JP2013168564A - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- JP2013168564A JP2013168564A JP2012031722A JP2012031722A JP2013168564A JP 2013168564 A JP2013168564 A JP 2013168564A JP 2012031722 A JP2012031722 A JP 2012031722A JP 2012031722 A JP2012031722 A JP 2012031722A JP 2013168564 A JP2013168564 A JP 2013168564A
- Authority
- JP
- Japan
- Prior art keywords
- region
- semiconductor device
- cathode
- semiconductor substrate
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/411—Insulated-gate bipolar transistors [IGBT]
- H10D12/441—Vertical IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/021—Manufacture or treatment of gated diodes, e.g. field-controlled diodes [FCD]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
- H10D12/032—Manufacture or treatment of IGBTs of vertical IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/211—Gated diodes
- H10D12/212—Gated diodes having PN junction gates, e.g. field controlled diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/60—Impurity distributions or concentrations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/2205—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities from the substrate during epitaxy, e.g. autodoping; Preventing or using autodoping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2252—Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
Landscapes
- Thyristors (AREA)
Abstract
【課題】能動的高抵抗層(AIL)を有し、高抵抗で、且つ、キャリア寿命短縮化を図ることができる好ましい構造を備えた半導体装置及びその製造方法を提供する。
【解決手段】埋め込みゲート領域26のアノード領域24側の端部からカソード領域22の表面までの距離をDa、埋め込みゲート領域26のうち、不純物密度が最も高い部位からカソード領域22のアノード領域側の端部までの距離をDbとしたとき、Db≦(1/3)×Daを満足する。
【選択図】図1
【解決手段】埋め込みゲート領域26のアノード領域24側の端部からカソード領域22の表面までの距離をDa、埋め込みゲート領域26のうち、不純物密度が最も高い部位からカソード領域22のアノード領域側の端部までの距離をDbとしたとき、Db≦(1/3)×Daを満足する。
【選択図】図1
Description
本発明は、例えば静電誘導形サイリスタやGTOサイリスタ等に用いて好適な半導体装置及びその製造方法に関し、特に、高抵抗で、且つ、キャリア寿命短縮化を図れる能動的高抵抗半導体層(アクティブ・イントリンシック・レイヤー:AIL)を有する半導体装置及びその製造方法に関する。
従来から、静電誘導形サイリスタ、静電誘導形トランジスタは電力用半導体素子として開発され、実用化されている。高速化のために電子線照射、あるいは重金属ドープ等の手段によるライフタイム制御が行われている。不純物が添加されていない高抵抗半導体層では、一般的に結晶が完全であるほどライフタイムは長くなるため、静電誘導形サイリスタ、静電誘導形トランジスタのような高抵抗半導体層を有するデバイスでは、半導体素子構造による特性制御が容易となり、本来のデバイス構造で決定される性能を得ることができるという利点がある。
このような高抵抗半導体層に不純物を添加した場合、不純物原子の格子定数と高抵抗半導体層の格子定数が異なるため、結晶に歪が発生し、ミスフィット転位等の転位が発生しやすくなる。
半導体基板と成長層の不純物密度差により発生する格子歪の検討は、西澤らによりSi(シリコン)の気相成長法で行われている(非特許文献1)。
Si単結晶は、Si原子が規則正しく配列しているので、Siに添加された不純物がSi原子と置換した場合、ホウ素(B)やリン(P)のようにSiより共有結合半径の小さな原子では隣接するSi原子との距離がSi同士の距離より小さくなるので、B及びPを高不純物密度に添加した結晶の格子定数は、真性のSi単結晶の格子定数よりも小さくなる。また、砒素(As)及びアンチモン(Sb)等、Si原子よりも共有結合半径の大きな不純物を添加した場合にはその逆となる(非特許文献2)。
そして、従来では、p型、n型不純物を高不純物密度で略同じ場所に形成することによって、ライフタイムを低下させ、同時にp型、n型不純物の補償効果によって、実質的に高抵抗で、且つ、キャリア寿命短縮化を図れる能動的高抵抗層(AIL)を備えた半導体装置及びその製造方法が提案されている。この半導体装置を、例えばダイオード、トランジスタ、サイリスタ、絶縁ゲート型デバイス等に適用することで、高速スイッチング、低損失、低オン抵抗化を実現することができる(特許文献1参照)。
西澤潤一、寺崎健、矢木邦博、宮本信雄(J.Nishizawa,T.Terasaki,K.yagi,and N.Miyamoto),"気相エピタキシャル成長によるシリコンの完全結晶成長(Perfect Crystal Growth of Silicon by Vapor Phase Epitaxy),"米国電気化学協会誌(J.Electrochemical Society)、第122巻、第5号、P.664〜P.669,1975年
ライナス・ポーリング(L.Pauling)著,"化学的結合論(The Nature Of Chemical Bonding)",コーネル大学出版(Cornell University Press),1960,p.205
本発明は、上述した特許文献1に記載された半導体装置の考え方を発展させて、能動的高抵抗層(AIL)を有し、高抵抗で、且つ、キャリア寿命短縮化を図ることができる好ましい構造を備えた半導体装置及びその製造方法を提供することを目的とする。
[1] 第1の本発明に係る半導体装置は、第1導電型の半導体基板と、前記半導体基板の一方の表面に形成された1以上のカソード電極と、前記半導体基板の他方の表面に形成されたアノード電極と、前記半導体基板の前記一方の表面に、前記カソード電極と電気的に絶縁して形成され、前記カソード電極と前記アノード電極間に流れる電流の導通を制御するゲート電極と、前記半導体基板の前記一方の表面のうち、少なくとも前記カソード電極に対応した部分に形成された第1導電型のカソード領域と、前記半導体基板の前記他方の表面のうち、前記アノード電極に対応した部分に形成された第2導電型のアノード領域と、前記半導体基板のうち、前記カソード領域と前記アノード領域とで挟まれた領域であって、且つ、前記カソード領域寄りの位置に形成された第2導電型の複数の埋め込みゲート領域とを有する半導体装置において、前記埋め込みゲート領域の前記アノード領域側の端部から前記カソード領域の表面までの距離をDa、前記埋め込みゲート領域のうち、不純物密度が最も高い部位から前記カソード領域の前記アノード領域側の端部までの距離をDbとしたとき、
Db≦(1/3)×Da
であることを特徴とする。
Db≦(1/3)×Da
であることを特徴とする。
距離Da及びDbを上述のように設定することで、アノード−カソード間が順バイアス状態から逆バイアス状態に移行した段階において、少数キャリア蓄積効果による遅延時間の短縮を図ることができ、また、逆バイアスによってゲート−カソード間に発生する逆電圧の急激な上昇を抑制することができると共に、ゲート−カソード間に流れる逆電流が減少して定常状態に戻るまでの変化(傾きdi/dt)を緩やかにすることができ、ゲート−カソード間の破壊を防止することができる。
[2] 第1の本発明において、
(1/12)×Da≦Db≦(1/3)×Da
であることが好ましい。
(1/12)×Da≦Db≦(1/3)×Da
であることが好ましい。
[3] 第1の本発明において、
(1/10)×Da≦Db≦(1/4)×Da
であることがさらに好ましい。
(1/10)×Da≦Db≦(1/4)×Da
であることがさらに好ましい。
[4] 第1の本発明において、
(7/60)×Da≦Db≦(13/60)×Da
であることがより好ましい。
(7/60)×Da≦Db≦(13/60)×Da
であることがより好ましい。
[5] 第1の本発明において、
(3/20)×Da≦Db≦(11/60)×Da
であることが特に好ましい。
(3/20)×Da≦Db≦(11/60)×Da
であることが特に好ましい。
[6] 第1の本発明において、前記埋め込みゲート領域の前記アノード領域側の端部から前記カソード領域の表面までの距離Daは4.0μm以上14.0μm以下であることが好ましい。
[7] 第1の本発明において、前記距離Daは4.0μm以上10.0μm以下であることがさらに好ましい。
[8] 第1の本発明において、前記距離Daは4.0μm以上8.0μm以下であることがより好ましい。
[9] 第1の本発明において、前記距離Daは5.0μm以上7.0μm以下であることが特に好ましい。
[10] 第1の本発明において、隣接する前記埋め込みゲート領域間の距離が0.5μm以上2.0μm以下であることが好ましい。この場合、ゲート電極によるカソード電極とアノード電極間に流れる電流の導通の制御が容易になる。
[11] 第1の本発明において、隣接する前記埋め込みゲート領域間の距離が0.5μm以上1.5μm以下であることがさらに好ましい。
[12] 第1の本発明において、隣接する前記埋め込みゲート領域間の距離が0.8μm以上1.2μm以下であることがより好ましい。
[13] 第1の本発明において、前記半導体基板上にエピタキシャル層を有し、前記エピタキシャル層は、少なくとも前記埋め込みゲート領域の一部及び前記カソード領域を含み、前記埋め込みゲート領域と前記カソード領域間に、能動的高抵抗半導体領域を有するようにしてもよい。
[14] この場合、前記能動的高抵抗半導体領域の不純物密度が1013[cm−3]オーダー〜1015[cm−3]オーダーであり、前記埋め込みゲート領域の不純物密度が最も高い部位の不純物密度が1018[cm−3]オーダー〜1020[cm−3]オーダーであり、前記カソード領域の不純物密度が最も高い部位の不純物密度が1018[cm−3]オーダー〜1020[cm−3]オーダーであることが好ましい。
半導体基板上にエピタキシャル層を形成する際に、高濃度の第1導電型の不純物と高濃度の第2導電型の不純物がドープされた能動的高抵抗半導体領域が形成されることになり、多数キャリア及び少数キャリアのライフタイムを効果的に短縮させることができる。
[15] 第2の本発明に係る半導体装置の製造方法は、第1導電型の半導体基板と、前記半導体基板の一方の表面に形成された1以上のカソード電極と、前記半導体基板の他方の表面に形成されたアノード電極と、前記半導体基板の前記一方の表面に、前記カソード電極と電気的に絶縁して形成され、前記カソード電極と前記アノード電極間に流れる電流の導通を制御するゲート電極と、前記半導体基板の前記一方の表面のうち、少なくとも前記カソード電極に対応した部分に形成された第1導電型のカソード領域と、前記半導体基板の前記他方の表面のうち、前記アノード電極に対応した部分に形成された第2導電型のアノード領域と、前記半導体基板のうち、前記カソード領域と前記アノード領域とで挟まれた領域であって、且つ、前記カソード領域寄りの位置に形成された第2導電型の複数の埋め込みゲート領域とを有する半導体装置の製造方法であって、前記半導体基板の表面に複数の開口を有するフォトマスクを形成する工程(第1工程)と、前記半導体基板のうち、少なくとも前記開口から露出する部分に第2導電型の不純物を付着させて、少なくとも前記開口から露出する部分に不純物層を形成する工程(第2工程)と、低温酸化を行って、前記不純物層の表層を除去する工程(第3工程)と、前記不純物層から前記半導体基板に対して不純物の拡散を行って前記埋め込みゲート領域の一部を形成する工程(第4工程)と、少なくとも第1導電型の不純物とシリコンを含む気相エピタキシャル成長を行って前記半導体基板上に、少なくとも前記埋め込みゲート領域の一部と、能動的高抵抗半導体層とを有する第1エピタキシャル層を形成する工程(第5工程)と、前記第1エピタキシャル層上に前記カソード領域を含む第2エピタキシャル層を形成する工程(第6工程)とを有することを特徴とする。
この製造方法によれば、埋め込みゲート領域とカソード領域との間に、高抵抗で、且つ、キャリア寿命短縮化を図ることができる能動的高抵抗半導体領域を容易に形成することができる。特に、第1工程によって、後に能動的高抵抗半導体領域となる部分がフォトマスクによって保護され、該部分への傷の発生を防止することができる。また、第2工程において、フォトマスクの上面にも不純物層が形成されるが、後に能動的高抵抗半導体領域となる部分がフォトマスクによって保護され、該部分の結晶性が確保され、且つ、不純物汚染(金属汚染)を防止することができる。また、第3工程において、不純物層の表層を除去することで、不純物層の不純物密度を調整することができることから、その後に行われる第5工程での能動的高抵抗半導体層の真性半導体領域化が容易になる。しかも、前記埋め込みゲート領域の前記アノード領域側の端部から前記カソード領域の表面までの距離をDa、前記埋め込みゲート領域のうち、不純物密度が最も高い部位から前記カソード領域の前記アノード領域側の端部までの距離をDbとしたとき、Db≦(1/3)×Daを満足する半導体装置を容易に作製することができる。
以上のように、本発明に係る半導体装置によれば、アノード−カソード間が順バイアス状態から逆バイアス状態に移行した段階において、少数キャリア蓄積効果による遅延時間の短縮を図ることができ、また、逆バイアスによってゲート−カソード間に発生する逆電圧の急激な上昇を抑制することができると共に、ゲート−カソード間に流れる逆電流が減少して定常状態に戻るまでの変化(傾きdi/dt)を緩やかにすることができ、ゲート−カソード間の破壊を防止することができる。
また、本発明に係る半導体装置の製造方法によれば、埋め込みゲート領域とカソード領域との間に、高抵抗で、且つ、キャリア寿命短縮化を図ることができる能動的高抵抗半導体領域を容易に形成することができる。しかも、前記埋め込みゲート領域の前記アノード領域側の端部から前記カソード領域の表面までの距離をDa、前記埋め込みゲート領域のうち、不純物密度が最も高い部位から前記カソード領域の前記アノード領域側の端部までの距離をDbとしたとき、Db≦(1/3)×Daを満足する半導体装置を容易に作製することができる。
以下、本発明に係る半導体装置を例えばノーマリオフ形の埋め込みゲート型静電誘導形サイリスタに適用した実施の形態例を図1〜図7を参照しながら説明する。
本実施の形態に係る半導体装置10は、図1に示すように、第1導電型(例えばn型)の半導体基板12と、半導体基板12上に形成されたエピタキシャル層14と、エピタキシャル層14の表面14aに形成された例えば金属層による1以上のカソード電極16と、半導体基板12の裏面12aに形成された例えば金属層による1以上のアノード電極18と、エピタキシャル層14の表面14aに、カソード電極16と電気的に絶縁して形成され、カソード電極16とアノード電極18間に流れる電流の導通を制御する例えば金属層による1以上のゲート電極20とを有する。
さらに、この半導体装置10は、エピタキシャル層14の表面14aのうち、少なくともカソード電極16に対応した部分に第1導電型(例えばn型)のカソード領域22が形成され、半導体基板12の裏面12aのうち、アノード電極18に対応した部分に第2導電型(例えばp型)のアノード領域24が形成されている。
また、半導体基板12のうち、カソード領域22とアノード領域24とで挟まれた領域であって、且つ、カソード領域22寄りの位置に、ゲート電極20に電気的に接続された第2導電型の複数の埋め込みゲート領域26が形成されている。複数の埋め込みゲート領域26はほぼ同一の配列ピッチにて形成されている。隣接する埋め込みゲート領域26間の第1導電型の領域がチャネル領域を構成している。ゲート電極20と埋め込みゲート領域26との電気的接続は、埋め込みゲート領域26とゲート電極20との間に形成された第2導電型の取出し領域28にて行われる。ゲート電極20とカソード領域22間には第1絶縁層30が介在され、ゲート電極20とカソード電極16間には第2絶縁層32が介在されている。なお、埋め込みゲート領域26と取出し領域28との間には、第1導電型の領域が介在しているが、埋め込みゲート領域26と取出し領域28間の距離Dtは、埋め込みゲート領域26と取出し領域28との間で導通が図れる程度に設定されている。また、複数のカソード電極16上には、これらカソード電極16を電気的に接続するカソード配線層34が形成されている。
さらに、埋め込みゲート領域26とカソード領域22間、より詳しくは、隣接する埋め込みゲート領域26領域のうち、半導体基板12とエピタキシャル層14との境界と、カソード領域22のアノード領域24側の端部との間に、高抵抗で、且つ、キャリア寿命短縮化を図ることができる真性半導体領域の能動的高抵抗半導体領域(アクティブ・イントリンシック・レイヤー:以下、AIL36と記す)が形成されている。
この半導体装置10では、上述した埋め込みゲート領域26の上部26a、カソード領域22、取出し領域28、並びにAIL36を、エピタキシャル成長法による上述したエピタキシャル層14に形成するようにしている。換言すれば、この半導体装置10は、半導体基板12上にエピタキシャル層14を有し、該エピタキシャル層14は、埋め込みゲート領域26の一部(上部26a)、取り出し領域28、カソード領域22及びAIL36を含み、特に、AIL36は、隣接する埋め込みゲート領域26間の領域のうち、半導体基板12とエピタキシャル層14との境界と、カソード領域22のアノード領域24側の端部との間の領域に形成される。
また、埋め込みゲート領域26の上部26aがエピタキシャル層14にて形成されることから、埋め込みゲート領域26のうち、不純物密度が最も高い部位は、半導体基板12とエピタキシャル層14との境界であって、且つ、埋め込みゲート領域26の中央部分が対応する。
そして、この半導体装置10は、埋め込みゲート領域26のアノード領域24側の端部からカソード領域22の表面(エピタキシャル層14の表面14a)までの距離(上下方向に沿った距離)をDa、埋め込みゲート領域26のうち、不純物密度が最も高い部位からカソード領域22のアノード領域24側の端部までの距離(上下方向に沿った距離)をDbとしたとき、
Db≦(1/3)×Da
を満足する。
Db≦(1/3)×Da
を満足する。
好ましくは、
(1/12)×Da≦Db≦(1/3)×Da
であり、さらに好ましくは、
(1/10)×Da≦Db≦(1/4)×Da
であり、より好ましくは、
(7/60)×Da≦Db≦(13/60)×Da
であり、特に、好ましくは、
(3/20)×Da≦Db≦(11/60)×Da
である。
(1/12)×Da≦Db≦(1/3)×Da
であり、さらに好ましくは、
(1/10)×Da≦Db≦(1/4)×Da
であり、より好ましくは、
(7/60)×Da≦Db≦(13/60)×Da
であり、特に、好ましくは、
(3/20)×Da≦Db≦(11/60)×Da
である。
この場合、埋め込みゲート領域26のアノード領域24側の端部からカソード領域22の表面までの距離Daは4.0μm以上14.0μm以下がよく、好ましくは4.0μm以上10.0μm以下であり、さらに好ましくは、4.0μm以上8.0μm以下であり、特に好ましくは、5.0μm以上7.0μm以下である。
この半導体装置10は、距離Da及びDbを上述のように設定することで、アノード−カソード間が順バイアス状態から逆バイアス状態に移行した段階において、少数キャリア蓄積効果による遅延時間の短縮を図ることができ、また、逆バイアスによってゲート−カソード間に発生する逆電圧の急激な上昇を抑制することができると共に、ゲート−カソード間に流れる逆電流が減少して定常状態に戻るまでの変化(傾きdi/dt)を緩やかにすることができ、ゲート−カソード間の破壊を防止することができる。
また、隣接する埋め込みゲート領域26間の距離Dcは、0.5μm以上2.0μm以下であり、好ましくは0.5μm以上1.5μm以下であり、さらに好ましくは、0.8μm以上1.2μm以下である。ゲート電極20によるカソード電極16とアノード電極18間に流れる電流の導通の制御が容易になる。
ここで、距離Da及びDbを上述のように設定することによる効果について以下に説明する。
先ず、参考のために、距離Da及びDbの関係がDb/Da=1/2である半導体装置(参考例に係る半導体装置100)の構成を図2に示し、参考例に係る半導体装置100の逆回復特性を図3に示す。
この参考例に係る半導体装置100は、図2に示すように、埋め込みゲート領域26にまで到達するメサエッチング溝38を有し、該メサエッチング溝38(グルーブ)内にゲート電極20が形成され、ランド(エピタキシャル層14)上にカソード電極16が形成されている。
この参考例に係る半導体装置100において、図3の時点t0に、アノード−カソード間が順バイアスから逆バイアスに切り替わった際、AIL36に蓄積されていた電子(多数キャリア)はカソード領域22に戻り、AIL36に蓄積されていた正孔(少数キャリア)は埋め込みゲート領域26に戻ることとなる。この正孔による拡散電流によってゲート−カソード間に逆電流が流れ、逆電流IRの絶対値はある時間Tcにかけて上昇する。この時間Tcは一般に蓄積時間Tcと称される。この蓄積時間Tcが経過した時点から少数キャリアが減少していくことに対応して逆電流IRの絶対値も徐々に減少し、ある時間Trが経過した時点で定常状態に戻ることとなる。この時間Trは一般に減衰時間Trと称される。
蓄積時間Tcにおいては、逆電流IRの変化(傾き−di/dt)が大きいことから、この蓄積時間Tcが長いと、ゲート−カソード間に発生する逆電圧VRがパルス状に急峻に増加して、ピーク値Vp(絶対値)が大きくなる。その結果、ゲート−カソード間が破壊するリスクが高くなる。
これを改善するには、少数キャリアの寿命(ライフサイクル)を短くする必要があるが、その手段の1つとして、金(Au)等の不純物を注入して再結合中心を作る方法等が挙げられる。
次に、本実施の形態に係る半導体装置10の逆回復特性を図4に示す。半導体装置10では、距離Da及びDbの関係が上述した好ましい関係になっていることから、AIL36のゲート−カソード間の距離(幅)が狭くなり、これによって、逆バイアスとなった段階での正孔(順バイアス時にAIL36に蓄積していた正孔)の移動距離が短くなり、蓄積時間Tcも短くなる。すなわち、逆電流IRの変化(傾き−di/dt)の大きい蓄積時間Tcが短くなることから、逆電流IRのピーク値(絶対値)も低くなり、減衰時間Trでの逆電流の変化(傾きdi/dt)も緩やかになる。その結果、ゲート−カソード間に発生する逆電圧VRのピーク値Vp(絶対値)が小さくなり、逆電流IRによるゲート−カソード間の破壊を有効に防止することができる。もちろん、金(Au)等の不純物を注入して再結合中心を作ることで、さらに蓄積時間Tcを短くすることができる。
また、半導体装置10において、半導体基板12は、例えば不純物密度が1013[cm−3]オーダーのn型のシリコン基板で構成されている。埋め込みゲート領域26のうち、第2導電型の不純物密度が最も高い部位の不純物密度は、1018[cm−3]オーダー〜1020[cm−3]オーダーであり、カソード領域22のうち、第1導電型の不純物密度が最も高い部位の不純物密度は、1018[cm−3]オーダー〜1020[cm−3]オーダーであり、AIL36の不純物密度は、1013[cm−3]オーダー〜1015[cm−3]オーダーである。
これは、半導体基板12上にエピタキシャル層14を形成する際に、高濃度の第1導電型の不純物と高濃度の第2導電型の不純物がドープされたAIL36が形成されることになり、特許文献1にもあるように、多数キャリア及び少数キャリアのライフタイムを短縮させることができる。
なお、第1絶縁層30は例えばSiO2膜にて構成され、第2絶縁層32は例えばSiNx膜、あるいはポリイミド膜あるいはシリコーン膜にて構成され、カソード電極16、アノード電極18及びゲート電極20はそれぞれ例えばアルミニウム(Al)にて構成されている。
次に、本実施の形態に係る半導体装置10の2つの変形例について図5及び図6を参照しながら説明する。
第1変形例に係る半導体装置10aは、図5に示すように、上述した半導体装置10とほぼ同様の構成を有するが、埋め込みゲート領域26の上端部と取り出し領域28の下端部とが接している点で異なる。
第2変形例に係る半導体装置10bは、図6に示すように、上述した半導体装置10とほぼ同様の構成を有するが、埋め込みゲート領域26の上端部と取り出し領域28の下端部とが重なっている点で異なる。
次に、本実施の形態に係る半導体装置の製造方法について、図7のフローチャートを参照しながら説明する。
先ず、図7のステップS1において、半導体基板12の表面に複数の開口を有するフォトマスクを形成する。開口は、半導体基板12の表面のうち、後に埋め込みゲート領域26の中心部分となる位置に形成される。従って、後にAIL36となる部分がフォトマスクによって保護され、該部分への傷の発生を防止することができる。
その後、ステップS2において、半導体基板12のうち、少なくともフォトマスクの開口から露出する部分に第2導電型の不純物(例えばボロン)を付着させて、フォトマスクの開口から露出する部分に不純物層(例えば金属ボロン層)を形成する。不純物層の不純物密度は1022[cm−3]オーダーである。ボロンの付着は温度1000℃〜1100℃の範囲のうち、いずれかの温度、例えば1011℃等にて行われる。このとき、フォトマスクの上面にも一部ボロンが付着して不純物層(例えば金属ボロン層)が形成されるが、後にAIL36となる部分がフォトマスクによって保護され、該部分の結晶性が確保され、且つ、金属汚染を防止することができる。
その後、ステップS3において、低温酸化を行って不純物層の表層を除去する。例えば不純物層が金属ボロン層である場合、温度850℃〜950℃の範囲のうち、いずれかの温度、例えば900℃にて低温酸化を行って、金属ボロン層の表層(厚み5〜15nm)を除去する。本実施の形態では、不純物密度が1022[cm−3]オーダーの表層(厚み10nm)を除去して、開口に残存する不純物層(金属ボロン層)の不純物密度を1020[cm−3]オーダーにした。
その後、ステップS4において、不純物層(金属ボロン層)から半導体基板12に対して不純物(ボロン)の拡散を行って埋め込みゲート領域26の一部(下部26b)を形成する。この拡散処理の温度は1100℃〜1200℃の範囲のうち、いずれかの温度、例えば1150℃が挙げられる。
その後、ステップS5において、少なくとも第1導電型の不純物(例えばリン)とシリコンを含む気相エピタキシャル成長を行って半導体基板12上に、少なくとも埋め込みゲート領域26の一部(上部26a)と、AIL36とを有する第1エピタキシャル層(エピタキシャル層14の下層部分)を形成する。すなわち、リン(P)及びシリコン(Si)を含む気相エピタキシャル成長の過程で、埋め込みゲート領域26の下部26b内のボロン(B)原子が、気相中に飛び出してくるが、主に縦方向に飛び出したボロンと気相中のシリコンにて埋め込みゲート領域26の上部26aが形成され、主に横方向に飛び出したボロンと気相中のシリコン並びにリンによってAIL36が形成されることになる。つまり、ボロンとリンとの補償効果によってAIL36が形成される。この第1エピタキシャル層の形成は、温度1000℃〜1100℃の範囲のうち、いずれかの温度、例えば1050℃にて行われる。図1に示す半導体装置10及び図5に示す半導体装置10aは、この段階で、埋め込みゲート領域26が完成する。
なお、上述のステップS3を省略して不純物層の表層を除去しなかった場合は、不純物層の表層の不純物密度が1022[cm−3]オーダーであることから、ボロンの拡散が多くなり、AIL36の真性半導体領域化が困難になるおそれがある。しかし、本実施の形態では、ステップS3において、不純物層の表層を除去して、不純物層の不純物密度を1020[cm−3]オーダーに調整しているため、このステップS5において形成されるAIL36の真性半導体領域化が容易になる。
その後、ステップS6において、エピタキシャル成長によって、第1エピタキシャル層上に第2エピタキシャル層(エピタキシャル層14の上層部分)を形成する。図6に示す半導体装置10bは、この段階で、埋め込みゲート領域26が完成する。なお、この段階において、リンが下方に拡散するが、このリンはAIL36を真性化させる不純物補償として働く。
その後、ステップS7において、第2エピタキシャル層のうち、埋め込みゲート領域26に対応する箇所に取出し領域28を形成し、AIL36に対応する箇所にカソード領域22を形成する。これによって、第1エピタキシャル層上にカソード領域22を含む第2エピタキシャル層が形成されることになる。
その後、ステップS8において、エピタキシャル層14上に、第1絶縁層30、ゲート電極20、カソード電極16、第2絶縁層32及びカソード配線層34を形成して、半導体装置10(半導体装置10a及び半導体装置10b)が完成する。
この製造方法によれば、埋め込みゲート領域26とカソード領域22との間に、高抵抗で、且つ、キャリア寿命短縮化を図ることができるAIL36を容易に形成することができる。しかも、距離Daと距離Dbとの関係が上述した関係を有する半導体装置10、第1変形例及び第2変形例に係る半導体装置10a及び10bを容易に作製することができる。
[第1実施例]
第1実施例は、参考例及び実施例1〜9について、順バイアスから逆バイアスをかけた場合に発生する逆電圧(ピーク値Vpの絶対値であり、以下同様である。)を測定した。具体的には、順方向電流IF(図4参照)として定格電流30Aを流した後、逆バイアスをかけたときの逆電圧Vpを測定した。参考例及び実施例1〜9の内訳及び測定結果を下記表1に示す。なお、参考例及び実施例1〜9共に、AIL36には50atmの金(Au)をドープした。
第1実施例は、参考例及び実施例1〜9について、順バイアスから逆バイアスをかけた場合に発生する逆電圧(ピーク値Vpの絶対値であり、以下同様である。)を測定した。具体的には、順方向電流IF(図4参照)として定格電流30Aを流した後、逆バイアスをかけたときの逆電圧Vpを測定した。参考例及び実施例1〜9の内訳及び測定結果を下記表1に示す。なお、参考例及び実施例1〜9共に、AIL36には50atmの金(Au)をドープした。
(参考例)
参考例に係る半導体装置は、距離Daが18μm、距離Dbが9μmであり、距離Daと距離Dbとの関係がDb/Da=1/2である。
参考例に係る半導体装置は、距離Daが18μm、距離Dbが9μmであり、距離Daと距離Dbとの関係がDb/Da=1/2である。
(実施例1)
実施例1に係る半導体装置は、距離Daが6μm、距離Dbが2.0μmで、距離Daと距離Dbとの関係がDb/Da=1/3である。
実施例1に係る半導体装置は、距離Daが6μm、距離Dbが2.0μmで、距離Daと距離Dbとの関係がDb/Da=1/3である。
(実施例2〜9)
実施例2、3、4、5、6、7、8及び9に係る半導体装置は、いずれも距離Daが6μmで、距離Dbが1.5μm、1.3μm、1.1μm、1.0μm、0.9μm、0.7μm、0.6μm及び0.5μmであり、距離Daと距離Dbとの関係がDb/Da=1/4、13/60、11/60、1/6、3/20、7/60、1/10及び1/12である。
実施例2、3、4、5、6、7、8及び9に係る半導体装置は、いずれも距離Daが6μmで、距離Dbが1.5μm、1.3μm、1.1μm、1.0μm、0.9μm、0.7μm、0.6μm及び0.5μmであり、距離Daと距離Dbとの関係がDb/Da=1/4、13/60、11/60、1/6、3/20、7/60、1/10及び1/12である。
表1から、参考例は、順方向電流として、定格電流30Aを流してから逆バイアスをかけた際の逆電圧は3kVであった。実施例1〜9は、いずれも参考例よりも逆電圧が低かった。特に、Db/Daの値が3/20になるにつれて逆電圧は低くなり(実施例1〜6参照)、Db/Daの値が3/20よりも小さくなると、徐々に逆電圧が高くなった(実施例7〜9参照)。これは、蓄積時間の短縮には限界があり、そのため、Db/Daの値が3/20よりも小さくなっても、蓄積時間の短縮化にはつながらず、反対に耐圧が低下しているからと考えられる。なお、Db/Daが1/12よりも小さくなると、AILの抵抗値が低下し、オン抵抗が高くなるという問題がある。
従って、距離Daと距離Dbの関係は、
Db≦(1/3)×Da
を満足することがよいことがわかる。
Db≦(1/3)×Da
を満足することがよいことがわかる。
そして、実施例1〜9から、
好ましくは、
(1/12)×Da≦Db≦(1/3)×Da
であり、さらに好ましくは、
(1/10)×Da≦Db≦(1/4)×Da
であり、より好ましくは、
(7/60)×Da≦Db≦(13/60)×Da
であり、特に、好ましくは、
(3/20)×Da≦Db≦(11/60)×Da
であることがわかる。
好ましくは、
(1/12)×Da≦Db≦(1/3)×Da
であり、さらに好ましくは、
(1/10)×Da≦Db≦(1/4)×Da
であり、より好ましくは、
(7/60)×Da≦Db≦(13/60)×Da
であり、特に、好ましくは、
(3/20)×Da≦Db≦(11/60)×Da
であることがわかる。
[第2実施例]
第2実施例は、実施例10〜18並びに参考例1及び2について、距離Daを変え、さらに、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3のときの順バイアスから逆バイアスをかけた場合に発生する逆電圧を測定した。この場合も第1実施例と同様に、順方向電流として定格電流30Aを流した後、逆バイアスをかけたときの逆電圧を測定した。実施例10〜18並びに参考例1及び2の内訳及び測定結果を下記表2に示す。なお、実施例10〜18並びに参考例1及び2においても、AILには50atmの金(Au)をドープした。
第2実施例は、実施例10〜18並びに参考例1及び2について、距離Daを変え、さらに、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3のときの順バイアスから逆バイアスをかけた場合に発生する逆電圧を測定した。この場合も第1実施例と同様に、順方向電流として定格電流30Aを流した後、逆バイアスをかけたときの逆電圧を測定した。実施例10〜18並びに参考例1及び2の内訳及び測定結果を下記表2に示す。なお、実施例10〜18並びに参考例1及び2においても、AILには50atmの金(Au)をドープした。
(実施例10)
実施例10は、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3の3種類の半導体装置を作製し、各半導体装置について逆電圧を測定した。3種類の半導体装置共に距離Daは4μmとした。距離Dbは種類によって異なり、0.33μm(Db/Da=1/12)、0.67μm(Db/Da=1/6)、1.33μm(Db/Da=1/3)とした。
実施例10は、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3の3種類の半導体装置を作製し、各半導体装置について逆電圧を測定した。3種類の半導体装置共に距離Daは4μmとした。距離Dbは種類によって異なり、0.33μm(Db/Da=1/12)、0.67μm(Db/Da=1/6)、1.33μm(Db/Da=1/3)とした。
(実施例11〜18)
実施例11、12、13、14、15、16、17及び18は、距離Daがそれぞれ5μm、6μm、7μm、8μm、9μm、10μm、12μm、14μmであり、上述した実施例10と同様に、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3の3種類の半導体装置を作製し、各半導体装置について逆電圧を測定した。
実施例11、12、13、14、15、16、17及び18は、距離Daがそれぞれ5μm、6μm、7μm、8μm、9μm、10μm、12μm、14μmであり、上述した実施例10と同様に、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3の3種類の半導体装置を作製し、各半導体装置について逆電圧を測定した。
(参考例1及び2)
参考例1及び2は、距離Daがそれぞれ16μm及び18μmであり、上述した実施例10と同様に、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3の3種類の半導体装置を作製し、各半導体装置について逆電圧を測定した。
参考例1及び2は、距離Daがそれぞれ16μm及び18μmであり、上述した実施例10と同様に、距離Daと距離Dbとの関係がDb/Da=1/12、1/6及び1/3の3種類の半導体装置を作製し、各半導体装置について逆電圧を測定した。
表2から、参考例1は、Db/Da=1/3において、第1実施例の参考例と同じ3.0kVであり、参考例2は、Db/Da=1/6及び1/3において、第1実施例の参考例と同じ3.0kVであった。一方、実施例10〜18は、いずれも3.0kVよりも低く、良好であった。特に、実施例12〜14は、距離Daと距離Dbの関係がDb/Da=1/12〜1/3にわたって良好な結果となった。
従って、距離Daは、4.0μm以上14.0μm以下がよく、好ましくは4.0μm以上10.0μm以下であり、さらに好ましくは、4.0μm以上8.0μm以下であり、特に好ましくは、5.0μm以上7.0μm以下であることがわかる。
なお、本発明に係る半導体装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
10…半導体装置 12…半導体基板
14…エピタキシャル層 16…カソード電極
18…アノード電極 20…ゲート電極
22…カソード領域 24…アノード領域
26…埋め込みゲート領域 28…取出し領域
30…第1絶縁層 32…第2絶縁層
34…カソード配線層 36…AIL
14…エピタキシャル層 16…カソード電極
18…アノード電極 20…ゲート電極
22…カソード領域 24…アノード領域
26…埋め込みゲート領域 28…取出し領域
30…第1絶縁層 32…第2絶縁層
34…カソード配線層 36…AIL
Claims (15)
- 第1導電型の半導体基板と、
前記半導体基板の一方の表面に形成された1以上のカソード電極と、
前記半導体基板の他方の表面に形成されたアノード電極と、
前記半導体基板の前記一方の表面に、前記カソード電極と電気的に絶縁して形成され、前記カソード電極と前記アノード電極間に流れる電流の導通を制御するゲート電極と、
前記半導体基板の前記一方の表面のうち、少なくとも前記カソード電極に対応した部分に形成された第1導電型のカソード領域と、
前記半導体基板の前記他方の表面のうち、前記アノード電極に対応した部分に形成された第2導電型のアノード領域と、
前記半導体基板のうち、前記カソード領域と前記アノード領域とで挟まれた領域であって、且つ、前記カソード領域寄りの位置に形成された第2導電型の複数の埋め込みゲート領域とを有する半導体装置において、
前記埋め込みゲート領域の前記アノード領域側の端部から前記カソード領域の表面までの距離をDa、前記埋め込みゲート領域のうち、不純物密度が最も高い部位から前記カソード領域の前記アノード領域側の端部までの距離をDbとしたとき、
Db≦(1/3)×Da
であることを特徴とする半導体装置。 - 請求項1記載の半導体装置において、
(1/12)×Da≦Db≦(1/3)×Da
であることを特徴とする半導体装置。 - 請求項2記載の半導体装置において、
(1/10)×Da≦Db≦(1/4)×Da
であることを特徴とする半導体装置。 - 請求項3記載の半導体装置において、
(7/60)×Da≦Db≦(13/60)×Da
であることを特徴とする半導体装置。 - 請求項4記載の半導体装置において、
(3/20)×Da≦Db≦(11/60)×Da
であることを特徴とする半導体装置。 - 請求項1記載の半導体装置において、
前記埋め込みゲート領域の前記アノード領域側の端部から前記カソード領域の表面までの距離Daは4.0μm以上14.0μm以下であることを特徴とする半導体装置。 - 請求項6記載の半導体装置において、
前記距離Daは4.0μm以上10.0μm以下であることを特徴とする半導体装置。 - 請求項7記載の半導体装置において、
前記距離Daは4.0μm以上8.0μm以下であることを特徴とする半導体装置。 - 請求項8記載の半導体装置において、
前記距離Daは5.0μm以上7.0μm以下であることを特徴とする半導体装置。 - 請求項1〜9のいずれか1項に記載の半導体装置において、
隣接する前記埋め込みゲート領域間の距離が0.5μm以上2.0μm以下であることを特徴とする半導体装置。 - 請求項10記載の半導体装置において、
隣接する前記埋め込みゲート領域間の距離が0.5μm以上1.5μm以下であることを特徴とする半導体装置。 - 請求項11記載の半導体装置において、
隣接する前記埋め込みゲート領域間の距離が0.8μm以上1.2μm以下であることを特徴とする半導体装置。 - 請求項1〜12のいずれか1項に記載の半導体装置において、
前記半導体基板上にエピタキシャル層を有し、
前記エピタキシャル層は、少なくとも前記埋め込みゲート領域の一部及び前記カソード領域を含み、
前記埋め込みゲート領域と前記カソード領域間に、能動的高抵抗半導体領域を有することを特徴とする半導体装置。 - 請求項13記載の半導体装置において、
前記能動的高抵抗半導体領域の不純物密度が1013[cm−3]オーダー〜1015[cm−3]オーダーであり、
前記埋め込みゲート領域の不純物密度が最も高い部位の不純物密度が1018[cm−3]オーダー〜1020[cm−3]オーダーであり、
前記カソード領域の不純物密度が最も高い部位の不純物密度が1018[cm−3]オーダー〜1020[cm−3]オーダーであることを特徴とする半導体装置。 - 第1導電型の半導体基板と、
前記半導体基板の一方の表面に形成された1以上のカソード電極と、
前記半導体基板の他方の表面に形成されたアノード電極と、
前記半導体基板の前記一方の表面に、前記カソード電極と電気的に絶縁して形成され、前記カソード電極と前記アノード電極間に流れる電流の導通を制御するゲート電極と、
前記半導体基板の前記一方の表面のうち、少なくとも前記カソード電極に対応した部分に形成された第1導電型のカソード領域と、
前記半導体基板の前記他方の表面のうち、前記アノード電極に対応した部分に形成された第2導電型のアノード領域と、
前記半導体基板のうち、前記カソード領域と前記アノード領域とで挟まれた領域であって、且つ、前記カソード領域寄りの位置に形成された第2導電型の複数の埋め込みゲート領域とを有する半導体装置の製造方法であって、
前記半導体基板の表面に複数の開口を有するフォトマスクを形成する工程と、
前記半導体基板のうち、少なくとも前記開口から露出する部分に第2導電型の不純物を付着させて、少なくとも前記開口から露出する部分に不純物層を形成する工程と、
低温酸化を行って、前記不純物層の表層を除去する工程と、
前記不純物層から前記半導体基板に対して不純物の拡散を行って前記埋め込みゲート領域の一部を形成する工程と、
少なくとも第1導電型の不純物とシリコンを含む気相エピタキシャル成長を行って前記半導体基板上に、少なくとも前記埋め込みゲート領域の一部と、能動的高抵抗半導体層とを有する第1エピタキシャル層を形成する工程と、
前記第1エピタキシャル層上に前記カソード領域を含む第2エピタキシャル層を形成する工程とを有することを特徴とする半導体装置の製造方法。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012031722A JP2013168564A (ja) | 2012-02-16 | 2012-02-16 | 半導体装置及びその製造方法 |
| US13/765,129 US9048281B2 (en) | 2012-02-16 | 2013-02-12 | Semiconductor device and method for producing the same |
| EP13155399.2A EP2629333A3 (en) | 2012-02-16 | 2013-02-15 | Semiconductor device and method for producing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012031722A JP2013168564A (ja) | 2012-02-16 | 2012-02-16 | 半導体装置及びその製造方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2013168564A true JP2013168564A (ja) | 2013-08-29 |
Family
ID=47710034
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2012031722A Pending JP2013168564A (ja) | 2012-02-16 | 2012-02-16 | 半導体装置及びその製造方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US9048281B2 (ja) |
| EP (1) | EP2629333A3 (ja) |
| JP (1) | JP2013168564A (ja) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11658608B2 (en) | 2021-02-10 | 2023-05-23 | Keith Hunt Allen | Deployable solar array apparatus |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55165627A (en) * | 1979-06-09 | 1980-12-24 | Pioneer Electronic Corp | Method for diffusing impurity into semiconductor |
| JPH04355966A (ja) * | 1991-01-09 | 1992-12-09 | Toyo Electric Mfg Co Ltd | 静電誘導形半導体素子とその製造方法 |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6016753B2 (ja) * | 1979-01-19 | 1985-04-27 | 株式会社日立製作所 | 半導体スイツチング素子およびその制御方法 |
| EP0410390A3 (en) * | 1989-07-27 | 1993-02-24 | Seiko Instruments Inc. | Method of producing semiconductor device |
| US5324966A (en) * | 1992-04-07 | 1994-06-28 | Toyo Denki Seizo Kabushiki Kaisha | MOS-controlled thyristor |
| US5352910A (en) | 1992-04-07 | 1994-10-04 | Tokyo Denki Seizo Kabushiki Kaisha | Semiconductor device with a buffer structure |
| US5418376A (en) | 1993-03-02 | 1995-05-23 | Toyo Denki Seizo Kabushiki Kaisha | Static induction semiconductor device with a distributed main electrode structure and static induction semiconductor device with a static induction main electrode shorted structure |
| JP2801127B2 (ja) * | 1993-07-28 | 1998-09-21 | 日本碍子株式会社 | 半導体装置およびその製造方法 |
| WO1998012755A1 (en) * | 1996-09-17 | 1998-03-26 | Ngk Insulators, Ltd. | Semiconductor device |
| JP4458588B2 (ja) | 1999-10-18 | 2010-04-28 | 日本碍子株式会社 | 静電誘導型半導体デバイスおよびその製造方法 |
| JP4832723B2 (ja) | 2004-03-29 | 2011-12-07 | 日本碍子株式会社 | 能動的高抵抗半導体層を有する半導体装置 |
-
2012
- 2012-02-16 JP JP2012031722A patent/JP2013168564A/ja active Pending
-
2013
- 2013-02-12 US US13/765,129 patent/US9048281B2/en not_active Expired - Fee Related
- 2013-02-15 EP EP13155399.2A patent/EP2629333A3/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55165627A (en) * | 1979-06-09 | 1980-12-24 | Pioneer Electronic Corp | Method for diffusing impurity into semiconductor |
| JPH04355966A (ja) * | 1991-01-09 | 1992-12-09 | Toyo Electric Mfg Co Ltd | 静電誘導形半導体素子とその製造方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2629333A2 (en) | 2013-08-21 |
| US9048281B2 (en) | 2015-06-02 |
| US20130214327A1 (en) | 2013-08-22 |
| EP2629333A3 (en) | 2014-10-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10840339B2 (en) | Silicon carbide semiconductor substrate and silicon carbide semiconductor device | |
| JP2019102493A (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
| US8829533B2 (en) | Silicon carbide semiconductor device | |
| JP7263740B2 (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
| JP6621925B2 (ja) | 半導体装置及びその製造方法 | |
| JP2018026562A (ja) | 半導体装置および半導体装置の製造方法 | |
| JP6639739B2 (ja) | 半導体装置 | |
| JP2019009288A (ja) | 半導体装置 | |
| JP7582733B2 (ja) | 炭化珪素からなるトレンチゲート構造の縦型mosfet | |
| JP5033335B2 (ja) | 半導体装置およびそれを用いたインバータ装置 | |
| JP2015002277A (ja) | 炭化珪素半導体装置 | |
| CN114447098A (zh) | 半导体装置及半导体装置的制造方法 | |
| CN111697078A (zh) | 高雪崩耐量的vdmos器件及制备方法 | |
| CN114551586B (zh) | 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法 | |
| CN101510558A (zh) | 半导体装置及其制造方法 | |
| JP2007227982A (ja) | 半導体装置の製造方法および半導体装置 | |
| JP2004247593A (ja) | 半導体装置及びその製造方法 | |
| JP7127748B2 (ja) | 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法 | |
| WO2021005903A1 (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
| JP7134358B2 (ja) | 半導体装置、および、半導体装置の製造方法 | |
| JP4832723B2 (ja) | 能動的高抵抗半導体層を有する半導体装置 | |
| JP5696815B2 (ja) | 半導体装置 | |
| US8648447B2 (en) | Semiconductor rectifier device | |
| JP2013168564A (ja) | 半導体装置及びその製造方法 | |
| CN103441143B (zh) | 具有变组分混合晶体发射区的抗闩锁igbt |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141118 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160315 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161108 |
