JP2013186222A - 光学系、光学機器及び光学系の製造方法 - Google Patents

光学系、光学機器及び光学系の製造方法 Download PDF

Info

Publication number
JP2013186222A
JP2013186222A JP2012050009A JP2012050009A JP2013186222A JP 2013186222 A JP2013186222 A JP 2013186222A JP 2012050009 A JP2012050009 A JP 2012050009A JP 2012050009 A JP2012050009 A JP 2012050009A JP 2013186222 A JP2013186222 A JP 2013186222A
Authority
JP
Japan
Prior art keywords
lens
optical system
object side
refractive power
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012050009A
Other languages
English (en)
Other versions
JP5903937B2 (ja
Inventor
Atsushi Suzuki
篤 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012050009A priority Critical patent/JP5903937B2/ja
Priority to PCT/JP2013/001081 priority patent/WO2013128882A1/ja
Priority to US14/381,277 priority patent/US10268026B2/en
Priority to CN201380011464.6A priority patent/CN104145200B/zh
Publication of JP2013186222A publication Critical patent/JP2013186222A/ja
Priority to IN7946DEN2014 priority patent/IN2014DN07946A/en
Application granted granted Critical
Publication of JP5903937B2 publication Critical patent/JP5903937B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

【課題】 カメラ未使用時にレンズ鏡筒がカメラ内に沈胴することが可能であり、小型で
広画角を有するとともに、大口径の光学系、光学機器及び光学系の製造方法を提供する。
【解決手段】 光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レンズ群G1
と、第2レンズ群G2とを有し、第1レンズ群G1は、光軸に沿って物体側から順に並ん
だ、負の屈折力を持つ第1のレンズL11と、物体側面が物体側に凹面を向けた負の屈折
力を持つ第2のレンズL12と、第3のレンズL13とを有し、次の条件式(1)を満足
する。
−23.0 < νd3−νd2 < 24.2 …(1)
但し、νd3:第3のレンズL13のd線を基準とするアッベ数、νd2:第2のレンズL
12のd線を基準とするアッベ数。
【選択図】 図1

Description

本発明は、デジタルカメラ、フィルムカメラ、ビデオカメラ等の撮影光学系に最適な広
角大口径の光学系に関する。
近年、コンパクトデジタルカメラのズームレンズでは、カメラ未使用時にレンズ鏡筒が
カメラ内に沈胴するタイプのものが主流となっている。ズームレンズと同様に、無限遠物
点に対して焦点距離が変化しない固定焦点の広角レンズにおいても、カメラ未使用時にレ
ンズ鏡筒がカメラ内に沈胴するタイプのものが提案されている(例えば、特許文献1を参
照)。
特開2008−40033号公報
従来の固定焦点の広角レンズは、小型で広い画角を有しているが、Fnoが4.0程度
と暗い。
本発明は、このような問題に鑑みてなされたものであり、カメラ未使用時にレンズ鏡筒
がカメラ内に沈胴することが可能であり、小型で広い画角を有するとともに、大口径の光
学系、光学機器及び光学系の製造方法を提供することを目的とする。
このような目的を達成するため、本発明に係る光学系は、光軸に沿って物体側から順に
並んだ、負の屈折力を持つ第1レンズ群と、第2レンズ群とを有し、前記第1レンズ群は
、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1のレンズと、物体側面が物
体側に凹面を向けた負の屈折力を持つ第2のレンズと、第3のレンズとを有し、以下の条
件式を満足する。
−23.0 < νd3−νd2 < 24.2
但し、
νd3:前記第3のレンズのd線を基準とするアッベ数、
νd2:前記第2のレンズのd線を基準とするアッベ数。
本発明の光学系においては、以下の条件式を満足することが好ましい。
fL1/fL2 < 0.2
但し、
fL1:前記第1のレンズの焦点距離、
fL2:前記第2のレンズの焦点距離。
本発明の光学系においては、以下の条件式を満足することが好ましい。
2.55 < (−R21)/R12
但し、
R21:前記第2のレンズの物体側面の曲率半径、
R12:前記第1のレンズの像側面の曲率半径。
なお、曲率半径R21、R12については、物体側に凸面を向けている場合を正とする。
本発明の光学系において、前記第3のレンズは、正の屈折力を持つことが好ましい。
本発明の光学系において、前記第1のレンズ、前記第2のレンズ及び前記第3のレンズ
は、いずれも単レンズであることが好ましい。
本発明の光学系において、前記第2レンズ群は、正の屈折力を持つことが好ましい。
本発明の光学系において、前記第2レンズ群よりも物体側に、開口絞りを配置すること
が好ましい。
本発明の光学系において、前記第1のレンズは、少なくとも1つの面が非球面であるこ
とが好ましい。
本発明に係る光学機器は、上述の光学系のいずれかを備えて構成される。
本発明に係る光学系の製造方法は、光軸に沿って物体側から順に並んだ、負の屈折力を
持つ第1レンズ群と、第2レンズ群とを有する光学系の製造方法であって、前記第1レン
ズ群は、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1のレンズと、物体側
面が物体側に凹面を向けた負の屈折力を持つ第2のレンズと、第3のレンズとを有し、以
下の条件式を満足するように、レンズ鏡筒内に各レンズを組み込む。
−23.0 < νd3−νd2 < 24.2
但し、
νd3:前記第3のレンズのd線を基準とするアッベ数、
νd2:前記第2のレンズのd線を基準とするアッベ数。
本発明によれば、カメラ未使用時にレンズ鏡筒がカメラ内に沈胴することが可能であり
、小型で広い画角を有するとともに、大口径の光学系、光学機器及び光学系の製造方法を
提供することができる。
第1実施例に係る光学系の構成を示す断面図であり、(a)は無限遠合焦時(β=0.000)、(b)は中間距離合焦時(β=-0.036)、(c)は至近距離合焦時(β=-0.179)の配置をそれぞれ示す。 第1実施例に係る光学系の諸収差図であり、(a)は無限遠合焦時(β=0.000)、(b)は中間距離合焦時(β=-0.036)、(c)は至近距離合焦時(β=-0.179)における諸収差図をそれぞれ示す。 第2実施例に係る光学系の構成を示す断面図であり、(a)は無限遠合焦時(β=0.0000)、(b)は中間距離合焦時(β=-0.009)、(c)は至近距離合焦時(β=-0.036)の配置をそれぞれ示す。 第2実施例に係る光学系の諸収差図であり、(a)は無限遠合焦時(β=0.000)、(b)は中間距離合焦時(β=-0.009)、(c)は至近距離合焦時(β=-0.036)における諸収差図をそれぞれ示す。 第3実施例に係る光学系の構成を示す断面図であり、(a)は無限遠合焦時(β=0.000)、(b)は中間距離合焦時(β=-0.009)、(c)は至近距離合焦時(β=-0.036)の配置をそれぞれ示す。 第3実施例に係る光学系の諸収差図であり、(a)は無限遠合焦時(β=0.000)、(b)は中間距離合焦時(β=-0.009)、(c)は至近距離合焦時(β=-0.036)における諸収差図をそれぞれ示す。 本実施形態に係る光学系を搭載するデジタルカメラ(光学機器)を説明する図であり、(a)は正面図であり、(b)は背面図である。 図7(a)のA−A´線に沿った断面図である。 本実施形態に係る光学系の製造方法を説明するためのフローチャートである。
以下、実施形態について、図面を参照しながら説明する。本実施形態に係る光学系WL
は、図1に示すように、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レン
ズ群G1と、第2レンズ群G2とを有し、第1レンズ群G1は、光軸に沿って物体側から
順に並んだ、負の屈折力を持つ第1のレンズL11と、物体側面が物体側に凹面を向けた
負の屈折力を持つ第2のレンズL12と、第3のレンズL13とを有し、次の条件式(1
)を満足する。
−23.0 < νd3−νd2 < 24.2 …(1)
但し、
νd3:第3のレンズL13のd線を基準とするアッベ数、
νd2:第2のレンズL12のd線を基準とするアッベ数。
一般に、写真レンズなど撮像光学系の設計では、光学系の大きさを保ちながら、広画角
化と大口径化を行うことは困難である。大口径になるほど、球面収差の補正、メリジオナ
ルコマ収差とサジタルコマ収差補正の両立、コマ収差と非点収差補正の両立は困難となる
。また、光学系を大きくせずに広角化を行うと、球面収差と非点収差、各種色収差の補正
を行うことが困難となる。しかしながら、本実施形態に係る光学系WLは、上記構成によ
り、カメラ未使用時にレンズ鏡筒をカメラ内に沈胴させることが可能でありながら、小型
で、Fno2.0程度の大口径で、画角75°程度の広画角化を達成しつつ、メリジオナ
ルコマ収差を増加させることなく、サジタルコマ収差を小さくすることができる。
条件式(1)は、第1レンズ群G1を構成する、第2のレンズL12のアッベ数と第3
のレンズL13のアッベ数の差を規定するものである。条件式(1)を満足することによ
り、軸上色収差と倍率色収差を同時に良好に補正することができる。条件式(1)の上限
値を上回ると、第3のレンズL13のアッベ数に対して第2のレンズL12のアッベ数が
小さくなりすぎるため、軸上色収差の補正が困難になる。条件式(1)の下限値を下回る
と、第3のレンズL13のアッベ数に対して第2のレンズL12のアッベ数が大きくなり
すぎるため、倍率色収差の補正が困難になる。
本実施形態の光学系WLにおいては、次の条件式(2)を満足することが好ましい。
fL1/fL2 < 0.2 …(2)
但し、
fL1:第1のレンズL11の焦点距離、
fL2:第2のレンズL12の焦点距離。
条件式(2)は、第1レンズ群G1を構成する、第1のレンズL11と第2のレンズL
12の焦点距離の比を規定するものである。条件式(2)を満足することにより、歪曲収
差、像面湾曲を増加させることなく、コマ収差を小さくすることができる。条件式(2)
の上限値を上回ると、第1のレンズL11の屈折力に対して、第2のレンズL12の屈折
力が大きくなりすぎる。これにより、メリジオナルコマ収差の補正は効果的に行えるが、
サジタルコマ収差の補正が困難となる。
本実施形態の光学系WLにおいては、次の条件式(3)を満足することが好ましい。
2.55 < (−R21)/R12 …(3)
但し、
R21:第2のレンズL12の物体側面の曲率半径、
R12:第1のレンズL11の像側面の曲率半径。
なお、曲率半径R21、R12については、物体側に凸面を向けている場合を正とする。
条件式(3)は、第1レンズ群G1を構成する、第1のレンズL11の像側面と第2の
レンズL12の物体側面の曲率半径の比を規定するものである。条件式(3)を満足する
ことにより、メリジオナルコマ収差を増加させることなく、サジタルコマ収差を小さくす
ることができる。条件式(3)の下限値を下回ると、第2のレンズL12の屈折力を保つ
ために、第2のレンズL12の物体側面の曲率半径の絶対値が大きくなりすぎる。これに
より、メリジオナルコマ収差の補正は効果的に行えるが、サジタルコマ収差の補正が困難
となる。
本実施形態の光学系WLにおいて、第1レンズ群G1を構成する、第3のレンズL13
は、正の屈折力を持つことが好ましい。この構成により、歪曲収差、倍率色収差を良好に
補正することができる。
本実施形態の光学系WLにおいて、第1のレンズL11、第2のレンズL12及び第3
のレンズL13は、いずれも単レンズであることが好ましい。この構成により、歪曲収差
、倍率色収差を良好に補正することができる。
本実施形態の光学系WLにおいて、第2レンズ群G2は、正の屈折力を持つことが好ま
しい。この構成により、本光学系WLを、負の屈折力を持つ第1レンズ群G1よりも像側
に正の屈折力を持つレンズ群を配置した、レトロフォーカスタイプにすることで、コンパ
クトでありながら、収差を抑えつつ、広画角化を達成することができる。
本実施形態の光学系WLにおいて、第2レンズ群G2よりも物体側に、開口絞りSを配
置することが好ましい。この構成により、最も物体側のレンズ、すなわち(第1レンズ群
G1の)第1のレンズL11の有効径を小さくしながら、歪曲収差、像面湾曲を良好に補
正することができる。また、カメラ未使用時のレンズ鏡筒が沈胴した状態での鏡筒の厚み
を減らすことが可能であり、カメラの薄型化を達成できる。
本実施形態の光学系WLにおいて、第1のレンズL11は、少なくとも1つの面が非球
面であることが好ましい。軸外光線が光軸からの距離が遠い位置を通過する第1のレンズ
L11に非球面を用いることにより、像面湾曲及び非点収差を良好に補正し、光学系WL
の全系の収差を良好に補正することができる。また、一般的に、最も物体側の第1レンズ
群G1に負の屈折力を持たせる光学系において広画角化を達成しようとすれば、第1レン
ズ群G1が持つ負の屈折力を大きくせざるを得ず、収差を補正することが困難になる。し
かしながら、本実施形態に係る光学系WLのように、第1レンズ群G1を構成する第1の
レンズL11の少なくとも1つの面を非球面とすれば、この問題を解消することができる
。なお、第1レンズ群G1を構成するレンズ枚数を増やすことによって、収差を補正する
ことも可能であるが、第1レンズ群G1のレンズ枚数が増えれば、カメラ未使用時、すな
わち沈胴時におけるレンズ鏡筒の厚みが増すことになり、小型化を達成することができな
い。
以上のような本実施形態に係る光学系WLによれば、カメラ未使用時にレンズ鏡筒がカ
メラ内に沈胴することが可能でありながら、小型で、広画角(画角75°程度)で、大口
径(Fno2.0程度)の光学系を実現することができる。
図7及び図8に、上述の光学系WLを備える光学機器として、デジタルスチルカメラC
AM(光学機器)の構成を示す。このデジタルスチルカメラCAMは、不図示の電源釦を
押すと、撮影レンズ(光学系WL)の不図示のシャッタが開放されて、光学系WLで被写
体(物体)からの光が集光され、像面I(図1参照)に配置された撮像素子C(例えば、
CCDやCMOS等)に結像される。撮像素子Cに結像された被写体像は、デジタルスチ
ルカメラCAMの背後に配置された液晶モニターMに表示される。撮影者は、液晶モニタ
ーMを見ながら被写体像の構図を決めた後、レリーズ釦B1を押し下げて被写体像を撮像
素子Cで撮影し、不図示のメモリーに記録保存する。
カメラCAMには、被写体が暗い場合に補助光を発光する補助光発光部EF、デジタル
スチルカメラCAMの種々の条件設定等に使用するファンクションボタンB2等が配置さ
れている。ここでは、カメラCAMと光学系WLとが一体に成形されたコンパクトタイプ
のカメラを例示したが、光学機器としては、光学系WLを有するレンズ鏡筒とカメラボデ
ィ本体とが着脱可能な一眼レフカメラでも良い。
続いて、図9を参照しながら、上述の光学系WLの製造方法について説明する。まず、
鏡筒内に、光軸に沿って物体側から順に、第1レンズ群G1と、第2レンズ群G2とを組
み込む(ステップST10)。このとき、第1レンズ群G1として、光軸に沿って物体側
から順に、負の屈折力を持つ第1のレンズL11と、物体側面が物体側に凹面を向けた負
の屈折力を持つ第2のレンズL12と、第3のレンズL13とを配置する。また、第3の
レンズL13のd線を基準とするアッベ数をνd3とし、第2のレンズL12のd線を基準
とするアッベ数をνd2としたとき、次の条件式(1)を満足するように、レンズ鏡筒内に
各レンズを組み込む(ステップST20)。
−23.0 < νd3−νd2 < 24.2 …(1)
ここで、本実施形態におけるレンズ配置の一例を挙げると、図1に示すように、第1レ
ンズ群G1として、光軸に沿って物体側から順に、物体側面が物体側に凸面を向けた負メ
ニスカスレンズL11(第1のレンズに該当)と、物体側面が物体側に凹面を向けた負メ
ニスカスレンズL12(第2のレンズに該当)と、両凸形状の正レンズL13(第3のレ
ンズに該当)とを組み込み、全体として負の屈折力を持つようにした。第2レンズ群G2
として、光軸に沿って物体側から順に、両凸形状の正レンズL21と、両凸形状の正レン
ズL22と両凹形状の負レンズL23との接合レンズと、両凹形状の負レンズL24と両
凸形状の正レンズL25との接合レンズとを組み込み、全体として正の屈折力を持つよう
にした。第3レンズ群G3として、両凸形状の正レンズL31を組み込み、全体として正
の屈折力を持つようにした。
以上のような本実施形態に係る光学系の製造方法によれば、カメラ未使用時にレンズ鏡
筒がカメラ内に沈胴することが可能でありながら、小型で、広い画角(画角75°程度)
で、大口径(Fno2.0程度)の光学系を得ることができる。
これより本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1
〜表3を示すが、これらは第1実施例〜第3実施例における各諸元の表である。
なお、各実施例では収差特性の算出対象として、C線(波長656.2730nm)、d線(波長
587.5620nm)、F線(波長486.1330nm)、g線(波長435.8350nm)を選んでいる。
表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光
学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの
光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部
材の材質のd線を基準とするアッベ数を示す。物面は物体面を、(可変)は可変の面間隔
を、曲率半径の「∞」は平面又は開口を、(絞りFS)はフレアカット絞りFSを、(絞り
S)は開口絞りSを、像面は像面Iを示す。空気の屈折率「1.000000」は省略する。光学
面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示
す。
表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次
式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の
位置までの光軸方向に沿った距離を、rは基準球面の曲率半径(近軸曲率半径)を、κは
円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例え
ば、1.234E-05=1.234×10-5である。
X(y)=(y2/r)/{1+(1−κ×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 …(a)
[各種データ]において、βは各合焦位置における撮影倍率、fは光学系全系の焦点距
離、FNOはFナンバー、ωは半画角(最大入射角、単位:°)、Yは像高、TLは光学
系全長、Bfは最も像側に配置されている光学部材の像側の面から近軸像面までの距離、
Bf(空気換算)は最終光学面から近軸像面までの空気換算した際の距離を示す。
[可変面間隔データ]において、βは各合焦位置における撮影倍率、Diは第i面の可
変の面間隔をそれぞれ示す。
[条件式]において、上記の条件式(1)〜(3)に対応する値を示す。
以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、そ
の他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例
縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は
「mm」に限定されることなく、他の適当な単位を用いることが可能である。
ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第1実施例)
第1実施例について、図1、図2及び表1を用いて説明する。第1実施例に係る光学系
WL(WL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、負の屈折力
を持つ第1レンズ群G1と、フレアカット絞りFSと、開口絞りSと、正の屈折力を持つ
第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、フィルタ群FLとから構成
されている。
第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、両凸形状
の正レンズL13とからなる。負レンズL11の像側のレンズ面には、非球面が形成され
ている。
第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21
と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合レンズと、両凹形状
の負レンズL24と両凸形状の正レンズL25との接合レンズとからなる。正レンズL2
5の像側のレンズ面には、非球面が形成されている。
第3レンズ群G3は、両凸形状の正レンズL31からなる。
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)
の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ
等で構成されている。
このような構成の第1実施例に係る光学系WL1において、無限遠物体から倍率β=−
0.036程度の有限距離物体へのフォーカシングは、第3レンズ群G3を光軸に沿って
移動させることによって行うことが望ましい。倍率β=−0.036程度よりもさらに近
距離の有限距離物体へのフォーカシングは、第2レンズ群G2及び第3レンズ群G3を光
軸に沿ってそれぞれ移動させることによって行うことが望ましい。
下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜22が
、図1に示す曲率半径R1〜R22の各光学面に対応している。第1実施例では、第2面
、第16面が非球面である。
(表1)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 3.0675 0.0865 1.5889 61.18
*2 0.6059 0.4621
3 -1.7942 0.0703 1.6477 33.72
4 -2.6821 0.0054
5 2.8738 0.1270 1.9108 35.25
6 -9.2330 0.2432
7(絞りFS) ∞ D7(可変)
8(絞りS) ∞ 0.0054
9 0.9156 0.2795 1.4978 82.57
10 -2.5496 0.0300
11 1.3142 0.1424 1.8160 46.59
12 -3.3908 0.0540 1.6398 34.55
13 0.9273 0.1943
14 -1.1082 0.1395 1.7408 27.74
15 3.2628 0.1170 1.8513 40.10
*16 -1.8675 D16(可変)
17 4.0834 0.1277 1.6180 63.34
18 -6.8503 D18(可変)
19 ∞ 0.0859 1.5168 64.20
20 ∞ 0.0541
21 ∞ 0.0378 1.5168 64.20
22 ∞ BF
像面 ∞

[非球面データ]
第2面
κ=0.7323,A4=-3.7914E-02,A6=-3.4715E-01,A8=7.9334E-01,A10=-2.7509E+00
第16面
κ=1.0000,A4=3.9172E-01,A6=7.6310E-01,A8=-6.1183E-02,A10=4.3105E+00

[各種データ]
β 0.000 -0.036 -0.179
f 1.000 0.983 1.011
FNO 2.057 2.056 2.219
ω 38.624 22.289 4.452
Y 0.783 0.783 0.783
TL 3.792 3.792 3.762
BF 0.038 0.038 0.038
BF(空気換算) 0.812 0.905 1.090

[可変面間隔データ]
β 0.000 -0.036 -0.179
D7 0.559 0.559 0.413
D16 0.293 0.201 0.162
D18 0.639 0.731 0.916
BF 0.038 0.038 0.038

[条件式]
νd2= 33.72
νd3= 35.25
fL1= -1.3011
fL2= -8.9628
R12= 0.6059
R21= -1.7942
条件式(1) νd3−νd2 = -1.53
条件式(2) fL1/fL2 = 0.1452
条件式(3) (−R21)/R12 = 2.889
表1から、第1実施例に係る光学系WL1は、条件式(1)〜(3)を満たすことが分
かる。
図2は、第1実施例に係る光学系WL1の諸収差図(球面収差図、非点収差図、歪曲収
差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦時(β=0.000)、(
b)は中間距離合焦時(β=-0.036)、(c)は至近距離合焦時(β=-0.179)における
諸収差図をそれぞれ示す。
各収差図において、FNOはFナンバー、NAは開口数、Aは各像高に対する半画角(
単位:°)を、H0は物体高をそれぞれ示す。dはd線、gはg線、CはC線、FはF線
における収差をそれぞれ示す。非点収差図において、実線はサジタル像面を、破線はメリ
ジオナル像面を示す。コマ収差図において、実線はメリジオナルコマ収差を、点線はサジ
タルコマ収差を示し、原点より右側の点線はd線に対してメリジオナル方向に発生するサ
ジタルコマ収差、原点より左側の点線はd線に対してサジタル方向に発生するサジタルコ
マ収差をそれぞれ示す。後述する各実施例の収差図においても、本実施例と同様の記号を
用いる。
図2(a)〜(c)に示す各収差図から明らかなように、第1実施例に係る光学系WL
1は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第2実施例)
第2実施例について、図3、図4及び表2を用いて説明する。第2実施例に係る光学系
WL(WL2)は、図3に示すように、光軸に沿って物体側から順に並んだ、負の屈折力
を持つ第1レンズ群G1と、フレアカット絞りFSと、開口絞りSと、正の屈折力を持つ
第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、フィルタ群FLとから構成
されている。
第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、両凸形状
の正レンズL13とからなる。負レンズL11の像側のレンズ面には、非球面が形成され
ている。
第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21
と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合レンズと、両凹形状
の負レンズL24と両凸形状の正レンズL25との接合レンズとからなる。正レンズL2
5の像側のレンズ面には、非球面が形成されている。
第3レンズ群G3は、両凸形状の正レンズL31からなる。
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)
の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ
等で構成されている。
このような構成の第2実施例に係る光学系WL2において、無限遠物体から倍率β=−
0.036程度の有限距離物体へのフォーカシングは、第3レンズ群G3を光軸に沿って
移動させることによって行うことが望ましい。倍率β=−0.036程度よりもさらに近
距離の有限距離物体へのフォーカシングは、第2レンズ群G2及び第3レンズ群G3を光
軸に沿ってそれぞれ移動させることによって行うことが望ましい。
下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜22が
、図3に示す曲率半径R1〜R22の各光学面に対応している。第2実施例では、第2面
、第16面が非球面である。
(表2)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 2.1637 0.0865 1.6516 58.57
*2 0.6042 0.4694
3 -1.7507 0.0703 1.6700 57.35
4 -2.5109 0.0054
5 2.4999 0.1198 1.9108 35.25
6 -52.2956 0.2432
7(絞りFS) ∞ D7(可変)
8(絞りS) ∞ 0.0054
9 0.9370 0.2274 1.4978 82.57
10 -2.6585 0.0300
11 1.2910 0.1576 1.8160 46.59
12 -2.8071 0.0541 1.6398 34.55
13 0.9366 0.2032
14 -1.1194 0.1622 1.7408 27.74
15 3.0615 0.1191 1.8513 40.10
*16 -1.9609 D16(可変)
17 3.3931 0.1295 1.6180 63.34
18 -9.4947 D18(可変)
19 ∞ 0.0859 1.5168 64.20
20 ∞ 0.0541
21 ∞ 0.0378 1.5168 64.20
22 ∞ BF
像面 ∞

[非球面データ]
第2面
κ=0.7466,A4=-2.9535E-02,A6=-3.0881E-01,A8=7.8703E-01,A10=-2.6992E+00
第16面
κ=1.0000,A4=3.8500E-01,A6=6.8014E-01,A8=1.3926E-01,A10=2.9104E+00

[各種データ]
β 0.000 -0.009 -0.036
f 1.000 0.996 0.984
FNO 2.051 0.002 0.009
ω 38.624 87.096 22.281
Y 0.783 0.783 0.783
TL 3.820 3.820 3.820
BF 0.378 0.378 0.378
BF(空気換算) 1.189 1.212 1.276

[可変面間隔データ]
β 0.000 -0.009 -0.036
D7 0.569 0.569 0.569
D16 0.277 0.254 0.190
D18 0.675 0.698 0.762
BF 0.378 0.378 0.378

[条件式]
νd2= 57.35
νd3= 35.25
fL1= -1.3152
fL2= -8.9629
R12= 0.6042
R21= -1.7507
条件式(1) νd3−νd2 = -22.10
条件式(2) fL1/fL2 = 0.1467
条件式(3) (−R21)/R12 = 2.898
表2から、第2実施例に係る光学系WL2は、条件式(1)〜(3)を満たすことが分
かる。
図4は、第2実施例に係る光学系WL2の諸収差図(球面収差図、非点収差図、歪曲収
差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦時(β=0.000)、(
b)は中間距離合焦時(β=-0.009)、(c)は至近距離合焦時(β=-0.036)における
諸収差図をそれぞれ示す。
図4(a)〜(c)に示す各収差図から明らかなように、第2実施例に係る光学系WL
2は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
(第3実施例)
第3実施例について、図5、図6及び表3を用いて説明する。第3実施例に係る光学系
WL(WL3)は、図5に示すように、光軸に沿って物体側から順に並んだ、負の屈折力
を持つ第1レンズ群G1と、フレアカット絞りFSと、開口絞りSと、正の屈折力を持つ
第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、フィルタ群FLとから構成
されている。
第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL11と、物体側に凹面を向けた負メニスカスレンズL12と、物体側に
凸面を向けた正メニスカスレンズL13とからなる。負レンズL11の物体側及び像側の
レンズ面には、非球面が形成されている。
第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL21
と、両凸形状の正レンズL22と両凹形状の負レンズL23との接合レンズと、両凹形状
の負レンズL24と両凸形状の正レンズL25との接合レンズとからなる。正レンズL2
5の像側のレンズ面には、非球面が形成されている。
第3レンズ群G3は、両凸形状の正レンズL31からなる。
フィルタ群FLは、像面Iに配設される固体撮像素子(例えば、CCDやCMOS等)
の限界解像以上の空間周波数をカットするためのローパスフィルタや赤外カットフィルタ
等で構成されている。
このような構成の第3実施例に係る光学系WL3において、無限遠物体から倍率β=−
0.036程度の有限距離物体へのフォーカシングは、第3レンズ群G3を光軸に沿って
移動させることによって行うことが望ましい。倍率β=−0.036程度よりもさらに近
距離の有限距離物体へのフォーカシングは、第2レンズ群G2及び第3レンズ群G3を光
軸に沿ってそれぞれ移動させることによって行うことが望ましい。
下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜22が
、図5に示す曲率半径R1〜R22の各光学面に対応している。第3実施例では、第1面
、第2面及び第16面が非球面である。
(表3)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
*1 2.7352 0.0865 1.5691 71.31
*2 0.5942 0.4818
3 -1.5351 0.0703 1.9459 17.98
4 -1.6290 0.0054
5 2.0037 0.1074 1.7995 42.09
6 6.5923 0.2432
7(絞りFS) ∞ D7(可変)
8(絞りS) ∞ 0.5475
9 0.9412 0.2465 1.4978 82.57
10 -3.0012 0.0300
11 1.2540 0.1514 1.8160 46.59
12 -3.3541 0.0541 1.6259 35.72
13 0.9427 0.2405
14 -1.1378 0.1110 1.7408 27.74
15 1.9537 0.1395 1.8513 40.10
*16 -1.8564 D16(可変)
17 3.3216 0.1464 1.6180 63.34
18 -27.8378 D18(可変)
19 ∞ 0.0859 1.5168 64.20
20 ∞ 0.0541
21 ∞ 0.0378 1.5168 64.20
22 ∞ BF
像面 ∞

[非球面データ]
第1面
κ=1.0000,A4=-4.5412E-02,A6=2.5782E-02,A8=0.0000E+00,A10=0.0000E+00
第2面
κ=0.7000,A4=-6.7660E-02,A6=-3.9725E-01,A8=6.4185E-01,A10=-2.2663E+00
第16面
κ=1.0000,A4=4.0710E-01,A6=8.1699E-01,A8=-3.5427E-01,A10=3.6897E+00

[各種データ]
β 0.000 -0.009 -0.036
f 1.000 0.995 0.981
FNO 2.051 0.002 0.009
ω 38.624 87.094 22.278
Y 0.783 0.783 0.783
TL 3.768 3.768 3.768
BF 0.038 0.038 0.038
BF(空気換算) 0.702 0.732 0.815

[可変面間隔データ]
β 0.000 -0.009 -0.036
D7 0.548 0.548 0.548
D16 0.357 0.327 0.245
D18 0.529 0.559 0.641
BF 0.378 0.378 0.378

[条件式]
νd2= 17.98
νd3= 42.09
fL1= -1.3536
fL2= -44.2169
R12= 0.5942
R21= -1.5351
条件式(1) νd3−νd2 = 24.110
条件式(2) fL1/fL2 = 0.0306
条件式(3) (−R21)/R12 = 2.584
表3から、第3実施例に係る光学系WL3は、条件式(1)〜(3)を満たすことが分
かる。
図6は、第3実施例に係る光学系WL3の諸収差図(球面収差図、非点収差図、歪曲収
差図、コマ収差図及び倍率色収差図)であり、(a)は無限遠合焦時(β=0.000)、(
b)は中間距離合焦時(β=-0.009)、(c)は至近距離合焦時(β=-0.036)における
諸収差図をそれぞれ示す。
図6(a)〜(c)に示す各収差図から明らかなように、第3実施例に係る光学系WL
3は、諸収差が良好に補正され、優れた結像性能を有することが分かる。
本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明が
これに限定されるものではないことは言うまでもない。
WL(WL1〜WL3) 光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
L11 (第1レンズ群を構成する)第1のレンズ
L12 (第1レンズ群を構成する)第2のレンズ
L13 (第1レンズ群を構成する)第3のレンズ
FS フレアカット絞り
S 開口絞り
FL フィルタ群
I 像面
CAM デジタルスチルカメラ(光学機器)

Claims (10)

  1. 光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レンズ群と、第2レンズ群
    とを有し、
    前記第1レンズ群は、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1のレ
    ンズと、物体側面が物体側に凹面を向けた負の屈折力を持つ第2のレンズと、第3のレン
    ズとを有し、
    以下の条件式を満足することを特徴とする光学系。
    −23.0 < νd3−νd2 < 24.2
    但し、
    νd3:前記第3のレンズのd線を基準とするアッベ数、
    νd2:前記第2のレンズのd線を基準とするアッベ数。
  2. 以下の条件式を満足することを特徴とする請求項1に記載の光学系。
    fL1/fL2 < 0.2
    但し、
    fL1:前記第1のレンズの焦点距離、
    fL2:前記第2のレンズの焦点距離。
  3. 以下の条件式を満足することを特徴とする請求項1または2に記載の光学系。
    2.55 < (−R21)/R12
    但し、
    R21:前記第2のレンズの物体側面の曲率半径、
    R12:前記第1のレンズの像側面の曲率半径。
    なお、曲率半径R21、R12については、物体側に凸面を向けている場合を正とする。
  4. 前記第3のレンズは、正の屈折力を持つことを特徴とする請求項1〜3のいずれか一項
    に記載の光学系。
  5. 前記第1のレンズ、前記第2のレンズ及び前記第3のレンズは、いずれも単レンズであ
    ることを特徴とする請求項1〜4のいずれか一項に記載の光学系。
  6. 前記第2レンズ群は、正の屈折力を持つことを特徴とする請求項1〜5のいずれか一項
    に記載の光学系。
  7. 前記第2レンズ群よりも物体側に、開口絞りを配置することを特徴とする請求項1〜6
    のいずれか一項に記載の光学系。
  8. 前記第1のレンズは、少なくとも1つの面が非球面であることを特徴とする請求項1〜
    7のいずれか一項に記載の光学系。
  9. 請求項1〜8のいずれか一項に記載の光学系を搭載することを特徴とする光学機器。
  10. 光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1レンズ群と、第2レンズ群
    とを有する光学系の製造方法であって、
    前記第1レンズ群は、光軸に沿って物体側から順に並んだ、負の屈折力を持つ第1のレ
    ンズと、物体側面が物体側に凹面を向けた負の屈折力を持つ第2のレンズと、第3のレン
    ズとを有し、
    以下の条件式を満足するように、レンズ鏡筒内に各レンズを組み込むことを特徴とする
    光学系の製造方法。
    −23.0 < νd3−νd2 < 24.2
    但し、
    νd3:前記第3のレンズのd線を基準とするアッベ数、
    νd2:前記第2のレンズのd線を基準とするアッベ数。
JP2012050009A 2012-02-28 2012-03-07 光学系、光学機器及び光学系の製造方法 Active JP5903937B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012050009A JP5903937B2 (ja) 2012-03-07 2012-03-07 光学系、光学機器及び光学系の製造方法
PCT/JP2013/001081 WO2013128882A1 (ja) 2012-02-28 2013-02-26 光学系、光学機器及び光学系の製造方法
US14/381,277 US10268026B2 (en) 2012-02-28 2013-02-26 Optical system, optical apparatus and method for manufacturing the optical system
CN201380011464.6A CN104145200B (zh) 2012-02-28 2013-02-26 光学系统、光学装置和制造光学系统的方法
IN7946DEN2014 IN2014DN07946A (ja) 2012-02-28 2014-09-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050009A JP5903937B2 (ja) 2012-03-07 2012-03-07 光学系、光学機器及び光学系の製造方法

Publications (2)

Publication Number Publication Date
JP2013186222A true JP2013186222A (ja) 2013-09-19
JP5903937B2 JP5903937B2 (ja) 2016-04-13

Family

ID=49387714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050009A Active JP5903937B2 (ja) 2012-02-28 2012-03-07 光学系、光学機器及び光学系の製造方法

Country Status (1)

Country Link
JP (1) JP5903937B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111192A (ja) * 2013-12-06 2015-06-18 キヤノン株式会社 光学系及びそれを有する撮像装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200316A (ja) * 1988-02-05 1989-08-11 Olympus Optical Co Ltd 内視鏡
JP2004522187A (ja) * 2001-01-17 2004-07-22 スリーエム イノベイティブ プロパティズ カンパニー 画素化パネル用小型テレセントリック投射レンズ
JP2007025499A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 光学装置
JP2008309991A (ja) * 2007-06-14 2008-12-25 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
WO2011070930A1 (ja) * 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 対物光学系
JP2013130820A (ja) * 2011-12-22 2013-07-04 Olympus Imaging Corp リアフォーカスレンズ系及びそれを備えた撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200316A (ja) * 1988-02-05 1989-08-11 Olympus Optical Co Ltd 内視鏡
JP2004522187A (ja) * 2001-01-17 2004-07-22 スリーエム イノベイティブ プロパティズ カンパニー 画素化パネル用小型テレセントリック投射レンズ
JP2007025499A (ja) * 2005-07-20 2007-02-01 Alps Electric Co Ltd 光学装置
JP2008309991A (ja) * 2007-06-14 2008-12-25 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
WO2011070930A1 (ja) * 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 対物光学系
JP2013130820A (ja) * 2011-12-22 2013-07-04 Olympus Imaging Corp リアフォーカスレンズ系及びそれを備えた撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111192A (ja) * 2013-12-06 2015-06-18 キヤノン株式会社 光学系及びそれを有する撮像装置

Also Published As

Publication number Publication date
JP5903937B2 (ja) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6467769B2 (ja) ズームレンズ及び光学機器
WO2014129149A1 (ja) 光学系、光学機器及び光学系の製造方法
JP5900057B2 (ja) 光学系、光学機器及び光学系の製造方法
WO2015075904A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6467770B2 (ja) ズームレンズ及び光学機器
JP7146451B2 (ja) ズームレンズ及び撮像装置
JP6569748B2 (ja) 光学系、光学機器及び光学系の製造方法
JP2013152373A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP5273172B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP6173975B2 (ja) ズームレンズおよび撮像装置
JP5434447B2 (ja) 広角レンズおよび光学機器
WO2013128882A1 (ja) 光学系、光学機器及び光学系の製造方法
JP2014160106A (ja) 光学系、光学機器及び光学系の製造方法
JP4624744B2 (ja) 広角ズームレンズ
JP5423299B2 (ja) 広角レンズおよび光学機器
JP2017107067A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6236794B2 (ja) 光学系及び光学機器
JP6816370B2 (ja) 光学系及び光学機器
JP6828252B2 (ja) 光学系および光学機器
JP6701831B2 (ja) 光学系及び光学機器
JP5903937B2 (ja) 光学系、光学機器及び光学系の製造方法
JP2018036665A (ja) 光学系、光学機器及び光学系の製造方法
JP6273675B2 (ja) 光学系及び光学機器
JP6236795B2 (ja) 光学系及び光学機器
JP5903932B2 (ja) 光学系、光学機器及び光学系の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5903937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250