JP2013175639A - 半導体積層ユニット - Google Patents

半導体積層ユニット Download PDF

Info

Publication number
JP2013175639A
JP2013175639A JP2012039927A JP2012039927A JP2013175639A JP 2013175639 A JP2013175639 A JP 2013175639A JP 2012039927 A JP2012039927 A JP 2012039927A JP 2012039927 A JP2012039927 A JP 2012039927A JP 2013175639 A JP2013175639 A JP 2013175639A
Authority
JP
Japan
Prior art keywords
protrusion
cooling plate
cooling
semiconductor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012039927A
Other languages
English (en)
Inventor
Keitaro Ishikawa
啓太郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012039927A priority Critical patent/JP2013175639A/ja
Publication of JP2013175639A publication Critical patent/JP2013175639A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】平板型の半導体モジュール3と冷却プレート2を積層した半導体積層ユニット100において、冷却プレート内の冷媒流れに交差する方向で冷却能力を異ならせる技術を提供する。
【解決手段】半導体モジュール3は、発熱量の異なる第1素子4aと第2素子4bを収めている。本明細書が開示する半導体積層ユニット100では、冷却プレート内部に、第2素子4bに対向する領域の冷媒流量が第1素子4aに対向する領域の冷媒流量よりも多くなるように突起2a、2bが設けられている。冷却プレート内部では、長さの長い第1突起2aから抵抗を受けて第1突起2aの側では長さの短い第2突起2bの側よりも冷媒流量が小さくなる。
【選択図】図1

Description

本明細書が開示する技術は、半導体素子を内蔵した平板型の半導体モジュールと平板型の冷却プレートを積層した半導体積層ユニットに関する。そのような半導体積層ユニットは、インバータや電圧コンバータなどの電力変換器において、スイッチング素子を集中的に冷却するための構造として用いられる。
モータなどの負荷デバイスに供給する電力が大きくなるにつれてインバータなどの電力変換器内部の素子の発熱量が多くなる。特に、電力変換器の出力の源となる電流が流れるIGBTやダイオードなどの素子は発熱量が大きい。発熱量の大きい素子だけを集めて集中的に冷却する構造が提案されている。そのようなユニットの一つは、発熱量の大きい半導体素子を収めた平板型の半導体モジュールと冷媒が流れる平板型の冷却プレートを交互に積層した構造を有している。本明細書ではそのような構造を半導体積層ユニットと称する。特許文献1〜3はいずれも、そのような半導体積層ユニットを開示している。
発熱量が大きい素子群であっても、素子ごとに発熱量が異なる場合がある。発熱量が大きい素子群の中でも、発熱量が比較的に大きいタイプの素子と、発熱量が比較的に小さいタイプの素子がある。素子の発熱量に応じて冷却能力にも差を付ける方が効率がよい。例えば、特許文献1は、冷却プレート内の冷媒流れ方向の上流側と下流側にピッチの異なるフィンを配置した半導体積層ユニットを開示している。ピッチの狭いフィンを配置した領域は冷却能力が相対的に高くなり、ピッチの広いフィンを配置した領域は冷却能力が相対的に低くなる。そこで、狭ピッチのフィンに対向して発熱量の大きい素子を配置し、広ピッチのフィンに対向して発熱量の小さい素子を配置する。こうして、特許文献1は、素子の発熱量に応じて冷却プレートの場所ごとに冷却能力の異なる半導体積層ユニットを実現している。
また、特許文献2は、厚み(即ち冷媒流路断面積)の異なる複数の冷却プレートを用意し、発熱量の大きい素子に対しては厚みが大きい冷却プレートを対向させ、発熱量の小さい素子に対しては厚みの小さい冷却プレートを対向させる。こうして、特許文献2は、素子の発熱量に応じて冷却プレートの場所ごとに冷却能力の異なる半導体積層ユニットを実現している。
特開2011−233688号公報 特開2005−191082号公報 特開2010−10418号公報
特許文献1の技術では、冷却プレートの冷媒上流側と下流側で冷却能力を異ならせることは可能であるが、冷媒の流れ方向に交差する方向では冷却能力は同じである。特許文献2の技術は冷却プレート毎に冷却能力を異ならせるものであって、やはり、冷媒の流れ方向に交差する方向では冷却能力は同じである。従って、特許文献1あるいは特許文献2の技術では、発熱量の異なる素子を冷媒の流れ方向に交差する方向に並べると素子の発熱量と冷却能力にアンバランスが生じてしまう。本明細書は、冷媒の流れ方向に交差する方向で冷却能力に差を付ける技術を提供する。本明細書の技術を採用すると、半導体モジュールにおいて発熱量の異なる素子のレイアウトの自由度が広がる。
本明細書が開示する新規な半導体積層ユニットは、平板型の半導体モジュールと冷却プレートを備えている。半導体モジュールは、第1素子と、第1素子よりも発熱量が大きい第2素子を収めている。第1素子と第2素子は典型的には半導体素子であり、例えばIGBTとダイオードである。冷却プレートは、半導体モジュールに接しており、内部を冷媒が半導体モジュールに沿って流れる。すなわち、冷却プレート全体が空洞であり、その空洞が冷媒流路を形成している。冷却プレートは、その長手方向の両端に貫通孔を有しており、一方の貫通孔から冷媒が供給され、冷却プレート長手方向に流れた冷媒は他方の貫通孔から排出される。第1素子と第2素子は、半導体モジュールと冷却プレートの当接面に対向するように、かつ、冷媒流れ方向に対して横方向に並んで配置される。そして、冷却プレート内部には、第2素子に対向する領域の冷媒流量が第1素子に対向する領域の冷媒流量よりも多くなるように突起が設けられている。
以下、説明のため、冷媒流れ方向(冷却プレートの長手方向)に交差する方向を「流路横方向」と称することにする。本明細書が開示する冷却プレートでは、流路横方向で冷媒流量を異ならしめ、これによって冷却能力を流路横方向で異ならしめる。従って、発熱量の小さい第1素子と発熱量の大きい第2素子を流路横方向に並べても、それぞれの発熱量に応じた冷却能力を実現することができる。
例えば、冷却プレートの内部には、流路横方向に並んで2つの突起が設けられている。一方の突起は他方の突起よりも流路横方向の長さが長い。長い突起の側の流量は、短い突起の側の流量よりも小さくなる。そのような突起によって、流路横方向で異なる流量を実現することができる。
本明細書が開示する技術の詳細、及び、さらなる改良は、発明の実施の形態と実施例にて説明する。
実施例の半導体積層ユニットの斜視図である。 冷却プレートの分解斜視図である。 冷却プレートの外板の平面図である。 図3のIV−IV矢視における断面図である。 第2実施例における外板の平面図である 第3実施例における外板の平面図である。 第4実施例における外板の平面図である。
実施例を説明する前に、実施例の半導体積層ユニットが有する他の特徴を述べる。(1)冷却プレートは内部にフィンを備えている。(2)第1素子と第2素子はIGBTとトランジスタである。(3)半導体積層ユニットは、複数の冷却プレートと複数の平板型の半導体モジュールを交互に積層した構造を有している。
図面を参照して第1実施例の半導体積層ユニット100を説明する。以下、簡単のため、半導体積層ユニット100を単純に積層ユニット100と称する。積層ユニット100は、インバータ回路の一部を構成するユニットであり、インバータ回路のうち、発熱量の大きいIGBTとダイオード(還流ダイオード)を集積したものである。IGBTと還流ダイオードは逆並列に接続され、一つのスイッチング回路を構成する。スイッチング回路は、直流を交流に変換するメインの回路であり、出力電流の源となる大電流が通るのでインバータの中でも特に発熱量が大きい。積層ユニット100は、そのような発熱量の大きい素子を効率よく冷却する。
積層ユニット100は、複数の平板型の半導体モジュール3と複数の平板型の冷却プレートを交互に積層したものである。半導体モジュール3は、半導体素子を樹脂モールドで固めたパッケージである。積層ユニット100は、隣接する2枚の冷却プレート2の間に、2つの半導体モジュール3が並んで挟まれる。また、夫々の半導体モジュール3は、その両面に絶縁シート5を付して冷却プレート2に挟まれる。複数の冷却プレート2と複数の半導体モジュール3で構成される積層体は、クリップ12で挟まれ、クリップ12の一端のフランジと積層体の間に板バネ14が配置される。板バネ14は積層ユニット100を積層方向に加圧し、積層ユニット100の積層構造を維持する。板バネ14が隣接する冷却プレート2と半導体モジュール3を密着させるので、半導体モジュール3から冷却プレート2への熱伝達率が高まる。なお、図1では、一つの半導体モジュールと一つの冷却プレートにだけ符号を付しており、他の半導体モジュールと冷却プレートには符号の図示を省略している。また、半導体モジュール3からは、内部の素子と外部の回路を接続する導電部材(バスバやりード線と呼ばれる導電部材)が延設されているが、図では導電部材の図示を省略している。
隣接する冷却プレート2は、2つの接続管8で接続される。2つの接続管8は、冷却プレート2の長手方向の両端付近に接続される。別言すれば、2つの接続管8は、それらの間に半導体モジュール3を挟むように配置される。また、積層ユニット100の一端に位置する冷却プレート2(図1にて左下端の冷却プレート2)には、冷媒供給管6と冷媒排出管7が接続される。冷媒供給管6は、積層ユニットの積層方向から見たときに冷却プレートの一方の端の接続管8と重なる位置に連結される。同様に、冷媒排出管7は、積層ユニットの積層方向から見たときに冷却プレートの他方の端の接続管8と重なる位置に連結される。そのような接続構造により、冷媒供給管6から流入した冷媒は、接続管8を通じて全ての冷却プレート2に行き渡る。また、夫々の冷却プレートに流入した冷媒は、冷却プレート2をその長手方向に流れ、反対側の接続管8を通じ、さらには冷媒排出管7を通じて外部に排出される。冷媒は冷却プレート内部を流れる際、冷却プレートの両側に位置する半導体モジュール3に沿って流れ、半導体モジュール3内部の素子を冷却する。
本実施例の積層ユニット100では、一つの半導体モジュール3に2つの素子、即ち、ダイオード4aとトランジスタ4b(IGBT)が含まれる。さらに、本実施例では、トランジスタ4bの方がダイオード4aよりも発熱量が大きいと仮定する。なお、トランジスタとダイオードのいずれの発熱量が大きいかは、インバータの設計に依存することに留意されたい。ダイオード4aが第1素子の一例に相当し、トランジスタ4bが、第1素子よりも発熱量の大きい第2素子の一例に相当する。
半導体モジュール3の内部においては、図1で見たときの上側に発熱量の小さいダイオード4aが配置され、発熱量の大きいトランジスタ4bが下側に配置される。本実施例では、全ての半導体モジュール3にてダイオード4aとトランジスタ4bが同様に配置されているものとする。それゆえ、冷却プレート2は、図1で見たときの上側の冷却能力が低く、下側の冷却能力が高いことが望ましい。即ち、冷却プレート2は、流路横方向で冷却能力が異なることが望ましい。
流路横方向で冷却能力を異ならせるため、冷却プレート2は、窪み2aと2bを有している。なお、図2を参照して説明するように、符号2a、2bが示す箇所は、冷却プレート2の外部から見ると窪みであるが、冷却プレート2の内部から見ると突起である。本実施例では、冷却プレート内でみたときの構造を説明するので、符号2a、2bが示す箇所を突起2a、2bと称する。特に、流路横方向の長さの長い方の突起2aを第1突起2aと称し、長さの短い方の突起2bを第2突起と称する。
図2に、冷却プレート2の分解斜視図を示す。冷却プレート2は、その筐体に相当する外板21、23と、内部の流路を積層方向で2分する中板22、及び、フィン24で構成される。外板21、23は、有底のケース状であり、間に中板22を挟んで対向させて接合すると、内部が冷媒の流路となる冷却プレート筐体が形成される。外板21と23を接合する際、内部にフィン24が配置される。
外板21の長手方向の両端には円筒部8aが形成されており、外板23の長手方向の両端には円筒部8bが形成されている。円筒部8aの内径は円筒部8bの外径とほぼ同じである。即ち、2つの冷却プレート2を並べて配置すると、円筒部8aと円筒部8bが対向し、2つの冷却プレート2を両側から押し付けると円筒部8aと円筒部8bが嵌合する。嵌合部をロウ付けにより接合すると、前述した接続管8が形成される。中板22の長手方向の両側にも孔が形成されており、中板22を挟んで外板21、23を接合すると、長手方向の両側に貫通孔31、32が形成される。この貫通孔31、32は、冷媒が通る流路となる。
外板21、23、中板22、及び、フィン24は、アルミニウムの板をプレス加工して作られている。フィン24は、アルミニウムの板を波状にプレス加工した波板である。
冷却プレート2は、図2における上側に流路横方向の長さが長い第1突起2aを有し、下側に流路横方向の長さが短い第2突起2bを有している。第1突起2aは冷却プレート2の長手方向に沿って3箇所に設けられており、第2突起2bも冷却プレート2の長手方向に沿って3箇所に設けられている。第1突起2aと第2突起2bは、冷却プレート2内部の流路の幅を狭めるとともに、フィン24の位置決めに寄与する。即ち、長さの長い第1突起2aが設けられている側の冷媒流量は、長さの短い第2突起2bが設けられている側の冷媒流量よりも少なくなる。また、相互に隣接する2つの第1突起2aと2つの第2突起2bで囲まれる矩形領域にフィン24が収められる。別言すれば、フィン24は、第1突起2aと第2突起2bにより位置決めされる。
図3に外板23の平面図を示す。図3は、外板23を内側から見た図にも相当する。さらに、図3は、冷却プレート2の断面図にも相当する。また、外板21を内側から見ても図3と形状である(ただし左右は逆転する)。図3に示すように、第1突起2aの流路横方向長さをDaは、第2突起2bの流路横方向長さをDbの概ね2倍である。矢印LaとLbは冷媒流れを示している。貫通孔31(冷媒供給管6の側の貫通孔)から流入した冷媒は、第1突起2a、第2突起2bによって一部に抵抗を受けながら反対側の貫通孔32へと向かう。長さの長い第1突起2aの側では冷媒流れが大きく乱され、反対の第2突起2bの側ではそれほど冷媒流れは乱されない。図3の細い矢印線Laが第1突起2aの側における冷媒の流れを表しており、太い矢印線Lbが第2突起2bの側における冷媒の流れを示している。また、矢印線の太さの相違が流量の相違を模式的に表している。図3に示すように、第1突起2a側では流れが蛇行し、流量が小さくなる。第2突起2bの側では蛇行が小さく、流量が大きくなる。その結果、第1突起2a側の冷却能力が小さくなり、逆に第2突起2b側の冷却能力が大きくなる。即ち、流路横方向で冷却能力が異なる。図3に示すように、冷媒流量の少ない領域に発熱量の小さいダイオード4aが面しており、冷媒流量の大きい領域に発熱量の大きいトランジスタ4bが面する。この積層ユニットでは、発熱量の異なる素子を流路横方向に配置しても、発熱量に応じて流路横方向で冷却能力を異ならせることができる。
図3の二点鎖線は、素子の位置を示している。別言すれば、図3の二点鎖線は、素子に対向する冷却プレート上の領域を示している。つまり、図3の二点鎖線は、素子と向かい合った冷却プレート内の領域である。従って、図3の構造は、冷却プレート2の内部に、IGBT(第2素子)に対向する領域4bの流量がダイオード(第1素子)に対向する領域4aの流量よりも多くなるように突起2a、2bを設けることに相当する。
図4は、図3のIV−IV矢視に相当する断面図である。図4から明らかなとおり、符号2a、2bが示す部位は、冷却プレートの内側からみれば突起であるが、冷却プレートの外側からみれば窪みである。また、図4から明らかなとおり、第1突起2aと第2突起2bは流路を狭めている。特に、図4において、ダイオード4aに対向する上側の流路が第1突起2aによって大きく狭められている。従って、冷媒はダイオード4aに対向する領域からトランジスタ4bに対向する領域にシフトする。
外板21、22の突起2a、2bは、プレス加工にて成形される。また、外板21、23と中板22は、ロウ付けにて接合される。
第1実施例では、同じ長さDaを有する3個の突起2aが冷却プレート長手方向に並んで設けられており、同じ長さDbを有する3個の突起2bも冷却プレート長手方向に並んで設けられていた。長い第1突起2aと短い第2突起2bのレイアウトは第1実施例のものに限られない。
図5に、第2実施例における冷却プレート102の外板123の平面図を示す。外板123は、長い第1突起2aと短い第2突起2bのレイアウトが第1実施例の場合と異なる。外板123では、図において上側であって冷媒流れの最上流側だけが長い第1突起2aであり、その他の5つの突起は短い第2突起2bである。外板123に対向する外板(不図示)も、図5と同様の形状を有する(ただし左右が逆となる)。
細矢印線Laが流路横方向の上側における冷媒の流れを模式的に表しており、太矢印線Lbが流路横方向の下側における冷媒の流れを模式的に表している。貫通孔31から流入した冷媒は、上流側で第1突起2aによって抵抗を受けてその流れが乱れるが、第1突起2aを通過した後は図5の下側を流れる冷媒と同様にスムーズに流れる。それゆえ、冷媒流量の差は、第1実施例ほど大きくはない。それでも、第1突起2aの下流では冷媒流量がやや減少する。それゆえ、図5の上側には比較的に発熱量の小さいダイオード4aを配置し、下側には発熱量の大きいトランジスタ4bを配置するとよい。ただし、第2実施例は、ダイオード4aとトランジスタ4bの発熱量の差が第1実施例の場合ほどではない場合に適している。
図6に、第3実施例における冷却プレート202の外板223の平面図を示す。本実施例も、長い第1突起2aと短い第2突起2bのレイアウトが第1実施例及び第2実施例の場合と異なる。外板223では、図において上側であって冷媒流れの最上流と最下流の中間の突起だけが長い第1突起2aであり、その他の5つの突起は短い第2突起2bである。
細矢印線Laが流路横方向の上側における冷媒の流れを模式的に表しており、太矢印線Lbが流路横方向の下側における冷媒の流れを模式的に表している。貫通孔31から流入した冷媒は、冷却プレート内の流路の中間当たりで第1突起2aから抵抗を受けてその流れが乱れるが、第1突起2aを通過した後は図6の下側を流れる冷媒と同様にスムーズに流れる。それゆえ、第1突起2aよりも上流側では流路横方向の冷却能力の差はほとんどない。他方、第1突起2aよりも下流側では、第1突起2aで流れが乱される分だけ、冷却能力が低下する。それゆえ、第3実施例では、図6の上側であって下流側には比較的に発熱量の小さいダイオード4aを配置し、上流側には発熱量の大きいトランジスタ4bを配置するとよい。第3実施例の場合、流路横方向だけでなく、流路長手方向にも冷却能力を異ならせることができる。
図7に、第4実施例における冷却プレート302の外板323の平面図を示す。本実施例も、長い第1突起2aと短い第2突起2bのレイアウトが第1実施例、第2実施例、及び第3実施例の場合と異なる。外板323では、図において上側であって冷媒流れの最下流側の突起だけが長い第1突起2aであり、その他の5つの突起は短い第2突起2bである。
図7においても、細矢印線Laが流路横方向の上側における冷媒の流れを模式的に表しており、太矢印線Lbが流路横方向の下側における冷媒の流れを模式的に表している。第4実施例では、図における上側の流路において、冷媒の流れは最下流で長い第1突出部2aの影響を受けて乱れる。ただし、流れでは下流の乱れが上流にも伝搬するので、第1突起2aのすぐ上流側では冷媒流量が他の領域よりも少なくなる。それゆえ、本実施例の構成の場合は、長い第1突起2aのすぐ上流には発熱量の小さいダイオード4aを配置し、それ以外の位置には発熱量の多いトランジスタ4bを配置するのがよい。
以上説明したように、積層ユニット100は、冷却プレート内部に流路横方向に並んで長さの異なる第1突起2aと第2突起2bを備える。突起は冷媒の流れに抵抗を与え、冷媒流量を抑制する。それゆえ、流路横方向で長さの異なる突起を設けることによって、流路横方向で冷却能力を異ならせることができる。これにより、半導体モジュール内部で発熱量の小さいダイオード4a(第1素子)と、発熱量の大きいトランジスタ4b(第2素子)のレイアウトの自由度が拡がる。
実施例に関する留意点を述べる。本明細書が開示す技術は、必ずしも、流路横方向に複数の突起を並べる必要はない。本明細書が開示する技術は、冷却プレート2の内部に、IGBT(第2素子)に対向する領域4bの流量がダイオード(第1素子)に対向する領域4aの流量よりも多くなるように突起を設ければよい。例えば、図3の構造において第2突起2bが無くともよい。図3の構造において第2突起2bがなくても、図3の下側における冷媒流量は上側における冷媒流量よりも確実に多くなる。
流路横方向の一方の流量を減少させると、他方の流量が増大する。即ち、流路横方向の一方で冷却能力を下げれば他方において冷却能力が高まる。それゆえ、本明細書が開示する半導体積層ユニットは、発熱量の異なる素子を効率よく冷却することができる。
実施例の冷却プレート2は内部にフィン24を備えたが、フィン24がなくとも実施例と同様の作用効果は得られる。ただし、フィン24を備える方が、積層ユニット全体で冷却能力が高まる。
実施例では突起2a、2bの形状は矩形であったが、突起の形状は矩形に限定されない。正方形でもよいし、楕円形でもよい。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2、102、202、302:冷却プレート
2a:第1突起
2b:第2突起
3:半導体モジュール
4:冷却プレート
4a:ダイオード(第1素子)
4b:トランジスタ(第2素子)
5:絶縁シート
6:冷媒供給管
7:冷媒排出管
8:接続管
8a、8b:円筒部
21、23、123、223、323:外板
22:中板
24:フィン
31、32:貫通孔
100:半導体積層ユニット

Claims (4)

  1. 第1素子と、第1素子よりも発熱量が大きい第2素子を収めた平板型の半導体モジュールと、
    半導体モジュールに接しており、内部を冷媒が半導体モジュールに沿って流れる平板型の冷却プレートと、
    を備えており、
    第1素子と第2素子は、半導体モジュールと冷却プレートの当接面に対向するように、かつ、冷媒流れ方向に対して横方向に並んで配置されており、
    冷却プレート内部に、第2素子に対向する領域の流量が第1素子に対向する領域の流量よりも多くなるように突起が設けられていることを特徴とする半導体積層ユニット。
  2. 冷却プレートは内部にフィンを備えていることを特徴とする請求項1に記載の半導体積層ユニット。
  3. 第1素子と第2素子はIGBTとトランジスタであることを特徴とする請求項1又は2に記載の半導体積層ユニット。
  4. 複数の冷却プレートと複数の平板型の半導体モジュールが積層していることを特徴とする請求項1から3のいずれか1項に記載の半導体積層ユニット。
JP2012039927A 2012-02-27 2012-02-27 半導体積層ユニット Pending JP2013175639A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012039927A JP2013175639A (ja) 2012-02-27 2012-02-27 半導体積層ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012039927A JP2013175639A (ja) 2012-02-27 2012-02-27 半導体積層ユニット

Publications (1)

Publication Number Publication Date
JP2013175639A true JP2013175639A (ja) 2013-09-05

Family

ID=49268285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012039927A Pending JP2013175639A (ja) 2012-02-27 2012-02-27 半導体積層ユニット

Country Status (1)

Country Link
JP (1) JP2013175639A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073502A (ja) * 2015-10-08 2017-04-13 株式会社デンソー 熱交換チューブ
JP2017108078A (ja) * 2015-12-11 2017-06-15 富士電機株式会社 冷却器及びパワー半導体モジュール
JP2018023277A (ja) * 2017-09-01 2018-02-08 株式会社デンソー 電力変換装置
WO2022270013A1 (ja) * 2021-06-25 2022-12-29 日立Astemo株式会社 電力変換装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073502A (ja) * 2015-10-08 2017-04-13 株式会社デンソー 熱交換チューブ
JP2017108078A (ja) * 2015-12-11 2017-06-15 富士電機株式会社 冷却器及びパワー半導体モジュール
JP2018023277A (ja) * 2017-09-01 2018-02-08 株式会社デンソー 電力変換装置
WO2022270013A1 (ja) * 2021-06-25 2022-12-29 日立Astemo株式会社 電力変換装置

Similar Documents

Publication Publication Date Title
JP5655846B2 (ja) 電力変換装置
JP4479568B2 (ja) 積層型冷却器
JP4379339B2 (ja) 半導体冷却装置
JP4432892B2 (ja) 半導体冷却構造
WO2013094028A1 (ja) 半導体モジュール
JP6738226B2 (ja) 冷却装置
JP2016158358A (ja) 半導体モジュール
JP2010010418A (ja) 積層型冷却器
WO2018123387A1 (ja) 液冷式冷却装置用放熱器およびその製造方法
JP2010040757A (ja) 電子部品冷却器
JP2013175639A (ja) 半導体積層ユニット
JP5609762B2 (ja) 電力変換装置
JP2013165093A (ja) 半導体積層ユニット
JP2014120720A (ja) 半導体積層冷却ユニット
JP5838759B2 (ja) 半導体モジュール
JP2013098461A (ja) パワーモジュール
JP7021013B2 (ja) 冷却器
JP2014127691A (ja) 半導体積層ユニット
JP2018032744A (ja) 半導体装置
JP5729261B2 (ja) パワーモジュール
JP2014053442A (ja) プレート積層型冷却装置
JP6139342B2 (ja) 積層ユニット
JP5880366B2 (ja) 半導体積層ユニット
JP2017079305A (ja) 冷却器
JP7136139B2 (ja) 電力変換器