JP5880162B2 - Charge / discharge control device for battery pack - Google Patents

Charge / discharge control device for battery pack Download PDF

Info

Publication number
JP5880162B2
JP5880162B2 JP2012054095A JP2012054095A JP5880162B2 JP 5880162 B2 JP5880162 B2 JP 5880162B2 JP 2012054095 A JP2012054095 A JP 2012054095A JP 2012054095 A JP2012054095 A JP 2012054095A JP 5880162 B2 JP5880162 B2 JP 5880162B2
Authority
JP
Japan
Prior art keywords
battery
charge
value
history information
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012054095A
Other languages
Japanese (ja)
Other versions
JP2013188100A (en
Inventor
龍彦 梅谷
龍彦 梅谷
田中 一郎
一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012054095A priority Critical patent/JP5880162B2/en
Publication of JP2013188100A publication Critical patent/JP2013188100A/en
Application granted granted Critical
Publication of JP5880162B2 publication Critical patent/JP5880162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数の電池セルが直列接続されて構成される組電池の充放電制御装置に関する。   The present invention relates to a charge / discharge control device for an assembled battery configured by connecting a plurality of battery cells in series.

従来、電気自動車(EV)やハイブリット電気自動車(HEV)などの電動車では、動力源となる電力を蓄電するために、複数の電池セルを直列に接続した組電池が使用されている。たとえば、下記特許文献1では、複数の単電池(電池セル)の容量の均等化を図る均等化回路と、各単電池の容量が均等化された状態から、均等化回路を用いて各単電池を同じ量だけ放電した後に測定した各単電池の電圧が低いほど満充電容量が低下した単電池であると判定したり、組電池に大電流を流した時に測定した各単電池の電圧が高いほど単電池の内部抵抗値が上昇した単電池であると判定したりするCPUとを含んだ組電池を構成する単電池の異常検出装置が開示されている。   Conventionally, in an electric vehicle such as an electric vehicle (EV) or a hybrid electric vehicle (HEV), an assembled battery in which a plurality of battery cells are connected in series is used to store electric power serving as a power source. For example, in Patent Document 1 below, an equalization circuit for equalizing the capacities of a plurality of single cells (battery cells) and each single cell using the equalization circuit from a state in which the capacities of the single cells are equalized. The voltage of each single cell measured when a large current is passed through the assembled battery is judged as a single cell whose full charge capacity decreases as the voltage of each single cell measured after discharging the same amount An abnormality detection device for a single cell that constitutes an assembled battery including a CPU that determines that the internal resistance value of the single cell has been increased is disclosed.

特開2003−282156号公報JP 2003-282156 A

組電池を構成する電池セルには、製造工程における製造バラつきや経年劣化等による容量バラつきがある。従来技術にかかる充放電制御では、充電容量は電池容量が最大の電池セルに合わせて決定し、放電容量は電池容量が最小の電池セルに合わせて決定している。このため、組電池全体としての性能は、バラつきの下限品(最も性能が悪い電池セル)に制限される、すなわち、組電池全体としてその性能を最大限利用することができないという問題点がある。   The battery cells constituting the assembled battery have manufacturing variations in the manufacturing process, capacity variations due to aging, and the like. In the charge / discharge control according to the prior art, the charge capacity is determined according to the battery cell having the maximum battery capacity, and the discharge capacity is determined according to the battery cell having the minimum battery capacity. For this reason, the performance of the assembled battery as a whole is limited to a lower limit product (battery cell having the worst performance) having a variation, that is, the entire assembled battery cannot be fully utilized.

図10は、従来技術にかかる充電制御の概要を模式的に示す説明図である。図10は複数の電池セル(セルA〜セルE)のそれぞれの電池電圧を示し、(a)は充電時、(b)は放電時の制御を示す。各電池セルの使用電圧範囲を1.0V〜3.0Vとすると、図10(a)に示す充電時には、セルA〜セルEのうち最も電圧が高いセルBが使用上限電圧(3.0V)となった時点で充電を終了させる。このため、他のセルは空き容量があるにもかかわらず充電をおこなうことができない。また、図10(b)に示す放電時には、最も電圧が低いセルAが使用下限電圧(1.0V)となった時点で放電を終了させる。このため、他のセルは空き容量があるにもかかわらず放電をおこなうことができない。   FIG. 10 is an explanatory diagram schematically showing an outline of the charge control according to the prior art. FIG. 10 shows the battery voltage of each of a plurality of battery cells (cell A to cell E), where (a) shows control during charging and (b) shows control during discharging. Assuming that the operating voltage range of each battery cell is 1.0 V to 3.0 V, the cell B having the highest voltage among the cells A to E is the upper limit voltage (3.0 V) during charging shown in FIG. When it becomes, charge ends. For this reason, other cells cannot be charged even though there is free capacity. Further, during the discharge shown in FIG. 10B, the discharge is terminated when the cell A having the lowest voltage reaches the use lower limit voltage (1.0 V). For this reason, other cells cannot discharge even though there is free capacity.

図11は、図10に示す従来技術にかかる方法で充電した電池セルの充放電カーブである。図11の(a)は充電カーブ、(b)は放電カーブを示し、それぞれ縦軸は電池電圧、横軸は時間である。図11に示すように、充電時および放電時のいずれにおいても電圧差が大きく、制御が困難になるとともに、各セルの電池容量をフルに活用することができない。このように、従来技術にかかる充放電制御では、セル数が多く各セルの性能バラつき(たとえば製造バラツキや経年劣化バラつき)も大きい組電池において、電池性能を十分に活用することができない。   FIG. 11 is a charge / discharge curve of a battery cell charged by the method according to the prior art shown in FIG. 11A shows a charging curve, and FIG. 11B shows a discharging curve. The vertical axis represents battery voltage and the horizontal axis represents time. As shown in FIG. 11, the voltage difference is large both at the time of charging and at the time of discharging, it becomes difficult to control, and the battery capacity of each cell cannot be fully utilized. As described above, in the charge / discharge control according to the conventional technology, the battery performance cannot be fully utilized in the assembled battery having a large number of cells and large performance variations (for example, manufacturing variations and aging deterioration variations).

本発明は、上述した従来技術の問題点を鑑みてなされたものであり、複数の電池セルによって構成される組電池において、各電池セルの性能バラつきを低減させ、組電池全体として電池性能を向上させることができる充放電制御装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and in an assembled battery composed of a plurality of battery cells, the performance variation of each battery cell is reduced, and the battery performance as a whole is improved. An object of the present invention is to provide a charge / discharge control device that can be made to operate.

上述した課題を解決し、目的を達成するため、本発明にかかる組電池の充放電制御装置は、複数の電池セルが直列接続されて構成される組電池の充放電制御装置であって、前記組電池の履歴情報を取得する履歴情報取得手段と、前記履歴情報取得手段によって取得された前記履歴情報を用いて、前記組電池の充放電制御値を決定する決定手段と、前記決定手段によって決定された前記充放電制御値に基づいて、前記組電池の充放電を制御する制御手段と、を備え、前記決定手段は、前記充放電制御値として充電時における上限電圧値および放電時における下限電圧値を決定するとともに、前記組電池の使用限界値に前記履歴情報に基づく所定の余裕値を持たせた値を前記充放電制御値とし、前記制御手段は、充電時には複数の前記電池セルのうち最も電圧が低い最小電圧電池セルが前記上限電圧値で示される状態となった場合に充電を停止し、放電時には複数の前記電池セルのうち最も電圧が高い最大電圧電池セルが前記下限電圧値で示される状態となった場合に放電を停止する、ことを特徴とする。 In order to solve the above-described problems and achieve the object, a battery pack charge / discharge control device according to the present invention is a battery pack charge / discharge control device configured by connecting a plurality of battery cells in series. Determined by the history information acquisition means for acquiring the history information of the assembled battery, the determination means for determining the charge / discharge control value of the assembled battery using the history information acquired by the history information acquisition means, and the determination means Control means for controlling charging / discharging of the assembled battery based on the charged / discharge control value , and the determining means has an upper limit voltage value during charging and a lower limit voltage during discharging as the charge / discharge control value. and determines the value, the set and the charging and discharging control value a value which gave a predetermined margin value based on the use the history information to the limit value of the battery, wherein, of the plurality of battery cells during charge Charging is stopped when the lowest voltage battery cell with the lowest voltage is in the state indicated by the upper limit voltage value, and during discharging, the highest voltage battery cell with the highest voltage among the plurality of battery cells is the lower limit voltage value. to stop discharging when the state shown in, it characterized and this.

本発明によれば、組電池の履歴情報を用いて決定した所定の余裕値を持たせた値を充放電制御電圧値とするので、して組電池の充放電を制御するとともに、充電時には最小電圧電池セル、放電時には最大電圧電池セルを基準として制御をおこなうので、どのような状態の電池セルに対しても適当な充放電制御をおこなうことができ、各電池セルの性能バラつきを低減させ、組電池全体として電池性能を向上させることができる。 According to the present invention, since the charging / discharging control voltage value is a value having a predetermined margin value determined using the history information of the assembled battery, the charging / discharging of the assembled battery is controlled, and at the time of charging Since the control is based on the maximum voltage battery cell at the time of voltage battery cell and discharge, appropriate charge / discharge control can be performed for the battery cell in any state, reducing the variation in performance of each battery cell, Battery performance can be improved as a whole assembled battery.

実施の形態にかかる充放電制御装置100の構成を示すブロック図である。It is a block diagram which shows the structure of the charging / discharging control apparatus 100 concerning embodiment. 決定手段132によって決定される充放電制御電圧値の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the charging / discharging control voltage value determined by the determination means 132. FIG. 電池特性の変化に伴う余裕値の設定変更の一例を示すグラフである。It is a graph which shows an example of the setting change of the margin value accompanying the change of a battery characteristic. 電池温度と電池特性の変化との関係を示すグラフである。It is a graph which shows the relationship between a battery temperature and the change of a battery characteristic. 温度に依存する加算値の一例を示すグラフである。It is a graph which shows an example of the addition value depending on temperature. 組電池の保存期間と電池特性の変化との関係を示すグラフである。It is a graph which shows the relationship between the storage period of an assembled battery, and the change of a battery characteristic. 制御手段133による充放電制御の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the charging / discharging control by the control means 133. FIG. 充放電制御装置100を用いて充電した電池セルの充電カーブである。It is a charge curve of the battery cell charged using the charging / discharging control apparatus 100. FIG. 充放電制御装置100の動作を示すフローチャートである。3 is a flowchart showing the operation of the charge / discharge control device 100. 従来技術にかかる充電制御の概要を模式的に示す説明図である。It is explanatory drawing which shows typically the outline | summary of the charge control concerning a prior art. 従来技術にかかる方法で充電した電池セルの充放電カーブである。It is a charging / discharging curve of the battery cell charged by the method concerning a prior art.

以下に添付図面を参照して、本発明にかかる組電池の充放電制御装置の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a charge / discharge control device for an assembled battery according to the present invention will be described below in detail with reference to the accompanying drawings.

(実施の形態)
図1は、実施の形態にかかる充放電制御装置100の構成を示すブロック図である。実施の形態の電池セルの充放電制御装置100では、複数の電池セル1,2,3,4が直列接続された組電池の充放電を制御する。充放電制御装置100は、電池セル1,2,3,4のそれぞれの電圧をモニタする電圧計6,7,8,9と、電池セル1,2,3,4から構成された組電池を充電するDC/DCコンバータ機能を備えた充電用電源10と、電池セル1,2,3,4のそれぞれの電流をモニタする電流計21,22,23,24と、電池セル1,2,3,4の充放電を制御するBMU11とを備えている。また、図示しないがそれぞれの電池セル1,2,3,4には温度センサが設けられおり、温度センサによる検出値はBMU11に出力される。
(Embodiment)
FIG. 1 is a block diagram illustrating a configuration of a charge / discharge control apparatus 100 according to the embodiment. In the battery cell charge / discharge control apparatus 100 according to the embodiment, charge / discharge of an assembled battery in which a plurality of battery cells 1, 2, 3, 4 are connected in series is controlled. The charging / discharging control device 100 includes a battery pack composed of voltmeters 6, 7, 8, and 9 and battery cells 1, 2, 3, and 4 for monitoring respective voltages of the battery cells 1, 2, 3, and 4. Charging power supply 10 having a DC / DC converter function for charging, ammeters 21, 22, 23, 24 for monitoring respective currents of battery cells 1, 2, 3, 4, and battery cells 1, 2, 3 , 4 for controlling charging / discharging of 4. Although not shown, each battery cell 1, 2, 3, 4 is provided with a temperature sensor, and a detection value by the temperature sensor is output to the BMU 11.

BMU11は、CPU、制御プログラムなどを格納・記憶するROM、制御プログラムの作動領域としてのRAM、各種データを書き換え可能に保持するEEPROM、周辺回路等とのインターフェースをとるインターフェース部などを含んで構成される。BMU11は、複数の電池セル1,2,3,4からたとえば電動車の電動モータへ供給される電力を制御する制御BMUであり、各種データを受信し、受信したデータを解析し、各種指令を送信する。   The BMU 11 includes a CPU, a ROM that stores and stores a control program, a RAM as an operation area of the control program, an EEPROM that holds various data in a rewritable manner, an interface unit that interfaces with peripheral circuits, and the like. The The BMU 11 is a control BMU that controls electric power supplied from a plurality of battery cells 1, 2, 3, 4 to, for example, an electric motor of an electric vehicle. The BMU 11 receives various data, analyzes the received data, and issues various commands. Send.

さらに、BMU11は、上記CPUが上記制御プログラムを実行することによって、履歴情報取得手段131、決定手段132、制御手段133を実現する。   Further, the BMU 11 implements a history information acquisition unit 131, a determination unit 132, and a control unit 133 when the CPU executes the control program.

履歴情報取得手段131は、組電池の履歴情報を取得する。履歴情報とは、たとえば、組電池の使用開始後における電池容量または満充電時における電圧値の変化履歴や、組電池の使用期間における電池温度の履歴情報、組電池の保存期間における電池温度および保存期間における電池セルの残存電力量の履歴情報などである。履歴情報取得手段131は上述した温度センサの検出値を取得・保存することによって電池温度の履歴情報を取得する。また、履歴情報取得手段131は、上述した電流計や電圧計の検出値から電池セルの残存電力量を推定し、残存電力量の履歴情報を取得する。   The history information acquisition unit 131 acquires the assembled battery history information. The history information is, for example, the battery capacity change history after the start of use of the assembled battery or the voltage value when fully charged, the history information of the battery temperature during the use period of the assembled battery, the battery temperature and the storage during the storage period of the assembled battery. For example, history information of the remaining power amount of the battery cell in the period. The history information acquisition unit 131 acquires battery temperature history information by acquiring and storing the detection value of the temperature sensor described above. Further, the history information acquisition unit 131 estimates the remaining power amount of the battery cell from the detection values of the above-described ammeter and voltmeter, and acquires the history information of the remaining power amount.

決定手段132は、履歴情報取得手段131によって取得された履歴情報を用いて、組電池の充放電制御値を決定する。このとき、決定手段132は、電池セルの使用限界値から所定の余裕値を含めた値を充放電制御値とする。充放電制御値とは、たとえば、充電時における上限電圧値(充電時上限電圧値)および放電時における下限電圧値(放電時下限電圧値)である。以下、充電時上限電圧値および放電時下限電圧値を合わせて充放電制御電圧値という。たとえば、充放電制御値として充放電制御電圧値を決定する場合、決定手段132は、組電池の使用限界電圧から所定の余裕値を含めた電圧値を充放電制御電圧値とする。   The determination unit 132 determines the charge / discharge control value of the assembled battery using the history information acquired by the history information acquisition unit 131. At this time, the determination unit 132 sets a value including a predetermined margin value from the use limit value of the battery cell as the charge / discharge control value. The charge / discharge control value is, for example, an upper limit voltage value during charging (upper limit voltage value during charging) and a lower limit voltage value during discharging (lower limit voltage value during discharging). Hereinafter, the charging upper limit voltage value and the discharging lower limit voltage value are collectively referred to as a charge / discharge control voltage value. For example, when determining the charge / discharge control voltage value as the charge / discharge control value, the determination unit 132 sets the voltage value including a predetermined margin value from the use limit voltage of the assembled battery as the charge / discharge control voltage value.

図2は、決定手段132によって決定される充放電制御電圧値の概要を示す説明図である。図2の縦軸は電池電圧、横軸は電池容量を示す。電池セルの使用電圧範囲(使用限界電圧)が1.0V〜3.0Vとすると、図2中点線で示す従来技術にかかる充放電制御では、充電時上限電圧を2.7V、放電時下限電圧を1.0V、すなわち、使用限界電圧そのものとしていた。   FIG. 2 is an explanatory diagram showing an outline of the charge / discharge control voltage value determined by the determining unit 132. The vertical axis in FIG. 2 indicates the battery voltage, and the horizontal axis indicates the battery capacity. Assuming that the working voltage range (usage limit voltage) of the battery cell is 1.0 V to 3.0 V, the charge / discharge control according to the prior art shown by the dotted line in FIG. Was set to 1.0 V, that is, the use limit voltage itself.

一方、一点破線で示す本実施の形態にかかる充放電制御装置100(決定手段132)では、使用限界電圧から所定の余裕値を含めた値を充電時上限電圧値および放電時下限電圧値とする。たとえば、図2の例では、充電時上限電圧値を2.9V(余裕値0.1V)、放電時下限電圧を1.1V(余裕値0.1V)とする。このような余裕値を設けるのは、後述する制御手段133における制御が従来技術にかかる充放電制御と異なるためである。   On the other hand, in the charge / discharge control apparatus 100 (determining means 132) according to the present embodiment indicated by a one-dot broken line, values including a predetermined margin value from the use limit voltage are set as the charge upper limit voltage value and the discharge lower limit voltage value. . For example, in the example of FIG. 2, the upper limit voltage value during charging is 2.9 V (margin value 0.1 V), and the lower limit voltage during discharging is 1.1 V (margin value 0.1 V). The reason for providing such a margin value is that the control in the control means 133 described later is different from the charge / discharge control according to the prior art.

つづいて、決定手段132による余裕値の決定方法について説明する。電池セルは、使用開始からの経過期間によって経年劣化が生じ、その性能が変化する。さらに、経年劣化には使用(充放電サイクル)をくり返すことによる使用劣化と、単に保存をしていただけでも生じる保存劣化とがある。決定手段132では、このような電池セルの劣化を考慮して、その時々における電池セルの性能を最大限発揮できるような余裕値を設定する。具体的には、決定手段は、電池セルの性能変化に基づくベース余裕値を決定するとともに、使用時の温度および保存劣化を考慮した加算値をベース余裕値に加算することによって、余裕値を決定する。   Next, a method for determining the margin value by the determination unit 132 will be described. A battery cell deteriorates over time depending on an elapsed period from the start of use, and its performance changes. Furthermore, there are two types of deterioration over time: use deterioration due to repeated use (charging / discharging cycle) and storage deterioration that occurs even if only storage is performed. The determination unit 132 sets such a margin value that can maximize the performance of the battery cell in consideration of such deterioration of the battery cell. Specifically, the determining means determines a base margin value based on a change in the performance of the battery cell, and determines a margin value by adding an added value considering the temperature and storage deterioration during use to the base margin value. To do.

図3は、電池特性の変化に伴う余裕値の設定変更の一例を示すグラフである。図3において、(a)は経年期間による電池特性の変化を示し、縦軸は容量維持率または満充電時における電圧値、横軸は経年日数である。また、(b)は電池特性の変化に対応する余裕値の設定例を示し、縦軸は余裕値(初期の余裕値Pとする)、横軸は経年日数である。   FIG. 3 is a graph showing an example of a setting change of the margin value accompanying a change in battery characteristics. In FIG. 3, (a) shows the change in battery characteristics over time, the vertical axis is the capacity retention ratio or the voltage value at full charge, and the horizontal axis is the number of days. Further, (b) shows an example of setting a margin value corresponding to a change in battery characteristics, where the vertical axis is a margin value (initial margin value P), and the horizontal axis is the number of days.

図3(a)に示すように、組電池には、使用開始後一度電池特性が向上した後に劣化していくタイプ(タイプA)、使用開始直後から一定の割合で劣化していくタイプ(タイプB)、使用開始直後に急激に劣化した後は劣化度合いが緩慢になるタイプ(タイプC)、使用開始後しばらくは劣化せずに後から劣化するタイプ(タイプD)など、様々なタイプがある。このため、決定手段132は、電池セルの使用開始からの経年日数と、容量維持率または満充電時の電池電圧値とを用いて、電池セルの劣化状態を推定し、劣化状態に合わせてベース余裕値を図3(b)のように設定する。   As shown in FIG. 3A, the assembled battery has a type (type A) that deteriorates after the battery characteristics are improved once after the start of use (type A), and a type (type that deteriorates at a certain rate immediately after the start of use). B) There are various types, such as a type in which the degree of deterioration becomes slow after abrupt deterioration immediately after the start of use (type C), a type that does not deteriorate for a while after the start of use, and a type that deteriorates later (type D) . For this reason, the determination means 132 estimates the deterioration state of the battery cell using the number of days since the start of use of the battery cell and the capacity maintenance rate or the battery voltage value at the time of full charge, and determines the base according to the deterioration state. The margin value is set as shown in FIG.

なお、組電池がどのような特性変化(電池容量の変化または満充電時における電圧値の変化)をするか、すなわち図3(a)のタイプA〜Dのいずれのタイプであるかは、たとえば、電池セルの使用開始後から電池容量または満充電時における電圧値を記録して予測してもよいし、あらかじめ組電池の特性変化を予測したテーブルをあらかじめ記録しておき、経年日数に基づいて当該テーブルから特性変化の予測値を読み出してもよい。   In addition, what kind of characteristic change (change in battery capacity or change in voltage value at the time of full charge) of the assembled battery, that is, which type of types A to D in FIG. The battery capacity or the voltage value at the time of full charge may be recorded after the start of use of the battery cell and predicted, or a table that predicts the change in characteristics of the assembled battery is recorded in advance, based on the number of days A predicted value of characteristic change may be read from the table.

つづいて、組電池の電池温度と劣化との関係について説明する。
図4は、電池温度と電池特性の変化との関係を示すグラフである。図4は、所定の温度条件の下組電池を使用した場合の電池特性の変化を示し、(a)は容量維持率、(b)は内部抵抗の増加率を示す。図4(a)および(b)に示すように、容量維持率および内部抵抗のいずれにおいても、高温状態であるほど組電池の劣化が進むことがわかる。このため、決定手段132は、図5で示すよう温度に依存する加算値をベース余裕値に加算する。
Next, the relationship between the battery temperature and deterioration of the assembled battery will be described.
FIG. 4 is a graph showing the relationship between the battery temperature and the change in battery characteristics. FIG. 4 shows changes in battery characteristics when an assembled battery is used under a predetermined temperature condition. (A) shows a capacity maintenance rate, and (b) shows an increase rate of internal resistance. As shown in FIGS. 4 (a) and 4 (b), it can be seen that the deterioration of the assembled battery progresses as the temperature increases in both the capacity retention ratio and the internal resistance. Therefore, the determination unit 132 adds the temperature-dependent addition value to the base margin value as shown in FIG.

図5は、温度に依存する加算値の一例を示すグラフであり、縦軸はベース余裕値への加算値、横軸は温度を示す。図5に示すように、決定手段132は、温度(たとえば、電池の使用期間中における平均電池温度)が所定温度以上である場合には、温度に比例する加算値をベース余裕値に加えるようにする。なお、電池温度は、たとえば各電池セルに温度センサを設けて測定して平均温度を算出してもよいし、所定数の電池セルで構成されるユニットごと、または組電池全体で1つの温度センサを設けて測定してもよい。   FIG. 5 is a graph showing an example of an addition value depending on the temperature. The vertical axis shows the addition value to the base margin value, and the horizontal axis shows the temperature. As shown in FIG. 5, when the temperature (for example, the average battery temperature during the battery use period) is equal to or higher than a predetermined temperature, the determining unit 132 adds an added value proportional to the temperature to the base margin value. To do. The battery temperature may be measured by providing a temperature sensor for each battery cell, for example, and the average temperature may be calculated, or one temperature sensor for each unit composed of a predetermined number of battery cells or for the entire battery pack You may measure by providing.

また、図6は、組電池の保存期間と電池特性の変化との関係(保存期間特性)を示すグラフである。図6は、所定の条件の下組電池を保存した場合の電池特性の変化を示し、(a)は容量維持率、(b)は内部抵抗の増加率を示す。図6(a)および(b)に示すように、容量維持率および内部抵抗のいずれにおいても、高温状態であるほど電池セルの劣化が進むことがわかる。また、保存期間特性は、電池セルの充電率(SOC)にも関連し、充電率が高い状態で保存するほど組電池の劣化が進むことがわかる。このため、決定手段132は、組電池が使用されずに保存されている場合は、保存中の電池温度および充電率(SOC)に依存する加算値を設けてベース余裕値に加算する。この加算値は、保存中の電池温度および充電率(SOC)に比例して大きくなるように設定される。   FIG. 6 is a graph showing the relationship (storage period characteristics) between the storage period of the assembled battery and changes in battery characteristics. 6A and 6B show changes in battery characteristics when an assembled battery is stored under a predetermined condition. FIG. 6A shows a capacity retention rate, and FIG. 6B shows an increase rate of internal resistance. As shown in FIGS. 6 (a) and (b), it can be seen that the deterioration of the battery cells progresses as the temperature increases in both the capacity retention ratio and the internal resistance. The storage period characteristics are also related to the charging rate (SOC) of the battery cell, and it can be seen that the deterioration of the assembled battery proceeds as the charging rate is increased. For this reason, when the assembled battery is stored without being used, the determining unit 132 provides an addition value depending on the battery temperature and the charging rate (SOC) during storage and adds the added value to the base margin value. This added value is set so as to increase in proportion to the battery temperature and the charging rate (SOC) during storage.

図1の説明に戻り、制御手段133は、決定手段132によって決定された充放電制御電圧値に基づいて、組電池の充放電を制御する。具体的には、充放電制御値が充放電電圧値である場合、制御手段133は、充電時には複数の電池セルのうち最も電圧が低い最小電圧電池セルが充放電制御電圧値(充電時上限電圧)で示される状態となった場合に充電を停止し、放電時には複数の電池セルのうち最も電圧が高い最大電圧電池セルが充放電制御電圧値(放電時下限電圧)で示される状態となった場合に放電を停止する。   Returning to the description of FIG. 1, the control unit 133 controls charging / discharging of the assembled battery based on the charge / discharge control voltage value determined by the determination unit 132. Specifically, when the charge / discharge control value is a charge / discharge voltage value, the control unit 133 determines that the lowest voltage battery cell having the lowest voltage among the plurality of battery cells during charge is the charge / discharge control voltage value (upper charge voltage during charge). ) When charging is stopped, the maximum voltage battery cell having the highest voltage among the plurality of battery cells is indicated by the charge / discharge control voltage value (lower limit voltage during discharge). If the discharge stops.

図7は、制御手段133による充放電制御の概要を示す説明図である。図7は複数の電池セル(セルA〜セルE)のそれぞれの電池電圧を示し、(a)は充電時、(b)は放電時の制御を示す。図7(a)については、決定手段132によって使用上限電圧が2.9V(余裕値X1=0.1V)と決定されている。また、図7(b)については、決定手段132によって使用下限電圧が1.1V(余裕値X2=0.1V)と決定されている。   FIG. 7 is an explanatory diagram showing an outline of charge / discharge control by the control means 133. FIG. 7 shows the battery voltage of each of a plurality of battery cells (cell A to cell E), where (a) shows control during charging and (b) shows control during discharging. In FIG. 7A, the use upper limit voltage is determined to be 2.9 V (the margin value X1 = 0.1 V) by the determining unit 132. 7B, the use lower limit voltage is determined to be 1.1 V (the margin value X2 = 0.1 V) by the determining unit 132.

制御手段133は、図7(a)に示す充電時には、複数の電池セルのうち最も電圧が低いセルA(最小電圧電池セル)が使用上限電圧である2.9Vとなった場合に充電を停止する。また、図7(b)に示す放電時には、複数の電池セルのうち最も電圧が高いセルB(最大電圧電池セル)が使用下限電圧である1.1Vとなった場合に放電を停止する。これにより、すべてのセルにおいて無効領域が縮小し、使用可能領域を増加させることができる。なお、制御手段133は、充電時および放電時のいずれにおいても、他の電池セルの電圧を監視して、危険電圧とならないように制御をおこなう。   At the time of charging shown in FIG. 7A, the control means 133 stops charging when the cell A (minimum voltage battery cell) having the lowest voltage among the plurality of battery cells reaches the use upper limit voltage of 2.9V. To do. Moreover, at the time of the discharge shown in FIG.7 (b), when the cell B (maximum voltage battery cell) with the highest voltage among several battery cells becomes 1.1V which is a use lower limit voltage, discharge is stopped. As a result, the invalid area is reduced in all cells, and the usable area can be increased. In addition, the control means 133 monitors the voltage of another battery cell, both at the time of charge and at the time of discharge, and controls so that it may not become a dangerous voltage.

このように、使用限界電圧から所定の余裕値を持たせて使用電圧範囲を設定することによって、理論上のモジュール容量は小さくなるものの、電池セルの電圧のバラつきが小さくなって制御がおこない易くなる、充放電効率(放電容量/充電容量)が高くなる、出力のバラつきが小さくなる、特定の電池セルが劣化した場合でも組電池全体の性能の低下につながりにくい、電池セルが劣化しにくくなる、などの利点がある。   Thus, by setting the operating voltage range with a predetermined margin value from the operating limit voltage, the theoretical module capacity is reduced, but the variation in the voltage of the battery cell is reduced and control is easily performed. , Charging / discharging efficiency (discharge capacity / charge capacity) is high, output variation is small, even when a specific battery cell is deteriorated, it is difficult to lead to a decrease in the performance of the entire assembled battery, and the battery cell is not easily deteriorated. There are advantages such as.

なお、図7では、上限側の余裕値(X1)と下限側の余裕値(X2)とを同一の値としたが、これに限らず、上限側の余裕値と下限側の余裕値とを異なる値としてもよい。上限側の余裕値と下限側の余裕値とを異なる値とする場合、組電池の履歴情報に基づいて、それぞれの値や配分を決定してもよい。   In FIG. 7, the upper limit side margin value (X1) and the lower limit side margin value (X2) are the same value. However, the upper limit side margin value and the lower limit side margin value are not limited thereto. Different values may be used. When the upper limit side margin value and the lower limit side margin value are different from each other, each value and distribution may be determined based on the assembled battery history information.

図8は、充放電制御装置100を用いて充電した電池セルの充電カーブである。図8において、縦軸は電池電圧、横軸は時間を示す。図8に示すように、各電池セルの電圧差が小さくなり、制御がおこないない易くなるともに、各電池セルの電池容量をフルに活用することができる。   FIG. 8 is a charge curve of a battery cell charged using the charge / discharge control device 100. In FIG. 8, the vertical axis represents battery voltage, and the horizontal axis represents time. As shown in FIG. 8, the voltage difference between the battery cells is reduced and control is facilitated, and the battery capacity of each battery cell can be fully utilized.

つぎに、充放電制御装置100の動作について説明する。
図9は、充放電制御装置100の動作を示すフローチャートである。この動作は、図9に示すフローチャートをBMU11が実行することで実現される。充放電制御装置100の決定手段132は、組電池を使用開始してからの経過期間情報を取得して(ステップS901)、組電池の劣化状態を推定する(ステップS902)。すなわち、電池セルが図3(a)のどの状態にあるかを推定する。そして、推定した劣化状態に基づいて、図3(b)のように対応する加算値を選択して、ベース余裕値を決定する(ステップS903)。
Next, the operation of the charge / discharge control apparatus 100 will be described.
FIG. 9 is a flowchart showing the operation of the charge / discharge control apparatus 100. This operation is realized by the BMU 11 executing the flowchart shown in FIG. The determination unit 132 of the charge / discharge control apparatus 100 acquires information on the elapsed period from the start of use of the assembled battery (step S901), and estimates the deterioration state of the assembled battery (step S902). That is, the state in which the battery cell is in FIG. 3A is estimated. Then, based on the estimated deterioration state, a corresponding addition value is selected as shown in FIG. 3B to determine a base margin value (step S903).

つぎに、決定手段132は、組電池が使用されているか否かを判断し(ステップS904)、使用されている場合には(ステップS904:Yes)、電池温度情報を取得して(ステップS905)、電池温度に依存する加算値をベース余裕値に加算する(ステップS906)。一方、使用されていない場合には(ステップS906:No)、電池温度情報および充電率(SOC)情報を取得して(ステップS907)、電池温度および充電率(SOC)に依存するベース加算値を余裕値に加算する(ステップS908)。   Next, the determination unit 132 determines whether or not the assembled battery is used (step S904), and if used (step S904: Yes), acquires battery temperature information (step S905). Then, the addition value depending on the battery temperature is added to the base margin value (step S906). On the other hand, if not used (step S906: No), the battery temperature information and the charging rate (SOC) information are acquired (step S907), and the base addition value depending on the battery temperature and the charging rate (SOC) is obtained. Add to the margin value (step S908).

そして、決定手段132は、決定した余裕値に基づいて充放電制御値を決定する(ステップS909)。制御手段133は、ステップS909で決定された充放電制御値に基づいて組電池の充放電制御をおこなって(ステップS1013)、本フローチャートによる処理を終了する。   And the determination means 132 determines a charging / discharging control value based on the determined margin value (step S909). The control means 133 performs charge / discharge control of the assembled battery based on the charge / discharge control value determined in step S909 (step S1013), and ends the processing according to this flowchart.

以上説明したように、実施の形態にかかる充放電制御装置100によれば、組電池の履歴情報に基づいて充放電制御値の余裕値を決定し、当該充放電制御値を用いて組電池の充放電を制御する。これにより、どのような状態の電池セルに対しても適当な充放電制御をおこなうことができ、各電池セルの性能バラつきを低減させ、組電池全体として電池性能を向上させることができる。   As described above, according to the charge / discharge control apparatus 100 according to the embodiment, the margin value of the charge / discharge control value is determined based on the history information of the assembled battery, and the charge / discharge control value of the assembled battery is determined using the charge / discharge control value. Control charge and discharge. Thereby, appropriate charge / discharge control can be performed on the battery cells in any state, the performance variation of each battery cell can be reduced, and the battery performance of the assembled battery as a whole can be improved.

充放電制御装置100のように、使用限界電圧から所定の余裕値を持たせて使用電圧範囲を設定することによって、理論上のモジュール容量は小さくなるものの、電池セルの電圧のバラつきが小さくなって制御がおこない易くなる、充放電効率(放電容量/充電容量)が高くなる、出力のバラつきが小さくなる、特定の電池セルが劣化した場合でも組電池全体の性能の低下につながりにくい、電池セルが劣化しにくくなる、などの利点がある。   As in the charge / discharge control device 100, by setting the use voltage range with a predetermined margin value from the use limit voltage, the theoretical module capacity is reduced, but the voltage variation of the battery cell is reduced. Battery cells that are easy to control, increase in charge / discharge efficiency (discharge capacity / charge capacity), reduce output variation, and even when a specific battery cell deteriorates, it is difficult to reduce the overall performance of the assembled battery. There are advantages such as less deterioration.

なお、本実施の形態では、組電池全体の履歴情報を取得して、これに基づいて余裕値を決定するものとしたが、これに限らず、たとえば、個々の電池セルごと(またはいくつかの電池セルの組であるセルモジュールごと)に履歴情報を取得して、余裕値を設定してもよい。この場合、たとえば、個々の電池セルごと(またはセルモジュールごと)に余裕値の候補値を算出し、このうち最も大きい値、すなわち、最も容量が小さい電池セル(セルモジュール)の履歴情報に基づく余裕値を組電池全体の余裕値とする。すなわち、決定手段132は、複数の電池セルのうち最も容量が小さい電池セルの履歴情報に基づく余裕値を用いて、充放電制御値を決定する。   In the present embodiment, the history information of the entire assembled battery is acquired and the margin value is determined based on the history information. However, the present invention is not limited to this. For example, for each battery cell (or several For each cell module that is a set of battery cells, history information may be acquired and a margin value may be set. In this case, for example, a margin value candidate value is calculated for each individual battery cell (or each cell module), and the largest value among them, that is, the margin based on the history information of the battery cell (cell module) having the smallest capacity is calculated. The value is a margin value of the entire assembled battery. That is, the determination unit 132 determines the charge / discharge control value using the margin value based on the history information of the battery cell having the smallest capacity among the plurality of battery cells.

1,2,3,4……電池セル、6,7,8,9……電圧計、10……充電用電源、11……BMU、21,22,23,24……電流計、100……充放電制御装置、131……履歴情報取得手段、132……決定手段……133……制御手段。   1, 2, 3, 4 ... battery cells, 6, 7, 8, 9 ... voltmeter, 10 ... power supply for charging, 11 ... BMU, 21, 22, 23, 24 ... ammeter, 100 ... ... Charging / discharging control device 131 ... History information obtaining means 132 ... Determining means 133 ... Control means

Claims (5)

複数の電池セルが直列接続されて構成される組電池の充放電制御装置であって、
前記組電池の履歴情報を取得する履歴情報取得手段と、
前記履歴情報取得手段によって取得された前記履歴情報を用いて、前記組電池の充放電制御値を決定する決定手段と、
前記決定手段によって決定された前記充放電制御値に基づいて、前記組電池の充放電を制御する制御手段と、を備え、
前記決定手段は、前記充放電制御値として充電時における上限電圧値および放電時における下限電圧値を決定するとともに、前記組電池の使用限界値に前記履歴情報に基づく所定の余裕値を持たせた値を前記充放電制御値とし、
前記制御手段は、充電時には複数の前記電池セルのうち最も電圧が低い最小電圧電池セルが前記上限電圧値で示される状態となった場合に充電を停止し、放電時には複数の前記電池セルのうち最も電圧が高い最大電圧電池セルが前記下限電圧値で示される状態となった場合に放電を停止する、
とを特徴とする組電池の充放電制御装置。
A charge / discharge control device for an assembled battery configured by connecting a plurality of battery cells in series,
History information acquisition means for acquiring history information of the assembled battery;
Determining means for determining a charge / discharge control value of the assembled battery using the history information acquired by the history information acquiring means;
Control means for controlling charging / discharging of the assembled battery based on the charge / discharge control value determined by the determining means,
The determining means determines an upper limit voltage value at the time of charging and a lower limit voltage value at the time of discharging as the charge / discharge control value, and gives a predetermined margin value based on the history information to the use limit value of the assembled battery . The value is the charge / discharge control value ,
The control means stops charging when a minimum voltage battery cell having the lowest voltage among the plurality of battery cells is in a state indicated by the upper limit voltage value during charging, and among the plurality of battery cells during discharging When the maximum voltage battery cell having the highest voltage is in a state indicated by the lower limit voltage value, the discharge is stopped.
Charge and discharge control of the assembled battery, wherein the this.
前記履歴情報取得手段は、前記組電池の使用開始後における電池容量または満充電時における電圧値の変化履歴を取得し、
前記決定手段は、前記電池容量または前記満充電時における電圧値の変化履歴に基づいて前記余裕値を決定することを特徴とする請求項1に記載の組電池の充放電制御装置。
The history information acquisition means acquires a change history of the battery capacity after the start of use of the assembled battery or the voltage value at the time of full charge,
The charging / discharging control device for an assembled battery according to claim 1, wherein the determining means determines the margin value based on the battery capacity or a change history of a voltage value at the time of full charge.
前記履歴情報取得手段は、前記組電池の使用期間における電池温度の履歴情報を取得し、
前記決定手段は、前記電池温度の履歴情報に基づいて前記余裕値を決定することを特徴とする請求項1または2に記載の組電池の充放電制御装置。
The history information acquisition means acquires battery temperature history information during a period of use of the assembled battery,
The charging / discharging control device for an assembled battery according to claim 1, wherein the determining unit determines the margin value based on history information of the battery temperature.
前記履歴情報取得手段は、前記組電池の保存期間における電池温度および前記保存期間における残存電力量の履歴情報を取得し、
前記決定手段は、前記保存期間における前記電池温度と前記残存電力量とに基づいて前記余裕値を決定することを特徴とする請求項3に記載の組電池の充放電制御装置。
The history information acquisition means acquires battery temperature history information during the storage period of the assembled battery and remaining power amount history information during the storage period,
The charging / discharging control device for an assembled battery according to claim 3, wherein the determining means determines the margin value based on the battery temperature and the remaining power amount during the storage period.
前記履歴情報取得手段は、複数の前記電池セルのそれぞれの前記履歴情報を取得し、
前記決定手段は、複数の前記電池セルのうち最も容量が小さい前記電池セルの前記履歴情報に基づく前記余裕値を用いて、前記充放電制御値を決定することを特徴とする請求項1から4のいずれか一つに記載の組電池の充放電制御装置。
The history information acquisition means acquires the history information of each of the plurality of battery cells,
It said determining means 4 by using the margin value based on the history information of the battery cell the most capacity is small among the plurality of battery cells, claim 1, wherein determining said charge-discharge control value The charge / discharge control apparatus of the assembled battery as described in any one of these.
JP2012054095A 2012-03-12 2012-03-12 Charge / discharge control device for battery pack Expired - Fee Related JP5880162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012054095A JP5880162B2 (en) 2012-03-12 2012-03-12 Charge / discharge control device for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012054095A JP5880162B2 (en) 2012-03-12 2012-03-12 Charge / discharge control device for battery pack

Publications (2)

Publication Number Publication Date
JP2013188100A JP2013188100A (en) 2013-09-19
JP5880162B2 true JP5880162B2 (en) 2016-03-08

Family

ID=49389080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012054095A Expired - Fee Related JP5880162B2 (en) 2012-03-12 2012-03-12 Charge / discharge control device for battery pack

Country Status (1)

Country Link
JP (1) JP5880162B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680720B (en) * 2015-11-11 2019-07-02 中国移动通信集团公司 Vehicular accumulator cell early warning failure system and method based on car networking
JP6860172B2 (en) * 2018-10-26 2021-04-14 Necプラットフォームズ株式会社 Charge control device, equipment, charge control method, charge control program
WO2020158182A1 (en) * 2019-01-31 2020-08-06 ビークルエナジージャパン株式会社 Battery control device
JP7184028B2 (en) * 2019-12-19 2022-12-06 トヨタ自動車株式会社 Power control system, electric vehicle and power control method
KR20230037130A (en) 2021-09-09 2023-03-16 주식회사 엘지에너지솔루션 Apparatus and method for estimating battery cell capacity
CN117972614B (en) * 2024-03-22 2024-06-11 东莞市欧派奇电子科技有限公司 Real-time temperature monitoring method in charging and discharging process of mobile power supply

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177405B2 (en) * 1995-05-31 2001-06-18 三洋電機株式会社 Secondary battery charge / discharge control method and device
JPH09204931A (en) * 1996-01-26 1997-08-05 Toyota Autom Loom Works Ltd Method of charging sealed nickel hydrogen secondary battery, and charging device thereof
JP3754254B2 (en) * 1999-11-26 2006-03-08 三洋電機株式会社 Battery charge / discharge control method
JP2001161004A (en) * 1999-11-29 2001-06-12 Sanyo Electric Co Ltd Control method of battery pack
JP2001161037A (en) * 1999-11-29 2001-06-12 Sanyo Electric Co Ltd Charging/discharging control method for battery group driving electric vehicle
JP4149682B2 (en) * 2001-04-10 2008-09-10 株式会社デンソー Battery pack state control method for hybrid vehicles
JP2003111204A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Charge and discharge control method for hybrid car power source unit
JP3469228B2 (en) * 2002-02-13 2003-11-25 三菱重工業株式会社 Power storage device charge / discharge control device, charge / discharge control method, and power storage system
JP4457626B2 (en) * 2003-10-03 2010-04-28 日産自動車株式会社 Battery assembly abnormality determination device and battery assembly abnormality determination method
JP5131533B2 (en) * 2008-03-25 2013-01-30 マツダ株式会社 Battery charge / discharge control method and charge / discharge control apparatus
JP2013051820A (en) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd Control system for battery pack and power supply system having the same

Also Published As

Publication number Publication date
JP2013188100A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5880162B2 (en) Charge / discharge control device for battery pack
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
US10393819B2 (en) Method and apparatus for estimating state of battery
KR101293635B1 (en) Apparatus and method for managing battery pack based on retrogression degree of secondary electric cell and battery pack using it
US10388993B2 (en) Battery degradation accumulation methods
JP5616254B2 (en) Battery state detection method and control device
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
WO2014156265A1 (en) Battery control device
JP7067549B2 (en) Power storage element management device and power storage element management method
JP6405942B2 (en) Battery pack abnormality determination device
WO2012169061A1 (en) Battery control device and battery system
US20160187427A1 (en) Method and apparatus for estimating current
JP6305526B2 (en) Apparatus and method for maintaining charge of secondary battery
JP6970289B2 (en) Charge control devices, transportation equipment, and programs
JP2014127404A (en) Method for replacing battery pack
JP2013121242A (en) Soc estimation device and battery pack
JP6699391B2 (en) Status output device, status output program, and status output method
CN117420463B (en) Method and device for updating chemical capacity of battery, electronic equipment and storage medium
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP5999409B2 (en) State estimation device and state estimation method
JPWO2015133401A1 (en) Control unit, storage battery system, battery cell balance method and program
JP5831217B2 (en) Voltage balance control device
JP7169917B2 (en) SECONDARY BATTERY CONTROL DEVICE AND SECONDARY BATTERY CONTROL METHOD
JP6283952B2 (en) Battery remaining amount detection device, battery system, battery remaining amount detection method, and program
JP6580734B2 (en) Battery remaining capacity display system and state quantity display method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5880162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees