JP2013149762A - 半導体モジュール - Google Patents

半導体モジュール Download PDF

Info

Publication number
JP2013149762A
JP2013149762A JP2012008555A JP2012008555A JP2013149762A JP 2013149762 A JP2013149762 A JP 2013149762A JP 2012008555 A JP2012008555 A JP 2012008555A JP 2012008555 A JP2012008555 A JP 2012008555A JP 2013149762 A JP2013149762 A JP 2013149762A
Authority
JP
Japan
Prior art keywords
electrode terminal
semiconductor
stress relaxation
thermal stress
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012008555A
Other languages
English (en)
Other versions
JP5899952B2 (ja
Inventor
Tetsuya Nishiguchi
哲也 西口
Shinichi Yamada
真一 山田
Tsuyoshi Noyori
剛示 野寄
Toshinori Miura
敏徳 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012008555A priority Critical patent/JP5899952B2/ja
Publication of JP2013149762A publication Critical patent/JP2013149762A/ja
Application granted granted Critical
Publication of JP5899952B2 publication Critical patent/JP5899952B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

【課題】圧接により複数の半導体素子の電極層と電極端子とを電気的に接続する半導体モジュールの動作信頼性を向上する。
【解決手段】複数の半導体チップ2を備え、各半導体チップ2の電極層に接続されるコレクタ電極端子3及びエミッタ電極端子7を半導体チップ2方向に押圧して設ける。半導体チップ2とエミッタ電極端子7との間に熱応力緩和部材5を介在させる。この熱応力緩和部材5とエミッタ電極端子7は、複数の接合部6でもって接合される。接合部6,6間に設けられる熱応力緩和部材5の長さは、接合部6,6間の距離よりも長くする。熱応力緩和部材5は、厚さ0.1mm以下の箔状に形成される。また、コレクタ電極端子3の半導体チップ2と対向する面に形成された嵌合溝3aにコンタクト電極4を嵌合し、コレクタ電極端子3とコンタクト電極4を一体形成する。
【選択図】図1

Description

本発明は、圧接により半導体素子の電極層と電極端子とを電気的に接続する半導体モジュールに関する。
近年、産業用・車両用システムや変電設備やインバータ等の電力変換装置といった分野に用いられる絶縁形パワー半導体モジュールに対して、高耐圧、大容量のIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)の適用が行われている。このIGBTモジュールに代表される「絶緑形パワー半導体モジュール」若しくは「Isolated power semiconductor devices」は、それぞれJEC−2407−2007、IEC60747−15にて規格が制定されている。
一般的な絶緑形パワー半導体モジュールにおいて、スイッチング素子であるIGBTやダイオード等の半導体素子は、半導体素子の下面に設けられた電極層をDBC(Direct Bond Copper)基盤の銅回路箔上にはんだ付けされ、当該基板上に設けられる(例えば、非特許文献1)。DBC基板とは、セラミックス等からなる絶縁板に銅回路箔を直接接合したものである。
半導体素子の上面に設けられる電極層には、超音波ボンディング等の方法によりアルミワイヤが接続される。このアルミワイヤは、例えば、DBC基板上の銅回路箔と電気的に結線される。そして、DBC基板の銅回路箔から外部へ電気を接続するための銅端子(リードフレームやブスバー)は、銅回路箔とはんだ付けにより接続される。さらに、この周りは(スーパー)エンジニアリングプラスチックのケースで囲まれ、その中を電気絶緑のためのシリコーンゲル等が充填される。
近年、半導体素子の動作温度の高温化が進んでいる。例えば、次世代の半導体素子であるSiC半導体は、250〜300℃での動作が報告されている。動作温度が、175〜200℃となると、この温度がはんだ材料の融点に近いため、従来のはんだ材料を用いることができない場合がある。そこで、はんだに置換する材料として、例えば、金属系高温はんだ(Bi,Zn,Au)、化合物系高温はんだ(Sn−Cu)、低温焼結金属(Agナノペースト)等が提案されている。
また、はんだを用いない半導体モジュール構造として平型圧接構造パッケージが提案されている(非特許文献1、2)。平型圧接構造パッケージは、圧接によりコンタクト端子と半導体素子との接続や半導体素子と基板とを接続する。一般的な平型圧接構造パッケージでは、半導体素子(例えば、IGBT、ダイオード)の端部に半導体素子及びコンタクト端子の位置決めをするガイドが設けられる。そして、半導体素子の上面電極層がコンタクト端子に接触した状態で半導体素子が基板(Mo基板やDBC基板等)上に設けられる。つまり、コンタクト端子と基板とが半導体素子を挟圧した状態で半導体モジュール内に設けられる。
平型圧接構造パッケージは、平型構造であることから半導体素子を両面から冷却することができる。このため、一般的に平型圧接構造パッケージの両端をヒートシンクで圧接することで、平型圧接構造パッケージの両面を冷却するとともに、そのヒートシンクを導電部材として用いる。さらに、平型圧接構造パッケージは、圧接により半導体素子と電極端子等を接続するので、はんだを用いることなく半導体素子が電気的、熱的に外部と接続される。
平型圧接構造の半導体モジュールでは、圧接力が各半導体素子等に均等にかかるように半導体モジュールを組み立てる必要がある。例えば、圧接は平型圧接構造パッケージの上下のヒートシンクを電気的に絶緑する必要があり、また、板バネで平型圧接構造パッケージを圧接するがこの設計の圧接力が平型圧接構造パッケージの電極ポストに均等にかかるようにする必要がある。これらにはノウハウがあり、圧接が不良であった場合は半導体素子の破壊の原因となるおそれがある。なお、ヒートシンクと平型圧接構造パッケージの圧接は、主にユーザが実施する。また、回路を構成するのに、このヒートシンクや圧接のための板バネが小型化の妨げとなる等、使いこなすのには熟練が要求される。このような理由により、平型圧接構造パッケージは限られた装置への適用となり、代わりに使い勝手の良い従来型の絶縁形パワー半導体モジュールが広く使われている。
高温で動作可能な半導体素子を有する半導体モジュールの温度サイクル、パワーサイクル等の信頼性を向上させるために、半導体モジュールを構成する各部材(半導体、金属、セラミックス等からなる部材)の熱膨張率の違いより生じる課題を解決する必要がある。例えば、基板−銅ベース間、基板−銅端子間において、銅とセラミックスの熱膨張係数が異なるので、半導体モジュールの温度が上昇すると銅とセラミックスを接続するはんだにせん断応力が働く。このせん断応力により、はんだに亀裂が生じて熱抵抗が増大したり電極端子が剥離したりするおそれがある。同様に、半導体素子−基板間のはんだにも亀裂が生じる場合がある。その他、条件によっては半導体素子上のアルミワイヤの接続部でもアルミニウムと半導体素子の熱膨張の差で応力が発生してアルミワイヤが疲労破断するおそれがあると考えられる。
年々半導体モジュールにおける電力密度の増加に伴い、半導体素子の電極層とアルミワイヤとの接合部等の半導体素子内部の接合温度が高くなることで、はんだのせん断応力、アルミワイヤの応力が大きくなってきている。これに対して熱膨張の影響が半導体モジュールの設計寿命に至るまでの期間に亘って顕在化しないように半導体モジュールの構造を設計する必要がある。SiCやGaNのような高温で使用できるワイドバンドキャップ半導体素子の出現により、さらに熱膨張の影響の低減が要求されている。また、SiC、GaN等の高温で使用可能な半導体素子の性能を活かす半導体モジュールとしても、半導体モジュールの温度サイクル、パワーサイクル等の信頼性のさらなる向上が求められている。
そこで、半導体モジュールの高信頼性、環境性、利便性を同時に実現するために、はんだ接合、あるいはワイヤーボンドを用いず、かつ両面冷却が容易に実現可能であり、放熱性の面で有利な圧接型絶縁形パワー半導体モジュールが再び脚光を浴びている。
図3に示すように、両面冷却方式の圧接型半導体モジュール11は、半導体モジュール11の外周部に(ケース17を挿通して)ボルト15が設けられる。このボルト15は、ヒートシンク12,14を半導体チップ2a,2b方向に押圧するようにナット(図示省略)で締結される。このように、ヒートシンク12,14をボルト15とナットで固定して、半導体モジュール11を構成する構成部材(AC電極端子16、DC電極端子18,20、及び半導体チップ2a,2b等)に圧接力を加える。また、半導体モジュール11の内部では、半導体チップ2aとAC電極端子16(及び、DC電極端子18)との接合部にはんだ19(あるいは、接着剤や樹脂等)層を設け、半導体チップ2aとAC電極端子16(及び、DC電極端子18)の電気的な接続が行われる。つまり、はんだ19を用いることで、半導体モジュール11を構成する構成部材を接着(または、封止)して、各構成部材にかかる圧接力が適正な範囲に収まり、また、すべての半導体チップ2a,2bに対する圧接力のばらつきが大きくならないようにしている。このように、圧接型半導体モジュール11では、機械的に圧接力を加える手段とともに、はんだ19等による界面接合形成技術や樹脂等による封止技術を併用することで、各構成部材(特に、半導体チップ2a,2b)にかかる圧接力が適正な範囲に収まるように制御し、半導体モジュール11の信頼性を確保している。
ところが、近年、電力変換器における電力の高密度化、小型化、SiC素子等の採用により、電力変換器のさらなる高温化(冷却機構の小型化)が進み、はんだや樹脂の接合、封止材料にも高温(例えば、200℃以上)への耐性、信頼性が要求されるようになっている。そのため、高温に対応する材料開発が進んでいるが、高温材料の実装時の信頼性はまだ評価され始めたばかりであり、また高温材料は、従来の材料より高コストとなる。
これまでの両面冷却圧接構造において、はんだ層、樹脂層等の接合、封止層を排除した純粋に両面から加える圧力のみですべての接合を形成する場合、高温動作時には、熱膨張の違いによる応力集中が避けられないおそれや、上下冷却面間で平行度を維持することが困難となるおそれがあった。その結果として、半導体モジュールを構成する特定の部材の界面で接触圧力が過大あるいは過小となるおそれがあった。
そこで、圧接型パッケージにおいては、電極材料と半導体チップの間に、熱膨張係数が半導体チップに近い値を有するモリブデン(Mo)やタングステン(W)等の低熱膨張材を挿入することにより、温度変化時の接触面における各部材の表面での反りを低減している(例えば、特許文献1−3)。
特開2004−96004号公報 特開2002−93976号公報 特開平08−88240号公報
電気学会高性能高機能パワーデバイス・パワーIC調査専門委員会、「パワーデバイス・パワーICハンドブック」、コロナ社、1996年7月、p289、p336 森睦宏,関康和、「大容量IGBTの最近の進歩」、電気学会誌、社団法人電気学会、1998年5月、Vol.118(5)、pp.274−277
しかしながら、低熱膨張材は、電極部材に主に用いられるCuに比べ熱伝導率が小さく、また、3倍程度の電気抵抗を有するため、通電したときに発熱しやすい。例えば、並列に配置した複数の半導体チップにおいて、半導体チップ表面に配置した低熱膨張部材のひとつの表面での接触圧が低下すると、ジュール発熱によりこの低熱膨張部材の温度が上昇し、結果的に隣接する半導体素子の温度も上昇し、並列バランスが崩れるおそれがある。
また、圧接型パッケージに低熱膨張材を設けると、モジュール内での構成部材が多くなるため、圧接型パッケージの組立性が低下するだけでなく、部材間の界面で発生する接触熱抵抗、接触電気抵抗が大きくなるため、放熱性が低下するおそれがある。また、低熱膨張材は、銅(Cu)のような電極部材と比較して硬いため、電極との接触面の表面粗さが小さくなるように研磨し、電極との接触面での接触抵抗を小さくするが、この表面仕上げの精度を高くするほどコストがかかる。
上記課題を解決する本発明の半導体モジュールの一態様は、半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子と、を備えた半導体モジュールであって、前記電極端子と前記半導体素子との間に介在する熱応力緩和部材を前記電極端子に局所的に接合する接合部を複数設け、前記接合部間の距離より、当該接合部間に設けられる熱応力緩和部材の長さを長くすることを特徴としている。
また、本発明の半導体モジュールの他の態様は、上記半導体モジュールにおいて、前記熱応力緩和部材の厚さは、0.1mm以下であることを特徴としている。
また、本発明の半導体モジュールの他の態様は、上記半導体モジュールにおいて、前記接合部の接合は、抵抗溶接、レーザー溶接、電子ビーム溶接のいずれかにより行うことを特徴としている。
また、本発明の半導体モジュールの他の態様は、上記半導体モジュールにおいて、前記接合部を、前記熱応力緩和部材と前記半導体素子との接触面よりも外側に設けることを特徴としている。
また、本発明の半導体モジュールの他の態様は、前記電極端子の前記半導体素子を押圧する部位にフランジ部を形成し、当該フランジ部に前記応力緩和部材を接合することを特徴としている。
また、本発明の半導体モジュールの他の態様は、上記半導体モジュールにおいて、前記熱応力緩和部材は、タングステン、炭化タングステン、モリブデン、銅タングステン、銀タングステン、アルミニウムシリコンカーバイドのいずれかを含有することを特徴としている。
また、上記課題を解決する本発明の半導体モジュールの他の態様は、半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子と、を備えた半導体モジュールであって、前記電極端子と前記半導体素子との間に、前記電極端子よりも熱膨張係数が小さいコンタクト電極を介在させ、前記電極端子の前記半導体素子と対向する面に、前記コンタクト電極が嵌合する嵌合溝を形成することを特徴としている。
以上の発明によれば、圧接により半導体素子の電極層と電極端子とを電気的に接続する半導体モジュールにおいて、熱応力緩和部材が他の部材と接触する界面の接触熱抵抗または接触電気抵抗を低減することに貢献し、以って半導体モジュールの動作信頼性の向上に貢献することができる。
本発明の実施形態1に係る半導体モジュールの要部断面図である。 本発明の実施形態2に係る半導体モジュールの要部断面図である。 従来技術に係る半導体モジュールの要部断面図である。
本発明の半導体モジュールについて、図を参照して詳細に説明する。なお、以下の説明において、各図面に示す断面図は、いずれも本発明の実施形態に係る半導体モジュールを模式的に示したものであり、図面上の寸法比と実際の寸法比とは必ずしも一致するものではない。
(実施形態1)
図1は、本発明の実施形態1に係る半導体モジュール1の要部断面図である。図1に示すように、実施形態1に係る半導体モジュール1は、複数の半導体チップ2(半導体素子)を有し、各半導体チップ2の電極層に接続される電極端子(コレクタ電極端子3、エミッタ電極端子7)は、それぞれ半導体チップ2方向に押圧して設けられる。
半導体チップ2は、図示省略するが、その上面にエミッタ、ゲート(制御電極)が形成され、底面にコレクタが形成される。なお、実施形態の説明では、便宜上、上面及び底面とするが上下方向は、本発明をなんら限定するものではない。また、ゲート(制御電極)と制御回路との接続については、従来の接続方法を用いればよいので図示省略する(他の実施形態についても同様である)。なお、半導体チップ2は、IGBT等のスイッチング素子であっても、IGBT等のスイッチング素子とFWD(Free Wheeling Diode)等の整流素子を有する回路等複数の素子が電気回路を形成するものであってもよい。
半導体チップ2は、例えば、コレクタ(カソード)電極端子3上にモリブデン製コンタクト電極4を介して設けられ、コレクタ電極端子3が、コンタクト電極4を介して半導体チップ2のコレクタと電気的に接続される。さらに、半導体チップ2の側面近傍には、絶縁ガイド8が設けられ、半導体チップ2の位置決めを行う。
コレクタ電極端子3(及び、エミッタ電極端子7)を構成する材料は、適宜周知の電極材料を用いればよい。例えば、コレクタ電極端子3(及び、エミッタ電極端子7)の材料に銅等の熱伝導性の良い金属を用いると半導体モジュール1(半導体チップ2)の放熱性が向上する。
コレクタ電極端子3の半導体チップ2と対向する面には、コンタクト電極4が嵌合する嵌合溝3aが形成される。嵌合溝3aの深さは、コンタクト電極4の厚さより浅く形成される。この嵌合溝3aにコンタクト電極4を嵌合し、ろう付けあるいは圧入による拡散接合(真空ホットプレス法等)により、コレクタ電極端子3とコンタクト電極4を一体形成する。ろう付けは、例えば、銀(銀ロウ)やAu‐Ni等を用いる。
コンタクト電極4は、例えば、半導体チップ2と同じ程度の面積を有し、厚さ1〜3mmの板状に形成される。なお、コンタクト電極4の形状は、この実施形態に限定されるものでなく、半導体チップ2の電極層とコレクタ電極端子3を電気的に接続できる形状であれば、適宜設計変更が可能である。コンタクト電極4(及び、後述の熱応力緩和部材5)としては、例えば、5〜10ppm/℃の熱膨張係数を有する低熱膨張材料を用いる。この低熱膨張材料の具体例として、タングステン(W)、炭化タングステン(WC)、銅タングステン(CuW)、銀タングステン(AgW)、アルミニウムシリコンカーバイド(AlSiC)等が挙げられる。
半導体チップ2のエミッタには、熱応力緩和部材5が設けられ、さらに熱応力緩和部材5上にエミッタ電極端子7が設けられる。つまり、エミッタ電極端子7が、熱応力緩和部材5を介して半導体チップ2のエミッタと電気的に接続される。
熱応力緩和部材5は、例えば、厚さ0.1mm以下の矩形の箔状に形成される。なお、熱応力緩和部材5の形状は、この実施形態に限定されるものでなく、半導体チップ2の電極層とエミッタ電極端子7を電気的に接続できる形状であれば、適宜設計変更が可能である。この熱応力緩和部材5は、エミッタ電極端子7の半導体チップ2と対向する面に局所的に接合される。
熱応力緩和部材5とエミッタ電極端子7とを接合する接合部6の接合方法は、抵抗溶接(スポット溶接)、レーザー溶接、電子ビーム溶接等の方法を用いる。この接合部6は、例えば、熱応力緩和部材5の対角線上に2点溶接したり、熱応力緩和部材5の各角に対応して4点溶接したりする等、複数箇所設けられる。これら接合部6,6の間に設けられる熱応力緩和部材5の長さは、当該接合部6,6間の距離よりも長くなるように、エミッタ電極端子7に熱応力緩和部材5が接合される。例えば、図1に示すように、エミッタ電極端子7に熱応力緩和部材5を溶接したとき、熱応力緩和部材5が波打つように形成された状態で接合される。この場合、予め熱応力緩和部材5の形状を波打つ形に形成した後に、熱応力緩和部材5をエミッタ電極端子7に接合してもよいし、熱応力緩和部材5にエミッタ電極端子7に接合後に熱応力緩和部材5の形状が波打つ形となるようにしてもよい。
この接合部6は、熱応力緩和部材5が半導体チップ2と接触する面積と比較して小さい領域となる。半導体チップ2を圧接したときに、この接合部6を、半導体チップ2と熱応力緩和部材5の接触面の外側に設けると、圧接時に接合部6(溶接痕等の接合痕)が圧接に影響を与えることがないので好ましい。
エミッタ電極端子7の半導体チップ2を押圧する部位である圧接部7a(半導体チップ2が接続される部分)には、熱応力緩和部材5が接合されるフランジ部7bが形成される。熱応力緩和部材5と比較して熱膨張係数の大きいエミッタ電極端子7の接合部6近傍の厚さを薄く形成することで、熱膨張係数の異なるエミッタ電極端子7と熱応力緩和部材5を接合する際に、接合時の熱膨張の差による熱応力緩和部材5にかかる応力が低減され、信頼性の高い溶接を行うことができる。
一般的に、接合を形成する部材のうち片側の部材のみが熱伝導率が高く、熱拡散係数が大きい場合、熱拡散係数が大きい部材のみが溶接時に温まり熱を逃がすため、接合箇所で熱がうまく蓄積せず、良好な接合が形成されにくい。そこで、溶接する箇所の両部材(エミッタ電極端子7及び熱応力緩和部材5)の熱伝導率、熱拡散係数(熱の逃げの速さ)を考慮し、両材料ができるだけ等しい領域で溶融するよう、フランジ部7bの厚さを調節する。例えば、フランジ部7bの厚さを熱応力緩和部材5の厚さの数倍程度の厚さとすることで、接合部形成時に接合箇所を中心として両部材の温度が瞬時に上がるため、両部材とも均一に溶解し強固な接合を形成することができる。
また、フランジ部7bを形成することで、エミッタ電極端子7の剛性(硬さ)が低下する。その結果、フランジ部7bと熱応力緩和部材5の間の熱膨張差が原因で発生する両部材界面での応力を低減することができ、熱応力緩和効果をより高めることができる。
なお、図示省略しているが、コレクタ電極端子3の半導体チップ2と対向する面の反対側の面には、絶縁板を介してヒートシンクが設けられる。このヒートシンクは、コレクタ電極端子3を半導体チップ2方向に押圧して設けられる。また、エミッタ電極端子7の半導体チップ2と対向する面の反対側の面には、絶縁板を介してヒートシンクが設けられる。このヒートシンクは、エミッタ電極端子7を半導体チップ2方向に押圧して設けられる。
以上のように、本発明の実施形態1に係る半導体モジュール1は、エミッタ電極端子7と熱応力緩和部材5の接合を、エミッタ電極端子7と熱応力緩和部材5の接触面全体を接合するのではなく、接合部6で局所的に接合することで、熱応力緩和部材5と半導体チップ2との熱膨張係数の違いにより、熱応力緩和部材5にかかる圧接方向(半導体チップ、2、電極端子3,7の積層方向)と垂直方向の熱応力の影響を低減することができる。つまり、接合部6,6間の距離より、接合部6,6間に設けられる熱応力緩和部材5の長さを長くすることで、エミッタ電極端子7が熱膨張した場合において、接合部6に熱応力がかからないだけでなく、エミッタ電極端子7の平面方向の熱膨張に対応して、熱応力緩和部材5面とエミッタ電極端子7面とが滑合する。その結果、半導体チップ2とエミッタ電極端子7の熱膨張係数の違いによって、半導体チップ2に作用する熱応力の影響を低減することができる。
エミッタ電極端子7と熱応力緩和部材5を局所的に接合することで、ろう付けや拡散接合を形成する場合のように、エミッタ電極端子7と熱応力緩和部材5との接合面の前処理(特に、濡れ性の向上のための前処理)が不要となるので、半導体モジュール1の生産性が向上する。さらに、熱応力緩和部材5の厚みを0.1mm以下とすることで、半導体チップ2とエミッタ電極端子7に絶縁板を介して設けられるヒートシンクとの距離が短くなり、半導体チップ2の放熱性が向上する。
また、エミッタ電極端子7に箔状の熱応力緩和部材5を接合することで、並列された複数の半導体チップ2を有する半導体モジュール1において、個々の半導体チップ2にかかる圧力に違いが生じた場合でも、熱応力緩和部材5が圧力緩衝材として働き、各半導体チップ2にかかる圧力のばらつきを抑えて均一な圧力をそれぞれの半導体チップ2にかけることが可能となる。つまり、熱応力緩和部材5を箔状に形成することで、熱応力緩和部材5をエミッタ電極端子7(または、半導体チップ2)の表面凹凸に対応するように変形させることができる。厚さが薄い箔は、部材としての硬さ(ヤング率)が小さいため、箔の上下に存在する(箔より硬い)部材の表面に凹凸が存在する場合、上下から力がかかった場合、その凹凸形状に応じて箔が柔軟に変形する。すなわち、硬い部材と比べて、表面の凹凸を吸収する作用が大きいため、上下からかかる圧力(つまり、半導体チップ2に作用する圧接力)が変動した場合でも、箔がその圧力変動を吸収する役目を担うことができる。例えば、エミッタ電極端子7と比較して、熱応力緩和部材5のヤング率(硬さ)を1/10とした場合、エミッタ電極端子7表面の局所的な凹凸部と熱応力緩和部材5との接触部において、熱応力緩和部材5は、エミッタ電極端子7よりも10倍変形することができる。その結果、例えばエミッタ電極端子7が1μm縮むような圧力が上下方向から加わった場合、同じ圧力で熱応力緩和部材5は10μm縮むため、熱応力緩和部材5を設けることで、エミッタ電極端子7表面での凹凸の差を10μm吸収できるようになる。なお、この熱応力緩和部材5をエミッタ電極端子7上に遊びを持たせて固定することで、熱応力緩和部材5を、より柔軟にエミッタ電極端子7(または、半導体チップ2)の表面凹凸に対応するように変形させることができる。
つまり、熱応力緩和部材5を箔状に形成することで、エミッタ電極端子7を半導体チップ2方向に押圧した場合、熱応力緩和部材5が、エミッタ電極端子7と半導体チップ2との間で、エミッタ電極端子7(または半導体チップ2)の表面凹凸に対応するように変形する。その結果、半導体チップ2に作用する圧接力の増減の影響を受けにくくなるだけでなく、エミッタ電極端子7と熱応力緩和部材5の接触面積が増大する。このように、熱応力緩和部材5が、半導体モジュール1の熱的ストレス、機械的ストレスを低減するので、各半導体チップ2とヒートシンク間の熱抵抗が均一になる。したがって、それぞれの半導体チップ2の温度が一定となり、並列された複数の半導体チップ2間の動作バランス(電流分担等)が改善され、半導体モジュール1の温度サイクル信頼性や動作信頼性が向上する。
このように、複数の半導体チップ2を圧接する半導体モジュール1において、各半導体チップ2にそれぞれ箔状の熱応力緩和部材5を設けると、熱応力緩和部材5が変形することで、各半導体チップ2にかかる圧力差を抑えて均一な圧力をそれぞれの半導体チップ2にかけることができ、さらに熱応力の緩和もできる。その結果、ブロック状の緩衝部材(コンタクト電極)が不要になる。
また、本発明の実施形態1に係る半導体モジュール1によれば、コレクタ電極端子3とコンタクト電極4とを一体に設けることで、コレクタ電極端子3とコンタクト電極4間の接触抵抗を低減することができる。コンタクト電極は、一般的に電気抵抗が電極端子よりも大きいため、通電時のジュール発熱が起きやすい。コンタクト電極4をコレクタ電極端子3と一体化することで、コンタクト電極4で発生した熱を速やかにコレクタ電極端子3に伝導させることができる。また、コンタクト電極4は、コレクタ電極端子3に嵌合しているので、コンタクト電極4とコレクタ電極端子3の接触面が大きくなり、コンタクト電極4で発生した熱を速やかにコレクタ電極端子3に伝導させることができる。その結果、半導体モジュール1の放熱性が向上する。
また、コンタクト電極4(モリブデンやタングステン)は、コレクタ電極端子3(銅やアルミニウム等)と比較して一般的に硬い(ビッカース硬さが大きい)ので、コンタクト電極4とコレクタ電極端子3との接触面での接触抵抗を低減するために、コンタクト電極4の表面粗さを低減するための表面仕上げをする必要がある。この表面処理は、半導体モジュールの製造コストや処理工程を増大させる要因となる。本発明の実施形態1に係る半導体モジュール1は、ろう付けまたは拡散接合によって、コレクタ電極端子3とコンタクト電極4とが一体に形成されている。したがって、コンタクト電極4の表面処理の精度(表面の粗さ)の高さを要求するものではなくなり、半導体モジュール1の製造コストを低減することができる。
また、コレクタ電極端子3に嵌合溝3aを形成することで、コンタクト電極4の位置決めが容易かつ確実になる。そして、半導体チップ2を半導体モジュール1に組み込み前に、コレクタ電極端子3の設計した所定の位置に、各コンタクト電極4を同じ接合条件で接合することで、各半導体チップ2に対応したコンタクト電極4の接合状態が一定となり、各半導体チップ2にかかる圧接力を均一にすることができる。さらに、コレクタ電極端子3とコンタクト電極4とが一体に形成されるため、従来の半導体モジュールと比較して、接触界面(コレクタ電極端子3とコンタクト電極4の接触界面)を削減できる。
また、コレクタ電極端子3とコンタクト電極4との接触面は、接触面での接触熱抵抗や接触電気抵抗を低減するために、他の接合部(半導体チップとコンタクト電極間や電極端子と絶縁部材間等)と比較して高い接触圧力を必要としていたが、接触面を一体に形成することで、接触熱抵抗、接触電気抵抗を大幅に低減することができる。
(実施形態2)
本発明の実施形態2に係る半導体モジュール9について、図2を参照して詳細に説明する。なお、実施形態1に係る半導体モジュール1と同様の構成については同じ符号を付し、その詳細な説明を省略する。
図2に示すように、実施形態2に係る半導体モジュール9は、複数の半導体チップ2(半導体素子)を有し、各半導体チップ2の電極層に接続される電極端子(コレクタ電極端子3、エミッタ電極端子7)は、それぞれ半導体チップ2方向に押圧して設けられる。
半導体チップ2は、例えば、コレクタ(カソード)電極端子3上にモリブデン製コンタクト電極4を介して設けられ、コレクタ電極端子3が、コンタクト電極4を介して半導体チップ2のコレクタと電気的に接続される。
コレクタ電極端子3の半導体チップ2と対向する面には、コンタクト電極4が嵌合する嵌合溝3aが形成される。この嵌合溝3aにコンタクト電極4を嵌合するとともに、ろう付けまたは圧入による拡散接合(真空ホットプレス法等)を形成し、コレクタ電極端子3とコンタクト電極4が一体形成される。
半導体チップ2のエミッタには、コンタクト電極10が設けられ、さらにコンタクト電極10上にエミッタ電極端子7が設けられる。つまり、エミッタ電極端子7が、コンタクト電極10を介して半導体チップ2のエミッタと電気的に接続される。
エミッタ電極端子7もコレクタ電極端子3と同様に、コンタクト電極10が嵌合する嵌合溝7cが形成され、この嵌合溝7cにコンタクト電極10が嵌合され、コンタクト電極10とエミッタ電極端子7が一体形成される。
なお、図示省略しているが、コレクタ電極端子3の半導体チップ2と対向する面の反対側の面には、絶縁板を介してヒートシンクが設けられる。このヒートシンクは、コレクタ電極端子3を半導体チップ2方向に押圧して設けられる。また、エミッタ電極端子7の半導体チップ2と対向する面の反対側の面には、絶縁板を介してヒートシンクが設けられる。このヒートシンクは、エミッタ電極端子7を半導体チップ2方向に押圧して設けられる。
本発明の実施形態2に係る半導体モジュール9によれば、コレクタ電極端子3とコンタクト電極4とを一体に設ける(エミッタ電極端子7とコンタクト電極10とを一体に設ける)ことで、実施形態1に係る半導体モジュール1と同様に、電極端子とコンタクト電極間の接触抵抗を低減することができる。その結果、半導体モジュール9の放熱性が向上する。
以上のように、具体的な実施形態1,2を例示して説明したように、本発明の半導体モジュールによれば、半導体モジュールを構成する各部材の接触抵抗を低減し、放熱性を高めた圧接構造を実現することができる。また、複数の半導体チップ備えた半導体モジュールにおいても、半導体チップ表面で熱膨張係数のずれが原因で発生する熱応力を緩和し、各半導体チップに均一な圧力(接触抵抗)を作用させることができる。
そして、本発明の半導体モジュールは、スプリング等の機械的な機構のみで接合剤、封止材の使用をできるだけ抑え、同時に信頼性がある半導体モジュールを構成できる。さらに、材料面での制約や信頼性を毀損する要因を低減し、高温対応が可能な信頼性の高い半導体モジュールを構築することが可能となる。
両面から圧接、冷却する半導体モジュールを実現する場合、大電流モジュールを実現するために半導体チップの並列化が必要であること、またフルブリッジの3相インバータを実現するためには、2in1の単相インバータを3個並列に配置する等、半導体チップの数がモジュール全体では多数となる。本発明に係る半導体モジュールは、半導体チップに対し1:1で圧接するような構成のように、圧接力を付加するための機構(例えば、ばねやねじ)が多数必要な場合でも、各部品に作用する圧接力を均一にすることができる。その結果、部品点数が増加する半導体モジュールにおいても、動作信頼性の向上、モジュールの小型化、製造コストの低減を実現することができる。
なお、本発明の半導体モジュールは、上述した実施形態に限らず、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明に係る半導体モジュールである。
例えば、本発明の半導体モジュールは、実施形態1の半導体モジュール1で例示するように、コレクタ電極端子3にコンタクト電極4を一体に形成し、エミッタ電極端子7に熱応力緩和部材5を接合することに限定されるものではなく、コレクタ電極端子に熱応力緩和部材を接合し、エミッタ電極端子にコンタクト電極を一体に形成してもよい。また、実施形態2の半導体モジュールに示すように、コレクタ電極端子とエミッタ電極端子の双方にコンタクト電極を一体形成する形態や、その他、コレクタ電極端子とエミッタ電極端子の双方に箔状の熱応力緩和部材を接合する形態でも本発明に係る半導体モジュールの一形態であり、本発明の半導体モジュールの効果を部分的に得ることができる。
また、本発明は、圧接により半導体素子の電極層と外部(若しくは、内部の別の回路)に接続するための電極端子とを電気的に接続する半導体モジュールに適用可能である。この半導体モジュールに備えられる半導体素子としては、例えば、IGBTや、FWDや、サイリスタ(GTOサイリスタ等)、トランジスタ(MOSFET等)等の半導体素子を複数若しくは組み合わせて用いる形態が挙げられる。
本発明の半導体モジュールによれば、半導体モジュールの放熱性及び組立て利便性が向上するので、半導体モジュールの高信頼性、利便性を同時に実現することができる。よって、SiC、GaN等の高温で使用可能な半導体素子の性能を生かす半導体モジュールにおいて、温度サイクル、パワーサイクル等の信頼性を向上することができる。
特に、本発明の半導体モジュールは、半導体モジュールの放熱性を向上させることができるので、本発明の半導体モジュールを高温動作が要求される絶縁形パワー半導体モジュールやインバータ等の電力変換装置に用いることで、絶縁形パワー半導体モジュールや電力変換装置の放熱性を向上させることができる。
1,9…半導体モジュール
2…半導体チップ(半導体素子)
3…コレクタ電極端子(電極端子)
3a…嵌合溝
4,10…コンタクト電極
5…熱応力緩和部材
6…接合部
7…エミッタ電極端子(電極端子)
7a…圧接部
7b…フランジ部
7c…嵌合溝

Claims (7)

  1. 半導体素子と、
    前記半導体素子の電極層と電気的に接続される電極端子と、
    を備えた半導体モジュールであって、
    前記電極端子と前記半導体素子との間に介在する熱応力緩和部材を前記電極端子に局所的に接合する接合部を複数設け、
    前記接合部間の距離より、当該接合部間に設けられる熱応力緩和部材の長さを長くする
    ことを特徴とする半導体モジュール。
  2. 前記熱応力緩和部材の厚さは、0.1mm以下である
    ことを特徴とする請求項1に記載の半導体モジュール。
  3. 前記接合部の接合は、抵抗溶接、レーザー溶接、電子ビーム溶接のいずれかにより行う
    ことを特徴とする請求項1または請求項2に記載の半導体モジュール。
  4. 前記接合部を、前記熱応力緩和部材と前記半導体素子との接触面よりも外側に設ける
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の半導体モジュール。
  5. 前記電極端子の前記半導体素子を押圧する部位にフランジ部を形成し、当該フランジ部に前記応力緩和部材を接合する
    ことを特徴とする請求項1から請求項4のいずれか1項に記載の半導体モジュール。
  6. 前記熱応力緩和部材は、タングステン、炭化タングステン、モリブデン、銅タングステン、銀タングステン、アルミニウムシリコンカーバイドのいずれかを含有する
    ことを特徴とする請求項1から請求項5のいずれか1項に記載の半導体モジュール。
  7. 半導体素子と、
    前記半導体素子の電極層と電気的に接続される電極端子と、
    を備えた半導体モジュールであって、
    前記電極端子と前記半導体素子との間に、前記電極端子よりも熱膨張係数が小さいコンタクト電極を介在させ、
    前記電極端子の前記半導体素子と対向する面に、前記コンタクト電極が嵌合する嵌合溝を形成する
    ことを特徴とする半導体モジュール。
JP2012008555A 2012-01-19 2012-01-19 半導体モジュール Expired - Fee Related JP5899952B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012008555A JP5899952B2 (ja) 2012-01-19 2012-01-19 半導体モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012008555A JP5899952B2 (ja) 2012-01-19 2012-01-19 半導体モジュール

Publications (2)

Publication Number Publication Date
JP2013149762A true JP2013149762A (ja) 2013-08-01
JP5899952B2 JP5899952B2 (ja) 2016-04-06

Family

ID=49046980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012008555A Expired - Fee Related JP5899952B2 (ja) 2012-01-19 2012-01-19 半導体モジュール

Country Status (1)

Country Link
JP (1) JP5899952B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209099B1 (en) 2014-05-20 2015-12-08 Fuji Electric Co., Ltd. Power semiconductor module
US9812431B2 (en) 2014-04-01 2017-11-07 Fuji Electric Co., Ltd. Power semiconductor module
US9818705B1 (en) 2016-09-15 2017-11-14 Kabushiki Kaisha Toshiba Semiconductor device
CN109659280A (zh) * 2018-12-27 2019-04-19 西安中车永电电气有限公司 一种压接式igbt内部封装结构
CN110379777A (zh) * 2019-06-17 2019-10-25 全球能源互联网研究院有限公司 一种用于半导体芯片的弹性封装结构
CN112992795A (zh) * 2019-12-17 2021-06-18 株洲中车时代半导体有限公司 压接式igbt子模组结构和压接式igbt器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197933A (ja) * 1984-10-19 1986-05-16 Hitachi Ltd 全圧接型半導体装置
JPS62291122A (ja) * 1986-06-11 1987-12-17 Hitachi Ltd 半導体装置
JPH0541514A (ja) * 1990-09-20 1993-02-19 Toshiba Corp 圧接型半導体装置
JP2002270746A (ja) * 2001-03-12 2002-09-20 Shibafu Engineering Corp 圧接型半導体装置およびその製造方法
JP2005072351A (ja) * 2003-08-26 2005-03-17 Nissan Motor Co Ltd 半導体装置および半導体装置の製造方法
JP2006179735A (ja) * 2004-12-24 2006-07-06 Renesas Technology Corp 半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197933A (ja) * 1984-10-19 1986-05-16 Hitachi Ltd 全圧接型半導体装置
JPS62291122A (ja) * 1986-06-11 1987-12-17 Hitachi Ltd 半導体装置
JPH0541514A (ja) * 1990-09-20 1993-02-19 Toshiba Corp 圧接型半導体装置
JP2002270746A (ja) * 2001-03-12 2002-09-20 Shibafu Engineering Corp 圧接型半導体装置およびその製造方法
JP2005072351A (ja) * 2003-08-26 2005-03-17 Nissan Motor Co Ltd 半導体装置および半導体装置の製造方法
JP2006179735A (ja) * 2004-12-24 2006-07-06 Renesas Technology Corp 半導体装置およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9812431B2 (en) 2014-04-01 2017-11-07 Fuji Electric Co., Ltd. Power semiconductor module
US9209099B1 (en) 2014-05-20 2015-12-08 Fuji Electric Co., Ltd. Power semiconductor module
US9818705B1 (en) 2016-09-15 2017-11-14 Kabushiki Kaisha Toshiba Semiconductor device
CN109659280A (zh) * 2018-12-27 2019-04-19 西安中车永电电气有限公司 一种压接式igbt内部封装结构
CN110379777A (zh) * 2019-06-17 2019-10-25 全球能源互联网研究院有限公司 一种用于半导体芯片的弹性封装结构
CN112992795A (zh) * 2019-12-17 2021-06-18 株洲中车时代半导体有限公司 压接式igbt子模组结构和压接式igbt器件
CN112992795B (zh) * 2019-12-17 2024-04-19 株洲中车时代半导体有限公司 压接式igbt子模组结构和压接式igbt器件

Also Published As

Publication number Publication date
JP5899952B2 (ja) 2016-04-06

Similar Documents

Publication Publication Date Title
JP4569473B2 (ja) 樹脂封止型パワー半導体モジュール
JP4635564B2 (ja) 半導体装置
KR102163662B1 (ko) 양면 냉각 파워 모듈 및 이의 제조방법
CN108735692B (zh) 半导体装置
JP5899952B2 (ja) 半導体モジュール
WO2018194153A1 (ja) 電力用半導体モジュール、電子部品および電力用半導体モジュールの製造方法
JP6945418B2 (ja) 半導体装置および半導体装置の製造方法
US9437508B2 (en) Method for manufacturing semiconductor device and semiconductor device
JP2013179229A (ja) パワーモジュール半導体装置
JP3761857B2 (ja) 半導体装置
JP5807432B2 (ja) 半導体モジュール及びスペーサ
US20210305193A1 (en) Power module of double-faced cooling
JP6056286B2 (ja) 半導体モジュール及び半導体モジュール製造方法
JP5899680B2 (ja) パワー半導体モジュール
JP2013236035A (ja) 半導体モジュール及び半導体モジュールの製造方法
JP5840102B2 (ja) 電力用半導体装置
JP7523419B2 (ja) 電力用半導体装置の製造方法
US11652032B2 (en) Semiconductor device having inner lead exposed from sealing resin, semiconductor device manufacturing method thereof, and power converter including the semiconductor device
JP2014116478A (ja) 半導体モジュール及び半導体モジュールの製造方法並びに電力変換装置
JP2015026667A (ja) 半導体モジュール
JP2011176087A (ja) 半導体モジュール、及び電力変換装置
JP7561677B2 (ja) 電力半導体装置、電力半導体装置の製造方法及び電力変換装置
JP7570298B2 (ja) 半導体装置
WO2023203688A1 (ja) 半導体装置および半導体装置の製造方法
WO2022239154A1 (ja) パワーモジュールおよび電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees