JP2013179558A - 弾性表面波素子および弾性表面波装置 - Google Patents

弾性表面波素子および弾性表面波装置 Download PDF

Info

Publication number
JP2013179558A
JP2013179558A JP2012137745A JP2012137745A JP2013179558A JP 2013179558 A JP2013179558 A JP 2013179558A JP 2012137745 A JP2012137745 A JP 2012137745A JP 2012137745 A JP2012137745 A JP 2012137745A JP 2013179558 A JP2013179558 A JP 2013179558A
Authority
JP
Japan
Prior art keywords
electrode
acoustic wave
surface acoustic
saw
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012137745A
Other languages
English (en)
Other versions
JP5882842B2 (ja
Inventor
Masahisa Shimozono
雅久 下園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012137745A priority Critical patent/JP5882842B2/ja
Publication of JP2013179558A publication Critical patent/JP2013179558A/ja
Application granted granted Critical
Publication of JP5882842B2 publication Critical patent/JP5882842B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】 弾性表面波の伝搬損失を低減できる小型の弾性表面波素子を提供する。
【解決手段】 圧電基板と、該圧電基板の上面に位置するIDT電極とを備えた弾性表面波素子である。IDT電極5は、交差幅重み付けが施されており、複数の第1電極指7の先端を結ぶ第1包絡線23が第1電極指1本毎に交互に逆側へ屈曲するジグザグ状であり、複数の第2電極指8の先端を結ぶ第2包絡線24が第2電極指1本毎に交互に逆側へ屈曲するジグザグ状である。
【選択図】図1

Description

本発明は、弾性表面波(Surface Acoustic Wave)素子およびそれを用いた弾性表面波
装置に関する。
圧電基板と、圧電基板の主面上に設けられたIDT(InterDigital Transducer)電極
とを有する弾性表面波素子が知られている。IDT電極は、一対の櫛歯電極を有している。各櫛歯電極は、例えば、弾性表面波(以下「SAW」と略記することがある)の伝搬方向に延びるバスバーと、バスバーからSAWの伝搬方向に直交する方向に延びる複数の電極指とを有しており、一対の櫛歯電極は、複数の電極指が互いに噛み合うように(互いに交差するように)配置される。
また、圧電基板として水晶基板やLiNbO基板等を利用するSAW素子では、そのインピーダンス特性において、高次横モードによるスプリアスが生じることがある。
高次横モードによるスプリアスが抑制されていないSAW素子を用いてSAWフィルタやSAWュプレクサなどのSAW装置を構成すると、通過帯域内にリップルが発生するなどしてSAW装置の電気特性が劣化する。
そこで、高次横モードのスプリアスを抑制するための構成として、IDT電極に交差幅重み付けを施す技術が従来から知られている(例えば、特許文献1参照)。
特開2007−60108号公報
しかしながら、IDT電極に交差幅重み付けを単に施しただけの従来の技術では、SAW素子の小型化に対応しつつ伝搬損失を抑制することが困難である。
本発明の目的は、SAWの伝搬損失を低減できる小型化にも対応した弾性表面波素子および弾性表面波装置を提供することにある。
本発明の一態様に係る弾性表面波素子は、圧電基板と、該圧電基板の上面に位置するIDT電極とを備えた弾性表面波素子であって、前記IDT電極は、前記圧電基板の上面を伝搬する弾性表面波の伝搬方向に直交する方向において互いに対向するように前記圧電基板の上面に位置している第1バスバーおよび第2バスバーと、前記第1バスバーから前記第2バスバーに向かって延び、前記伝搬方向に配列された複数の第1電極指と、前記第2バスバーから前記第1バスバーに向かって延び、前記第1電極指と交互になるように前記伝搬方向に配列された複数の第2電極指と、前記第1バスバーから前記第2バスバーに向かって延び、前記伝搬方向に配列された、先端が前記複数の第2電極指の先端と第1ギャップを介して対向している複数の第1ダミー電極指と、前記第2バスバーから前記第1バスバーに向かって延び、前記伝搬方向に配列された、先端が前記複数の第1電極指の先端と第2ギャップを介して対向する複数の第2ダミー電極指とを有し、前記IDT電極は、交差幅重み付けが施されており、前記複数の第1電極指の先端を結ぶ第1包絡線が前記第
1電極指1本毎に交互に逆側へ屈曲するジグザグ状であり、前記複数の第2電極指の先端を結ぶ第2包絡線が前記第2電極指1本毎に交互に逆側へ屈曲するジグザグ状である。
また、本発明の一態様に係る弾性表面波装置は、上記の弾性表面波素子と、該弾性表面波素子が実装された回路基板とを備える。
上記の構成によれば、IDT電極に交差幅重み付けが施されており、複数の第1電極指の先端を結ぶ第1包絡線が第1電極指1本毎に交互に逆側へ屈曲するジグザグ状であり、複数の第2電極指の先端を結ぶ第2包絡線が第2電極指1本毎に交互に逆側へ屈曲するジグザグ状であることから、弾性表面波素子の全体構造を小さくしつつ弾性表面波の伝搬損失を低減することができる。
本発明の実施形態に係るSAW素子の平面図である。 図1の領域IIの拡大図である。 図2のIII−III線における断面図である。 (a)〜(e)はSAW素子の製造方法を説明する、図3に対応する断面図である。 図1のSAW素子を適用したSAW装置の例を示す断面図である。 (a)は比較例のSAW素子の平面図であり、(b)は(a)の領域VIbの拡大図である。 図7(a)および図7(b)はSAW素子の伝搬損失の評価方法を説明する図である。 実施例の伝搬損失の評価結果を示すグラフである。 実施例のスプリアス抑制の評価結果を示すグラフである。 (a)は比較例のSAW素子を単純化した平面図であり、(b)は実施例のSAW素子を単純化した平面図である。
以下、本発明の実施形態に係るSAW素子およびSAW装置について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率などは現実のものとは必ずしも一致していない。
(SAW素子の構成および製造方法)
図1は本発明の実施形態に係るSAW素子1の要部の平面図である。図2は図1の領域IIの拡大図である。また、図3は図2のIII−III線における断面図である。
なお、SAW素子1は、いずれの方向が上方または下方とされてもよいものであるが、以下では、便宜的に直交座標系xyzを定義するとともに、z方向の正側を上方として、上面、下面などの用語を用いるものとする。
SAW素子1は、圧電基板3と、圧電基板3の上面3aに設けられたIDT電極5および反射器6と、IDT電極5および反射器6上に設けられた質量付加膜9(図3)と、圧電基板3の上面3aを質量付加膜9の上から覆う保護層11(図3)とを有している。なお、SAW素子1は、この他にも、IDT電極5に信号の入出力を行うための配線やパッドなどを有していている(図示せず)。
圧電基板3は、例えば、タンタル酸リチウム(LiTaO)単結晶、ニオブ酸リチウム(LiNbO)単結晶などの圧電性を有する単結晶の基板によって構成されている。
より好適には、圧電基板3は、128°±10°Y−XカットのLiNbO基板によって構成されている。圧電基板3の平面形状および各種寸法は適宜に設定されてよい。一例として、圧電基板3の厚み(z方向の寸法)は、0.2〜0.5mmである。
IDT電極5は、圧電基板3を伝搬するSAWの伝搬方向(x方向)に延びている第1バスバー21と、同じく伝搬方向に延びて第1バスバー21に対向して配置された第2バスバー22と、第1バスバー21から第2バスバー22に向かって延びている複数の第1電極指7と、第2バスバー22から第1バスバー21に向かって延びている複数の第2電極指8とを有している。以下では、「第1」、「第2」などが付された構成部材を一まとめにして称するときは、「第1」、「第2」を省略して、例えば「第1バスバー」および「第2バスバー」を単に「バスバー」と称することがある。
第1バスバー21および第2バスバー22は、概ね一定の幅で延びて長尺状に形成されている。この第1バスバー21および第2バスバー22は、SAWの伝搬方向に平行に配置され、SAWの伝搬方向に直交する方向において互いに対向している。
第1電極指7と第2電極指8とは、基本的にはSAWの伝搬方向に沿って交互に配列されている。すなわち、第1電極指7と第2電極指8とは隣接している。
なお、第1バスバー21と第1電極指7とを一体的に見ると櫛歯状の電極をなしており、同様に第2バスバー22と第2電極指8とを一体的に見ると櫛歯状の電極をなしている。IDT電極5は、これらの櫛歯状電極同士が噛み合うように配置された電極によって構成されていると捉えることもできる。
複数の第1、第2電極指7、8は、SAWの伝搬方向に概ね一定の間隔で配列されている。この間隔は、例えば、第1電極指7とこれに隣接する第2電極指8との中心間距離p(図3)によって規定される。中心間距離pは、例えば、共振させたい周波数におけるSAWの波長λの半波長と同等となるように設けられている。波長λ(2p)は、例えば、1.5〜6μmである。各電極指の幅w1(図3)は、SAW素子1に要求される電気特性などに応じて適宜に設定され、例えば、中心間距離pに対して0.4p〜0.6pである。
第1、第2電極指7、8の長さは、SAWの伝搬方向において変化している。したがって第1電極指7のうち隣接する第2電極指8とx方向において重なる部分の長さ(SAWの伝搬方向に直交する方向(y方向)の長さ)は、SAWの伝搬方向において変化している。同様に、第2電極指8のうち隣接する第1電極指7とx方向において重なる部分の長さは、SAWの伝搬方向において変化している。すなわち、IDT電極5は、電極指の交差幅をSAWの伝搬方向に沿って変化させた交差幅重み付けが施されている。このような交差幅重み付けが施されることにより、いわゆる高次横モードのスプリアスの発生が抑制される。
またIDT電極5は、隣接する第1電極指7の間において第1バスバー21からSAWの伝搬方向に直交する方向(y方向)に延びる複数の第1ダミー電極指13を有するとともに、複数の第2電極指8の間において第2バスバー22からy方向に延びる複数の第2ダミー電極指14を有している。
複数の第1、第2ダミー電極指13、14は、複数の第1、第2電極指7、8と共に概ね一定の間隔pで配列されている。
第1ダミー電極指13の先端は、第2電極指14の先端と第1ギャップG1を介して対
向している。同様に、第2ダミー電極指14の先端は、第2電極指8の先端と第2ギャップG2を介して対向している。
第1、第2ダミー電極指13、14の先端の位置は、第1、第2電極指7、8の交差幅がSAWの伝搬方向において変化していることに対応して、SAWの伝搬方向において変化している。第1、第2ダミー電極指13、14の各種寸法は適宜に設定されてよい。例えば、第1、第2ダミー電極指13、14の幅は、第1、第2電極指7、8の幅w1と同等であり、また、第1、第2ギャップG1、G2の大きさは、λ/8からλ/2程度である。
SAW素子1では、IDT電極5に施す交差幅重み付けの方法に工夫がなされている。具体的には、図1において破線で示すように、隣接する第1電極指7の先端同士を直線で順に結んで形成される第1包絡線23および隣接する第2電極指8の先端同士を直線で順に結んで形成される第2包絡線34がジグザグ状となるように交差幅重み付けが施されている。別の見方をすれば、第1ギャップG1の中心位置、第2ギャップの中心位置のそれぞれが第1電極指7毎、第2電極指8毎にジグザグ状となるように交差幅重み付けが施されている。
ジグザグ状とされた第1包絡線23は、連続して配列された3本の第1電極指7を見たときに、一方端の第1電極指7の先端から中央の第1電極指7の先端に向かう方向が右方向であれば、中央の第1電極指7の先端から他方端の第1電極指7の先端に向かう方向は左方向になるように、換言すれば、電極指1本毎に交互に逆側へ屈曲するように折れ曲がっている。第2包絡線24も同様の折れ曲がり方をしている。
さらに、SAW素子1におけるIDT電極5は、図1において一点鎖線で示すように、複数の第1電極指7の先端を1本置きに結んで形成される2本の第3、第4包絡線25、26が互いに平行であり、かつ第2電極指8の先端を1本置きに結んで形成される2本の第4、第5包絡線27、28が互いに平行であるように交差幅重み付けが施されている。
SAW素子1では、SAWの伝搬方向に沿った方向(x方向)のIDT電極5の中心から両端に向かうにつれて第1包絡線23と第2包絡線24とが互いに近づくように交差幅重み付けが施されており、第1包絡線23と第2包絡線24とで形成される図形は概ねひし形となる。したがって、SAW素子1ではIDT電極5の中央における交差幅が最大となり、IDT電極5の端における交差幅が最小となる。IDT電極5の中央における最大交差幅は、例えば、20λ〜50λであり、IDT電極5の端における最小交差幅は、例えば、最大値交差幅の20%程度であり4λ〜10λである。
また、第1、第2ダミー電極指13、14の長さも第1、第2電極指7、8の長さに応じて異なる長さにされている。第1、第2ダミー電極指13、14の長さを第1、第2電極指7、8の長さに応じて異なる長さにすることによって、SAW素子1では、複数の第1、第2ギャップG1、G2の大きさがそれぞれ一定となっている。
SAW素子1では、図2に示すように、隣接する第1ギャップG1同士、隣接する第2ギャップG2同士がSAWの伝搬方向(x方向)において重ならないように、第1、第2電極指7、8、第1、第2ダミー電極指13、14のそれぞれの長さを変えている。
IDT電極5に対して、図1、図2で示したような交差幅重み付けを施すことによって、SAW素子1の全体構造を大型化することなく、SAWの伝搬損失を低減することができる。これを図6の比較例のSAW素子500を参照しつつ説明する。
図6(a)は、比較例のSAW素子500の平面図であり、図6(b)は図6(a)の領域VIbの拡大平面図である。SAW素子500は、上述した本発明の実施形態に係るSAW素子1において、第1、第2包絡線23、24が直線となるようにIDT電極5に交差幅重み付けを施したものであり、交差幅重み付けの構成以外はSAW素子1と同じ構成である。
SAW素子500では、IDT電極5に交差幅重み付けを施した際に、図6(b)において白抜き矢印で示すように、SAWの伝搬方向において隣接するギャップ同士に重なる部分が生じやすい。このようなギャップG同士の重なりがあると、この部分においてSAWの伝搬損失が大きくなる。これは、隣接するギャップGが重なっている部分では電極指の周期構造が崩れ、この部分においてSAWの一部がバルク波となって圧電基板3の内部に漏れていくためと考えられる。
そこで、このようなギャップGの重なり領域を少なくする方法として、SAWの伝搬方向と隣接する第1電極指7(または第2電極指8)の先端同士を結ぶ線とのなす角度θ(図6(b)参照。以下、アポダイズ角度θともいう。)を大きくすることが考えられる。しかしながら、IDT電極の容量を変えずにアポダイズ角度θを大きくしようとすると、IDT電極5全体のy方向の幅を大きくすることになるため、IDT電極5が大きくなり、ひいてはSAW素子500が大型化する。すなわち、SAW素子500のような交差幅重み付けの構成では、伝搬損失を小さくするためにアポダイズ角度θを大きくするとSAW素子の大型化を招く。
これに対し、本発明の実施形態に係るSAW素子1では、第1、第2包絡線23、24がジグザグ状となるようにIDT電極5に交差幅重み付けを施しているため、局所的にはアポダイズ角度θを大きくしてギャップGの変位を大きくしつつ、全体として見たときには緩やかな角度で交差幅重み付けが施されている状態とすることができる。このような構造によって、IDT電極5を大きくすることなく隣接するギャップG同士の重なり部分を減らすことができるため、伝搬損失を抑制しながらSAW素子を小型化することができる。
また、ギャップGの重なり領域を少なくする方法としては、アポダイズ角度θを変えずにギャップGを小さくするという方法も考えられる。しかしながら、ギャップGを小さくすると電極指とダミー電極指とが近づくことになるため、両者の間で短絡が発生しやすくなる。したがって、ギャップGは必要以上に小さくすることができず、ギャップGを同じ大きさにしたSAW素子1とSAW素子500とを比較した場合は、SAW素子1の方がSAW素子500よりもサイズの小さいIDT電極5にしながら隣接するギャップG間の重なりをなくすことができる。
ここで、図2に示すように、第2ギャップG2(または第1ギャップG1)の大きさをg、第3包絡線25と第4包絡線26との距離(または第5包絡線27と第6包絡線28との距離)をdとしたときに、IDT電極5には少なくともd≧λtanθを満たすように交差幅重み付けが施されている。隣接する第2ギャップG2同士が重なっているとすると、dがλtanθから大きくなるにつれて隣接する第2ギャップG2の重なりが減少していきd=(g+λtanθ)を満たした時点で隣接する第2ギャップGの重なりがなくなる。よって、IDT電極5には、d≧(g+λtanθ)を満たすように交差幅重み付けを施すことがより好ましい。
IDT電極5は、例えば、金属によって形成されている。金属は、例えば、AlまたはAlを主成分とする合金(Al合金)によって形成されている。Al合金は、例えば、Al−Cu合金である。なお、IDT電極5は、複数の金属層から構成されてもよい。ID
T電極5の各種寸法は、SAW素子1に要求される電気特性などに応じて適宜に設定される。一例として、IDT電極5の厚みe(図3)は、100〜300nmである。
IDT電極5は、圧電基板3の上面3aに直接配置されていてもよいし、別の部材を介して圧電基板3の上面3aに配置されていてもよい。別の部材は、例えば、Ti、Crあるいはこれらを積層したものなどである。このようにIDT電極5を別の部材を介して圧電基板3の上面3aに配置する場合は、別の部材の厚みはIDT電極5の電気特性に殆ど影響を与えない程度の厚み(例えば、Tiの場合はIDT電極5の厚みの5%の厚み)に設定される。
なお、図1には圧電基板3に1個のIDT電極5を設けた例を示しているが、複数のIDT電極5が直列接続や並列接続などの方式で接続されたラダー型SAWフィルタが構成されてもよいし、複数のIDT電極5をX方向に沿って配置した2重モードSAW共振器フィルタなどが構成されてよい。
IDT電極5によって圧電基板3に電圧が印加されると、圧電基板3の上面3a付近において上面3aに沿ってx方向に伝搬するSAWが誘起される。そして、第1電極指7および第2電極指8の中心間距離pを半波長とする定在波が形成される。定在波は、当該定在波と同一周波数の電気信号に変換され、第1電極指7および第2電極指8によって取り出される。このようにして、SAW素子1は、共振子もしくはフィルタとして機能する。
反射器6は、IDT電極5の第1電極指7と第2電極指8との中心間距離pと概ね同等の間隔で配置された複数の電極指を有する。反射器6は、例えば、IDT電極5と同一の材料によって形成されるとともに、IDT電極5と同等の厚みに形成されている。
IDT電極5を覆う保護層11は、例えば、圧電基板3の上面3aの概ね全面に亘って設けられており、質量付加膜9が設けられたIDT電極5および反射器6を覆うとともに、上面3aのうちIDT電極5および反射器6から露出する部分を覆っている。保護層11の上面3aからの厚みT(図2)は、IDT電極5および反射器6の厚みeよりも大きく設定されている。例えば、厚みTは、厚みeよりも100nm以上厚く、200〜700nmである。また厚みTは、別の観点では、SAWの波長λに対して例えば0.2λ〜0.5λである。
保護層11は、絶縁性を有する材料からなる。好適には、保護層11は、温度が上昇すると弾性表面波の伝搬速度が速くなるSiOなどの材料によって形成されており、これによってSAW素子1の温度の変化による電気特性の変化を小さく抑えることができる。具体的には、以下のとおりである。
圧電基板3の温度が上昇すると、圧電基板3におけるSAWの伝搬速度が遅くなり、また、圧電基板3の熱膨張によって中心間距離pが大きくなる。その結果、共振周波数が低くなり、所望の特性が得られないおそれがある。しかし、保護層11が設けられていると、弾性表面波は、圧電基板3だけでなく、保護層11においても伝搬する。そして、保護層11は、温度が上昇すると弾性表面波の伝搬速度が速くなる材料(SiO)によって形成されていることから、圧電基板3および保護層11を伝搬するSAW全体としては、温度上昇による速度の変化が抑制されることになる。なお、保護層11は、IDT電極5を腐食などから保護することにも寄与する。
保護層11の表面は、大きな凹凸がないようにしておくことが望ましい。圧電基板3上を伝搬するSAWの伝搬速度は保護層11の表面の凹凸に影響を受けて変化するため、保護層11の表面に大きな凹凸が存在すると、製造された各SAW素子1の共振周波数に大
きなばらつきが生じることとなる。したがって、保護層11の表面を平坦にしておけば、各弾性表面波素子の共振周波数が安定化する。具体的には、保護層11の表面の平坦度を、圧電基板3上を伝搬するSAWの波長の1%以下とすることが望ましい。
質量付加膜9は、IDT電極5および反射器6の電気特性を向上させるためのものである。質量付加膜9は、例えば、IDT電極5および反射器6の上面の全面に亘って設けられている。質量付加膜9は、電極指の長手方向(y方向)に直交する断面形状が、例えば、矩形とされている。ただし、質量付加膜9の断面形状は、台形やドーム状とされてもよい。質量付加膜9の厚さt(図3)は、質量付加膜9が保護層11を露出しない範囲で適宜に設定されてよい。例えば、質量付加膜9の厚さは、SAWの波長λに対して0.01λ〜0.4λである。
質量付加膜9を構成する材料は、IDT電極5、反射器6、および保護層11を構成する材料とは音響インピーダンスが異なる材料である。音響インピーダンスの相違は、ある程度以上であることが好ましく、例えば、15MRayl以上、より好ましくは20MRayl以上であることが好ましい。
このような材料としては、例えば、IDT電極5がAl(音響インピーダンス:13.5MRayl)により構成され、保護層11がSiO(12.2MRayl)により構成されている場合、WC(102.5MRayl)、TiN(56.0MRayl)、TaSiO(40.6MRayl)、Ta(33.8MRayl)、WSi(67.4MRayl)が挙げられる。
IDT電極5がAlにより構成され、保護層11がSiOにより構成されている場合においては、これらの音響インピーダンスが近いことから、電極指と電極指の非配置領域との境界が音響的に曖昧になり、当該境界における反射係数が低下する。その結果、SAWの反射波が十分に得られず、所望の特性が得られないおそれがある。しかし、IDT電極5および保護層11の材料とは音響インピーダンスが異なる材料により形成された質量付加膜9がIDT電極5の上面に設けられることにより、電極指と電極指の非配置領域との境界における反射係数が高くなり、所望の特性が得られやすくなる。
なお、質量付加膜9の材料は、IDT電極5、反射器6、および保護層11の材料よりも弾性表面波の伝搬速度が遅いことが好ましい。伝搬速度が遅いことによって、振動分布が質量付加膜9に集中しやすく、電極指と電極指の非配置位置との境界における反射係数が実効的に高くなる。
このような材料としては、例えば、IDT電極5がAl(伝搬速度:5020m/s)により構成され、保護層11がSiO(5560m/s)により構成されている場合、TaSiO(4438m/s)、Ta(4352m/s)、WSi(4465m/s)が挙げられる。なお、IDT電極5および保護層11の材料よりも弾性表面波の伝搬速度が遅いという条件を満たす材料としては、IDT電極5および保護層11の材料より音響インピーダンスが小さい材料よりも、音響インピーダンスが大きい材料の方が多く知られているため、材料選択の自由度が高い。
図4(a)〜図4(e)は、SAW素子1の製造方法の概要を説明する、製造工程毎の図2に対応する断面図である。製造工程は、図4(a)から図4(e)まで順に進んでいく。なお、各種の層は、プロセスの進行に伴って形状などが変化するが、変化の前後で共通の符号を用いることがあるものとする。
図4(a)に示すように、まず、圧電基板3の上面3a上には、IDT電極5および反
射器6となる導電層15、ならびに質量付加膜9となる付加層17が形成される。具体的には、まず、スパッタリング法、蒸着法またはCVD(Chemical Vapor Deposition:化
学的気相堆積)法などの薄膜形成法によって、上面3a上に導電層15が形成される。次に、同様の薄膜形成法によって、付加層17が形成される。
付加層17が形成されると、図3(b)に示すように、付加層17および導電層15をエッチングするためのマスクとしてのレジスト層19が形成される。具体的には、ネガ型もしくはポジ型の感光性樹脂の薄膜が適宜な薄膜形成法によって形成され、フォトリソグラフィー法などによってIDT電極5および反射器6などの非配置位置において薄膜の一部が除去される。
次に、図4(c)に示すように、RIE(Reactive Ion Etching:反応性イオンエッチング)などの適宜なエッチング法によって、付加層17および導電層15のエッチングを行う。これによって、質量付加膜9が設けられたIDT電極5および反射器6が形成される。その後、図4(d)に示すように、適宜な薬液を用いることによって、レジスト層19は除去される。
そして、図4(e)に示すように、スパッタリング法もしくはCVD法などの適宜な薄膜形成法によって保護層11となる薄膜が形成される。この時点においては、保護層11となる薄膜の表面には、IDT電極5などの厚みに起因して凹凸が形成されている。そして、必要に応じて化学機械研磨などによって表面が平坦化され、図3に示すように、保護層11が形成される。なお、保護層11は平坦化の前もしくは後において、後述するパッド16などを露出させるために、フォトリソグラフィー法などによって一部が除去されてもよい。
(SAW装置の構成)
図5は、上述したSAW素子1を用いて作製したSAW装置51の例を示す断面図である。
SAW装置51は、例えば、フィルタもしくはデュプレクサを構成している。SAW装置51は、SAW素子31と、SAW素子31が実装される回路基板53、SAW素子31を覆う封止部材59とを有している。
SAW素子31は、例えば、いわゆるウェハレベルパッケージのSAW素子として構成されている。SAW素子31は、上述したSAW素子1と、圧電基板3のSAW素子1側を覆うカバー18と、カバー18を貫通する端子20と、圧電基板3のSAW素子1とは反対側を覆う裏面層12とを有している。
カバー18は、樹脂などによって構成されており、SAWの伝搬を容易化するための振動空間18aをIDT電極5および反射器6の上方(z方向の正側)に構成している。圧電基板3の上面3a上には、IDT電極5と接続された配線10と、配線10に接続されたパッド16とが形成されている。端子20は、パッド16上において形成され、IDT電極5と電気的に接続されている。裏面部12は、例えば、特に図示しないが、温度変化などによって圧電基板3表面にチャージされた電荷を放電するための裏面電極と当該裏面電極を覆う保護層とを有している。
回路基板53は、例えば、いわゆるリジッド式のプリント配線基板によって構成されている。回路基板53の実装面53aには、実装用パッド55が形成されている。
SAW素子31は、カバー18側を実装面53aに対向させて配置される。そして、端
子20と実装用パッド55は、半田57によって接着される。その後、SAW素子31は封止部材59によって封止される。封止部材59は、例えば、樹脂からなる。
以上の実施形態によれば、SAW素子1は、IDT電極5に交差幅重み付けが施されており、この交差幅重み付けが、複数の第1電極指7の先端を結ぶ第1包絡線23が第1電極指1本毎に交互に逆側へ屈曲するジグザグ状であり、複数の第2電極指8の先端を結ぶ第2包絡線24が第2電極指1本毎に交互に逆側へ屈曲するジグザグ状であるように施されていることから、SAW素子1の全体構造を小さくしつつSAWの伝搬損失を低減することができる。またこのようなSAW素子1を用いてSAW装置51を構成することによって、電気特性に優れた小型のSAW装置51とすることができる。
図1に示すSAW素子1を作製し、電気特性を調べてSAWの伝搬損失を評価するとともにスプリアスの抑制効果についても評価した。また、図1に示すSAW素子1と図6に示すSAW素子500とで特性を同等にした場合の共振子のサイズの比較を行った。実施例におけるSAW素子1の作製条件を表1に示す。
Figure 2013179558
(SAWの伝搬損失の評価方法)
図7(a)および図7(b)は、SAWの伝搬損失の評価方法を説明する図である。
図7(a)は、共振子としてのSAW素子1のインピーダンス特性を示す図である。同図において、横軸は、周波数f(MHz)を示し、縦軸はインピーダンスの絶対値|Z|(Ω)およびインピーダンスZの位相θ(deg.)を示している。実線Lzはインピーダンスの絶対値|Z|の周波数変化を示し、実線Lθはインピーダンスの位相θの周波数変化を示している。
インピーダンス特性の図においては、実線Lzにより示されるように、インピーダンスの絶対値|Z|が極小となる共振点と、インピーダンスの絶対値|Z|が極大となる反共振点とが現れる。また、共振点と反共振点との間においては、インピーダンスの位相θが
最大位相θmaxとなる。
図7(b)は、最大位相θmaxとSAWの伝搬損失LSとの関係を示す図である。同図において、横軸は伝搬損失LS(dB/μm)を示し、縦軸は最大位相θmaxを示している。
この図に示されるように、共振子の損失が小さいほど、最大位相θmaxは大きくなる。従って、最大位相θmaxを調べることにより、共振子の損失を評価することができる。なお、損失0の理想状態では、最大位相θmaxは90(deg.)となる。
図7(a)に示されるように、位相θは、最大位相θmax付近において周波数fの変化に対して緩やかに変化している一方で、絶対値|Z|は、共振点および反共振点の付近において周波数fの変化に対して急激に変化している。従って、最大位相θmaxは、絶対値|Z|よりも安定して測定可能であり、最大位相θmaxに基づく損失の評価は、絶対値|Z|に基づく損失の評価よりも誤差が小さいものと期待される。
(SAWの伝搬損失の評価結果)
図8は、図2に示した2つの包絡線間の距離dを変えていったときのSAW素子の伝搬損失の評価結果を示すグラフである。なお、グラフ中の一点鎖線は、隣接するギャップG同士の伝搬方向における重なりがなくなるときであり、このときのdの値は0.59μmである。
図8のグラフに示すように、2つの平行な包絡線間の距離dを大きくするほどSAWの伝搬損失を改善できることを確認できた。
(スプリアス抑制効果の評価結果)
図9にスプリアス抑制効果の評価結果を示す。図9のグラフは、共振子としてのSAW素子のインピーダンスZの位相θについて、最大位相θmax付近を拡大して示すものである。評価は、交差幅重み付けが施されていないノーマルタイプの電極構造(電極指の交差領域が長方形状)のSAW素子、図6に示す電極構造からなる比較例のSAW素子、図1に示す電極構造からなる実施例のSAW素子の3種類のSAW素子を比較することにより行った。なお、図9において、細線はノーマルタイプのSAW素子、破線は比較例のSAW素子、二点鎖線は実施例のSAW素子についての結果である。
まず交差幅重み付けが施されていないノーマルタイプのSAW素子のインピーダンス特性に着目すると、高次モードのスプリアスが発生していることがわかる。次に、比較例および実施例のSAW素子に着目すると、ノーマルタイプのSAW素子で発生していたスプリアスがいずれも抑制されていることがわかる。これは交差幅重み付けが施されていることによる効果である。
また、比較例のSAW素子と実施例のSAW素子とを比較すると、実施例のSAW素子は比較例のSAW素子よりも最大位相θmaxが大きくなっている。すなわち、実施例のSAW素子は、比較例のSAW素子よりも伝搬損失が改善されていることがわかる。
これらのことから、実施例のSAW素子は、スプリアス抑制効果を維持しつつ、伝搬損失を改善できることを確認できた。
(SAW素子の小型化の評価結果)
図1に示す電極構造からなる実施例のSAW素子と図6に示す電極構造からなる比較例のSAW素子とで電気的な特性が同等になるようにした状態におけるサイズの比較を行っ
た。具体的には、実施例のSAW素子と比較例のSAW素子とでIDT電極に形成される容量を等しくした場合にSAW素子を形成するのに必要となる領域の面積(占有面積)を比較した。
図10を用いて比較例のSAW素子と実施例のSAW素子との占有面積の比較結果について説明する。図10において、(a)は図6の比較例のSAW素子を単純化した平面図であり、(b)は図1の実施例のSAW素子を単純化した平面図である。同図において点線で囲んだ領域がSAW素子を形成するのに必要となる領域であり、比較例や実施例のように電極指の交差領域が概略菱形になるように交差幅重み付けを施した場合は、弾性表面波の伝搬方向におけるIDT電極の長さを長辺とし、電極指の最大交差幅を短辺とする長方形の領域となる。
図10において、塗り潰しをした領域が電極指の交差領域であり、基本的にはこの領域の面積(有効面積)によってIDT電極の容量が決定される。SAW素子の主要な特性はこの容量によって決定されることから、比較例と実施例のSAW素子のサイズの比較は、この容量を等しくしたもので、すなわち、有効面積を等しくした状態の下で行った。また、比較例のSAW素子および実施例のSAW素子のいずれも、隣接する第1ギャップG1同士は、弾性表面波の伝搬方向に見たときにちょうど重なりがなくなるように互いにずらした位置とし、隣接する第2ギャップG2同士についても、弾性表面波の伝搬方向に見たときにちょうど重なりがなくなるように互いにずらした位置とした。
このような条件の下で、比較例のSAW素子と実施例のSAW素子との占有面積を比較した結果、実施例のSAW素子は、比較例のSAW素子に対して占有面積が0.81倍であった。この結果から、電気的な特性が同等の場合は、実施例のSAW素子によれば占有面積を約20%小さくできることを確認できた。
なお、別の観点からすれば、占有面積を同等にした場合は、実施例のSAW素子の方が比較例のSAW素子よりも有効面積を大きくすることができるといえる。占有面積が同じ場合は、有効面積が大きい方が耐電力性が向上することが期待されるため、同じサイズのものであれば、実施例のSAW素子は耐電力性が向上すると考えられる。
本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。
交差幅重み付けの施し方としては、上述のように交差領域全体の外周が概ね菱形となるものの他、菱形の辺の部分がコサインカーブ状になったもの、複数の菱形が連結された状態のものなど種々の形態が可能である。
圧電基板3は、上述した128°±10°Y−XカットのLiNbO基板の他にも、例えば、38.7°±Y−XカットのLiTaOなどを用いることができる。IDT電
極5の材料は、AlおよびAlを主成分とする合金に限定されず、例えば、Cu、Ag、Au、Pt、W、Ta、Mo、Ni、Co、Cr、Fe、Mn、Zn、Tiであってもよい。また保護層の材料は、SiOに限定されず、例えば、SiO以外の酸化珪素であてもよい。
1・・・SAW素子(弾性表面波素子)
3・・・圧電基板
5・・・IDT電極
6・・・反射器
7・・・第1電極指
8・・・第2電極指
9・・・質量付加膜
13・・・第1ダミー電極指
14・・・第2ダミー電極指
21・・・第1バスバー
22・・・第2バスバー
23・・・第1包絡線
24・・・第2包絡線

Claims (4)

  1. 圧電基板と、該圧電基板の上面に位置するIDT電極とを備えた弾性表面波素子であって、
    前記IDT電極は、
    前記圧電基板の上面を伝搬する弾性表面波の伝搬方向に直交する方向において互いに対向するように前記圧電基板の上面に位置している第1バスバーおよび第2バスバーと、
    前記第1バスバーから前記第2バスバーに向かって延び、前記伝搬方向に配列された複数の第1電極指と、
    前記第2バスバーから前記第1バスバーに向かって延び、前記第1電極指と交互になるように前記伝搬方向に配列された複数の第2電極指と、
    前記第1バスバーから前記第2バスバーに向かって延び、前記伝搬方向に配列された、先端が前記複数の第2電極指の先端と第1ギャップを介して対向している複数の第1ダミー電極指と、
    前記第2バスバーから前記第1バスバーに向かって延び、前記伝搬方向に配列された、先端が前記複数の第1電極指の先端と第2ギャップを介して対向する複数の第2ダミー電極指とを有し、
    前記IDT電極は、交差幅重み付けが施されており、前記複数の第1電極指の先端を結ぶ第1包絡線が前記第1電極指1本毎に交互に逆側へ屈曲するジグザグ状であり、前記複数の第2電極指の先端を結ぶ第2包絡線が前記第2電極指1本毎に交互に逆側へ屈曲するジグザグ状である弾性表面波素子。
  2. 前記IDT電極は、前記弾性表面波の伝搬方向に沿った方向の中心から端に向かうにつれて前記第1包絡線と前記第2包絡線とが互いに近づくように交差幅重み付けが施されている請求項1に記載の弾性表面波素子。
  3. 隣接する前記第1ギャップ同士は、前記弾性表面波の伝搬方向において互いに重ならない位置にあり、
    隣接する前記第2ギャップ同士は、前記弾性表面波の伝搬方向において互いに重ならない位置にある請求項1または2に記載の弾性表面波素子。
  4. 請求項1乃至3のいずれか1項に記載の弾性表面波素子と、
    該弾性表面波素子が実装された回路基板とを備える弾性表面波装置。
JP2012137745A 2012-01-31 2012-06-19 弾性表面波素子および弾性表面波装置 Active JP5882842B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137745A JP5882842B2 (ja) 2012-01-31 2012-06-19 弾性表面波素子および弾性表面波装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012017957 2012-01-31
JP2012017957 2012-01-31
JP2012137745A JP5882842B2 (ja) 2012-01-31 2012-06-19 弾性表面波素子および弾性表面波装置

Publications (2)

Publication Number Publication Date
JP2013179558A true JP2013179558A (ja) 2013-09-09
JP5882842B2 JP5882842B2 (ja) 2016-03-09

Family

ID=49270812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137745A Active JP5882842B2 (ja) 2012-01-31 2012-06-19 弾性表面波素子および弾性表面波装置

Country Status (1)

Country Link
JP (1) JP5882842B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170610A (ja) * 1988-12-23 1990-07-02 Hitachi Ltd 弾性表面波装置
JP2004537235A (ja) * 2001-07-24 2004-12-09 エプコス アクチエンゲゼルシャフト 障害励振の抑圧を改善した表面波トランスデューサ
JP2006157307A (ja) * 2004-11-26 2006-06-15 Kyocera Corp 弾性表面波装置
JP2007019710A (ja) * 2005-07-06 2007-01-25 Fujitsu Media Device Kk 弾性表面波装置
WO2007108269A1 (ja) * 2006-03-17 2007-09-27 Murata Manufacturing Co., Ltd. 弾性波共振子
JP2009219045A (ja) * 2008-03-12 2009-09-24 Nippon Dempa Kogyo Co Ltd 弾性波共振子及び弾性波デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170610A (ja) * 1988-12-23 1990-07-02 Hitachi Ltd 弾性表面波装置
JP2004537235A (ja) * 2001-07-24 2004-12-09 エプコス アクチエンゲゼルシャフト 障害励振の抑圧を改善した表面波トランスデューサ
JP2006157307A (ja) * 2004-11-26 2006-06-15 Kyocera Corp 弾性表面波装置
JP2007019710A (ja) * 2005-07-06 2007-01-25 Fujitsu Media Device Kk 弾性表面波装置
WO2007108269A1 (ja) * 2006-03-17 2007-09-27 Murata Manufacturing Co., Ltd. 弾性波共振子
JP2009219045A (ja) * 2008-03-12 2009-09-24 Nippon Dempa Kogyo Co Ltd 弾性波共振子及び弾性波デバイス

Also Published As

Publication number Publication date
JP5882842B2 (ja) 2016-03-09

Similar Documents

Publication Publication Date Title
JP7103528B2 (ja) 弾性波装置
JP5931868B2 (ja) 弾性波素子およびそれを用いた弾性波装置
JP5562441B2 (ja) 弾性波素子およびそれを用いた弾性波装置
JP6352971B2 (ja) 弾性波素子、フィルタ素子および通信装置
JP5833102B2 (ja) 弾性波素子およびそれを用いた弾性波装置
US20220216846A1 (en) Acoustic wave device
WO2012102131A1 (ja) 弾性波素子およびそれを用いた弾性波装置
JP5815383B2 (ja) 弾性波素子およびそれを用いた弾性波装置
WO2021060509A1 (ja) 弾性波装置
JP6756722B2 (ja) 弾性波素子および弾性波装置
JP5083469B2 (ja) 弾性表面波装置
JP5859355B2 (ja) 弾性波素子およびそれを用いた弾性波装置
JP6767497B2 (ja) 弾性波素子
WO2021060510A1 (ja) 弾性波装置
JP5751887B2 (ja) 弾性波素子およびそれを用いた弾性波装置
JP5872196B2 (ja) 弾性波素子およびそれを用いた弾性波装置
CN116868508A (zh) 弹性波装置
JP5882842B2 (ja) 弾性表面波素子および弾性表面波装置
WO2020184622A1 (ja) 弾性波装置
WO2018042964A1 (ja) 弾性波装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5882842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150