JP2013143320A - 導電膜の製造方法 - Google Patents

導電膜の製造方法 Download PDF

Info

Publication number
JP2013143320A
JP2013143320A JP2012003907A JP2012003907A JP2013143320A JP 2013143320 A JP2013143320 A JP 2013143320A JP 2012003907 A JP2012003907 A JP 2012003907A JP 2012003907 A JP2012003907 A JP 2012003907A JP 2013143320 A JP2013143320 A JP 2013143320A
Authority
JP
Japan
Prior art keywords
substrate
mold
conductive film
conductive particles
affinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012003907A
Other languages
English (en)
Inventor
Masateru Nakayama
将輝 中山
Shinji Kake
伸二 掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012003907A priority Critical patent/JP2013143320A/ja
Publication of JP2013143320A publication Critical patent/JP2013143320A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】透明性、導電性に優れた、任意のパターン構造からなる導電膜を、大面積化が可能な簡便な方法で製造するための製造方法を提供する。
【解決手段】基板(A)の表面上に、基板(A)と接触させる面とその裏面とを貫通する網目構造の開口部を有する鋳型(B)であって、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を配置し、鋳型(B)を配置した基板(A)の表面に、導電性粒子(P)の分散液(D)を展開し、分散液(D)を乾燥させることにより、基板(A)上の鋳型(B)の該親和性を有する部位との接点近傍に、導電性粒子(P)に該所定のパターンに対応するパターン構造(C)を形成させ、そして鋳型(B)を基板(A)から取り外す工程を含む、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を有する導電膜の製造方法。
【選択図】図1

Description

本発明は、透明性、導電性に優れた導電膜の製造方法に関する。
透明性に優れた導電膜は、プラズマディスプレイ、液晶ディスプレイ等のフラットパネルディスプレイの表示電極;タッチパネル用透明電極;太陽電池用透明電極;電磁波遮蔽膜等の用途で広く利用されている。
透明性に優れた導電膜を形成する材料としては、錫ドープ酸化インジウム(Indium Tin Oxide 以下、「ITO」という。)が、よく知られている。ITO膜は、スパッタリング法、真空蒸着法等の気相法により製造されるが、気相法には高真空装置が必須であり、多大な設備投資を要する。特に、大面積が必要とされる用途においては、その設備投資及び維持費は莫大となる。また、ITO膜を製造する毎に、製造装置内の成分ガス圧を精密に制御しなければならないことから、製造コストと量産性には課題がある。
量産可能な方法として、特許文献1には、導電性微粒子と、網目構造の開口部を有する鋳型を用いて、導電性に優れた導電膜を形成する方法が提案されている。しかしながら、特許文献1に記載の方法は、膜平面内の導電性が均一な網目状構造の提供を企図しており、任意のパターン構造からなる導電膜を提供するためのパターン形成は不可能である。
特許文献2には、プラスチック基板等の表面ぬれ張力が特定の範囲内になるように表面処理を施した後、金属微粒子溶液を塗布、乾燥することで、網目状構造の導電膜を簡便に得る方法が提案されている。しかしながら、このような方法で形成される導電膜のパターンは成り行きで不規則であるため、再現性に課題がある(毎回同じ構造のパターンが得られない)ことや、任意のパターンを形成させることが不可能であることから、実用化は困難である。
特許文献3には、プラスチック基板のような耐熱性の低い基板上に、簡便で迅速に、すなわち高い生産性が達成できる方法で任意の導電パターンを形成する方法として、特定の金属化合物ナノ粒子を含有するコロイド分散物を、インクジェット法により基板上にパターン描画して焼成する方法が提案されている。パターン幅(線幅)については例示されていないが、吐出するインクの液滴径を調整することで10μm程度まで細線化できると記載されている。しかしながら、一般に、インクジェット法では、液滴サイズが小さくなればなるほど、吐出するインクの量が少なくなるため、印刷に長時間を要することになる(生産性が低下する)。特に、線幅が10μm以下となると、吐出するインクの量はフェムトリットル(1フェムトリットルは10−15リットル)のオーダーになると推測され、高い生産性を得るための処理スピード、処理面積を達成することは不可能である。
以上、従来の技術では、特に線幅が10μm以下となるような細線で任意のパターン構造からなる導電膜を、簡便で迅速に製造するには課題がある。
国際公開WO2011/090034 特開2009−16700 特開2004−556363
したがって、本発明の課題は、10μm以下となるような細線で任意のパターン構造からなる導電膜を、簡便で迅速に、すなわち生産性良く製造するための製造方法を提供することである。
本発明者らは上記のような導電膜を得るべく鋭意検討した結果、基板表面に、金属等の導電材料を分散させた分散液に対して親和性を有する部位と該分散液に対して非親和性を有する部位とを含む網目構造の開口部を有する鋳型を配置した後、該分散液を基板表面に展開し、分散媒を乾燥除去させることで、鋳型の線幅よりも微細な線幅で、該分散液に対して親和性又は非親和性を有する箇所に、鋳型の網目構造に対応するパターンが基板表面上に形成されることを見出した。更には、形成されたパターンが、転写法により、フィルム等の別の基板上に容易に転写できることを見出し、本発明に到達した。
即ち本発明は、一態様として、基板(A)の表面上に、基板(A)と接触させる面とその裏面とを貫通する網目構造の開口部を有する鋳型(B)であって、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を配置し、鋳型(B)を配置した基板(A)の表面に、導電性粒子(P)の分散液(D)を展開し、分散液(D)を乾燥させることにより、基板(A)上の鋳型(B)の該親和性又は非親和性を有する部位との接点近傍に、導電性粒子(P)に該所定のパターンに対応するパターン構造(C)を形成させ、そして鋳型(B)を基板(A)から取り外す工程を含む、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を有する導電膜の製造方法を提供する。
本発明による導電膜の製造方法は、透明性、導電性に優れ、特に導電性に異方性を持たせることも可能な任意のパターン構造を有する導電膜を、大面積化が可能な方法で、簡便に製造できることから、工業的価値が大きい。
本発明の一態様における、基板(A)に鋳型(B)を配置する工程を示す概略斜視図である。 本発明の一態様における、導電性粒子(P)の分散液(D)を展開した後の基板(A)と鋳型(B)を示す概略斜視図である。 本発明の一態様における、鋳型(B)を外した後の基板(A)と導電性粒子(P)を示す概略斜視図である。 本発明の一態様における、導電性粒子(P)の分散液(D)を展開した基板(A)を示す概略斜視図である。 本発明の一態様における、導電性粒子(P)の分散液(D)を展開した基板(A)に鋳型(B)を配置する工程を示す概略斜視図である。 本発明の一態様における、鋳型(B)を外した後の基板(A)と導電性粒子(P)を示す概略斜視図である。 本発明の別態様における、基板(A)に鋳型(B)を配置する工程を示す概略斜視図である。 本発明の別態様における、導電性粒子(P)の分散液(D)を展開した後の基板(A)と鋳型(B)を示す概略斜視図である。 本発明の別態様における、鋳型(B)を外した後の基板(A)と導電性粒子(P)を示す概略斜視図である。 本発明の別態様における、導電性粒子(P)の分散液(D)を展開した基板(A)を示す概略斜視図である。 本発明の別態様における、導電性粒子(P)の分散液(D)を展開した基板(A)に鋳型(B)を配置する工程を示す概略斜視図である。 本発明の別態様における、鋳型(B)を外した後の基板(A)と導電性粒子(P)を示す概略斜視図である。 本発明のさらに別態様における、基板(A)に鋳型(B)を配置する工程を示す概略斜視図である。 本発明のさらに別態様における、導電性粒子(P)の分散液(D)を展開した後の基板(A)と鋳型(B)を示す概略斜視図である。 本発明のさらに別態様における、鋳型(B)を外した後の基板(A)と導電性粒子(P)を示す概略斜視図である。 本発明のさらに別態様における、導電性粒子(P)の分散液(D)を展開した基板(A)を示す概略斜視図である。 本発明のさらに別態様における、導電性粒子(P)の分散液(D)を展開した基板(A)に鋳型(B)を配置する工程を示す概略斜視図である。 本発明のさらに別態様における、鋳型(B)を外した後の基板(A)と導電性粒子(P)を示す概略斜視図である。 本発明による導電膜の製造プロセスの一例を示す模式図である。 本発明による導電膜の製造プロセスの一例を示す模式図である。 本発明による導電膜の製造プロセスの一例を示す模式図である。 本発明による一実施態様における導電膜の光学顕微鏡写真である。 本発明による別の実施態様における導電膜の光学顕微鏡写真である。 本発明による別の実施態様における導電膜の光学顕微鏡写真である。
本発明の導電膜の製造方法について説明する。
本発明の導電膜は、基板(A)の表面上に、基板(A)と接触させる面とその裏面とを貫通する網目構造の開口部を有する鋳型(B)であって、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を配置し、鋳型(B)を配置した基板(A)の表面に、導電性粒子(P)の分散液(D)を展開し、分散液(D)を乾燥させることにより、基板(A)上の鋳型(B)の該親和性又は非親和性の部位との接点近傍に、導電性粒子(P)に該所定のパターンに対応するパターン構造(C)を形成させ、そして鋳型(B)を基板(A)から取り外すことによって、製造することができる。
また、本発明の導電膜は、基板(A)の表面上に、導電性粒子(P)の分散液(D)を展開し、
基板(A)の表面に展開した分散液(D)の上から、基板(A)と接触させる面とその裏面とを貫通する網目構造の開口部を有する鋳型(B)であって、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該の分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を配置し、分散液(D)を乾燥させることにより、基板(A)上の鋳型(B)の該親和性又は非親和性を有する部位との接点近傍に、導電性粒子(P)に該所定のパターンに対応するパターン構造(C)を形成させ、そして鋳型(B)を基板(A)から取り外すことによって、製造することもできる。
なお、本発明において、「導電性粒子(P)の分散液(D)に対して親和性を有する部位」とは、「導電性粒子(P)の分散液(D)に対して非親和性を有する部位」と比べて、相対的に親和性を有する部位であることを意味する。
また、本発明において、「接点近傍」とは、所定のパターンに対応するパターン構造が形成される領域であって、例えば、線幅が10μm以下、好ましくは5μm以下の、導電性粒子(P)による所定のパターンが形成される領域を意味する。
<基板(A)>
本発明に用いる基板(A)は、その表面と、後述する導電性粒子(P)の分散液(D)との接触角が0.1〜50°であることが好ましく、接触角が0.1〜30°であることがより好ましく、接触角が0.1〜20°であることが更に好ましい。
基板(A)の表面と、導電性粒子(P)の分散液(D)との接触角を上記の範囲内とするために、基板(A)を予め表面処理しておくことが好ましい。表面処理の方法としては、例えば、UV照射処理、エキシマ照射処理、プラズマ照射処理、コロナ放電処理、電子線処理等;アセトン、アルコール等の有機溶剤による洗浄処理が挙げられる。
基板(A)の形状としては、例えば、平板状、フィルム状が挙げられる。取り扱いの容易さを考慮すると、平板状が好ましい。
基板(A)の素材としては、例えば、ガラス;ステンレス、アルミ等の金属;ポリエステル樹脂、アクリル樹脂等の樹脂が挙げられる。
後述する任意のパターン構造(C)を形成した基板(A)を、透明導電部材として用いる場合、基板(A)として、ガラスや透明樹脂等の透明基板を選択すればよい。
基板(A)として透明樹脂を用いる場合、ヤング率は0.5GPa以上、130℃での熱収縮率は1%以下、融点は70℃以上であることが好ましく、膜厚は15μm以上であることが好ましい。
透明樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂;ポリメタクリル酸メチル等のアクリル樹脂;ポリカーボネート;ポリエーテルスルホン;ポリスルホン;ポリオレフィン;ポリイミド;ポリアミド;ポリアミドイミド;ポリスチレンが挙げられる。
任意のパターン構造(C)の焼成工程を要する場合には、焼成温度を勘案して、基板(A)の素材を選択すればよい。
<鋳型(B)>
本発明に用いる鋳型(B)は、基板(A)と接触する面(s)と、その裏面(r)を貫通する網目構造の開口部を有する。さらに、本発明に用いる鋳型(B)は、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている。鋳型(B)の開口部を通じて、後述する導電性粒子(P)の分散液(D)の分散媒を蒸発させることができる。これにより、基板(A)上の、鋳型(B)の開口部ではない部分(鋳型の網目の辺部分)であり、かつ該分散液(D)に対して親和性又は非親和性を有する部位との接点近傍に、導電性粒子(P)を表面張力により自己組織的に集積させることができる。
本発明によると、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を提供する方法の一つとして、鋳型(B)の一部に撥水化処理を施す方法が挙げられる。例えば、全体的に親水性である鋳型(B)を用意し、その撥水化すべき部分、すなわち導電性粒子(P)を集積させるべきではない部分に、塗工インクを塗工する、撥水コーティング剤をコーティングする等の方法を例示することができる。以下、導電性粒子(P)の分散液(D)に対して親和性を有する鋳型に撥水化処理等の非親和化処理を施す態様について詳細に説明するが、反対に、導電性粒子(P)の分散液(D)に対して非親和性を有する鋳型に親水化処理等の親和化処理を施す態様についても当業者であれば認識することができ、本願明細書はこれを排除するものではないことを理解されたい。
塗工インクは、所期の撥水性を付与し得るものであれば特に制限は無い。一般に、塗工インクは、溶剤:70wt%程度、該溶剤に溶解する樹脂(定着剤):20wt%程度、該溶剤に分散する顔料:10wt%程度が主な成分であるが、本発明においては、顔料は必須ではない。塗工インク(塗膜)と水の接触角が60°以上、より好ましくは80°以上となる塗工インクを選択することが望ましい。溶剤としては、特に有機溶剤(油性インク)が好ましく、キシレン、エチルアルコール、エチレングリコールモノフェニルエーテル、ベンジルアルコール、プロピレングリコール、ジプロピレングリコール、ヘキシレングリコール、テトラリン等を例示することができる。
撥水コーティング剤は、所期の撥水性を付与し得るものであれば特に制限はなく、鋳型(B)との密着性等を考慮して選択することができる。撥水コーティング剤(塗膜)と水の接触角が60°以上、より好ましくは80°以上となる撥水コーティング剤を選択することが望ましい。特に、フッ素系の撥水コーティング剤が好ましく、ダイフリーMS−600(ダイキン(株)商品名)、ポリフロンTC−7400(ダイキン(株)商品名)等を例示することができる。
また、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を提供する別の方法として、鋳型(B)の一部にマスクを装着する方法が挙げられる。この場合、鋳型(B)の開口部を通じて、後述する導電性粒子(P)の分散液(D)の分散媒が蒸発するが、マスクを装着した部分からは、分散液(D)の分散媒は蒸発することができない。これにより、鋳型(B)の開口部ではない部分(鋳型の網目の辺部分)であり、かつマスクを装着していない部分に、導電性粒子(P)を表面張力により自己組織的に集積させることができる。
部分的にマスクを装着した鋳型(B)を得るための方法としては、一般公知の、スクリーン印刷用の版を製造する方法と同様の方法で得ることができる。すなわち、網目構造の開口部を有する鋳型(B)を用いて、スクリーン印刷版を製造する場合と同様の方法でマスクを装着する場合の例を述べると、まず鋳型(B)上に感光乳剤を塗布したのち、レジスト膜を形成する。次いで、所望のパターン模様を形成してなるポジフィルムを用いて、紫外線を照射して露光を行う。ポジフィルムの紫外線透過部に対応してレジスト膜に硬化部が形成され、またポジフィルムの紫外線不透過部に対応してレジスト膜に未硬化部が形成される。これを現像処理すると未硬化部が溶出除去され、硬化部のみが残留することで、パターン模様通り部分的にマスクを装着させた鋳型(B)が得られる。特に、Vスクリーン(NBCメッシュテック(株)商品名)等が、好適に使用できる。
さらに、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D))に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を提供する更に別の方法として、鋳型(B)を織物とし、その縦糸または横糸に該分散液(D))に対して非親和性を有する線材を用いる方法が挙げられる。例えば、分散液(D)が親水性を有する場合、少なくとも一部分に疎水性の線材を織り込んだ金網状の鋳型(B)を用いることができる。鋳型(B)は金網状であるため、基板(A)と接触する面(s)と、その裏面(r)を貫通する網目構造の開口部を有する。
疎水性の線材は、水接触角が60°以上、好ましくは75°以上であることが好ましい。分散液(D)が親水性である場合、疎水性が高い(水接触角が大きい)線材ほど、導電性粒子(P)が集積し難くなるため好ましい。疎水性の線材としては、ポリアミド(ナイロン)、ポリエチレン、シリコーン系樹脂、テフロン(登録商標)系樹脂等を例示することができ、これらからなる線材、またはこれらで被覆された線材を用いることができる。この場合、鋳型(B)の開口部を通じて、後述する導電性粒子(P)の分散液(D)の分散媒が蒸発する。これにより、鋳型(B)の開口部ではない部分(鋳型の網目の辺部分)であり、かつ疎水性の線材を除く部分に、導電性粒子(P)を表面張力により自己組織的に集積させることができる。例えば、縦糸として該疎水性の線材を、横糸としてステンレス等の線材を用いて織り込んだ金網状の鋳型(B)を用いた場合には、横糸の方向にのみ通電する、異方導電性の導電膜を形成させることができる。
鋳型(B)の網目の辺部分で、相対的に親水性又は疎水性の部位の近傍に、導電性粒子(P)を表面張力により自己組織的に集積させるには、基板(A)に対向する鋳型(B)の各辺が全て基板(A)に密着していない方が好ましい。尚、基板(A)と鋳型(B)が密着している場合でも、後述する工程1−3の乾燥工程において、分散液(D)の表面張力によって鋳型(B)が押し上げられる。
上記撥水化処理を施す、または上記マスクを装着するための鋳型(B)としては、例えば、ステンレス製、アルミ製等の金網が挙げられる。鋳型(B)を織物とし、その縦糸または横糸に疎水性の線材を用いる場合には、当該疎水性線材と組み合わされる線材として、例えば、ステンレス製、アルミ製等の線材が挙げられる。特に、ステンレス製、アルミ製の細線で平織り又は綾織りされた金網は、網目辺の交点が盛り上がっており、これを基板(A)に乗せると、網目の各辺が基板(A)に密着しないことから好ましい。
また、鋳型(B)も、基板(A)と同様に、例えば、UV照射処理、エキシマ照射処理、プラズマ照射処理、コロナ放電処理、電子線処理等;アセトン、アルコール等の有機溶剤による洗浄処理によって、予め表面処理しておくことが好ましい。
このような金網を用いる場合、本発明の製造方法により作製される任意のパターン構造(C)の線幅、開口部の幅は、この金網を構成する線材の直径、開口部の幅で調整することができる。用いる線材の断面は、丸型、角型等、いずれの形のものでも用いることができる。尚、開口部の幅とは、金網を構成する線材と線材の間隔を示す。また、金網のピッチとは、金網を構成する線材の中心から線材の中心までの間隔を示す。
エレクトフォーミング法で作製された網目構造の鋳型や、マイクロシーブも、鋳型(B)として用いることができる。マイクロシーブを用いる場合、表面に微細粒子(例えば、ナノ又はマイクロサイズのシリカ粒子。)を付着又は融着させ、シリカ粒子が付着又は融着した面を基板(A)に対向させて、基板(A)に乗せて用いることが好ましい。
本発明の製造方法によると、鋳型(B)に用いた金網の線材の直径に対して、1/10〜1/3程度の線幅のパターン構造(C)を、基板(A)上に形成することが可能である。
線材の直径は、5〜60μmが好ましく、10〜30μmがより好ましい。線材の直径が5〜60μmであれば、形成されるパターン構造(C)の線幅も細いため、得られる導電膜の透明性が高くなる。マイクロシーブを鋳型に用いる場合、その網目各辺の幅は、上記の線材の直径と同程度であることが好ましい。
鋳型(B)が、欠陥のない規則正しい網目構造であれば、この鋳型を用いて作製される導電膜のパターンは、相対的に親水性又は疎水性の部位に対応して、規則正しい網目構造が得られる。規則正しい網目構造とは、それぞれの網目が実質的に同一の形状である網目構造を意味する。
例えば、正方形の網目、長方形の網目、正六角形の網目がそれぞれの辺を共有して連続している場合、これらは規則正しい網目構造である。
<導電性粒子(P)>
本発明に用いる導電性粒子(P)としては、例えば、金属微粒子、導電性ポリマーの微粒子、カーボンが挙げられる。
金属微粒子としては、例えば、Au、Ag、Cu、Ni、Pt、Pd、Fe、Cr、Zn、Sn等の金属、これらの酸化物、及びこれらの合金が挙げられる。これらの中では、導電性が高いことから、Au、Ag、Cu、Ptが好ましい。また、コスト面からは、Ag、Cu、洋銀(Cu、Zn、Niの合金)が好ましい。金属微粒子は、1種を単独で使用してもよく、2種以上を併用してもよい。
導電性ポリマーとしては、例えば、ポリアニリン、ポリチオフェン、ポリピロールやこれらの誘導体が挙げられる。導電性ポリマーは、1種を単独で使用してもよく、2種以上を併用してもよい。
導電性粒子(P)の質量平均粒子径は、1〜1000nmが好ましく、1〜100nmがより好ましく、1〜30nmが更に好ましく、1〜20nmが特に好ましい。導電性粒子(P)の質量平均粒子径が小さいほど、鋳型(B)のパターン形状に対する追随性が高くなる。
<分散液(D)>
導電性粒子(P)の分散液(D)の固形分は、0.01〜80質量%が好ましく、0.01〜10質量%がより好ましく、0.01〜5質量%が更に好ましく、0.01〜3質量%が特に好ましい。分散液(D)の固形分が低いほど、パターン構造(C)の線幅が細くなるため、色味が薄く、透明性の高い導電膜を得ることできる。
親水性の分散液(D)の分散媒としては、例えば、水;アルコール等の親水性有機溶剤が挙げられる。また、疎水性の分散液(D)の分散媒としては、例えば、塩化メチレン及びクロロホルムなどのハロゲン系有機溶媒、ベンゼン、トルエン、キシレン等の芳香族系炭化水素等が挙げられる。これらの中では、蒸発速度が適度であること、VOC(Volatile Organic Compounds)がないことから、水が好ましい。分散媒は、1種を単独で使用してもよく、2種以上を併用してもよい。
また、導電性粒子(P)の分散安定化のため、分散助剤を使用することもできる。
<パターン構造(C)の形成>
本発明のパターン構造(C)は、相対的に親水性の部位と相対的に疎水性の部位とからなる所定のパターンが形成されている鋳型(B)を用いて形成されるが、その際、基板(A)の表面上に、鋳型(B)を先に配置するか、導電性粒子(P)の分散液(D)を先に展開するかは任意である。いずれの方法によっても、鋳型(B)の相対的に親水性又は疎水性の部位に対応する網目状パターンの導電膜を容易に得ることができる。尚、本発明では、導電性粒子(P)により形成されたパターン構造(C)を「導電膜」という。
本発明の製造方法を用いることで、例えばメートルオーダーの大面積の導電膜であっても、簡便に製造することができる。
以下、親水性の分散液(D)を使用した場合の、本発明による製造方法の各種実施態様について説明する。
<製造方法1>
工程1−1:基板(A)の表面上に、部分的に撥水化処理を施した鋳型(B)を、工程1−2〜1−3の操作によってずれないように配置する。(図1)
工程1−2:鋳型(B)を配置した基板(A)に、鋳型(B)の上面から、導電性粒子(P)の分散液(D)を展開する。(図2)
工程1−3:分散液(D)の分散媒を乾燥させることで、導電性粒子(P)を基板(A)と鋳型(B)との接点近傍に凝縮させたパターン構造(C)を、自己組織的に形成させる。
工程1−4:鋳型(B)を取り外すことで、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させ、導電膜を得る。(図3)
<製造方法2>
工程2−1:基板(A)の表面上に、導電性粒子(P)の分散液(D)を展開する。(図4)
工程2−2:分散液(D)を展開した基板(A)の表面に、部分的に撥水化処理を施した鋳型(B)を、工程2−3の操作によってずれないように配置する。(図5)
工程2−3:分散液(D)の分散媒を乾燥させることで、導電性粒子(P)を基板(A)と鋳型(B)との接点近傍に凝縮させたパターン構造(C)を、自己組織的に形成させる。
工程2−4:鋳型(B)を取り外すことで、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させ、導電膜を得る。(図6)
<製造方法3>
工程3−1:基板(A)の表面上に、部分的にマスクを装着した鋳型(B)を、工程3−2〜3−3の操作によってずれないように配置する。(図7)
工程3−2:鋳型(B)を配置した基板(A)に、鋳型(B)の上面から、導電性粒子(P)の分散液(D)を展開する。(図8)
工程3−3:分散液(D)の分散媒を乾燥させることで、導電性粒子(P)を基板(A)と鋳型(B)との接点近傍に凝縮させたパターン構造(C)を、自己組織的に形成させる。
工程3−4:鋳型(B)を取り外すことで、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させ、導電膜を得る。(図9)
<製造方法4>
工程4−1:基板(A)の表面上に、導電性粒子(P)の分散液(D)を展開する。(図10)
工程4−2:分散液(D)を展開した基板(A)の表面に、部分的にマスクを装着した鋳型(B)を、工程4−3の操作によってずれないように配置する。(図11)
工程4−3:分散液(D)の分散媒を乾燥させることで、導電性粒子(P)を基板(A)と鋳型(B)との接点近傍に凝縮させたパターン構造(C)を、自己組織的に形成させる。
工程4−4:鋳型(B)を取り外すことで、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させ、導電膜を得る。(図12)
<製造方法5>
工程5−1:基板(A)の表面上に、少なくとも一部分に疎水性の線材を織り込んだ金網状の鋳型(B)を、工程5−2〜5−3の操作によってずれないように配置する。(図13)
工程5−2:鋳型(B)を配置した基板(A)に、鋳型(B)の上面から、導電性粒子(P)の分散液(D)を展開する。(図14)
工程5−3:分散液(D)の分散媒を乾燥させることで、導電性粒子(P)を基板(A)と鋳型(B)との接点近傍、かつ疎水性の線材を除く部分に、凝縮させたパターン構造(C)を、自己組織的に形成させる。
工程5−4:鋳型(B)を取り外すことで、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させ、導電膜を得る。(図15)
<製造方法6>
工程6−1:基板(A)の表面上に、導電性粒子(P)の分散液(D)を展開する。(図16)
工程6−2:分散液(D)を展開した基板(A)の表面に、少なくとも一部分に疎水性の線材を織り込んだ金網状の鋳型(B)を、工程2−3の操作によってずれないように配置する。(図17)
工程6−3:分散液(D)の分散媒を乾燥させることで、導電性粒子(P)を基板(A)と鋳型(B)との接点近傍、かつ疎水性の線材を除く部分に、凝縮させたパターン構造(C)を、自己組織的に形成させる。
工程6−4:鋳型(B)を取り外すことで、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させ、導電膜を得る。(図18)
製造方法1〜6によって、任意のパターン構造(C)を容易に得ることができるが、歩留まりが良好であることから、製造方法1、3、5が好ましい。
本発明の製造方法により、鋳型(B)の相対的に親水性の部位を構成する線の幅よりも有意に細い線幅で、導電性粒子(P)による任意のパターンを、基板(A)の表面上に形成することができる。具体的には、鋳型(B)の相対的に親水性の部位を構成する線の直径の1/10〜1/3程度の線幅のパターン構造(C)が、鋳型(B)の相対的に親水性の部位に対応する基板(A)の表面上に導電性粒子(P)によって形成される。
パターン構造(C)の線幅が、鋳型(B)を構成する線幅よりも格段に細くなる現象は、本発明者らにより見出された現象である。
この現象は、上記工程1−3、2−3、3−3、4−3、5−3または6−3において、分散液(D)を乾燥させる過程で、分散液(D)の表面張力によって鋳型(B)が押し上げられ、乾燥の進行に伴い、鋳型(B)の相対的に親水性の部位を構成する細線の下方で、基板(A)の表面上に導電性粒子(P)が凝縮するためと推測される。
本発明の製造方法では、パターン構造(C)の線の断面形状が、上方に弧を描いたような弓形(凸型)であるものを容易に形成することができる。線の断面形状が弓形であることで、表面抵抗値が小さくなり、後の転写工程においては、転写が容易となる。
以下、製造方法1、3、5の各工程について詳細に説明する。
<工程1−1、3−1、5−1>
本工程は、基板(A)の表面上に、部分的に撥水化処理を施した鋳型(B)(工程1−1)、部分的にマスクを装着した鋳型(B)(工程3−1)または少なくとも一部分に疎水性の線材を織り込んだ金網状の鋳型(B)(工程5−1)を配置する工程である。製造方法1、3、5をバッチ操作で実施する場合には、鋳型(B)を基板(A)から外す工程1−4、3−4、5−4までの間、両者の相対位置がずれないように、公知の接着剤又は接着テープ等を用いることができる。但し、基板(A)の表面で接着を行なうと、その部分は導電膜が形成されなくなることから、接着部分は基板の隅であることが望ましい。
基板(A)と鋳型(B)は、密着している必要はない。鋳型(B)の、基板(A)と接触する面(s)と基板(A)の間隔は、0.01〜20μmであることが好ましく、0.01μm〜2μmであることがより好ましい。面(s)と基板(A)の間隔がこの範囲内であれば、斑の少ない導電膜が再現性良く得られる。
<工程1−2、3−2、5−2>
鋳型(B)を配置した基板(A)に、導電膜の原料となる導電性粒子(P)の分散液(D)を展開する工程である。本工程では、導電膜を形成する部分一面に、分散液(D)が展開されていればよく、鋳型(B)が基板(A)からずれることなく、鋳型(B)の開口部に均一に導入が可能な方法であれば限定されない。
開口部に分散液(D)を導入する方法としては、例えば、スピンコート法、ドクターブレード法、ディップコート法、スプレー法、剪断塗布法が挙げられる。
前述したように、基板(A)を予め表面処理することにより、分散液(D)との接触角を小さくし、更に、鋳型(B)の相対的に親水性の部位と分散液(D)との接触角を50°以下、好ましくは30°以下とすることで、鋳型(B)を配置した基板(A)に、分散液(D)を部分的に滴下した場合でも、表面張力によって、分散液(D)を速やかに一面に展開することができる。
<工程1−3、3−3、5−3>
分散液(D)を展開した後、分散液(D)の分散媒を乾燥(蒸発除去)させる工程である。乾燥温度は0〜100℃が好ましく、3〜60℃がより好ましく、3〜30℃が更に好ましい。
分散媒を乾燥させる方法としては、例えば、静置する方法、熱風をあてる方法、大気圧以下に減圧する方法が挙げられる。乾燥条件は、乾燥時間が10秒以上、好ましくは30秒以上、より好ましくは1分以上となるように決めることが望ましい。
分散媒を乾燥する過程で、導電性粒子(P)が、自己組織的に、鋳型(B)の相対的に親水性の部位と基板(A)が密着又は近接した部分へと集積していく。その結果、鋳型(B)の相対的に親水性の部位と同形状のパターンを形成していく。
その他の条件が同じであれば、乾燥温度が低くなるほど乾燥速度は遅くなり、鋳型(B)のパターン形状に対する追随性が高く、密度の高い線を形成させることができる。
この工程で自己組織的に導電膜が形成されるのは、分散媒が乾燥していく過程で、導電性粒子(P)が濃縮されながら、分散媒自身の表面張力により、基板(A)と鋳型(B)の相対的に親水性の部位との間隙の方へと引き寄せられていくためである。
分散媒の乾燥後に、工程1−2〜1−3、3−2〜3−3または5−2〜5−3を繰り返すことにより、導電膜の導電性をさらに向上させることもできる。
<工程1−4、3−4、5−4>
鋳型(B)を基板(A)から取り外す工程である。形成された導電膜が損なわれない限り、特に取り外しの方法は限定されない。
次に、製造方法2、4、6の各工程について詳細に説明する。
<工程2−1、4−1、6−1>
本工程は、基板(A)の表面上に、導電膜の原料となる導電性粒子(P)の分散液(D)を展開する工程である。本工程では導電膜を形成する部分一面に、分散液(D)が展開されていればよい。
分散液(D)を展開する方法としては、例えば、スピンコート法、ドクターブレード法、ディップコート法、スプレー法、剪断塗布法が挙げられる。
<工程2−2、4−2、6−2>
工程2−1、4−1または6−1で基板(A)上に展開した分散液(D)の上から、部分的に撥水化処理を施した鋳型(B)(工程2−2)、部分的にマスクを装着した鋳型(B)(工程4−2)または少なくとも一部分に疎水性の線材を織り込んだ金網状の鋳型(B)(工程6−2)を基板(A)に配置する工程である。本工程では、工程2−1、4−1または6−1で展開した分散液(D)が乾燥したり、表面張力によって分散液がない部分が発生しなければ、鋳型(B)を配置する方法は特に限定されない。鋳型(B)を配置する方法としては、工程1−1、3−1、5−1で例示した方法が挙げられる。
<工程2−3、4−3、6−3>
それぞれ工程1−3、3−3、5−3と同様の工程である。
乾燥後、再度、更に導電性粒子(P)の分散液(D)を展開し、工程2−3、4−3、6−3を行なうこともできる。これにより、導電膜の導電性をさらに向上させることもできる。
<工程2−4、4−4、6−4>
それぞれ工程1−4、3−4、5−4と同様の工程である。
<導電膜>
本発明で得られる導電膜は、線幅を、鋳型(B)の線幅の1/10〜1/3程度にすることができる。導電膜の線幅は、0.5〜6μmであることが好ましい。
導電膜の線幅が0.5〜6μmである場合、導電膜の開口部の幅を調整することにより、例えば、1mm厚のガラス基板(光線透過率:90〜93%)上に導電膜を形成した場合の光線透過率を、80%以上とすることができる。
本発明の導電膜は、線幅を従来にない細さにできるため、開口部の幅を小さくすることができる。従来技術の太い線幅である場合には、導電膜の透明性を上げるために開口部の幅を広くする必要があった。開口部は絶縁部分であるため、透明性を上げれば絶縁部分が大きくなり、透明導電膜としての性能は充分ではなかった。
<焼成処理>
本発明で得られる導電膜は、導電性粒子(P)による任意のパターン構造(C)を形成させた後、更に加熱して焼成することが好ましい。
一般に金属微粒子は、水又は有機溶剤に分散した分散液の状態であり、表面には分散安定性を維持するための分散剤が吸着している。導電性粒子(P)として金属微粒子を用いた場合、金属微粒子によるパターン構造(C)を形成させた後、焼成することにより、金属微粒子同士を融着させ、導電性の高い導電膜を形成することができる。
焼成時の加熱温度は、50〜600℃が好ましく、100〜450℃がより好ましい。焼成時間は、加熱温度や分散液(D)の物性によって異なるが、5〜30分程度が好ましい。
焼成は、工程1−4、2−4、3−4、4−4、5−4または6−4で鋳型(B)を取り外した後に行なっても、上記工程で鋳型(B)を取り外す前に行なってもよい。
<電解めっき>
本発明で得られる導電膜は、導電性粒子(P)による任意のパターン構造(C)を形成させた後、形成された導電膜を電極として、電解めっきを行なうこともできる。電解めっき処理により、導電性粒子(P)による金属細線の密度を向上させることで、導電膜の導電性を更に向上させることができる。
但し、この場合、めっきの形成速度が速く、導電膜の線幅及び膜厚が急激に増加するため、電解めっき浴の金属イオン濃度、電圧、電流値の調整等が必要である。
<表面保護>
本発明では、後述する転写工程を実施せず、導電膜を、透明樹脂等によりコーティング(固定化)することも可能である。基板(A)がガラス等の透明基板の場合、これにより透明導電基板が得られる。
但し、この場合、コーティング層を導電膜よりも厚くしてしまうと、透明樹脂等により導電膜が完全に被覆され、基板表面の導電性がなくなってしまう。透明導電基板の表面の導電性を維持しつつ、導電膜の基板への密着性を向上させたい場合は、コーティング層の厚さを調整する必要がある。
<その他>
本発明で得られる導電膜は、酸化亜鉛、酸化錫等の透明導電膜でコーティングすることも可能である。これにより、本来絶縁層である、開口部にも導電性を持たせることができる。透明導電膜としては、例えば、酸化亜鉛、酸化錫、フッ素ドープ酸化錫、錫ドープ酸化インジウム、アルミドープ酸化亜鉛、ガリウムドープ酸化亜鉛が挙げられる。
透明導電膜の形成方法としては、従来既知の方法を用いることができる。例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、熱分解法、スプレーCVD法、コロイド法、ゾルーゲル法が挙げられる。
<転写工程>
本発明の製造方法では、基板(A)の表面上に導電膜を形成させた後、更に、基板(A)の表面上に樹脂層を形成し、得られた樹脂層を導電膜と共に基板(A)から剥離することにより、樹脂層の表面に導電膜を転写することができる(転写方法1)。例えば、基板(A)の表面上に導電膜を形成させた後、更に、基板(A)の表面上に単量体組成物(X)を塗布して重合することにより樹脂層を形成し、得られた樹脂層を導電膜と共に基板(A)から剥離することにより、樹脂層の表面に導電膜を転写することができる。別法として、単量体組成物(X)の代わりに樹脂組成物(Y)を基板(A)の表面上に塗布することにより樹脂層を形成してもよい。
また、本発明の製造方法では、基板(A)の表面上に導電膜を形成させた後、更に、基板(A)の表面上に単量体組成物(X)、または樹脂組成物(Y)を塗布し、その上に基板(E)を配置した後、樹脂層を形成し、基板(E)を樹脂層および導電膜と共に基板(A)から剥離することにより、基板(E)の表面に導電膜を転写することができる。例えば、基板(A)の表面上に塗布された単量体組成物(X)の上に基板(E)を配置した後に、単量体組成物(X)を重合することにより樹脂層を形成し、基板(E)を樹脂層および導電膜と共に基板(A)から剥離することにより、単量体組成物(X)の重合体をバインダーとして、基板(E)の表面に導電膜を転写することができる。
単量体組成物(X)または樹脂組成物(Y)を塗布する前に、導電膜が形成された基板(A)の表面を、UV照射処理、エキシマ照射処理、プラズマ照射処理、コロナ放電処理、電子線処理等により予め処理しておくことが好ましい。この操作により、導電膜の転写が容易になる。
<単量体組成物(X)>
本発明に用いる単量体組成物(X)は、光硬化性単量体組成物(X1)又は熱硬化性単量体組成物(X2)であり、これらは1種を単独で使用してもよく、2種以上を併用してもよい。
また、基板(E)として透明な基板を用いる場合には、得られる重合体(樹脂層)と基板(E)との屈折率差を0.1以下とすることが好ましい。重合体(樹脂層)と基板(F)との屈折率差が小さいほど、透明性が高くなる。尚、屈折率は、JIS K−7105に従って、カルニュー光学工業(株)製KPR−2により測定することができる。
<光硬化性単量体組成物(X1)>
光硬化性単量体組成物(X1)を用いる場合、基板(A)の表面上に塗布した光硬化性単量体組成物(X1)に、紫外線等の活性エネルギー線を照射して重合することにより、導電膜を転写することができる。
光硬化性単量体組成物(X1)は、ビニル単量体(x1)と光重合開始剤(x2)を含有する。
その混合比率は、硬化速度が適度であることから、ビニル単量体(x1)100質量部に対して、光重合開始剤(x2)0.1〜10質量部であることが好ましい。光重合開始剤(x2)が0.1質量部以上であれば、光硬化性単量体組成物(X1)の硬化性が向上する。また、光重合開始剤(x2)が10質量部以下であれば、得られる重合体の着色が抑制される。
<ビニル単量体(x1)>
ビニル単量体(x1)としては、例えば、少なくとも2つのビニル基を有するビニル単量体(x1−1)、1つのビニル基を有するビニル単量体(x1−2)が挙げられる。
少なくとも2つのビニル基を有するビニル単量体(x1−1)としては、例えば、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。また、公知のエステルポリ(メタ)アクリレート、公知のウレタンポリ(メタ)アクリレート、公知のエポキシポリ(メタ)アクリレート、公知のエチレンオキサイド変性ビスフェノールAジ(メタ)アクリレート等を挙げることもできる。
これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
1つのビニル基を有するビニル単量体(x1−2)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、フォスフォエチル(メタ)アクリレート、スチレンが挙げられる。
これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
ビニル単量体(x1)として、ビニル単量体(x1−1)とビニル単量体(x1−2)を併用する場合、ビニル単量体(x1−1)100質量部に対して、ビニル単量体(x1−2)を0.1〜20質量部用いることが好ましく、0.5〜15質量部用いることがより好ましく、1〜10質量部用いることが更に好ましい。ビニル単量体(x1−2)を0.1質量部以上用いれば、光硬化性単量体組成物(X1)の粘度を低下させることができる。また、ビニル単量体(x1−2)を20質量部以下用いれば、得られる重合体の耐熱性を低下させることがない。
<光重合開始剤(x2)>
光重合開始剤(x2)としては、例えば、ベンゾインモノメチルエーテル、ベンゾフェノン、1−ヒドロキシシクロヘキシルフェニルケトン(チバ・ジャパン(株)製、IRGACURE184(商品名))、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチルプロピオニル)−ベンジル]−フェニル}−2−メチルプロパン−1−オン(チバ・ジャパン(株)製、IRGACURE127(商品名))等のカルボニル化合物;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド等の硫黄化合物;2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド類;ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム(チバ・ジャパン(株)製、IRGACURE784(商品名))が挙げられる。これらの中では、硬化性に優れることから、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチルプロピオニル)−ベンジル]−フェニル}−2−メチルプロパン−1−オン、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイドが好ましい。
これらは、1種を単独で使用してもよく、2種以上を併用してもよい。
<光硬化の方法>
光硬化に用いる活性エネルギー線の光源としては、例えば、ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、無電極UVランプ(フュージョンUVシステムズ社製)、可視光ハロゲンランプ、キセノンランプ、太陽光が挙げられる。
活性エネルギー線照射時の雰囲気は、空気中でもよいし、窒素、アルゴン等の不活性ガス中でもよい。
活性エネルギー線の照射エネルギーとしては、200〜600nm、好ましくは320〜390nmの波長範囲での積算エネルギーが、0.01〜10J/cm、好ましくは0.5〜8J/cmとなるように照射することが好ましい。
活性エネルギー線は、基板(A)側を裏面として、表面側から照射することが好ましい。
<熱硬化性単量体組成物(X2)>
熱硬化性単量体組成物(X2)を用いる場合、基板(A)の表面上に塗布した熱硬化性単量体組成物(X2)に、熱を加えて重合することにより、導電膜を転写することができる。
熱硬化性単量体組成物(X2)は、ビニル単量体(x1)と熱重合開始剤(x3)を含有する。
その混合比率は、硬化速度が適度であることから、ビニル単量体(x1)100質量部に対して、熱重合開始剤(x3)0.1〜10質量部であることが好ましい。熱重合開始剤(x3)が0.1質量部以上であれば、熱硬化性単量体組成物(X2)の硬化性が向上する。また、熱重合開始剤(x3)が10質量部以下であれば、得られる重合体の着色が抑制される。
尚、熱硬化性単量体組成物(X2)で用いるビニル単量体(x1)は、光硬化性単量体組成物(X1)で用いるビニル単量体(x1)と同じである。
<熱重合開始剤(x3)>
熱重合開始剤(x3)としては、例えば、2,2’−アゾビスイソブチロニトリル、4,4’−アゾビス−(4−シアノバレリックアシッド)等のアゾ化合物;過硫酸アンモニウム塩等の過硫酸化合物;ジイソプロピルベンゼンハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、キュメインハイドロパーオキサイド、t−ブチルハイドロパーオキサイド等の有機過酸化物が挙げられる。
<熱硬化の方法>
熱硬化性単量体組成物(X2)は、60〜130℃の温度で、0.1〜2時間程度加熱することが好ましい。
<樹脂組成物(Y)>
本発明に用いる樹脂組成物(Y)としては、透明樹脂を主成分とすることが好ましい。例えば、アクリル系樹脂、ポリスチレン系樹脂、アクリロニトリル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、フェノール系樹脂、メラミン系樹脂、エポキシ樹脂等の透明樹脂が例示できる。
さらに樹脂組成物(Y)は、溶剤等で希釈してワニスとして調製することが好ましい。この溶剤としては、例えば、ベンゼン、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、アセトン、メタノール、エタノール、イソプロピルアルコール、2−ブタノール、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジアセトンアルコール、N,N’−ジメチルアセトアミド等が挙げられる。
樹脂組成物(Y)は、紫外線吸収剤等の添加剤を含有してもよい。
樹脂組成物(Y)を塗布後、加熱(乾燥)等することにより、樹脂層を形成させることができる。
<基板(E)>
基板(E)としては、透明な導電部材が得られることから、透明な素材を用いることが好ましい。
透明の素材としては、可撓性透明樹脂フィルム、透明樹脂シートが好ましく、具体的には、ポリエチレンテレフタレート(PET)等のポリエステルフィルム;ポリエチレンやポリプロピレン等のポリオレフィンフィルム;ポリカーボネートフィルム;アクリルフィルム;ノルボルネンフィルムが挙げられる。
<連続プロセスのフロー>
本発明の製造方法は、生産性を考慮して、連続プロセスとすることが好ましい。連続プロセスについて、概略図(図19〜21)を用いて説明する。
<導電膜形成工程の連続化>
本発明における「導電膜」の形成を連続的に実施する場合に想定される、プロセスの概略図を図19に示す。
基板(A)は、導電性粒子(P)の分散液(D)との接触角を調整するための表面処理工程10に送られ、相対的に親水性の部位と相対的に疎水性の部位とからなる所定のパターンが形成されている鋳型(B)を基板(A)の上面に配置後、分散液(D)を展開する工程20、乾燥工程30へと順次送られる。
この際、鋳型(B)を、円筒状又はエンドレスベルト状とすることで、より効率的に、連続的に導電膜を形成することができる。
表面処理工程10により、分散液(D)に対する基板(A)の接触角を小さくすることで、表面張力によって、分散液(D)は速やかに基板(A)上面に一様に展開する。
また、工程20〜工程30を2回以上繰り返すことにより、導電性を更に向上させることもできる。
乾燥工程の後に、必要に応じて、焼成工程を設けることもできる。
<転写工程の連続化>
本発明における「転写」を連続的に実施する場合に想定されるプロセスの一例の概略図を図20に示す。本例は、基板(A)の表面上に塗布された単量体組成物(X)の上に基板(E)を配置した後に、単量体組成物(X)を重合することにより樹脂層を形成する態様を代表するものである。
導電膜が形成された基板(A)は、必要に応じて、表面処理工程10で表面処理を行なった後、単量体組成物(X)を塗布する工程40、単量体組成物(X)を重合する工程50へと順次送られる。
工程40の後、工程50の前に、単量体組成物(X)を塗布した基板(A)に、基板(E)を押し付けて単量体組成物(X)を重合し、基板(E)を剥離することで、導電膜を基板(E)に転写することができる。
基板(E)を基板(A)に押し付けるには、押さえつけロールを用いればよい。押さえつけロールは、単量体組成物(X)を基板(A)の表面に拡げながら、単量体組成物(X)に巻き込まれた空気を追い出す役割も担う。
<導電膜形成〜転写工程の連続化>
「導電膜」の形成〜「転写」までを一連の工程として行なうこともできる。その場合に想定されるプロセスの一例を図21に示す。
<透明導電部材>
本発明で得られる、導電膜の形成された基板(A)、導電膜を転写した重合体(樹脂層)、及び導電膜を転写した基板(E)は、いずれも任意のパターン構造からなる導電膜を有することが可能となり、透明性及び導電性に優れることから、各種用途における透明導電部材として有用である。
<用途>
本発明で得られる透明導電部材は、プラズマディスプレイ、液晶ディスプレイ、電界放電ディスプレイ、エレクトロルミネッセンスディスプレイ、電子ペーパー等の画像表示装置用透明電極;タッチパネル用透明電極;太陽電池用透明電極;電磁波遮蔽膜等の用途で好適に用いられる。
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
<線幅・開口部の幅(ピッチ)の測定>
光学顕微鏡(オリンパス(株)製、システム顕微鏡BX51123MDS(商品名))を用い、導電膜を観察し、画像から線幅・開口部の幅をそれぞれ5箇所測定し、その平均値を、線幅・開口部の幅とした。
<透明性(光線透過率)の測定>
ヘーズメーター(日本電色工業(株)製、NDH2000(商品名))を用い、試料の5箇所の光線透過率を測定し、その平均値を透明性(光線透過率)とした。
<導電性(表面抵抗値)の測定>
抵抗率計(三菱化学(株)製、ロレスタGP(商品名))に直列四探針プローブを装着し、試料の5箇所の表面抵抗値を測定し、その平均値を導電性(表面抵抗値)とした。
<単量体組成物(X)の調製>
以下に示す割合で各原料を混合し、単量体組成物(X)を調製した。
単量体組成物(X);
ニューフロンティアBPEM−10 40質量%
(エチレンオキサイド変性ビスフェノールAジメタクリレート)
ニューフロンティアGX−8662V 35質量%
(ウレタンポリアクリレート)
アクリエステルPBOM 20質量%
(ポリブチレングリコールジメタクリレート)
ニューフロンティアPHE 5質量%
(フェノキシエチルアクリレート)
IRGACURE184 1.6質量%
上記の原料で、ニューフロンティアBPEM−10、ニューフロンティアGX−8662V、ニューフロンティアPHEは、いずれも第一工業製薬(株)製、アクリエステルPBOMは三菱レイヨン(株)製、IRGACURE184はチバ・ジャパン(株)製である。
[実施例1]
基板(A)として、ガラス基板(寸法:50mm×50mm×1.0mm、光線透過率:91%、表面抵抗値:1010Ω/□以上、松浪硝子工業(株)製)を用いた。
鋳型(B)として、ワイヤーの直径:20μm、ピッチが102μmのステンレス製金網(平織りの金網)を用いた。鋳型(B)の一部分を、油性マジック(マッキー極細:ゼブラ(株)製)で塗ることにより撥水化処理を施した。
分散液(D)として、下記の金微粒子の水分散液を、固形分が2wt%となるように脱イオン水で希釈して用いた。
AuW011 (日本ペイント(株)製、導電性微粒子:金、質量平均粒子径10nm、固形分10質量%(商品名))
ガラス基板の表面に、ステンレス製の金網を配置し、35μLの金微粒子の水分散液を展開し、5℃で60分間静置して、水分散液を乾燥させた。
ステンレス製の金網をガラス基板の表面から外した後、焼成温度450℃で20分間加熱(焼成)した。ガラス基板上に金のパターン構造を形成させ、導電膜を得た。
得られた導電膜の光学顕微鏡写真を、図22に示す。図22から、油性マジックにより撥水化処理を施した部分を避けるようにして、金微粒子が、撥水化処理を施していない部分に集積している様子か確認できた。
次に、卓上型光表面処理装置(セン特殊光源(株)製、低圧水銀ランプPL16−110(商品名))を用い、光源からの距離:15mmの位置に、導電膜を形成したガラス基板を設置し、ガラス基板の表面(導電膜側)に約1分間、UV照射した。
次いで、ガラス基板の導電膜の上方から、ガラスピペットを用いて単量体組成物(X)を塗布し、気泡を巻き込まないように押さえつけながら基板(E)としてのPETフィルム(東洋紡績(株)製、A4300(商品名)、厚さ:188μm、光線透過率:88%、表面抵抗値:1015Ω/□以上、反射防止膜なし)を配置した。
その後、6kW(120W/cm)の高圧水銀ランプを用い、800mJ/cmの紫外線をPETフィルム側から照射し、単量体組成物(X)を重合させた。PETフィルムを、ガラス基板からゆっくり剥離することによって、導電膜が転写されたPETフィルムを得た。
導電膜が転写されたPETフィルムは、線幅:4μm、開口部の幅:98μm、光線透過率:83%、表面抵抗値:26Ω/□であった。
導電膜が転写されたPETフィルムの厚さを、マイクロメータ((株)ミツトヨ製、MDC−25MJ(商品名))を用いて測定した結果、いずれも、220〜230μmであった。これより、単量体組成物(X)の重合体(樹脂層)の厚さは30〜40μmであった。
[実施例2]
基板(A)として、ガラス基板(寸法:50mm×50mm×1.0mm、光線透過率:91%、表面抵抗値:1010Ω/□以上、松浪硝子工業(株)製)を用いた。
鋳型(B)として、マスクを施したスクリーン印刷用の版、VスクリーンV−330(NBCメッシュテック(株)商品名)を使用した。VスクリーンV−330の光学顕微鏡写真を、図23に示す。
分散液(D)として、下記の金微粒子の水分散液を、固形分が2wt%となるように脱イオン水で希釈して用いた。
AuW011 (日本ペイント(株)製、導電性微粒子:金、質量平均粒子径10nm、固形分10質量%(商品名))
ガラス基板の表面に、ステンレス製の金網を配置し、35μLの金微粒子の水分散液を展開し、5℃で60分間静置して、水分散液を乾燥させた。
ステンレス製の金網をガラス基板の表面から外した後、焼成温度450℃で20分間加熱(焼成)した。ガラス基板上に金のパターン構造を形成させ、導電膜を得た。
得られた導電膜の光学顕微鏡写真を、図24に示す。図24から、マスクを装着した部分を避けるようにして、金微粒子が、マスクを装着していない部分に集積している様子か確認できた。
[実施例3]
基板(A)として、ガラス基板(寸法:50mm×50mm×1.0mm、光線透過率:91%、表面抵抗値:1010Ω/□以上、松浪硝子工業(株)製)を用いた。
鋳型(B)として、下記の平織りの金網を使用した(NBCメッシュテック(株)製)。
線材とその直径・・・・・縦糸:ポリエチレン(35μm)
横糸:ステンレス(28μm)
目開き・・・・・縦方向:103μm、横方向:139μm
分散液(D)として、下記の金微粒子の水分散液を、固形分が2wt%となるように脱イオン水で希釈して用いた。
AuW011 (日本ペイント(株)製、導電性微粒子:金、質量平均粒子径10nm、固形分10質量%(商品名))
ガラス基板の表面に、上記鋳型(B)を配置し、35μLの金微粒子の水分散液を展開し、5℃で60分間静置して、水分散液を乾燥させた。
鋳型(B)をガラス基板の表面から外した後、焼成温度450℃で20分間加熱(焼成)した。ガラス基板上に金のパターン構造を形成させ、導電膜を得た。
得られた導電膜を光学顕微鏡で確認したところ、疎水性の線材(縦方向)を避けるようにして、線幅:5μm程度で、横方向に、金微粒子が集積している様子か確認できた。得られた導電膜の表面抵抗値を評価したところ、縦方向:1010Ω/□以上、横方向:35Ω/□であり、異方導電性(一方向のみ通電する性質)を有することが確認できた。光線透過率:83%であった。
本発明によれば、透明性、導電性に優れ、任意のパターン構造からなる導電膜を簡便な方法(低コスト)で製造することができる。本発明の導電膜は、プラズマディスプレイ、液晶ディスプレイ、電界放電ディスプレイ、エレクトロルミネッセンスディスプレイ、電子ペーパー等の画像表示装置用透明電極;タッチパネル用透明電極;太陽電池用透明電極;電磁波遮蔽膜等の用途で好適に用いられる。

Claims (9)

  1. 基板(A)の表面上に、基板(A)と接触させる面とその裏面とを貫通する網目構造の開口部を有する鋳型(B)であって、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を配置し、
    鋳型(B)を配置した基板(A)の表面に、導電性粒子(P)の分散液(D)を展開し、
    分散液(D)を乾燥させることにより、基板(A)上の鋳型(B)の該親和性を有する部位との接点近傍に、導電性粒子(P)に該所定のパターンに対応するパターン構造(C)を形成させ、そして
    鋳型(B)を基板(A)から取り外す工程を含む、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を有する導電膜の製造方法。
  2. 基板(A)の表面上に、導電性粒子(P)の分散液(D)を展開し、
    基板(A)の表面に展開した分散液(D)の上から、基板(A)と接触させる面とその裏面とを貫通する網目構造の開口部を有する鋳型(B)であって、導電性粒子(P)の分散液(D)に対して親和性を有する部位と該分散液(D)に対して非親和性を有する部位とからなる所定のパターンが形成されている鋳型(B)を配置し、
    分散液(D)を乾燥させることにより、基板(A)上の鋳型(B)の該親和性を有する部位との接点近傍に、導電性粒子(P)に該所定のパターンに対応するパターン構造(C)を形成させ、そして
    鋳型(B)を基板(A)から取り外す工程を含む、基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を有する導電膜の製造方法。
  3. 前記非親和性を有する部位が、鋳型(B)の一部に撥水化処理又は親水化処理を施したことにより創出された部位である、請求項1または2に記載の導電膜の製造方法。
  4. 前記非親和性を有する部位が、鋳型(B)の一部にマスクを装着したことにより創出された部位である、請求項1または2に記載の導電膜の製造方法。
  5. 鋳型(B)が織物からなり、前記非親和性を有する部位が、該織物の縦糸または横糸に導電性粒子(P)の分散液(D)に対して非親和性を有する線材を用いたことにより創出された部位である、請求項1または2に記載の導電膜の製造方法。
  6. 基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させた後、更に加熱して焼成する工程を含む、請求項1〜5のいずれか1項に記載の導電膜の製造方法。
  7. 基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させた後、更に電解めっきする工程を含む、請求項1〜5のいずれか1項に記載の導電膜の製造方法。
  8. 基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させた後、更に、基板(A)の表面上に樹脂層を形成し、得られた樹脂層を基板(A)から剥離することにより、樹脂層の表面に導電性粒子(P)によるパターン構造(C)を転写する工程を含む、請求項1〜7のいずれか1項に記載の導電膜の製造方法。
  9. 基板(A)の表面上に導電性粒子(P)によるパターン構造(C)を形成させた後、更に、基板(A)の表面上に単量体組成物(X)、または樹脂組成物(Y)を塗布し、その上に基板(E)を配置した後、樹脂層を形成し、基板(E)を基板(A)から剥離することにより、基板(E)の表面に導電性粒子(P)によるパターン構造(C)を転写する工程を含む、請求項1〜7のいずれか1項に記載の導電膜の製造方法。
JP2012003907A 2012-01-12 2012-01-12 導電膜の製造方法 Pending JP2013143320A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003907A JP2013143320A (ja) 2012-01-12 2012-01-12 導電膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003907A JP2013143320A (ja) 2012-01-12 2012-01-12 導電膜の製造方法

Publications (1)

Publication Number Publication Date
JP2013143320A true JP2013143320A (ja) 2013-07-22

Family

ID=49039778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003907A Pending JP2013143320A (ja) 2012-01-12 2012-01-12 導電膜の製造方法

Country Status (1)

Country Link
JP (1) JP2013143320A (ja)

Similar Documents

Publication Publication Date Title
KR101439715B1 (ko) 도전막 및 그의 제조 방법
CN103109391B (zh) 纳米线-聚合物复合材料电极
TWI549900B (zh) 奈米結構透明導體之圖案化蝕刻
US12002602B2 (en) Optically consistent transparent conductive film and preparation method thereof
JP6716637B2 (ja) 透明導電体およびその製造方法
US9236162B2 (en) Transparent conductive ink and transparent conductive pattern forming method
JP5093302B2 (ja) 電磁波シールド材、及びその製造方法
JP2015525430A (ja) オーバーコートされたナノワイヤ透明導電コーティングのコロナによるパターニング
US20140063609A1 (en) Optical body, display device, input device, and electronic device
US20150239023A1 (en) Anti-smudge body, display device, input device, and electronic device
JP2013257755A (ja) 透明二次元通信シート
JP5282991B1 (ja) 透明導電層付き基体及びその製造方法
JP2013149392A (ja) 導電膜の製造方法
JP5333142B2 (ja) パターン電極、有機エレクトロルミネッセンス素子、およびパターン電極の製造方法
CN109074917B (zh) 透明导电图案的形成方法
JP2013143320A (ja) 導電膜の製造方法
JP2009044005A (ja) プラズマディスプレイ用電磁波シールド部材及びその製造方法
JP4679092B2 (ja) 透明面状発熱体及びその製造方法
JP4459016B2 (ja) 電磁波シールド材及びその製造方法
JP4662751B2 (ja) 透明面状発熱体及びその製造方法
JP2013149393A (ja) 透明導電部材の製造方法
JP2013089334A (ja) 透明導電体、及び透明導電体の製造方法
JP7172712B2 (ja) 導電体及び導電体の製造方法
JP2009038110A (ja) プラズマディスプレイ用電磁波シールド部材及びその製造方法
JP2009054631A (ja) プラズマディスプレイ用電磁波シールド部材