JP4517273B2 - Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery - Google Patents

Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery Download PDF

Info

Publication number
JP4517273B2
JP4517273B2 JP2002146691A JP2002146691A JP4517273B2 JP 4517273 B2 JP4517273 B2 JP 4517273B2 JP 2002146691 A JP2002146691 A JP 2002146691A JP 2002146691 A JP2002146691 A JP 2002146691A JP 4517273 B2 JP4517273 B2 JP 4517273B2
Authority
JP
Japan
Prior art keywords
secondary battery
terminal voltage
value
charging
charge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002146691A
Other languages
Japanese (ja)
Other versions
JP2003338324A (en
Inventor
基史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002146691A priority Critical patent/JP4517273B2/en
Publication of JP2003338324A publication Critical patent/JP2003338324A/en
Application granted granted Critical
Publication of JP4517273B2 publication Critical patent/JP4517273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池の充放電特性を有効に発揮することができる二次電池の充放電制御装置及び二次電池の充放電制御制御方法に関する。
【0002】
【従来の技術】
自動車の分野において、環境問題、資源問題から電気自動車、ハイブリッド型電気自動車の開発が行われている。これらの電気自動車等には高性能な二次電池が用いられる。電気自動車等に用いられる二次電池は、加減速時等のように急速に充放電を行う場合が想定され、良好な出力特性及び回生特性が要求される。自動車の加減速は二次電池の充電状態にかかわらず不定期に行われる。したがって、電気自動車等に用いられる二次電池には多くのエネルギーの出し入れが可能なことが求められる。
【0003】
ところで、二次電池には充放電時において使用可能な電圧範囲が設定されており、この範囲を外れて二次電池を使用すると急速に劣化が進行する。二次電池の使用可能な電圧範囲を大きくするとより多くのエネルギーの出し入れが可能となる。
【0004】
二次電池の使用可能な電圧範囲を広げる試みとしては、特開2001−233065号公報に、非水電解液二次電池の回生充電時に、充電の上限電圧となる充電制御電圧を非水電解液二次電池の過充電領域まで高める方法が開示されている。特に非水電解液二次電池の内部抵抗の値に応じて充電制御電圧を変更することが好ましいとされている。
【0005】
【発明が解決しようとする課題】
しがしながら、本発明者の検討の結果、特開2001−233065号公報に開示された方法では、二次電池の充電量にかかわらず充電制御電圧を過充電領域にまで高める結果、二次電池の状態によっては二次電池の劣化が促進される場合があることが判明した。
【0006】
したがって、本発明では二次電池の回生特性を向上できる二次電池の充放電制御装置及び二次電池の充放電制御方法を提供することを解決すべき課題とする。また、本発明では二次電池の出力特性を向上できる二次電池の充放電制御装置及び二次電池の充放電制御方法を提供することを解決すべき課題とする。
【0007】
【課題を解決するための手段及び発明の効果】
上記課題を解決する目的で本発明者は鋭意研究を行った結果、以下の発明を行った。すなわち、二次電池の充電量を検出する充電量検出手段と、該二次電池に印加する端子電圧から前記二次電池内部に発生する過電圧値を減じた値が予め設定された使用可能な電圧範囲を超えず且つ該充電量が予め設定された適正範囲を超えないように該端子電圧値を制御する端子電圧制御手段と、を有することを特徴とする(請求項1)。
【0008】
つまり、従来の方法における二次電池の使用可能な電圧範囲を超える値での充電は二次電池への充電量増大の効果が大きいものの二次電池の劣化が進行する。その劣化の原因として、充電量の適正な範囲を超えた充電の遂行にあることを見出した。適正な範囲を超えた充電を二次電池に行うことで二次電池の電極活物質等に不可逆的な損傷を与える。この知見に基づき、二次電池の充電量が適正値である所定値を超えないように監視しながら充電を行うことで、二次電池の適正に使用可能な電圧範囲を一見超えたような電圧で充電を行っても、二次電池への充電は従来技術のように過充電領域での充電ではなく適正範囲内での充電となり、二次電池の劣化が進行しないことを見出した。充電時に流れる電流値が大きいほど過電圧値も大きくなり見かけ上、二次電池に印加される端子電圧も大きくなる。この過電圧の大きさだけ二次電池の端子電圧を上昇できるので二次電池の充電特性を最大限発揮させることができる。
【0009】
前記充電量検出手段において、二次電池の充電量を検出する手段としては、二次電池に流す電流値の積分値から充電量を算出する手段が採用できる(請求項2)。二次電池に印加する端子電圧値及び二次電池に流す電流値を具体的に測定することは容易であり、簡便に二次電池の充電量を算出することができる。二次電池の充電量の絶対値は二次電池に電流の出入りがないときの端子電圧(開放電圧)を適宜測定し、その開放電圧の値から求めることができる。
【0010】
そして、その他の二次電池の充電量を検出する手段としては、二次電池の端子電圧値と二次電池内部に発生する過電圧値とから充電量を算出する手段が採用できる(請求項3)。過電圧値は電池に流れる電流値と予め決定した二次電池の内部抵抗とから算出できる。この過電圧値を端子電圧から減ずることで正味の電池電圧が判明するので、その値から電池の充電量が算出できる。
【0011】
また、前記端子電圧制御手段における端子電圧値の所定値は、二次電池の構成要素の分解電位とすることが好ましい(請求項4)。二次電池に印加できる限界値として、二次電池の構成要素の分解電位を採用することで、二次電池の構成要素の劣化による電池性能の低下を抑制できる。具体的に二次電池がリチウム二次電池である場合に、その所定値は、4.4Vとすることが好ましい(請求項5)。
【0012】
更に上記課題を解決する本発明の二次電池の充放電制御装置は、二次電池の充電量を検出する充電量検出手段と、該二次電池に印加する端子電圧に前記二次電池内部に発生する過電圧値を加えた値が予め設定された使用可能な電圧範囲を下回らず且つ該充電量が予め設定された適正範囲下回らないように該端子電圧値を制御する端子電圧制御手段と、を有することを特徴とする(請求項6)。
【0013】
前述した本発明の二次電池の充放電制御装置と同様に、二次電池の充電量が適正値である所定値を超えないように監視しながら放電を行うことで二次電池の適正に使用可能な電圧範囲を超えた電圧で放電を行っても、二次電池は過放電状態とはならず二次電池の劣化が進行しないことに基づいている。
【0014】
また、本発明の二次電池の充放電制御方法は、二次電池の充電量を検出する充電量検出工程と、該二次電池に印加する端子電圧から前記二次電池内部に発生する過電圧値を減じた値が予め設定された使用可能な電圧範囲を超えず且つ該充電量が予め設定された適正範囲を超えないように該端子電圧値を制御する端子電圧制御工程と、を有することを特徴とする(請求項11)。
【0015】
そして、本発明の二次電池の充放電制御方法は、二次電池の充電量を検出する充電量検出工程と、該二次電池に印加する端子電圧に前記二次電池内部に発生する過電圧値を加えた値が予め設定された使用可能な電圧範囲を下回らず且つ該充電量が予め設定された適正範囲下回らないように該端子電圧値を制御する端子電圧制御工程と、を有することを特徴とする(請求項16)。
【0016】
【発明の実施の形態】
本発明が適用できる二次電池は特に限定しない。たとえば、リチウム二次電池、ニッケル水素二次電池、ニッケルカドミウム二次電池等の一般的な二次電池が挙げられる。以下の説明では二次電池として便宜的にリチウム二次電池を採用して説明を行う。二次電池を組電池として使用する場合には組電池を構成するそれぞれの電池について本発明の装置等を適用することが好ましい。
【0017】
第1の二次電池の充放電制御装置:充電に特徴を有するもの
〔構成〕
本発明の二次電池の充放電制御装置は充電量検出手段と端子電圧制御手段とを有する。充電量検出手段は充電を行う二次電池の充電量を検出する手段であり、端子電圧制御手段は充電量検出手段で検出した二次電池の充電量に応じて二次電池に印加する端子電圧値を制御する手段である。
【0018】
充電量検出手段は、二次電池の充電量を検出する手段である。二次電池の充電量を検出する方法としては特に限定しないが、▲1▼二次電池に流す電流値を積分して算出する方法や、▲2▼二次電池に印加する端子電圧値と二次電池に発生する過電圧値とから算出する方法が例示できる。
【0019】
▲1▼の方法はある時点での二次電池の充電量を基準として、その後の二次電池への電流の流れ(すなわち充放電量)を積分することで二次電池の充電量を算出する。基準となる二次電池の充電量は二次電池に電流が出入りしていないときの二次電池の端子電圧(開放電圧)を測定することで測定できる。開放電圧の測定は適正な頻度で行うことができる。
【0020】
二次電池は充電が進行するにつれて開放電圧が上昇する。充電に伴う二次電池の開放電圧の上昇は二次電池の種類、電極活物質の種類等から決定できるので開放電圧の値から二次電池の充電量が算出できる。二次電池への充放電量を積分する方法としては特に限定されない。積分回路等を組み合わせたアナログ回路や、A/D変換器を用いて二次電池に流れる電流値を取り込んで積分計算を行うコンピュータが例示できる。
【0021】
▲2▼の方法は二次電池の端子電圧の値から過電圧の値を減することで二次電池の実質的な電圧(前述の開放電圧に相当)を算出しその電圧の値から二次電池の充電量を算出する。二次電池の過電圧の算出方法は、二次電池の内部抵抗の値と二次電池に流れる電流値とを乗ずることで求めることができる。内部抵抗の値は予め測定した値から推測したり、二次電池に流れる電流値と印加された電圧値とのプロファイルから推測できる。二次電池に発生する過電圧の値と端子電圧値とから二次電池の充電量を算出する装置としては特に限定されず、オペアンプ等を組み合わせたアナログ回路や、A/D変換器を用いて二次電池の端子電圧及び流れる電流を取り込んで計算するコンピュータ等が例示できる。
【0022】
端子電圧制御手段は、端子電圧と充電量検出手段で検出した充電量とが双方ともそれぞれ設定された所定値を超えないように二次電池の端子電圧を制御する手段である。二次電池についての端子電圧又は充電量が設定された所定値に達すると、二次電池への電流の流れを遮断してそれ以上の二次電池の充電を中止して、端子電圧及び/又は充電量が所定値を超えないように制御する。
【0023】
充電量について設定された所定値はその値を超えて二次電池を充電すると劣化が促進される充電量であり、理論的及び/又は実験的に適正に決定することができる。充電量の所定値は一般的にSOC(State of Charge)と称される値で100%として表される値が採用できる。一般的なリチウム二次電池においてはSOCが100%として二次電池の開放電圧で4.1V〜4.2Vの値が採用されることが多い。
【0024】
端子電圧について設定された所定値は特に限定されず適正に設定できる。例えば端子電圧の所定値は二次電池の構成要素の分解電位とすることができる。具体的には負極の構成要素(集電体、結着材等)の分解電位とすることができる。この値は理論的及び/又は実験的に決定できる。リチウム二次電池において負極の集電体として銅箔を使用した場合には、後述する実施例における実験結果から端子電圧の所定値としては少なくとも4.4Vを採用することができることが判明している。
【0025】
〔作用及び効果〕
本二次電池の充放電制御装置は以上の構成をもつので以下の作用効果を有する。充電量検出手段は連続的に二次電池の充電量を検出する。検出された二次電池の充電量が所定値以下の場合には自動車の回生ブレーキ等から回収される電気エネルギーは二次電池に充電することができる。二次電池への充電は端子電圧が端子電圧の所定値に達するまで行うことができる。したがって、端子電圧制御手段は端子電圧の所定値まで端子電圧を上げることができる。この場合に、過電圧値を考慮することで、従来の方法では上げることができなかった値にまで端子電圧値を上げることができる。
【0026】
効率よく電池に充電できる方法としては端子電圧の所定値を基準としたC−C、C−V充電を行うことである。ここで、二次電池の充電量が所定値に達していないということは、たとえ端子電圧が高くても二次電池には悪影響を与えるような値とはなっていないことを意味する。端子電圧は二次電池の内部抵抗に起因する過電圧の大きさだけ見かけ上高くなっているだけで実際に二次電池の電気化学的反応に寄与する電圧としては適正範囲となっている。
【0027】
検出された二次電池の充電量が所定値に達した後は端子電圧にかかわらず、二次電池へのそれ以上の充電は二次電池に大きな悪影響を及ぼすので、端子電圧制御手段はその後の充電は中止する。その場合に二次電池から放電を行い二次電池の充電量が所定値より低下するまで充電は行わない。
【0028】
以上説明したように、本二次電池の充放電制御装置を用いると、二次電池内に発生する過電圧の大きさを考慮して充電を行うことができるので、二次電池の性能を適正に引き出すことが可能となる。そして、二次電池の充電量を常に考慮しているので、二次電池が過充電となることを防止できる。
【0029】
第2の二次電池の充放電制御装置:放電に特徴を有するもの
〔構成〕
本発明の二次電池の充放電制御装置は充電量検出手段と端子電圧制御手段とを有する。充電量検出手段は放電を行う二次電池の充電量を検出する手段であり、端子電圧制御手段は充電量検出手段で検出した二次電池の充電量に応じて二次電池に印加する端子電圧値を制御する手段である。
【0030】
充電量検出手段は、二次電池の充電量を検出する手段である。二次電池の充電量を検出する方法としては特に限定しないが、(1)二次電池に流す電流値を積分して算出する方法や、(2)二次電池に印加する端子電圧値と二次電池に発生する過電圧値とから算出する方法が例示できる。これらの(1)(2)の方法を採用した充電量検出手段については二次電池の充放電制御装置の欄で説明したとおりであるのでここでの更なる説明は省略する。
【0031】
端子電圧制御手段は、端子電圧と充電量検出手段で検出した充電量とが双方ともそれぞれ設定された所定値を下回らないように二次電池の端子電圧を制御する手段である。二次電池についての端子電圧又は充電量が設定された所定値に達すると、二次電池からの電流の流れを遮断してそれ以上の二次電池からの放電を中止して、端子電圧及び/又は充電量が所定値を下回らないように制御する。
【0032】
充電量について設定された所定値はその値を下回って二次電池を放電すると劣化が促進される充電量であり、理論的及び/又は実験的に適正に決定することができる。充電量の所定値は一般的にSOCと称される値で0%として表される値が採用できる。一般的なリチウム二次電池においてはSOCが0%として二次電池の開放電圧で2.5V〜3.0Vの値が採用されることが多い。
【0033】
端子電圧について設定された所定値は特に限定されず適正に設定できる。例えば端子電圧の所定値は二次電池の構成要素の分解電位とすることができる。具体的には正極の構成要素(集電体、結着材等)の分解電位とすることができる。この値は理論的及び/又は実験的に決定できる。リチウム二次電池において正極の集電体としてアルミニウム箔を使用した場合には、後述する実施例における実験結果から端子電圧の所定値としては少なくとも2.2Vを採用することができることが判明している。
【0034】
〔作用及び効果〕
本二次電池の充放電制御装置は以上の構成をもつので以下の作用効果を有する。充電量検出手段は連続的に二次電池の充電量を検出する。検出された二次電池の充電量が所定値以上の場合には負荷に対して電気エネルギーを二次電池から放電することができる。二次電池からの放電は端子電圧が端子電圧の所定値に達するまで行うことができる。したがって、端子電圧制御手段は端子電圧の所定値まで端子電圧を下げることができる。この場合に、過電圧値を考慮することで、従来の方法では下げることができなかった値にまで端子電圧値を下げることができる。
【0035】
効率よく電池に放電できる方法としては端子電圧の所定値を基準としたC−C、C−V放電を行うことである。ここで、二次電池の充電量が所定値に達していないということは、たとえ端子電圧が低くても二次電池には悪影響を与えるような値とはなっていないことを意味する。端子電圧は二次電池の内部抵抗に起因する過電圧の大きさだけ見かけ上低くなっているだけで実際に二次電池の電気化学的反応に寄与する電圧としては適正範囲となっている。また、二次電池の端子電圧として、二次電池の充電状態の他に端子電圧値の絶対値を所定値以下に制御しているので、二次電池の構成要素の劣化をも抑制することができる。
【0036】
検出された二次電池の充電量が所定値に達した後は端子電圧にかかわらず、二次電池からのそれ以上の放電は二次電池に大きな悪影響を及ぼすので、端子電圧制御手段はその後の放電は中止する。その場合に二次電池への充電により二次電池の充電量が所定値より上がるまで放電は行わない。
【0037】
以上説明したように、本二次電池の充放電制御装置を用いると、二次電池内に発生する過電圧の大きさを考慮して放電を行うことができるので、二次電池の性能を適正に引き出すことが可能となる。そして、二次電池の充電量を常に考慮しているので、二次電池が過放電となることを防止できる。また、二次電池の端子電圧として、二次電池の充電状態の他に端子電圧値の絶対値を所定値以上に制御しているので、二次電池の構成要素の劣化をも抑制することができる。
【0038】
第1の二次電池の充放電制御方法(充電に特徴を有するもの)
本発明の二次電池の充電制御方法は充電量検出工程と端子電圧制御工程とを有する。充電量検出工程は充電を行う二次電池の充電量を検出する工程であり、端子電圧制御工程は充電量検出手段で検出した二次電池の充電量に応じて二次電池に印加する端子電圧値を制御する工程である。充電量検出工程及び端子電圧制御工程はいずれも前述した第1の二次電池の充放電制御装置において説明した充電量検出手段と端子電圧制御手段と本質的に同じであるのでここでの更なる説明は省略する。
【0039】
第2の二次電池の充放電制御方法:放電に特徴を有するもの
本発明の二次電池の放電制御方法は充電量検出工程と端子電圧制御工程とを有する。充電量検出工程は放電を行う二次電池の充電量を検出する工程であり、端子電圧制御工程は充電量検出手段で検出した二次電池の充電量に応じて二次電池に印加する端子電圧値を制御する工程である。充電量検出工程及び端子電圧制御工程はいずれも前述した第2の二次電池の充放電制御装置において説明した充電量検出手段と端子電圧制御手段と本質的に同じであるのでここでの更なる説明は省略する。
【0040】
【実施例】
(電池の作成)
本試験例のリチウム二次電池は、組成式LiNiO2で表されるリチウムニッケル複合酸化物を正極活物質として用い、グラファイトを負極活物質として用いたリチウム二次電池である。
【0041】
本試験例のリチウム二次電池の正極は、上記LiNiO2を85質量部と、導電材としてのカーボンブラックを10質量部と、結着剤としてのポリフッ化ビニリデンを5質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の正極合材を得た。この正極合材を厚さ15μmのアルミニウム箔製正極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の正極を作製した。
【0042】
負極は、グラファイトを92.5質量部と、結着剤としてのポリフッ化ビニリデンを7.5質量部とを混合し、適量のN−メチル−2−ピロリドンを添加して混練することでペースト状の負極合材を得た。この負極合材を厚さ10μmの銅箔製負極集電体の両面に塗布、乾燥し、プレス工程を経て、シート状の負極を作製した。
【0043】
上記正極および負極をそれぞれ所定の大きさに裁断した。裁断した正極と負極とを、その間に厚さ25μmのポリエチレン製セパレータを挟装して捲回して、ロール状の電極体を形成した。この電極体に集電用リードを付設し、18650型電池ケースに挿設し、その後その電池ケース内に非水電解液を注入した。非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で3:7に混合した混合溶媒にLiPF6を1mol/Lの濃度で溶解させたものを用いた。最後に電池ケースを密閉して、本実施例のリチウム二次電池を完成させた。
【0044】
(内部抵抗の測定)
SOCが60%となるようにリチウム二次電池に対して充放電を行った。そして、C/3、C、3Cの電流を流したときの端子電圧を測定した。電流値−電圧値のプロットから直線の傾きを求めて内部抵抗とした。
【0045】
(充電試験)
実施例の電池に対して、電池電圧が4.05Vとなるまで1Cの電流で、CC−CV充電を行った。▲1▼その後、電池の端子電圧値が所定電圧となるように電流を流し充電を行った。充電は電池へ充電する量を積算して充電量としてのSOCが100%を超えないようにパルス的に行った。1パルスで電池に充電する量は所定電圧の絶対値にかかわらず同一とした。▲2▼1パルスの充電を行った後に電池電圧が4.05Vとなるまで1Cの電流でCC−CV放電を行った。▲1▼及び▲2▼の工程を合わせて充電試験の1サイクルとした。充電試験の1サイクルは15分間とした。所定サイクル毎に電池の内部抵抗を測定して電池の劣化の指標とした。所定電圧としては4.2V、4.3V、4.4Vの3点を採用し、それぞれ異なる電池を用いて試験を行った。つまり、電池の端子電圧値が所定電圧を超えないように端子電圧を制御している。
【0046】
(結果)
充電試験の結果を図1に示す。図より明らかなように、所定電圧としていずれの値を選択したものでも2000サイクルを超える充電試験後の内部抵抗の値は1〜1.05付近であり、通常の使用による劣化と同程度であった。具体的な試験は示さないが、リチウム二次電池についてSOC100%を超えた範囲で4.2Vの電圧で実施例の充電試験と同様の条件で充放電を行うと、ごく僅かな時間(336時間程度、本実施例では600サイクル程度に相当する)の充電であっても電池の内部抵抗値の比は1.2以上の高い値を示し電池の劣化が進行することが判明している。
【0047】
つまり、本実施例の充電方法でリチウム二次電池に充電を行うと、より高い電圧で充電を行うことが可能となり、より多くのエネルギーを回生することができる。そして、高い電圧で充電を行っても二次電池の劣化は進行しないことが明らかとなった。
【0048】
(放電試験)
実施例の電池に対して、電池電圧が3.25Vとなるまで1Cの電流で、CC−CV放電を行った。▲1▼その後、電池の端子電圧値が所定電圧となるように電流を流し放電を行った。放電は電池から放電する量を積算して充電量としてのSOCが0%を下回らないようにパルス的に行った。1パルスで電池から放電する量は所定電圧の絶対値にかかわらず同一とした。▲2▼1パルスの放電を行った後に電池電圧が3.25Vとなるまで1Cの電流でCC−CV充電を行った。▲1▼及び▲2▼の工程を合わせて充電試験の1サイクルとした。放電試験の1サイクルは15分間とした。所定サイクル毎に電池の内部抵抗を測定して電池の劣化の指標とした。所定電圧としては2.7V、2.5V、2.2Vの3点を採用し、それぞれ異なる電池を用いて試験を行った。つまり、電池の端子電圧値が所定電圧を下回らないように端子電圧を制御している。
【0049】
(結果)
放電試験の結果を図2に示す。図より明らかなように、所定電圧としていずれの値を選択したものでも8000サイクルを超える放電試験後の内部抵抗の値は0.85〜0.95付近であり、通常の使用による劣化と同程度かそれ以下であった。具体的な試験は示さないが、リチウム二次電池についてSOC0%を下回る範囲で2.7Vの電圧で実施例の放電試験と同様の条件で充放電を行うと、ごく僅かな時間(336時間程度、本実施例では600サイクル程度に相当する)の放電であっても電池の内部抵抗値の比は1.2以上の高い値を示し電池の劣化が進行することが判明している。
【0050】
つまり、本実施例の放電方法でリチウム二次電池から放電を行うと、より低い電圧まで放電を行うことが可能となり、より多くのエネルギーを電池から取り出すことができる。そして、低い電圧で放電を行っても二次電池の劣化は進行しないことが明らかとなった。
【図面の簡単な説明】
【図1】実施例における充電試験の結果を示した図である。
【図2】実施例における放電試験の結果を示した図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a charge-discharge control method for controlling a charging and discharging control unit and the secondary battery of the secondary battery can be effectively exhibited a charge-discharge characteristics of the secondary battery.
[0002]
[Prior art]
In the field of automobiles, electric vehicles and hybrid electric vehicles are being developed due to environmental issues and resource issues. High performance secondary batteries are used in these electric vehicles and the like. A secondary battery used in an electric vehicle or the like is expected to be charged and discharged rapidly as in acceleration / deceleration and the like, and is required to have good output characteristics and regenerative characteristics. Automobile acceleration / deceleration is performed irregularly regardless of the state of charge of the secondary battery. Therefore, a secondary battery used for an electric vehicle or the like is required to be able to input and output a large amount of energy.
[0003]
By the way, the voltage range which can be used at the time of charging / discharging is set for the secondary battery, and when the secondary battery is used outside this range, the deterioration rapidly proceeds. Increasing the usable voltage range of the secondary battery allows more energy to be taken in and out.
[0004]
As an attempt to widen the usable voltage range of the secondary battery, Japanese Patent Application Laid-Open No. 2001-2333065 discloses a charge control voltage that becomes an upper limit voltage for charging during regenerative charging of the non-aqueous electrolyte secondary battery. A method for increasing the overcharge region of a secondary battery is disclosed. In particular, it is considered preferable to change the charge control voltage according to the value of the internal resistance of the nonaqueous electrolyte secondary battery.
[0005]
[Problems to be solved by the invention]
However, as a result of the study by the present inventor, the method disclosed in Japanese Patent Laid-Open No. 2001-2333065 increases the charge control voltage to the overcharge region regardless of the charge amount of the secondary battery. It has been found that deterioration of the secondary battery may be accelerated depending on the state of the battery.
[0006]
Accordingly, the present invention is the problem to be solved is to provide a charge-discharge control method for charging and discharging control unit and the secondary battery of the secondary battery capable of improving the regeneration characteristics of the secondary battery. Further, in the present invention, an object to be achieved by providing a charging and discharging control method of charging and discharging control unit and the secondary battery of the secondary battery capable of improving the output characteristics of the secondary battery.
[0007]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above-mentioned problems, the present inventor has conducted the following studies as a result of intensive studies. That is, a charge amount detection means for detecting a charge amount of a secondary battery, and a usable voltage in which a value obtained by subtracting an overvoltage value generated inside the secondary battery from a terminal voltage applied to the secondary battery is set in advance. And terminal voltage control means for controlling the terminal voltage value so as not to exceed the range and the charge amount does not exceed the preset appropriate range (claim 1).
[0008]
That is, in the conventional method, charging at a value exceeding the usable voltage range of the secondary battery has a great effect of increasing the charge amount to the secondary battery, but the deterioration of the secondary battery proceeds. It has been found that the cause of the deterioration is the performance of charge exceeding the appropriate range of charge. By charging the secondary battery beyond the proper range, the electrode active material of the secondary battery is irreversibly damaged. Based on this knowledge, by charging while monitoring so that the amount of charge of the secondary battery does not exceed the appropriate value, a voltage that seems to exceed the voltage range that can be used properly for the secondary battery. It has been found that even if charging is performed at, charging of the secondary battery is not performed in the overcharge region as in the prior art, but within an appropriate range, and the deterioration of the secondary battery does not proceed. As the current value flowing during charging increases, the overvoltage value increases and apparently the terminal voltage applied to the secondary battery also increases. Since the terminal voltage of the secondary battery can be increased by the magnitude of this overvoltage, the charging characteristics of the secondary battery can be maximized.
[0009]
As the means for detecting the charge amount of the secondary battery in the charge amount detection means, means for calculating the charge amount from the integral value of the current value flowing through the secondary battery can be employed. It is easy to specifically measure the terminal voltage value applied to the secondary battery and the current value flowing through the secondary battery, and the charge amount of the secondary battery can be calculated easily. The absolute value of the charge amount of the secondary battery can be obtained from the value of the open circuit voltage by appropriately measuring the terminal voltage (open circuit voltage) when there is no current in and out of the secondary battery.
[0010]
As another means for detecting the charge amount of the secondary battery, a means for calculating the charge amount from the terminal voltage value of the secondary battery and the overvoltage value generated inside the secondary battery can be employed. . The overvoltage value can be calculated from the value of the current flowing through the battery and the predetermined internal resistance of the secondary battery. Since the net battery voltage is found by subtracting this overvoltage value from the terminal voltage, the charge amount of the battery can be calculated from that value.
[0011]
Moreover, it is preferable that the predetermined value of the terminal voltage value in the terminal voltage control means is a decomposition potential of the constituent elements of the secondary battery. By adopting the decomposition potential of the constituent elements of the secondary battery as a limit value that can be applied to the secondary battery, it is possible to suppress a decrease in battery performance due to deterioration of the constituent elements of the secondary battery. Specifically, when the secondary battery is a lithium secondary battery, the predetermined value is preferably 4.4 V (Claim 5).
[0012]
Further charge-discharge control device for the secondary battery of the present invention for solving the aforementioned problems is a charge amount detection means for detecting a charge amount of the secondary battery, within said secondary battery terminal voltage applied to the secondary battery And a terminal voltage control means for controlling the terminal voltage value so that a value obtained by adding an overvoltage value generated in the terminal does not fall below a preset usable voltage range and the charge amount does not fall below a preset appropriate range. (Claim 6).
[0013]
Like the charging and discharging control device for a secondary battery of the present invention described above, appropriately of the secondary battery by performing a monitoring while discharging so as not to exceed a predetermined value amount of charge of the secondary battery is appropriate value This is based on the fact that even when discharging is performed at a voltage exceeding the usable voltage range, the secondary battery does not enter an overdischarged state and the secondary battery does not deteriorate.
[0014]
Moreover, charge-discharge control method for a secondary battery present invention generates a charge amount detection step of detecting a charge amount of the secondary battery, the terminal voltage applied to the secondary battery inside the secondary battery overvoltage A terminal voltage control step of controlling the terminal voltage value so that the value obtained by subtracting the value does not exceed a preset usable voltage range and the charge amount does not exceed a preset proper range. (Claim 11).
[0015]
Then, charging and discharging control method for a secondary battery present invention generates a charge amount detection step of detecting a charge amount of the secondary battery, within said secondary battery terminal voltage applied to the secondary battery overvoltage to have a terminal voltage control step of controlling the terminal voltage value as a value obtained by adding the value does not fall below the appropriate range and the charging amount is set in advance not below a preset usable voltage range (Claim 16).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The secondary battery to which the present invention can be applied is not particularly limited. For example, general secondary batteries, such as a lithium secondary battery, a nickel hydride secondary battery, a nickel cadmium secondary battery, are mentioned. In the following description, a lithium secondary battery is adopted as a secondary battery for the sake of convenience. When using a secondary battery as an assembled battery, it is preferable to apply the apparatus of this invention etc. about each battery which comprises an assembled battery.
[0017]
(First secondary battery charging and discharging control unit: one characterized by a charging)
〔Constitution〕
Charge-discharge control device for a secondary battery of the present invention has a charge amount detection means and the terminal voltage control means. The charge amount detection means is means for detecting the charge amount of the secondary battery to be charged, and the terminal voltage control means is a terminal voltage applied to the secondary battery according to the charge amount of the secondary battery detected by the charge amount detection means. A means for controlling the value.
[0018]
The charge amount detection means is means for detecting the charge amount of the secondary battery. The method for detecting the charge amount of the secondary battery is not particularly limited. (1) A method of calculating by integrating the current value flowing through the secondary battery, or (2) the terminal voltage value applied to the secondary battery A method of calculating from the overvoltage value generated in the secondary battery can be exemplified.
[0019]
The method of (1) calculates the charge amount of the secondary battery by integrating the subsequent current flow (that is, charge / discharge amount) to the secondary battery based on the charge amount of the secondary battery at a certain time point. . The charge amount of the reference secondary battery can be measured by measuring the terminal voltage (open voltage) of the secondary battery when no current is flowing in or out of the secondary battery. The measurement of the open circuit voltage can be performed at an appropriate frequency.
[0020]
As the secondary battery is charged, the open circuit voltage increases. Since the increase in the open circuit voltage of the secondary battery accompanying charging can be determined from the type of secondary battery, the type of electrode active material, and the like, the charge amount of the secondary battery can be calculated from the open circuit voltage value. The method for integrating the charge / discharge amount to the secondary battery is not particularly limited. Examples thereof include an analog circuit combined with an integration circuit and the like, and a computer that performs integration calculation by taking in a current value flowing through the secondary battery using an A / D converter.
[0021]
In the method (2), by subtracting the value of the overvoltage from the terminal voltage value of the secondary battery, the substantial voltage of the secondary battery (corresponding to the open circuit voltage described above) is calculated, and the secondary battery is calculated from the voltage value. The amount of charge is calculated. The method of calculating the overvoltage of the secondary battery can be obtained by multiplying the value of the internal resistance of the secondary battery and the value of the current flowing through the secondary battery. The value of the internal resistance can be estimated from a value measured in advance, or can be estimated from a profile of a current value flowing through the secondary battery and an applied voltage value. The device for calculating the charge amount of the secondary battery from the value of the overvoltage generated in the secondary battery and the terminal voltage value is not particularly limited, and it is possible to use an analog circuit combined with an operational amplifier or the like or an A / D converter. A computer that takes in and calculates the terminal voltage of the secondary battery and the flowing current can be exemplified.
[0022]
The terminal voltage control means is a means for controlling the terminal voltage of the secondary battery so that both the terminal voltage and the charge amount detected by the charge amount detection means do not exceed the set predetermined values. When the terminal voltage or charge amount for the secondary battery reaches the set predetermined value, the current flow to the secondary battery is cut off and charging of the secondary battery is stopped, the terminal voltage and / or Control is performed so that the amount of charge does not exceed a predetermined value.
[0023]
The predetermined value set for the charge amount is a charge amount whose deterioration is accelerated when the secondary battery is charged beyond that value, and can be appropriately determined theoretically and / or experimentally. As the predetermined value of the charge amount, a value generally expressed as SOC (State of Charge) and expressed as 100% can be adopted. In a general lithium secondary battery, SOC is 100%, and a value of 4.1 V to 4.2 V is often adopted as the open voltage of the secondary battery.
[0024]
The predetermined value set for the terminal voltage is not particularly limited and can be set appropriately. For example, the predetermined value of the terminal voltage can be a decomposition potential of the constituent elements of the secondary battery. Specifically, it can be the decomposition potential of the constituent elements (current collector, binder, etc.) of the negative electrode. This value can be determined theoretically and / or experimentally. When a copper foil is used as a negative electrode current collector in a lithium secondary battery, it has been found from the experimental results in Examples to be described later that at least 4.4 V can be adopted as the predetermined value of the terminal voltage. .
[0025]
[Action and effect]
Charge-discharge control device of the present secondary battery has the following operational effects because it has the structure described above. The charge amount detection means continuously detects the charge amount of the secondary battery. When the detected charge amount of the secondary battery is equal to or less than a predetermined value, the electric energy recovered from the regenerative brake of the automobile can be charged to the secondary battery. The secondary battery can be charged until the terminal voltage reaches a predetermined value of the terminal voltage. Therefore, the terminal voltage control means can increase the terminal voltage to a predetermined value of the terminal voltage. In this case, by considering the overvoltage value, the terminal voltage value can be increased to a value that cannot be increased by the conventional method.
[0026]
A method for charging the battery efficiently is to perform CC and CV charging based on a predetermined value of the terminal voltage. Here, the fact that the amount of charge of the secondary battery does not reach the predetermined value means that even if the terminal voltage is high, it does not have a value that adversely affects the secondary battery. The terminal voltage is apparently high only by the magnitude of the overvoltage caused by the internal resistance of the secondary battery, and is in an appropriate range as a voltage that actually contributes to the electrochemical reaction of the secondary battery.
[0027]
Regardless of the terminal voltage after the detected amount of charge of the secondary battery reaches the predetermined value, further charging to the secondary battery will have a serious adverse effect on the secondary battery. Stop charging. In that case, the secondary battery is discharged, and charging is not performed until the amount of charge of the secondary battery falls below a predetermined value.
[0028]
As described above, the use of charge-discharge control device of the present secondary battery, it is possible to perform charging in consideration of the size of the over-voltage generated in the secondary battery, proper performance of the secondary battery It becomes possible to pull out. And since the charge amount of a secondary battery is always considered, it can prevent that a secondary battery becomes overcharge.
[0029]
(Second secondary battery charging and discharging control unit: one characterized by a discharge)
〔Constitution〕
Charge-discharge control device for a secondary battery of the present invention has a charge amount detection means and the terminal voltage control means. The charge amount detection means is means for detecting the charge amount of the secondary battery that performs discharge, and the terminal voltage control means is a terminal voltage applied to the secondary battery according to the charge amount of the secondary battery detected by the charge amount detection means. A means for controlling the value.
[0030]
The charge amount detection means is means for detecting the charge amount of the secondary battery. The method for detecting the charge amount of the secondary battery is not particularly limited, but (1) a method of calculating by integrating the current value flowing through the secondary battery, or (2) the terminal voltage value applied to the secondary battery A method of calculating from the overvoltage value generated in the secondary battery can be exemplified. These (1), a further description herein since it is as mentioned in the description of the charging and discharging control device for a secondary battery for charge amount detection means in the adoption process of (2) is omitted.
[0031]
The terminal voltage control means is means for controlling the terminal voltage of the secondary battery so that both the terminal voltage and the charge amount detected by the charge amount detection means do not fall below a predetermined value. When the terminal voltage or charge amount for the secondary battery reaches the set predetermined value, the current flow from the secondary battery is cut off and the discharge from the secondary battery is stopped, and the terminal voltage and / or Alternatively, control is performed so that the charge amount does not fall below a predetermined value.
[0032]
The predetermined value set for the charge amount is a charge amount whose deterioration is promoted when the secondary battery is discharged below the value, and can be determined appropriately theoretically and / or experimentally. As the predetermined value of the charge amount, a value generally referred to as SOC and expressed as 0% can be adopted. In a general lithium secondary battery, SOC is 0% and a value of 2.5 V to 3.0 V is often adopted as the open voltage of the secondary battery.
[0033]
The predetermined value set for the terminal voltage is not particularly limited and can be set appropriately. For example, the predetermined value of the terminal voltage can be a decomposition potential of the constituent elements of the secondary battery. Specifically, it can be the decomposition potential of the positive electrode components (current collector, binder, etc.). This value can be determined theoretically and / or experimentally. When an aluminum foil is used as a positive electrode current collector in a lithium secondary battery, it has been found from the experimental results in Examples to be described later that at least 2.2 V can be adopted as the predetermined value of the terminal voltage. .
[0034]
[Action and effect]
Charge-discharge control device of the present secondary battery has the following operational effects because it has the structure described above. The charge amount detection means continuously detects the charge amount of the secondary battery. When the detected charge amount of the secondary battery is equal to or greater than a predetermined value, electric energy can be discharged from the secondary battery to the load. The secondary battery can be discharged until the terminal voltage reaches a predetermined value of the terminal voltage. Therefore, the terminal voltage control means can lower the terminal voltage to a predetermined value of the terminal voltage. In this case, by considering the overvoltage value, the terminal voltage value can be lowered to a value that could not be lowered by the conventional method.
[0035]
A method for efficiently discharging the battery is to perform C-C and C-V discharge based on a predetermined value of the terminal voltage. Here, the fact that the amount of charge of the secondary battery does not reach the predetermined value means that the value does not adversely affect the secondary battery even if the terminal voltage is low. The terminal voltage is apparently low only by the magnitude of the overvoltage caused by the internal resistance of the secondary battery, and is in an appropriate range as a voltage that actually contributes to the electrochemical reaction of the secondary battery. Also, as the terminal voltage of the secondary battery, in addition to the charged state of the secondary battery, the absolute value of the terminal voltage value is controlled to a predetermined value or less, so that deterioration of the constituent elements of the secondary battery can also be suppressed. it can.
[0036]
After the detected amount of charge of the secondary battery reaches a predetermined value, any further discharge from the secondary battery will have a significant adverse effect on the secondary battery regardless of the terminal voltage. Discharge is stopped. In this case, the secondary battery is not discharged until the amount of charge of the secondary battery rises above a predetermined value by charging the secondary battery.
[0037]
As described above, the use of charge-discharge control device of the present secondary battery, it is possible to perform discharging in consideration of the size of the over-voltage generated in the secondary battery, proper performance of the secondary battery It becomes possible to pull out. And since the charge amount of a secondary battery is always considered, it can prevent that a secondary battery becomes an overdischarge. Also, as the terminal voltage of the secondary battery, the absolute value of the terminal voltage value is controlled to a predetermined value or more in addition to the charging state of the secondary battery, so that it is possible to suppress deterioration of the constituent elements of the secondary battery. it can.
[0038]
(Charge-discharge control method of a first secondary battery (those characterized by a charging))
The secondary battery charge control method of the present invention includes a charge amount detection step and a terminal voltage control step. The charge amount detection step is a step of detecting the charge amount of the secondary battery to be charged, and the terminal voltage control step is a terminal voltage applied to the secondary battery according to the charge amount of the secondary battery detected by the charge amount detection means. This is a step of controlling the value. A further here because charge amount detection step and the terminal voltage control step is a first rechargeable battery charging and discharging control unit essentially the same as the charge amount detection means and the terminal voltage control means described in the previously described any The description which becomes is abbreviate | omitted.
[0039]
(Charge-discharge control method of a second secondary battery: one characterized by a discharge)
The secondary battery discharge control method of the present invention includes a charge amount detection step and a terminal voltage control step. The charge amount detection step is a step of detecting the charge amount of the secondary battery to be discharged, and the terminal voltage control step is a terminal voltage applied to the secondary battery according to the charge amount of the secondary battery detected by the charge amount detection means. This is a step of controlling the value. A further here because charge amount detection step and the terminal voltage control step is the same both essentially the charge amount detection means and the terminal voltage control means described in the charge-discharge control device of a second secondary battery described above The description which becomes is abbreviate | omitted.
[0040]
【Example】
(Battery creation)
The lithium secondary battery of this test example is a lithium secondary battery using a lithium nickel composite oxide represented by the composition formula LiNiO 2 as a positive electrode active material and graphite as a negative electrode active material.
[0041]
The positive electrode of the lithium secondary battery of this test example is a mixture of 85 parts by mass of the above LiNiO 2 , 10 parts by mass of carbon black as a conductive material, and 5 parts by mass of polyvinylidene fluoride as a binder, An appropriate amount of N-methyl-2-pyrrolidone was added and kneaded to obtain a paste-like positive electrode mixture. This positive electrode mixture was applied to both surfaces of a positive electrode current collector made of aluminum foil having a thickness of 15 μm, dried, and a sheet-like positive electrode was produced through a pressing process.
[0042]
The negative electrode is a paste by mixing 92.5 parts by mass of graphite and 7.5 parts by mass of polyvinylidene fluoride as a binder, adding an appropriate amount of N-methyl-2-pyrrolidone and kneading. The negative electrode composite material was obtained. This negative electrode mixture was applied to both sides of a copper foil negative electrode current collector having a thickness of 10 μm, dried, and subjected to a pressing step to produce a sheet-like negative electrode.
[0043]
The positive electrode and the negative electrode were each cut into a predetermined size. The cut positive electrode and negative electrode were wound with a 25 μm thick polyethylene separator sandwiched therebetween to form a roll-shaped electrode body. A current collecting lead was attached to this electrode body, inserted into a 18650 type battery case, and then a non-aqueous electrolyte was injected into the battery case. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 was used. Finally, the battery case was sealed to complete the lithium secondary battery of this example.
[0044]
(Measurement of internal resistance)
The lithium secondary battery was charged and discharged so that the SOC was 60%. And the terminal voltage when the electric current of C / 3, C, and 3C was sent was measured. The slope of the straight line was determined from the current value-voltage value plot and used as the internal resistance.
[0045]
(Charge test)
For the battery of the example, CC-CV charging was performed at a current of 1 C until the battery voltage reached 4.05 V. (1) Thereafter, charging was carried out by supplying a current so that the terminal voltage value of the battery became a predetermined voltage. Charging was performed in a pulse manner so that the amount of charge to the battery was integrated and the SOC as the amount of charge did not exceed 100%. The amount of charging the battery in one pulse was the same regardless of the absolute value of the predetermined voltage. (2) CC-CV discharge was performed at a current of 1 C until the battery voltage reached 4.05 V after charging one pulse. The steps (1) and (2) were combined to make one cycle of the charge test. One cycle of the charging test was 15 minutes. The internal resistance of the battery was measured every predetermined cycle, and used as an indicator of battery deterioration. As the predetermined voltage, three points of 4.2V, 4.3V, and 4.4V were adopted, and tests were performed using different batteries. That is, the terminal voltage is controlled so that the terminal voltage value of the battery does not exceed a predetermined voltage.
[0046]
(result)
The result of the charge test is shown in FIG. As is clear from the figure, the value of the internal resistance after the charge test exceeding 2000 cycles is around 1 to 1.05 regardless of which value is selected as the predetermined voltage, which is almost the same as the deterioration due to normal use. It was. Although a specific test is not shown, when charging / discharging the lithium secondary battery at a voltage of 4.2 V in the range exceeding SOC 100% under the same conditions as the charge test of the example, a very short time (336 hours) It is found that the battery internal resistance value ratio shows a high value of 1.2 or more even when the battery is charged (which corresponds to about 600 cycles in this embodiment).
[0047]
That is, when the lithium secondary battery is charged by the charging method of the present embodiment, charging can be performed at a higher voltage, and more energy can be regenerated. And it became clear that even if it charges with a high voltage, deterioration of a secondary battery does not advance.
[0048]
(Discharge test)
For the battery of the example, CC-CV discharge was performed at a current of 1 C until the battery voltage reached 3.25 V. (1) Thereafter, the battery was discharged by supplying a current so that the terminal voltage value of the battery became a predetermined voltage. Discharging was performed in pulses so that the amount discharged from the battery was integrated and the SOC as the amount of charge did not fall below 0%. The amount discharged from the battery in one pulse was the same regardless of the absolute value of the predetermined voltage. (2) After discharging 1 pulse, CC-CV charging was performed at a current of 1 C until the battery voltage reached 3.25V. The steps (1) and (2) were combined to make one cycle of the charge test. One cycle of the discharge test was 15 minutes. The internal resistance of the battery was measured every predetermined cycle, and used as an indicator of battery deterioration. As the predetermined voltage, three points of 2.7 V, 2.5 V, and 2.2 V were adopted, and tests were performed using different batteries. That is, the terminal voltage is controlled so that the terminal voltage value of the battery does not fall below a predetermined voltage.
[0049]
(result)
The results of the discharge test are shown in FIG. As is clear from the figure, the value of the internal resistance after a discharge test exceeding 8000 cycles is around 0.85 to 0.95 regardless of which value is selected as the predetermined voltage, which is almost the same as deterioration due to normal use. Or less. Although a specific test is not shown, when charging / discharging the lithium secondary battery under the same conditions as the discharge test of the example at a voltage of 2.7 V in a range below 0% SOC, a very short time (about 336 hours) In this embodiment, the ratio of the internal resistance value of the battery shows a high value of 1.2 or more even when the discharge is equivalent to about 600 cycles).
[0050]
That is, when discharging from the lithium secondary battery by the discharging method of the present embodiment, it is possible to discharge to a lower voltage, and more energy can be taken out from the battery. And it became clear that even if it discharges with a low voltage, deterioration of a secondary battery does not advance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a result of a charge test in an example.
FIG. 2 is a view showing a result of a discharge test in an example.

Claims (20)

二次電池の充電量を検出する充電量検出手段と、
該二次電池に印加する端子電圧から前記二次電池内部に発生する過電圧値を減じた値が予め設定された使用可能な電圧範囲を超えず且つ該充電量が予め設定された適正範囲を超えないように該端子電圧値を制御する端子電圧制御手段と、を有することを特徴とする二次電池の充放電制御装置。
Charge amount detection means for detecting the charge amount of the secondary battery;
The value obtained by subtracting the overvoltage value generated inside the secondary battery from the terminal voltage applied to the secondary battery does not exceed the preset usable voltage range, and the charge amount exceeds the preset appropriate range . charging and discharging control device for a secondary battery, characterized by having a terminal voltage control means for controlling the terminal voltage value so as not.
前記充電量検出手段は、前記二次電池に流す電流値の積分値から該充電量を算出する手段である請求項1に記載の二次電池の充放電制御装置。The charge amount detection means, charging and discharging control device for a secondary battery according to claim 1, wherein the means for calculating the said charging amount from the integrated value of the current flowing in the secondary battery. 前記充電量検出手段は、前記端子電圧値と前記二次電池内部に発生する過電圧値とから該充電量を算出する手段である請求項1に記載の二次電池の充放電制御装置。The charge amount detection means, charging and discharging control device for a secondary battery according to claim 1, wherein the means for calculating the said charging amount from the overvoltage value generated the terminal voltage value and within the secondary battery. 前記端子電圧制御手段における前記端子電圧値の所定値は、該二次電池の構成要素の分解電位である請求項1〜3のいずれかに記載の二次電池の充放電制御装置。Predetermined value of the terminal voltage value at the terminal voltage control means, charging and discharging control device for a secondary battery according to claim 1 is an exploded potential components of the secondary battery. 前記二次電池はリチウム二次電池であって、
前記端子電圧制御手段における前記端子電圧値の所定値は、4.4Vである請求項1〜3のいずれかに記載の二次電池の充放電制御装置。
The secondary battery is a lithium secondary battery,
Predetermined value of the terminal voltage value at the terminal voltage control means, charging and discharging control device for a secondary battery according to a is any of claims 1 to 3 4.4 V.
二次電池の充電量を検出する充電量検出手段と、
該二次電池に印加する端子電圧に前記二次電池内部に発生する過電圧値を加えた値が予め設定された使用可能な電圧範囲を下回らず且つ該充電量が予め設定された適正範囲下回らないように該端子電圧値を制御する端子電圧制御手段と、を有することを特徴とする二次電池の充放電制御装置。
Charge amount detection means for detecting the charge amount of the secondary battery;
A value obtained by adding an overvoltage value generated inside the secondary battery to a terminal voltage applied to the secondary battery does not fall below a preset usable voltage range, and the charge amount falls below a preset appropriate range . charging and discharging control device for a secondary battery, characterized by having a terminal voltage control means for controlling the terminal voltage value so as not.
前記充電量検出手段は、前記二次電池に流す電流値の積分値から該充電量を算出する手段である請求項6に記載の二次電池の充放電御装置。  The charge / discharge control device for a secondary battery according to claim 6, wherein the charge amount detection means is a means for calculating the charge amount from an integral value of a current value passed through the secondary battery. 前記充電量検出手段は、前記端子電圧値と前記二次電池内部に発生する過電圧値とから該充電量を算出する手段である請求項6に記載の二次電池の充放電制御装置。The charge amount detection means, charging and discharging control device for a secondary battery according to claim 6, wherein the means for calculating the said charging amount from the overvoltage value generated the terminal voltage value and within the secondary battery. 前記端子電圧制御手段における前記端子電圧値の所定値は、該二次電池の構成要素の分解電位である請求項6〜8のいずれかに記載の二次電池の充放電制御装置。Predetermined value of the terminal voltage value at the terminal voltage control means, charging and discharging control device for a secondary battery according to any one of claims 6 to 8 is an exploded potential components of the secondary battery. 前記二次電池はリチウム二次電池であって、
前記端子電圧制御手段における前記端子電圧値の所定値は、2.2Vである請求項6〜8のいずれかに記載の二次電池の充放電制御装置。
The secondary battery is a lithium secondary battery,
Predetermined value of the terminal voltage value at the terminal voltage control means, charging and discharging control device for a secondary battery as claimed in any of claims 6-8 is 2.2V.
二次電池の充電量を検出する充電量検出工程と、
該二次電池に印加する端子電圧から前記二次電池内部に発生する過電圧値を減じた値が予め設定された使用可能な電圧範囲を超えず且つ該充電量が予め設定された適正範囲を超えないように該端子電圧値を制御する端子電圧制御工程と、を有することを特徴とする二次電池の充放電制御方法。
A charge amount detection step for detecting a charge amount of the secondary battery;
The value obtained by subtracting the overvoltage value generated inside the secondary battery from the terminal voltage applied to the secondary battery does not exceed the preset usable voltage range, and the charge amount exceeds the preset appropriate range . charging and discharging control method for a secondary battery, characterized by having a terminal voltage control step of controlling the terminal voltage value so as not.
前記充電量検出工程は、前記二次電池に流す電流値の積分値から該充電量を算出する工程である請求項11に記載の二次電池の充放電制御方法The charge amount detection step, charging and discharging control method for a secondary battery according to claim 11 which is a step of calculating the charging amount from the integrated value of the current flowing in the secondary battery. 前記充電量検出工程は、前記端子電圧値と前記二次電池内部に発生する過電圧値とから該充電量を算出する工程である請求項11に記載の二次電池の充放電制御方法。The charge amount detection step, charging and discharging control method for a secondary battery according to claim 11 which is a step of calculating the charging amount from the overvoltage value generated the terminal voltage value and within the secondary battery. 前記端子電圧制御工程における前記端子電圧値の所定値は、該二次電池の構成要素の分解電位である請求項11〜13のいずれかに記載の二次電池の充放電制御方法。Wherein the predetermined value of the terminal voltage value, charging and discharging control method for a secondary battery according to any one of claims 11 to 13 is an exploded potential components of the secondary battery in the terminal voltage control process. 前記二次電池はリチウム二次電池であって、
前記端子電圧制御工程における前記端子電圧値の所定値は、4.4Vである請求項11〜13のいずれかに記載の二次電池の充放電制御方法。
The secondary battery is a lithium secondary battery,
Predetermined value of the terminal voltage value at the terminal voltage control step, charging and discharging control method for a secondary battery according to any one of claims 11 to 13 is 4.4 V.
二次電池の充電量を検出する充電量検出工程と、
該二次電池に印加する端子電圧に前記二次電池内部に発生する過電圧値を加えた値が予め設定された使用可能な電圧範囲を下回らず且つ該充電量が予め設定された適正範囲下回らないように該端子電圧値を制御する端子電圧制御工程と、を有することを特徴とする二次電池の充放電制御方法。
A charge amount detection step for detecting a charge amount of the secondary battery;
A value obtained by adding an overvoltage value generated inside the secondary battery to a terminal voltage applied to the secondary battery does not fall below a preset usable voltage range, and the charge amount falls below a preset appropriate range . charging and discharging control method for a secondary battery, characterized by having a terminal voltage control step of controlling the terminal voltage value so as not.
前記充電量検出工程は、前記二次電池に流す電流値の積分値から該充電量を算出する工程である請求項16に記載の二次電池の充放電御方法。  The charge / discharge control method for a secondary battery according to claim 16, wherein the charge amount detection step is a step of calculating the charge amount from an integral value of a current value passed through the secondary battery. 前記充電量検出工程は、前記端子電圧値と前記二次電池内部に発生する過電圧値とから該充電量を算出する工程である請求項16に記載の二次電池の充放電制御方法。The charge amount detection step, charging and discharging control method for a secondary battery according to claim 16 is a step of calculating the charging amount from the overvoltage value generated the terminal voltage value and within the secondary battery. 前記端子電圧制御工程における前記端子電圧値の所定値は、該二次電池の構成要素の分解電位である請求項16〜18のいずれかに記載の二次電池の充放電制御方法。Wherein the predetermined value of the terminal voltage value at the terminal voltage control step, charging and discharging control method for a secondary battery according to any one of claims 16 to 18 is an exploded potential components of the secondary battery. 前記二次電池はリチウム二次電池であって、
前記端子電圧制御工程における前記端子電圧値の所定値は、2.2Vである請求項16〜18のいずれかに記載の二次電池の充放電制御方法。
The secondary battery is a lithium secondary battery,
Predetermined value of the terminal voltage value at the terminal voltage control step, charging and discharging control method for a secondary battery according to any one of claims 16 to 18 is 2.2V.
JP2002146691A 2002-05-21 2002-05-21 Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery Expired - Fee Related JP4517273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002146691A JP4517273B2 (en) 2002-05-21 2002-05-21 Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002146691A JP4517273B2 (en) 2002-05-21 2002-05-21 Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery

Publications (2)

Publication Number Publication Date
JP2003338324A JP2003338324A (en) 2003-11-28
JP4517273B2 true JP4517273B2 (en) 2010-08-04

Family

ID=29705595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002146691A Expired - Fee Related JP4517273B2 (en) 2002-05-21 2002-05-21 Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery

Country Status (1)

Country Link
JP (1) JP4517273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923116B2 (en) * 2010-01-29 2012-04-25 株式会社日立製作所 Secondary battery system
CN108790876B (en) * 2018-06-06 2020-08-04 北京新能源汽车股份有限公司 Method and device for adjusting feedback power of electric automobile and automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233918A (en) * 1994-11-23 1996-09-13 At & T Corp Method and apparatus for estimation of residual unused capacity and residual unused time of battery during discharge
JP2000116014A (en) * 1998-10-06 2000-04-21 Hitachi Ltd Power storing device
JP2001157369A (en) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd Method of controlling charging and discharging of battery
JP2001307781A (en) * 2000-04-24 2001-11-02 Hitachi Ltd Lithium secondary battery and its charging/discharging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233918A (en) * 1994-11-23 1996-09-13 At & T Corp Method and apparatus for estimation of residual unused capacity and residual unused time of battery during discharge
JP2000116014A (en) * 1998-10-06 2000-04-21 Hitachi Ltd Power storing device
JP2001157369A (en) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd Method of controlling charging and discharging of battery
JP2001307781A (en) * 2000-04-24 2001-11-02 Hitachi Ltd Lithium secondary battery and its charging/discharging method

Also Published As

Publication number Publication date
JP2003338324A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
US6700383B2 (en) Method of detecting and resolving memory effect
KR101608611B1 (en) Control device for secondary battery, and soc detection method
JP5057156B2 (en) Lithium ion secondary battery charging method and charging system
US10700376B2 (en) Methods for fast-charging and detecting lithium plating in lithium ion batteries
KR101611116B1 (en) Control device for secondary battery, charging control method, and soc detection method
WO2011036760A1 (en) Secondary battery system
EP2874272B1 (en) Charging control method for secondary cell and charging control device for secondary cell
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
WO2015068013A1 (en) Manufacturing method for non-aqueous secondary battery
JP6898585B2 (en) Secondary battery state estimation method and state estimation system
JP4714229B2 (en) Lithium secondary battery
JP2007335360A (en) Lithium secondary cell
US12074467B2 (en) Secondary battery charging system
JP2012173048A (en) Battery pack device
JP2012016109A (en) Method and device of charging lithium ion battery
JP6607167B2 (en) Inspection method for lithium ion secondary battery
JP2003208922A (en) Lithium ion secondary battery
JP2014127283A (en) Method for recovering capacity of lithium ion secondary battery
JP2015090806A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP4517273B2 (en) Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery
JP2005251538A (en) Inspection method and device of secondary cell
JP2018166108A (en) Method for charging lithium ion secondary battery, and charge control system therefor
JP4618025B2 (en) Battery pack and charge control method thereof
JP4478856B2 (en) Secondary battery protection control system and secondary battery protection control method
JP2011076976A (en) Method and device for calculating dischargeable capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees