寿命を長くするために、たとえば、電気自動車に使用される電池は、放電上限値と充電下限値とを設定し、残存容量がこの範囲にあるように制御しながら充放電させている。放電上限値は、たとえば、電池の最大充電容量の約30%に設定し、充電下限値を最大充電容量の70%に設定している。この充放電制御方法は、最大充電容量の30〜70%を充放電許容範囲として、この範囲で電池を充放電させるので、電池性能を低下することなく、極めて長期間に使用できる特長がある。
【0005】
【発明が解決しようとする課題】
放電上限値と充電下限値を設けて、この範囲で充放電する方法は、たとえば、一定時間使用すると、最大充電容量を検出している。電池の最大充電容量は、使用するにしたがって減少するからである。最大充電容量は、たとえば、満充電した電池を完全放電して検出できる。放電上限値と充電下限値は、最大充電容量に対して一定の割合で設定している。このため、最大充電容量が減少すると、放電上限値と充電下限値の範囲が狭くなって、実際に使用できる容量が減少する。
【0006】
図1はこのことをわかりやすく示している。この図の上のグラフは新しい電池の放電上限値と充電下限値を示し、下のグラフは劣化して最大充電容量が少なくなった電池の放電上限値と充電下限値を示してる。この図に示すように、電池の最大充電容量が少なくなると、充放電許容範囲が狭くなってユーザーが電池の劣化を甚だしく感じて、容量が少なくなったことをクレームする弊害がある。
【0007】
本発明は、このような欠点を解決することを目的に開発されたもので、本発明の重要な目的は、電池が劣化したときに、実質的に充放電できる範囲が狭くなるのを防止して有効に使用できる電池の充放電制御方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の充放電制御方法は、放電上限値と充電下限値を設定して充放電する。放電上限値は、完全に放電された状態よりも電池1の残存容量が大きくなる容量、いいかえると残存容量が0よりも大きい値である。充電下限値は、満充電された状態よりも電池1の残存容量が小さくなる状態である。
【0009】
さらに、本発明の方法は、電池1の残存容量を演算して、残存容量を放電上限値と充電下限値の間の充放電許容範囲に制御しながら充放電させる。さらにまた、本発明の充放電制御方法は、電池1が劣化するなどの原因で、最大充電容量が減少すると、放電上限値を小さくして充電下限値を大きく補正する。放電上限値を小さく充電下限値を大きくする補正は、充放電許容範囲を拡大する補正である。したがって、本発明の充放電制御方法は、電池1が劣化して最大充電容量が少なくなったときに、充放電許容範囲が狭くなるのを少なくできる。
【0010】
放電上限値は、好ましくは、最大充電容量の10〜40%に設定する。また、充電下限値は、好ましくは、最大充電容量の60〜90%に設定する。電池1の最大充電容量は、電池1の最大充電容量が減少する情報を記憶装置に記憶させて、この記憶情報から最大充電容量を演算する。電池1の最大充電容量が減少する記憶情報は、たとえば、電池1の内部抵抗に対する最大充電容量の関係である。
【0011】
最大充電容量は、タイマーで最大容量検出タイミングを設定して、最大容量検出タイミングになると、最大充電容量を検出することもできる。最大容量検出タイミングにおいて、最大充電容量を検出するには、満充電した電池1を完全に放電して、放電電流の積算値から演算する。また、タイマーによらず、最大容量検出タイミングを、電池1の残存容量が、設定された回数だけ放電上限値または充電下限値になるタイミングに設定することもできる。この方法は、電池1の残存容量が、設定された回数だけ充電下限値になると、電池1を満充電して最大充電容量を検出し、電池1の残存容量が充電下限値に達する回数が設定された値になると、電池1を完全に放電して演算した残存容量を補正して、より正確に残存容量を演算できる。
【0012】
電池1の残存容量は、充電電流と放電電流を検出して演算し、あるいは、電池電圧を検出して演算できる。
【0013】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の充放電制御方法を例示するものであって、本発明は電池の充放電制御方法を以下の方法に特定しない。
【0014】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0015】
図2は、本発明の充放電制御方法に使用する回路を示している。この図の装置は、電池1と、電池1の最大充電容量と残存容量を検出する演算回路2と、電池1が劣化する情報を記憶している劣化情報記憶装置3と、演算回路2に設定された電池1の残存容量を表示する残存容量表示器4と、電池1の充放電を制御する充放電制御装置5とを備える。
【0016】
本発明の充放電制御方法は、電気自動車に使用される。ただ、電気自動車以外の用途にも使用できる。電気自動車に使用される電池1は、多数の二次電池を直列に接続している。二次電池は、ニッケル−カドミウム電池、ニッケル−水素電池、またはリチウムイオン二次電池等である。
【0017】
演算回路2は、電池1の電圧と、電流と、温度を検出する。電池1の温度は温度センサー6で検出する。この温度センサー6は、電池1に接近して配設され、あるいは電池1に接触して設けられる。電池1に流れる電流は、電池1と直列に接続している電流検出抵抗(図示せず)に発生する電圧を増幅して検出する。充電電流と放電電流は、電流検出抵抗に発生する+−が逆になるので、+−の極性で充電と放電を識別できる。複数の二次電池を直列に接続している電池1は、各々の二次電池の電圧と温度とを別々に検出し、あるいは、複数の二次電池を直列に接続した電池ユニットを1ユニットとして、電圧と温度を検出する。
【0018】
演算回路2は、劣化情報記憶装置3に記憶される劣化情報から、あるいは、満充電した電池1を完全に放電して、電池1の最大充電容量を演算する。劣化情報から最大充電容量を演算する方法は、電池1を満充電する必要がなく、また、完全に放電する必要もなく、残存容量を充放電許容範囲として、速やかに最大充電容量を演算できる。
【0019】
劣化情報から最大充電容量を演算するには、たとえば、電池1の内部抵抗を検出して、内部抵抗から最大充電容量を演算する。電池1は劣化すると内部抵抗が大きくなると共に、最大充電容量が減少する。電池1の内部抵抗は、劣化する状態と関連しているので、内部抵抗から最大充電容量を演算することができる。内部抵抗に対する劣化情報は劣化情報記憶装置3に記憶させる。演算回路2は、電池1の内部抵抗を検出し、この内部抵抗を劣化情報に比較して、最大充電容量を演算する。
【0020】
電池1の内部抵抗は、電池1に流れる電流と電圧から検出できる。内部抵抗による電圧降下が、電池1の出力電圧を低下させるからである。内部抵抗による電圧降下は、電池1に電流を流さないときの出力電圧と、電池1に所定の電流を流す状態での出力電圧との差から演算できる。電圧降下を電流で割ると内部抵抗が演算される。
【0021】
さらに、演算回路2は、満充電した電池1を完全に放電して最大充電容量を演算することもできる。この方法で最大充電容量を演算する方法は、たとえば、メモリ効果で一時的に最大充電容量が減少する電池、たとえば、ニッケル−カドミウム電池やニッケル−水素電池に適している。満充電した電池1を完全に放電して最大充電容量を演算するときに、メモリ効果による容量の一時的な減少を回復できるからである。電池1を満充電して完全に放電させる演算回路2は、充放電制御装置5を制御して、電池1を満充電した後、完全に放電する。そして、満充電された電池1が完全に放電されるまでの放電電流を積算して最大充電容量を演算する。
【0022】
満充電した電池1を完全に放電させて最大充電容量を演算する演算回路2は、タイマーで最大充電容量を検出するタイミング、すなわち、最大容量検出タイミングを設定している。タイマーが、最大容量検出タイミングになると、電池1を満充電し、その後完全に放電して最大充電容量を演算する。
【0023】
さらに、満充電した電池1を完全に放電して最大充電容量を演算する演算回路2は、残存容量が放電上限値となる回数が設定された回数となり、あるいは、充電下限値となる回数が設定された回数となるタイミングに、最大充電容量を演算することもできる。この方法は、電池1の残存容量が設定された回数だけ充電下限値になったときに、充電下限値を越えて電池1を満充電し、その後に完全に放電して最大充電容量を検出することができる。また、電池1の残存容量が充電下限値に達する回数が設定された値になるときに、放電上限値を越えて電池1を完全に放電させて、最大充電容量を演算し、また、演算している残存容量を補正することもできる。
【0024】
さらに、図に示す演算回路2は、残存容量も演算して残存容量表示器4に出力する。残存容量は、電池1の充電容量から放電容量を減算して演算する。充電容量は、充電電流の積算値と充電効率との積で演算される。放電容量は放電電流の積算値で演算できる。
【0025】
また、演算回路2は、電池1の残存容量が、放電上限値よりも大きく、充電下限値よりも小さくなる範囲、すなわち、充放電許容範囲となるように、充放電制御装置5を制御する。放電上限値と充電下限値は演算回路2に内蔵される半導体メモリ等の記憶素子(図示せず)に記憶している。
【0026】
放電上限値は、完全に放電された状態よりも残存容量が大きくなる状態であって、電池1を放電させるときに、電池1の劣化を最小にできる値、たとえば、最大充電容量の10〜40%、さらに好ましくは20〜30%に設定する。放電上限値を低く設定するほど、実際に電池1を放電できる容量が増加する。反対に放電上限値を高くすると、電池1の実質放電容量は少なくなるが、電池1の劣化を少なくできる。
【0027】
充電下限値は、満充電された状態よりも残存容量が小さくなる状態であって、電池1を充電するときの劣化を最小にできる値、たとえば、最大充電容量の60〜90%、好ましくは70〜80%に設定する。充電下限値を高く設定するほど、実際に電池1を充電できる容量は増加する。反対に充電下限値を低くすると、電池1の実質放電容量は少なくなるが、電池1の劣化を少なくできる。
【0028】
放電上限値と充電下限値は、電池1に要求される寿命と要求される放電容量とを考慮して前述の範囲で最適に設定される。さらに、演算回路2は、放電上限値と充電下限値を一定の値とはしないで、電池1の最大充電容量によって、放電上限値と充電下限値を変更する。電池1の実質的に放電できる容量を大きく保持しながら、電池1の劣化を少なくするためである。
【0029】
図3は、最大充電容量によって放電上限値と充電下限値を変更する状態を示している。この図に示すように、電池1の最大充電容量が矢印で示すように減少すると、演算回路2は、放電上限値を小さく、充電下限値を大きくして、充放電許容範囲を広げる。この図において、演算回路2は、最大充電容量が減少すると、放電上限値を最大充電容量の30%から20%に変更して、充電下限値を70%から80%に変更する。
【0030】
以上のように、放電上限値と充電下限値を変更すると、電池1の最大充電容量が2/3に減少しても、実質的に充放電できる容量は減少しない。最大充電容量が減少したときに、どの程度に放電上限値と充電下限値を変更するかは、電池の用途、電池の種類、最大充電容量、放電電流、充電電流等を考慮して最適値とする。ただし、いかなる用途においても、放電上限値は完全に電池1が放電されず、また充電下限値は最大充電容量の100%よりも小さく設定される。電池1の急激な劣化を防止するためである。
【0031】
充放電制御装置5は、内部抵抗に対する最大充電容量を、半導体メモリ等に記憶している。内部抵抗に対する最大充電容量は、内部抵抗をパラメターとする関数として記憶され、あるいは、内部抵抗の特定範囲に対する、最大充電容量値として記憶している。
【0032】
残存容量表示器4は、演算回路2から出力される残存容量を、液晶等のモニタに表示し、あるいは、発光ダイオードの点数や発光色で表示する。残存容量表示器4は、最大充電容量に対する相対値として残存容量を表示する。
【0033】
充放電制御装置5は、演算回路2に制御されて電池1の充放電を制御する。充放電制御装置5は、電池1の残存容量が充放電許容範囲にあるときは、放電スイッチと充電スイッチの両方をオンにして、充電と放電を許容する。残存容量が放電上限値以下になると、放電スイッチをオフにして放電を禁止し、充電スイッチをオンにして充電を許容する。また、電池1の残存容量が充電下限値以上になると、放電スイッチをオンにして放電を許容し、充電スイッチをオフにして充電を禁止する。
【0034】
放電上限値と充電下限値は、最大充電容量によって変化するので、充放電制御装置5は、演算回路2からの信号に制御されて、電池1を充放電許容範囲で充放電させる。
【0035】
以上詳述したように、図2の回路は、電池1の最大充電容量を演算回路2で検出し、電池1の最大充電容量によって放電上限値と充電下限値とを変更し、電池1の残存容量が充放電許容範囲になるように、充放電制御装置5で電池1の充放電を制御する。
【0036】
【発明の効果】
本発明の充放電制御方法は、電池が劣化したときに、実質的に充放電できる範囲が狭くなるのを防止しながら有効に使用して、電池の劣化もできる限り少なくできる特長がある。それは、本発明の充放電制御方法が、電池の残存容量を放電上限値と充電下限値の間の充放電許容範囲に制御しながら充放電させると共に、電池の最大充電容量が減少するときに、放電上限値を小さく、充電下限値を大きく補正して、充放電許容範囲を広くしているからである。
【0037】
本発明の充放電制御方法は、電池が劣化して最大充電容量が少なくなったときに、実際に使用できる容量の減少を少なくできるので、ユーザーに、電池の劣化を意識させることなく使用できる特長がある。
【0038】
さらに、本発明の充放電制御方法は、劣化して廃棄する直前まで電池を有効に使用できる特長もある。従来の充放電制御方法は、電池を廃棄するまで、狭い充放電許容範囲で充放電させて充分に保護しながら使用する。本発明の充放電制御方法は、電池が劣化して最大充電容量が減少するにしたがって、充放電許容範囲を拡大して、有効に使用するので、電池の劣化は増加するが、有効に利用できる容量を多くできる。このため、電池を完全に劣化するまで有効に利用できる特長がある。
【図面の簡単な説明】
【図1】従来の充放電制御方法における電池の放電上限値と充電下限値を示すグラフ
【図2】本発明の電池の充放電制御方法に使用する回路を示す回路図
【図3】本発明の実施例の充放電制御方法における電池の放電上限値と充電下限値を示すグラフ
【符号の説明】
1…電池
2…演算回路
3…劣化情報記憶装置
4…残存容量表示器
5…充放電制御装置
6…温度センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for charging and discharging while controlling the remaining capacity of a battery to be within a predetermined range.
[0002]
[Prior art]
When a battery is overcharged or overdischarged, its electrical performance is significantly reduced. In order to use the battery for a long period of time, in addition to preventing overcharge and overdischarge, stop charging when the remaining capacity is less than the maximum charge capacity, in other words, stop charging when it is not fully charged. In addition, it is important to stop the discharge before the remaining capacity becomes 0, that is, in a state where the discharge is not completely performed.
[0003]
In this specification, the “maximum charging capacity” of a battery means the maximum capacity that can be output when a fully charged secondary battery is completely discharged. For new batteries, the rated capacity is the maximum charge capacity. However, as the battery is charged and discharged, the battery deteriorates and the maximum charge capacity decreases.
[0004]
In order to prevent overcharge and overdischarge and prolong the life of the battery, for example, a battery used in an electric vehicle sets a discharge upper limit value and a charge lower limit value, and the remaining capacity is in this range. Thus, charging and discharging are performed while controlling. For example, the discharge upper limit value is set to about 30% of the maximum charge capacity of the battery, and the charge lower limit value is set to 70% of the maximum charge capacity. This charge / discharge control method has a feature that it can be used for a very long period of time without degrading the battery performance because the battery is charged / discharged in this range with 30-70% of the maximum charge capacity as the charge / discharge allowable range.
[0005]
[Problems to be solved by the invention]
A method of charging and discharging within this range by providing a discharge upper limit value and a charge lower limit value, for example, detects the maximum charge capacity when used for a certain period of time. This is because the maximum charge capacity of the battery decreases as it is used. The maximum charge capacity can be detected, for example, by fully discharging a fully charged battery. The discharge upper limit value and the charge lower limit value are set at a constant rate with respect to the maximum charge capacity. For this reason, when the maximum charge capacity decreases, the range of the discharge upper limit value and the charge lower limit value becomes narrow, and the actually usable capacity decreases.
[0006]
FIG. 1 shows this clearly. The upper graph in this figure shows the discharge upper limit value and the charge lower limit value of the new battery, and the lower graph shows the discharge upper limit value and the charge lower limit value of the battery that has deteriorated and the maximum charge capacity has decreased. As shown in this figure, when the maximum charge capacity of the battery is reduced, the charge / discharge allowable range is narrowed, and the user feels that the battery has been severely deteriorated and claims that the capacity is reduced.
[0007]
The present invention was developed with the object of solving these drawbacks, and an important object of the present invention is to prevent the range in which charging / discharging can be substantially reduced when the battery deteriorates. Another object of the present invention is to provide a battery charge / discharge control method that can be used effectively.
[0008]
[Means for Solving the Problems]
The charge / discharge control method of the present invention sets the discharge upper limit value and the charge lower limit value to charge / discharge. The discharge upper limit value is a capacity at which the remaining capacity of the battery 1 becomes larger than a fully discharged state, in other words, a value at which the remaining capacity is larger than zero. The charge lower limit value is a state in which the remaining capacity of the battery 1 is smaller than the fully charged state.
[0009]
Furthermore, the method of the present invention calculates the remaining capacity of the battery 1 and charges and discharges the remaining capacity while controlling the remaining capacity within a charge / discharge allowable range between the discharge upper limit value and the charge lower limit value. Furthermore, in the charge / discharge control method of the present invention, when the maximum charge capacity is reduced due to deterioration of the battery 1 or the like, the discharge upper limit value is decreased and the charge lower limit value is largely corrected. The correction for decreasing the discharge upper limit value and increasing the charge lower limit value is a correction for expanding the charge / discharge allowable range. Therefore, the charge / discharge control method of the present invention can reduce the allowable charge / discharge range from being narrowed when the battery 1 deteriorates and the maximum charge capacity decreases.
[0010]
The discharge upper limit value is preferably set to 10 to 40% of the maximum charge capacity. Further, the charging lower limit value is preferably set to 60 to 90% of the maximum charging capacity. The maximum charge capacity of the battery 1 is stored in the storage device as information for decreasing the maximum charge capacity of the battery 1, and the maximum charge capacity is calculated from the stored information. The stored information in which the maximum charge capacity of the battery 1 decreases is, for example, the relationship of the maximum charge capacity with respect to the internal resistance of the battery 1.
[0011]
The maximum charge capacity can be detected when the maximum capacity detection timing is set by a timer and the maximum capacity detection timing is reached. In order to detect the maximum charge capacity at the maximum capacity detection timing, the fully charged battery 1 is completely discharged and calculated from the integrated value of the discharge current. Further, the maximum capacity detection timing can be set to a timing at which the remaining capacity of the battery 1 becomes the discharge upper limit value or the charge lower limit value for the set number of times without using the timer. In this method, when the remaining capacity of the battery 1 reaches the charging lower limit value for the set number of times, the battery 1 is fully charged to detect the maximum charging capacity, and the number of times that the remaining capacity of the battery 1 reaches the charging lower limit value is set. When the calculated value is reached, the remaining capacity calculated by completely discharging the battery 1 is corrected, and the remaining capacity can be calculated more accurately.
[0012]
The remaining capacity of the battery 1 can be calculated by detecting the charging current and the discharging current, or by detecting the battery voltage.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. However, the examples shown below exemplify the battery charge / discharge control method for embodying the technical idea of the present invention, and the present invention does not specify the battery charge / discharge control method as the following method. .
[0014]
Further, in this specification, in order to facilitate understanding of the scope of claims, the numbers corresponding to the members shown in the examples are referred to as “the scope of claims” and “the means for solving the problems”. It is added to the member shown by. However, the members shown in the claims are not limited to the members in the embodiments.
[0015]
FIG. 2 shows a circuit used in the charge / discharge control method of the present invention. The apparatus of this figure is set in the battery 1, the arithmetic circuit 2 that detects the maximum charge capacity and the remaining capacity of the battery 1, the deterioration information storage device 3 that stores information that the battery 1 deteriorates, and the arithmetic circuit 2. A remaining capacity indicator 4 for displaying the remaining capacity of the battery 1 and a charge / discharge control device 5 for controlling charge / discharge of the battery 1.
[0016]
The charge / discharge control method of the present invention is used for an electric vehicle. However, it can also be used for applications other than electric vehicles. A battery 1 used in an electric vehicle has a large number of secondary batteries connected in series. The secondary battery is a nickel-cadmium battery, a nickel-hydrogen battery, a lithium ion secondary battery, or the like.
[0017]
The arithmetic circuit 2 detects the voltage, current, and temperature of the battery 1. The temperature of the battery 1 is detected by a temperature sensor 6. The temperature sensor 6 is disposed close to the battery 1 or is in contact with the battery 1. The current flowing through the battery 1 is detected by amplifying a voltage generated in a current detection resistor (not shown) connected in series with the battery 1. Since the charging current and the discharging current are reversed from + − generated in the current detection resistor, charging and discharging can be identified by the polarity of + −. A battery 1 in which a plurality of secondary batteries are connected in series detects the voltage and temperature of each secondary battery separately, or a battery unit in which a plurality of secondary batteries are connected in series is regarded as one unit. Detect voltage and temperature.
[0018]
The arithmetic circuit 2 calculates the maximum charge capacity of the battery 1 from the deterioration information stored in the deterioration information storage device 3 or by completely discharging the fully charged battery 1. The method of calculating the maximum charge capacity from the deterioration information does not require the battery 1 to be fully charged and does not need to be completely discharged, and can quickly calculate the maximum charge capacity with the remaining capacity as a charge / discharge allowable range.
[0019]
In order to calculate the maximum charge capacity from the deterioration information, for example, the internal resistance of the battery 1 is detected, and the maximum charge capacity is calculated from the internal resistance. When the battery 1 deteriorates, the internal resistance increases and the maximum charge capacity decreases. Since the internal resistance of the battery 1 is related to the state of deterioration, the maximum charge capacity can be calculated from the internal resistance. The deterioration information for the internal resistance is stored in the deterioration information storage device 3. The arithmetic circuit 2 detects the internal resistance of the battery 1 and compares the internal resistance with deterioration information to calculate the maximum charge capacity.
[0020]
The internal resistance of the battery 1 can be detected from the current and voltage flowing through the battery 1. This is because the voltage drop due to the internal resistance reduces the output voltage of the battery 1. The voltage drop due to the internal resistance can be calculated from the difference between the output voltage when no current flows through the battery 1 and the output voltage when a predetermined current flows through the battery 1. The internal resistance is calculated by dividing the voltage drop by the current.
[0021]
Further, the arithmetic circuit 2 can calculate the maximum charge capacity by completely discharging the fully charged battery 1. The method of calculating the maximum charge capacity by this method is suitable, for example, for a battery whose maximum charge capacity temporarily decreases due to the memory effect, for example, a nickel-cadmium battery or a nickel-hydrogen battery. This is because when the fully charged battery 1 is completely discharged and the maximum charge capacity is calculated, the temporary decrease in capacity due to the memory effect can be recovered. The arithmetic circuit 2 that fully charges and discharges the battery 1 controls the charge / discharge control device 5 to fully discharge the battery 1 and then completely discharges it. Then, the maximum charging capacity is calculated by integrating the discharge current until the fully charged battery 1 is completely discharged.
[0022]
The arithmetic circuit 2 that calculates the maximum charge capacity by completely discharging the fully charged battery 1 sets the timing for detecting the maximum charge capacity by the timer, that is, the maximum capacity detection timing. When the timer reaches the maximum capacity detection timing, the battery 1 is fully charged and then completely discharged to calculate the maximum charge capacity.
[0023]
Further, the arithmetic circuit 2 for calculating the maximum charge capacity by completely discharging the fully charged battery 1 is the number of times that the remaining capacity becomes the discharge upper limit value or the number of times that the charge lower limit value is set. It is also possible to calculate the maximum charge capacity at the timing when the number of times is reached. In this method, when the remaining capacity of the battery 1 reaches the lower limit of charge for the set number of times, the battery 1 is fully charged exceeding the lower limit of charge, and then fully discharged to detect the maximum charge capacity. be able to. Further, when the number of times the remaining capacity of the battery 1 reaches the lower limit of charging becomes a set value, the battery 1 is completely discharged exceeding the upper limit of discharge, and the maximum charging capacity is calculated. It is also possible to correct the remaining capacity.
[0024]
Further, the arithmetic circuit 2 shown in the figure also calculates the remaining capacity and outputs it to the remaining capacity indicator 4. The remaining capacity is calculated by subtracting the discharge capacity from the charge capacity of the battery 1. The charging capacity is calculated by the product of the integrated value of charging current and charging efficiency. The discharge capacity can be calculated by the integrated value of the discharge current.
[0025]
In addition, the arithmetic circuit 2 controls the charge / discharge control device 5 so that the remaining capacity of the battery 1 is larger than the discharge upper limit value and smaller than the charge lower limit value, that is, the charge / discharge allowable range. The discharge upper limit value and the charge lower limit value are stored in a storage element (not shown) such as a semiconductor memory built in the arithmetic circuit 2.
[0026]
The discharge upper limit value is a state in which the remaining capacity is larger than the fully discharged state, and is a value that can minimize the deterioration of the battery 1 when the battery 1 is discharged, for example, 10 to 40 of the maximum charge capacity. %, More preferably 20-30%. As the discharge upper limit value is set lower, the capacity that can actually discharge the battery 1 increases. Conversely, when the discharge upper limit value is increased, the substantial discharge capacity of the battery 1 is reduced, but the deterioration of the battery 1 can be reduced.
[0027]
The charge lower limit value is a state in which the remaining capacity is smaller than the fully charged state, and is a value that can minimize deterioration when charging the battery 1, for example, 60 to 90% of the maximum charge capacity, preferably 70. Set to ~ 80%. The higher the charge lower limit value is set, the greater the capacity that can actually charge the battery 1. On the contrary, when the lower limit of charging is lowered, the substantial discharge capacity of the battery 1 is reduced, but the deterioration of the battery 1 can be reduced.
[0028]
The discharge upper limit value and the charge lower limit value are optimally set within the above-mentioned range in consideration of the life required for the battery 1 and the required discharge capacity. Further, the arithmetic circuit 2 changes the discharge upper limit value and the charge lower limit value according to the maximum charge capacity of the battery 1 without making the discharge upper limit value and the charge lower limit value constant. This is to reduce deterioration of the battery 1 while maintaining a large capacity of the battery 1 that can be substantially discharged.
[0029]
FIG. 3 shows a state in which the discharge upper limit value and the charge lower limit value are changed according to the maximum charge capacity. As shown in this figure, when the maximum charge capacity of the battery 1 decreases as indicated by an arrow, the arithmetic circuit 2 decreases the discharge upper limit value and increases the charge lower limit value to widen the charge / discharge allowable range. In this figure, when the maximum charge capacity decreases, the arithmetic circuit 2 changes the discharge upper limit value from 30% to 20% of the maximum charge capacity, and changes the charge lower limit value from 70% to 80%.
[0030]
As described above, when the discharge upper limit value and the charge lower limit value are changed, even if the maximum charge capacity of the battery 1 is reduced to 2/3, the capacity that can be substantially charged and discharged does not decrease. When the maximum charge capacity decreases, how much the discharge upper limit value and the charge lower limit value are changed depends on the battery application, battery type, maximum charge capacity, discharge current, charge current, etc. To do. However, in any application, the discharge upper limit value is set so that the battery 1 is not completely discharged, and the charge lower limit value is set smaller than 100% of the maximum charge capacity. This is to prevent sudden deterioration of the battery 1.
[0031]
The charge / discharge control device 5 stores the maximum charge capacity with respect to the internal resistance in a semiconductor memory or the like. The maximum charge capacity for the internal resistance is stored as a function having the internal resistance as a parameter, or is stored as a maximum charge capacity value for a specific range of the internal resistance.
[0032]
The remaining capacity indicator 4 displays the remaining capacity output from the arithmetic circuit 2 on a monitor such as a liquid crystal, or displays the number of light emitting diodes and the light emission color. The remaining capacity indicator 4 displays the remaining capacity as a relative value with respect to the maximum charge capacity.
[0033]
The charge / discharge control device 5 is controlled by the arithmetic circuit 2 to control the charge / discharge of the battery 1. When the remaining capacity of the battery 1 is in the charge / discharge allowable range, the charge / discharge control device 5 turns on both the discharge switch and the charge switch to allow charging and discharging. When the remaining capacity is equal to or lower than the discharge upper limit value, the discharge switch is turned off to prohibit discharge, and the charge switch is turned on to allow charging. Further, when the remaining capacity of the battery 1 is equal to or higher than the charging lower limit value, the discharging switch is turned on to allow discharging, and the charging switch is turned off to prohibit charging.
[0034]
Since the discharge upper limit value and the charge lower limit value change depending on the maximum charge capacity, the charge / discharge control device 5 is controlled by a signal from the arithmetic circuit 2 to charge / discharge the battery 1 within the charge / discharge allowable range.
[0035]
As described in detail above, the circuit of FIG. 2 detects the maximum charge capacity of the battery 1 with the arithmetic circuit 2, changes the discharge upper limit value and the charge lower limit value according to the maximum charge capacity of the battery 1, and The charge / discharge control device 5 controls the charge / discharge of the battery 1 so that the capacity is within the charge / discharge allowable range.
[0036]
【The invention's effect】
The charge / discharge control method of the present invention has an advantage that when a battery is deteriorated, it can be effectively used while preventing the range in which charge / discharge can be substantially reduced from being narrowed, and the deterioration of the battery can be minimized. That is, when the charge / discharge control method of the present invention controls the remaining capacity of the battery to a charge / discharge allowable range between the discharge upper limit value and the charge lower limit value, and when the maximum charge capacity of the battery decreases, This is because the discharge upper limit value is reduced and the charge lower limit value is corrected so as to widen the charge / discharge allowable range.
[0037]
The charge / discharge control method of the present invention can reduce the decrease in the actual usable capacity when the battery deteriorates and the maximum charge capacity decreases. There is.
[0038]
Furthermore, the charge / discharge control method of the present invention also has an advantage that the battery can be used effectively until it is deteriorated and discarded. The conventional charge / discharge control method is used while being sufficiently protected by charging / discharging within a narrow charge / discharge allowable range until the battery is discarded. Since the charge / discharge control method of the present invention is used effectively by expanding the allowable charge / discharge range as the battery deteriorates and the maximum charge capacity decreases, the deterioration of the battery increases, but it can be used effectively. Can increase capacity. For this reason, there is a feature that the battery can be effectively used until it is completely deteriorated.
[Brief description of the drawings]
FIG. 1 is a graph showing a battery discharge upper limit value and a charge lower limit value in a conventional charge / discharge control method. FIG. 2 is a circuit diagram showing a circuit used in the battery charge / discharge control method of the present invention. The graph which shows the discharge upper limit of a battery and the charge lower limit in the charging / discharging control method of an Example of [Example]
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Arithmetic circuit 3 ... Degradation information storage device 4 ... Remaining capacity indicator 5 ... Charge / discharge control device 6 ... Temperature sensor

Claims (7)

残存容量が完全に放電された状態よりも大きくなる放電上限値と、満充電された状態よりも電池(1)の残存容量が小さくなる充電下限値とを設定すると共に、電池(1)の残存容量を演算し、残存容量を放電上限値と充電下限値の間の充放電許容範囲に制御しながら充放電させる電池の充放電制御方法において、
劣化により電池(1)の最大充電容量が減少すると、放電上限値を小さくして充電下限値を大きく補正することを特徴とする電池の充放電制御方法。
Set a discharge upper limit value in which the remaining capacity becomes larger than the fully discharged state and a charge lower limit value in which the remaining capacity of the battery (1) becomes smaller than the fully charged state, and the remaining battery (1) In the charge / discharge control method of the battery, which calculates the capacity and charges / discharges while controlling the remaining capacity within the charge / discharge allowable range between the discharge upper limit value and the charge lower limit value,
A charge / discharge control method for a battery, characterized in that, when the maximum charge capacity of the battery (1) decreases due to deterioration , the discharge upper limit value is decreased and the charge lower limit value is largely corrected.
放電上限値が最大充電容量の10〜40%で、充電下限値が最大充電容量の60〜90%である請求項1に記載される充放電制御方法。  The charge / discharge control method according to claim 1, wherein the discharge upper limit value is 10 to 40% of the maximum charge capacity, and the charge lower limit value is 60 to 90% of the maximum charge capacity. 電池(1)の最大充電容量が減少する情報を記憶装置に記憶させて、この記憶情報から電池(1)の最大充電容量を演算する請求項1に記載される電池の充放電制御方法。  The battery charge / discharge control method according to claim 1, wherein information for decreasing the maximum charge capacity of the battery (1) is stored in a storage device, and the maximum charge capacity of the battery (1) is calculated from the stored information. タイマーで最大容量検出タイミングを設定して、最大容量検出タイミングになると最大充電容量を検出する請求項1に記載される電池の充放電制御方法。  The battery charge / discharge control method according to claim 1, wherein the maximum capacity detection timing is set by a timer, and the maximum charge capacity is detected when the maximum capacity detection timing is reached. 電池(1)の残存容量が、設定された回数、放電上限値または充電下限値になるタイミングに、最大充電容量を検出する最大容量検出タイミングを設定している請求項1に記載される電池の充放電制御方法。  The battery according to claim 1, wherein a maximum capacity detection timing for detecting a maximum charge capacity is set at a timing when the remaining capacity of the battery (1) reaches a set number of times, a discharge upper limit value or a charge lower limit value. Charge / discharge control method. 電池(1)の残存容量が、設定された回数、充電下限値になると、電池(1)を満充電して最大充電容量を検出する請求項5に記載される電池の充放電制御方法。  6. The battery charge / discharge control method according to claim 5, wherein when the remaining capacity of the battery (1) reaches the set number of times and the charge lower limit value, the battery (1) is fully charged and the maximum charge capacity is detected. 電池(1)の残存容量が充電下限値に達する回数が設定された値になると、電池(1)を完全に放電して演算した残存容量を補正する請求項5に記載される電池の充放電制御方法。  The charge / discharge of the battery according to claim 5, wherein when the number of times the remaining capacity of the battery (1) reaches the lower limit of charging reaches a set value, the remaining capacity calculated by completely discharging the battery (1) is corrected. Control method.
JP33595699A 1999-11-26 1999-11-26 Battery charge / discharge control method Expired - Lifetime JP3754254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33595699A JP3754254B2 (en) 1999-11-26 1999-11-26 Battery charge / discharge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33595699A JP3754254B2 (en) 1999-11-26 1999-11-26 Battery charge / discharge control method

Publications (2)

Publication Number Publication Date
JP2001157369A JP2001157369A (en) 2001-06-08
JP3754254B2 true JP3754254B2 (en) 2006-03-08

Family

ID=18294222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33595699A Expired - Lifetime JP3754254B2 (en) 1999-11-26 1999-11-26 Battery charge / discharge control method

Country Status (1)

Country Link
JP (1) JP3754254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343920B2 (en) 2010-07-13 2016-05-17 Honda Motor Co., Ltd. Storage capacity management system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517273B2 (en) * 2002-05-21 2010-08-04 トヨタ自動車株式会社 Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery
EP1983602A4 (en) * 2007-01-11 2011-03-16 Panasonic Corp Lithium secondary cell degradation detection method, degradation detector, degradation suppressing device, and cell pack using the same, battery charger
JP4968088B2 (en) * 2008-01-24 2012-07-04 トヨタ自動車株式会社 Battery system, vehicle, battery-equipped equipment
JP4697247B2 (en) 2008-03-03 2011-06-08 日産自動車株式会社 Hybrid vehicle
CN102150320B (en) * 2009-06-18 2015-06-17 丰田自动车株式会社 Battery system and battery system-equipped vehicle
WO2011061811A1 (en) * 2009-11-17 2011-05-26 トヨタ自動車株式会社 Vehicle and method for controlling vehicle
WO2011061810A1 (en) * 2009-11-17 2011-05-26 トヨタ自動車株式会社 Vehicle and method for controlling vehicle
KR20120111406A (en) 2011-03-31 2012-10-10 삼성에스디아이 주식회사 Battery system, controlling method thereof, and energy storage system including same
DE112011105348T5 (en) * 2011-06-17 2014-03-06 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method for controlling an electrically powered vehicle
JP2013187960A (en) * 2012-03-06 2013-09-19 Hitachi Ltd Method for controlling charge and discharge of lithium ion secondary battery and charge and discharge control device
JP5880162B2 (en) * 2012-03-12 2016-03-08 三菱自動車工業株式会社 Charge / discharge control device for battery pack
JP5742788B2 (en) 2012-06-12 2015-07-01 トヨタ自動車株式会社 Hybrid car
KR102082866B1 (en) * 2013-04-18 2020-04-14 삼성에스디아이 주식회사 Battery management system and driving method thereof
CN104348193A (en) * 2013-07-25 2015-02-11 观致汽车有限公司 Cell management system and method, and vehicle including cell management system
JP5879325B2 (en) * 2013-10-28 2016-03-08 本田技研工業株式会社 External power supply device and electric vehicle
JP6183663B2 (en) * 2015-03-09 2017-08-23 トヨタ自動車株式会社 Secondary battery control device
JP2017028874A (en) * 2015-07-23 2017-02-02 オートモーティブエナジーサプライ株式会社 Secondary battery, electric automobile and arithmetic unit for secondary battery
CN107627872B (en) * 2017-08-29 2020-01-14 广州小鹏汽车科技有限公司 Battery charging control method and system based on electric vehicle travel mode
JP6897511B2 (en) * 2017-11-13 2021-06-30 トヨタ自動車株式会社 Battery control device
JP7378921B2 (en) * 2018-10-19 2023-11-14 三菱重工業株式会社 Secondary battery management system, secondary battery management method, secondary battery management program, secondary battery system
WO2020096618A1 (en) * 2018-11-09 2020-05-14 Cummins Inc. Electrification control systems and methods for electric vehicles
JP7377125B2 (en) * 2020-02-19 2023-11-09 株式会社デンソーテン Battery control device and battery control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006298B2 (en) * 1992-08-11 2000-02-07 トヨタ自動車株式会社 Battery remaining capacity meter
JPH08140209A (en) * 1994-11-11 1996-05-31 Fuji Heavy Ind Ltd Battery managing system for electric motor vehicle
JP3351683B2 (en) * 1996-06-21 2002-12-03 日野自動車株式会社 In-vehicle battery control device
JP3533076B2 (en) * 1997-10-13 2004-05-31 トヨタ自動車株式会社 Method and apparatus for detecting state of charge of assembled battery and charge / discharge control apparatus for assembled battery
JP3716619B2 (en) * 1998-05-14 2005-11-16 日産自動車株式会社 Battery remaining capacity meter
JP3304883B2 (en) * 1998-06-08 2002-07-22 株式会社日立製作所 Secondary battery system
JP3915258B2 (en) * 1998-07-15 2007-05-16 日産自動車株式会社 Control device for battery for hybrid vehicle
JP3705008B2 (en) * 1999-05-06 2005-10-12 日産自動車株式会社 Charge / discharge control device for hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343920B2 (en) 2010-07-13 2016-05-17 Honda Motor Co., Ltd. Storage capacity management system

Also Published As

Publication number Publication date
JP2001157369A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
JP3754254B2 (en) Battery charge / discharge control method
JP6884966B2 (en) Battery management system and method for optimizing the internal resistance of the battery
US8179139B2 (en) Rechargeable battery abnormality detection apparatus and rechargeable battery apparatus
JP3676134B2 (en) Charge / discharge control method
KR101016899B1 (en) Battery pack and method of charge thereof
US20080224667A1 (en) Method for charging battery pack
JP2003164066A (en) Battery pack
JP2006129588A (en) Power control method of secondary battery, and power unit
EP0773618A2 (en) Battery charging system
JP2010186619A (en) Battery pack and battery capacity calculating method
US20050225289A1 (en) Battery pack and its charging/discharging method
JPH097641A (en) Charging method of secondary battery
JP3326324B2 (en) Secondary battery protection circuit
JP3676154B2 (en) Charge / discharge control method for battery pack
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP2004127532A (en) Battery pack
JPH07105986A (en) Battery pack
JP2000166103A (en) Charging discharging control method
JP4330228B2 (en) Secondary battery capacity display method
JP2001186682A (en) Method of controlling discharge of battery
JP3177405B2 (en) Secondary battery charge / discharge control method and device
JP3133534B2 (en) Battery overcharge / overdischarge prevention method
JP3435613B2 (en) Battery pack charging device
JP2001128377A (en) Method of discharging secondary battery
JP2001057743A (en) Battery protecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R151 Written notification of patent or utility model registration

Ref document number: 3754254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

EXPY Cancellation because of completion of term