JP2013138584A - 車両制御システム - Google Patents

車両制御システム Download PDF

Info

Publication number
JP2013138584A
JP2013138584A JP2011289159A JP2011289159A JP2013138584A JP 2013138584 A JP2013138584 A JP 2013138584A JP 2011289159 A JP2011289159 A JP 2011289159A JP 2011289159 A JP2011289159 A JP 2011289159A JP 2013138584 A JP2013138584 A JP 2013138584A
Authority
JP
Japan
Prior art keywords
oil pump
rotating electrical
electrical machine
operation mode
electric oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011289159A
Other languages
English (en)
Other versions
JP5781919B2 (ja
Inventor
Tomohiko Miyamoto
知彦 宮本
Kenjiro Nagata
健次郎 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2011289159A priority Critical patent/JP5781919B2/ja
Priority to US13/726,712 priority patent/US8909402B2/en
Publication of JP2013138584A publication Critical patent/JP2013138584A/ja
Application granted granted Critical
Publication of JP5781919B2 publication Critical patent/JP5781919B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Abstract

【課題】車両制御システムにおいて、キャリア周波数が変更されても回転電機を適切に冷却できるようにすることである。
【解決手段】車両制御システム10は、エンジン14と回転電機18を含む動力装置12と、回転電機18に接続される電源装置30と、回転電機18の冷却を行うための機械式オイルポンプ42と電動オイルポンプ44を含むポンプユニット40と、制御装置70を含んで構成される。制御装置70は、キャリア周波数判断部72と、回転電機温度判断部74と、車両要求走行状態判断部76と、動力装置12の動作モードを判断する動力装置動作モード判断部80と、これらの判断に基づいて電動オイルポンプ44の動作を制御するEOP動作制御部78を含んで構成される。
【選択図】図1

Description

本発明は、車両制御システムに係り、特に、回転電機の冷却のために電動オイルポンプを用いる車両についての車両制御システムに関する。
回転電機を搭載する車両では、回転電機を冷却する冷媒を循環するためのオイルポンプが用いられる。回転電機と共にエンジンを搭載する車両では、エンジンの出力回転軸に接続される機械式オイルポンプを用いることができる。エンジンが停止すると、この機械式オイルポンプも動作を停止する。そこで、エンジンが停止している間、回転電機の冷却を行えるように、エンジンの動作と無関係に駆動される電動オイルポンプが用いられる。
例えば、特許文献1には、車両の制御装置において、フューエルカットの実行時にエンジンによって駆動される機械式オイルポンプの吐出量が不足すると、モータジェネレータにより駆動されるオイルポンプか、電動オイルポンプを駆動することが述べられている。
なお、本発明に関連する技術として、特許文献2には、車両に動力出力装置として内燃機関と電動機を備えるときの最適回転数の設定について、電動機の駆動回路に用いられるキャリア周波数が高いほど、最適回転数を高く設定することが述べられている。
特開2004−256063号公報 特開2007−112290号公報
特許文献2に述べられているように、回転電機の駆動回路におけるキャリア周波数は、車両の走行状態に応じて変更されることがある。例えば、高速走行で回転電機の回転数が高いときは、その制御性を維持するためにキャリア周波数が高く設定され、逆に低速走行で回転電機の回転数が低いときはキャリア周波数が低く設定される。キャリア周波数が低くなると、回転電機の駆動信号に乗るリップルノイズの振幅が大きくなり、回転電機における損失が増加し、回転電機の温度が上昇する。
回転電機の冷却には、機械式オイルポンプや電動オイルポンプを用いることが可能であるが、機械式オイルポンプはエンジンによって駆動されるので、エンジンの回転数に応じて冷媒の吐出量が決まる。このように、機械式オイルポンプはエンジンの動作状態によってその冷却能力が変化する。したがって、キャリア周波数の変更によって回転電機の温度が上昇したときに機械式オイルポンプを用いて冷却を行うものとすると、場合によっては回転電機の冷却が不十分となることが生じる。
本発明の目的は、キャリア周波数が変更されても回転電機を適切に冷却できる車両制御システムを提供することである。
本発明に係る車両制御システムは、少なくとも回転電機を有する動力装置と、回転電機に接続され、予め定めたキャリア周波数に基づいて動作する駆動回路と、回転電機を冷却する冷媒を循環させるポンプユニットと、キャリア周波数が予め設定された閾値周波数以下のときに、回転電機に対するポンプユニットの冷却能力を増加させる制御装置と、を備えることを特徴とする。
また、本発明に係る車両制御システムにおいて、ポンプユニットは少なくとも電動オイルポンプを有し、制御装置は、キャリア周波数が閾値周波数以下のときに電動オイルポンプを駆動させることが好ましい。
また、本発明に係る車両制御システムにおいて、制御装置は、キャリア周波数が閾値周波数以下であり、かつ回転電機の温度が予め定めた閾値温度以上のときに電動オイルポンプを駆動させ、キャリア周波数が閾値周波数以下であっても回転電機の温度が予め定めた閾値温度未満のときは電動オイルポンプを駆動しないことが好ましい。
また、本発明に係る車両制御システムにおいて、動力装置は、さらに内燃機関を有し、ポンプユニットは、さらに内燃機関によって駆動される機械式オイルポンプを有し、制御装置は、電動オイルポンプを駆動させた後に、回転電機の温度が閾値温度よりも高い温度であって予め定めた第2閾値温度以上のときに、内燃機関を動作させずに回転電機を動作させるEV動作モードから、内燃機関と回転電機を共に動作可能とするHV動作モードに動力装置の動作モードを切り替えることで、内燃機関を始動させ機械式オイルポンプを駆動させることが好ましい。
また、本発明に係る車両制御システムにおいて、動力装置は、さらに内燃機関を有し、ポンプユニットは、さらに内燃機関によって駆動される機械式オイルポンプを有し、制御装置は、車両の走行状態に対応するポンプユニットの必要冷却能力について予め電動オイルポンプのみで賄える限度の車両走行状態を限界走行状態とし、内燃機関を動作させずに回転電機を動作させるEV動作モードのときに、キャリア周波数が閾値周波数以下であり、かつ回転電機の温度が予め定めた閾値温度以上となって電動オイルポンプを駆動させた後に、車両の要求走行状態が限界走行状態に至らないときには、EV動作モードのままとし、車両の要求走行状態が限界走行状態を超えるには、EV動作モードから、内燃機関と回転電機を共に動作可能とするHV動作モードに動力装置の動作モードを切り替えることで、内燃機関を始動させ機械式オイルポンプを駆動させることが好ましい。
上記構成により、車両制御システムは、回転電機を冷却する冷媒を循環させるポンプユニットを備え、キャリア周波数が予め設定された閾値周波数以下のときに、回転電機に対するポンプユニットの冷却能力を増加させる。これによって、キャリア周波数が低く変更されたときに温度上昇する回転電機についての冷却を適切なものとできる。
また、車両制御システムにおいて、ポンプユニットは少なくとも電動オイルポンプを有し、制御装置は、キャリア周波数が閾値周波数以下のときに電動オイルポンプを駆動させる。電動オイルポンプは、機械式オイルポンプのようにエンジンの回転数に依存することなく、所定量の冷媒を吐出できる。この電動オイルポンプを用いることで、キャリア周波数が低く変更されたときでも回転電機の冷却を適切なものとできる。
また、車両制御システムにおいて、キャリア周波数が閾値周波数以下であり、かつ回転電機の温度が予め定めた閾値温度以上のときに電動オイルポンプを駆動させる。電動オイルポンプの駆動は、電力を消費し、車両全体の燃費を低下させる。そこで、キャリア周波数が閾値周波数以下であっても回転電機の温度が予め定めた閾値温度未満のときは電動オイルポンプを駆動しないようにする。これによって車両全体の燃費低下を抑制することができる。
また、車両制御システムにおいて、内燃機関によって駆動される機械式オイルポンプを有する。そして、電動オイルポンプを駆動させた後に、回転電機の温度が閾値温度よりも高い温度であって予め定めた第2閾値温度以上のときに、動力装置の動作モードをEV動作モードからHV動作モードに動力装置の動作モードを切り替える。回転電機の温度が第2閾値温度以上となることは、電動オイルポンプでは回転電機の冷却が不十分であることを意味する。そこで、動力装置の動作モードをHV動作モードに変更し、内燃機関であるエンジンを始動させて機械式オイルポンプを作動させる。機械式オイルポンプは、エンジンの回転数を上げることで吐出量が増加するので、これによって必要な冷却能力を確保できる。なお、車両に対する必要出力にエンジンの出力が寄与するので、回転電機の出力を低くでき、これによっても回転電機の温度を抑制できる。
また、車両制御システムにおいて、車両の走行状態に対応するポンプユニットの必要冷却能力について予め電動オイルポンプのみで賄える限度の車両走行状態を限界走行状態とし、車両の要求走行状態が限界走行状態に至らないときには、EV動作モードのままとし、車両の要求走行状態が限界走行状態を超えるには、EV動作モードからHV動作モードに動力装置の動作モードを切り替える。EV動作モードからHV動作モードに切り替えると車両全体の燃費が低下するが、上記構成によれば、電動オイルポンプの冷却能力では回転電機の冷却が不十分となる要求走行状態のときに限ってEV動作モードからHV動作モードに切り替える。これによって、回転電機の冷却を適切なものとできる。
本発明に係る実施の形態の車両制御システムの構成図である。 本発明に係る実施の形態において、キャリア周波数に応じて電動オイルポンプを駆動させる手順を示すフローチャートである。 回転電機の駆動制御の基本波信号におけるリップルノイズとキャリア周波数との関係を説明する図である。 本発明に係る実施の形態において、キャリア周波数と回転電機の温度とに応じて電動オイルポンプを駆動させる手順を示すフローチャートである。 本発明に係る実施の形態において、電動オイルポンプで冷却が不十分なときの処理手順を示すフローチャートである。 本発明に係る実施の形態において、キャリア周波数と回転電機の温度と要求車両走行状態とに応じて動力装置の動作モードを変更する手順を示すフローチャートである。 機械式オイルポンプと電動オイルポンプの冷却能力を示す図である。
以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、動力装置として、エンジンと1台の回転電機とその間に設けられる動力伝達機構を有する構成を説明するが、これは説明のための例示である。ここでは、エンジンと回転電機を有するものであればよく、エンジンの出力と回転電機の出力との間の関係は、車両の仕様に応じ、適宜変更が可能である。また、車両に搭載される回転電機を1台として説明するが、これも例示であって、複数の回転電機が車両に搭載される場合であってもよい。例えば、1台の回転電機を駆動用に、もう1台の回転電機を発電用に用いる構成としてもよく、前輪駆動用と後輪駆動用で別々の回転電機としてもよい。
また、回転電機に接続される電源装置として、蓄電装置、電圧変換器、平滑コンデンサ、インバータを含むものとして説明するが、これは主たる構成要素を述べたもので、これ以外の構成要素を含むものとしてもよい。例えば、低電圧インバータ回路、システムメインリレー、DC/DCコンバータ等を含むものとしてもよい。また、電動オイルポンプの駆動回路の電源としては、回転電機の電源装置とは独立の低電圧電源として説明するが、これは説明のための例示である。例えば、回転電機の電源装置から低電圧に電圧変換された電力を電動オイルポンプの駆動回路に供給するものとしてもよい。
また、以下では、回転電機と動力伝達機構とが1つのケース体に収納され、そのケース内とポンプユニットとの間で冷媒が循環するものとして説明するが、これは説明のための例示である。例えば、1つのケースにまとめずに、回転電機と動力伝達機構とポンプユニットの間を冷媒が循環する構成としてもよい。
以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
図1は、ハイブリッド車両についての車両制御システム10の構成を示す図である。この車両制御システム10は、動力装置12を構成するエンジン14と回転電機18の動作と、回転電機18を冷却するためのポンプユニット40の駆動の制御を適切に行うシステムである。
車両制御システム10は、ハイブリッド車両の駆動源である動力装置12として、エンジン14と回転電機18を含み、回転電機18に接続される電源装置30として、蓄電装置32、電圧変換器34、インバータ36、平滑コンデンサ37,38を含む。車両制御システム10は、さらに、回転電機18を内部に含むケース体22の内部に冷媒50を循環供給するポンプユニット40を含む。ポンプユニット40は、エンジン14によって駆動される機械式オイルポンプ42と、低電圧電源64によって作動するEOP駆動回路62によって駆動される電動オイルポンプ44を含んで構成される。そして、車両制御システム10は、これらの動作を全体として制御する制御装置70を含んで構成される。
動力装置12は、エンジン14と、回転電機18と、この間に設けられる動力伝達機構16を含んで構成される。エンジン14は、内燃機関である。また、回転電機18は、ハイブリッド車両に搭載されるモータ・ジェネレータ(M/G)であって、インバータ36を駆動回路として含む電源装置30から電力が供給されるときはモータとして機能し、エンジン14による駆動時、あるいはハイブリッド車両の制動時には発電機として機能する三相同期型回転電機である。
回転電機18に設けられる温度検出器24は、回転電機18の温度を検出する回転電機温度検出手段である。温度検出器24の検出データは、適当な信号線を用いて、制御装置70に伝送される。
動力伝達機構16は、ハイブリッド車両に供給する動力をエンジン14の出力と回転電機18の出力との間で分配する機能を有する機構である。かかる動力伝達機構16としては、エンジン14の出力軸、回転電機18の出力軸、図示されていない車軸への出力軸の3つの軸に接続される遊星歯車機構を用いることができる。図1で動力伝達機構16とエンジン14とを接続する軸がエンジン14の出力軸20である。この出力軸20は、接続軸60を介して機械式オイルポンプ42の駆動軸に接続され、機械式オイルポンプ42の駆動に用いられる。
電源装置30は、回転電機18を駆動するための装置である。電源装置30を構成する蓄電装置32は、充放電可能な高電圧用二次電池である。具体的には、約200Vから約300Vの端子電圧を有するリチウムイオン組電池である。組電池は、単電池または電池セルと呼ばれる端子電圧が1Vから数Vの電池を複数個組み合わせて、上記の所定の端子電圧を得るようにしたものである。蓄電装置32としては、ニッケル水素組電池、大容量キャパシタ等を用いることができる。
電圧変換器34は、蓄電装置32とインバータ36の間に配置され、直流電圧変換機能を有する回路である。電圧変換器34は、リアクトルと、スイッチング素子を含んで構成される。電圧変換機能としては、蓄電装置32側の電圧をリアクトルのエネルギ蓄積作用を利用して昇圧しインバータ36側に供給する昇圧機能と、インバータ36側からの電力を蓄電装置32側に降圧して充電電力として供給する降圧機能とを有する。
インバータ36は、回転電機18に接続される駆動回路で、複数のスイッチング素子と逆接続ダイオード等を含んで構成され、交流電力と直流電力との間の電力変換を行う機能を有する。すなわち、インバータ36は、回転電機18を発電機として機能させるときは、回転電機18からの交流三相回生電力を直流電力に変換し、蓄電装置32側に充電電流として供給する交直変換機能を有する。また、回転電機18をモータとして機能させるときは、蓄電装置32側からの直流電力を交流三相駆動電力に変換し、回転電機18に交流駆動電力として供給する直交変換機能を有する。
インバータ36は、複数のスイッチング素子のオンオフタイミングを適切に調整するPWM(Pulse Width Modulation)制御によって三相駆動信号を生成して、回転電機18に供給する回路である。PWM(Pulse Width Modulation)制御は、回転電機18の回転周期に応じた周期を有する基本波信号と、鋸歯状波形を有するキャリア信号との比較で、パルス幅を変調する制御である。キャリア信号の周波数は、キャリア周波数と呼ばれるが、PWM制御の制御性を確保するため、基本波の周波数に応じてキャリア周波数が設定される。例えば、回転電機18の回転数が高くなると、基本波の周波数が高くなるので、高いキャリア周波数が設定される。逆に、回転電機18の回転数が低くなると、基本波の周波数が低くなるので、低いキャリア周期が設定される。
蓄電装置32と電圧変換器34との間に設けられる平滑コンデンサ37は、蓄電装置32の側の電圧、電流を平滑化する機能を有するコンデンサ素子である。また、電圧変換器34とインバータ36との間に設けられる平滑コンデンサ38は、インバータ36の側の電圧、電流を平滑化する機能を有するコンデンサ素子である。
ケース体22は、動力伝達機構16と回転電機18とを内部に含む筐体である。ケース体22の内部空間には、動力伝達機構16と回転電機18の可動部分の潤滑と、動力伝達機構16および回転電機18の冷却を行うための冷媒50が貯留される。冷媒としては、ATFと呼ばれる潤滑油を用いることができる。
ポンプユニット40は、機械式オイルポンプ42と、電動オイルポンプ44を含むユニットで、ケース体22の内部空間に冷媒50を循環供給する機能を有する。冷媒排出路52は、ケース体22において重力方向に沿った下方側、つまりケース体22の底部に近い箇所に設けられる冷媒排出口と、ポンプユニット40を結ぶ冷媒流通パイプである。冷媒供給路54は、ポンプユニット40と、ケース体22において重力方向に沿った上方側、つまりケース体22の天井部に近い箇所に設けられる冷媒供給口とを結ぶ冷媒流通パイプである。
機械式オイルポンプ42と電動オイルポンプ44とは、冷媒排出路52と冷媒供給路54の間に、互いに並列の関係で接続される。逆止弁46は、機械式オイルポンプ42とケース体22の冷媒供給口との間で冷媒50が逆流しないように設けられる弁である。同様に逆止弁48は、電動オイルポンプ44と、ケース体22の冷媒供給口との間で冷媒50が逆流しないように設けられる弁である。
図1でMOPとして示される機械式オイルポンプ42は、駆動軸が接続軸60を介してエンジン14の出力軸20に接続されるポンプで、エンジン14が動作するときに駆動される。すなわち、エンジン14の始動に伴って機械式オイルポンプ42は駆動が開始され、エンジン14が停止すると機械式オイルポンプ42の駆動が終了する。
図1でEOPとして示される電動オイルポンプ44は、制御装置70からの制御信号の下でEOP駆動回路62によって駆動される。EOP駆動回路62には、低電圧電源64から直流電力が供給される。低電圧とは、蓄電装置32の電圧に比較して低電圧という意味で、例えば約12Vから16Vの電圧を用いることができる。電動オイルポンプ44の駆動軸を回転させるモータとしては、三相同期型モータを用いることができる。この場合には、EOP駆動回路62は、直流交流変換機能を有するインバータを含んで構成される。なお、三相同期型モータの代わりに単相交流モータを用いることもでき、あるいは直流モータを用いることもできる。電動オイルポンプ44の駆動軸を回転させるモータとして用いられるモータ形式に応じて、EOP駆動回路62の内容が変更される。
制御装置70は、上記の各要素を全体として制御する機能を有する制御回路であるが、特にここでは、キャリア周波数に応じて機械式オイルポンプ42と電動オイルポンプ44を使い分けて回転電機18等を適切に冷却する制御を行う機能を有する。かかる制御装置70は、車両搭載に適したコンピュータで構成することができる。
制御装置70は、キャリア周波数fが閾値周波数f0以下か否かを判断するキャリア周波数判断部72と、回転電機18の温度θMが予め定めた閾値温度θM0以上であるか否かを判断する回転電機温度判断部74と、ハイブリッド車両に対する要求走行状態が予め定めた限界走行状態を超えるか否かを判断する車両要求走行状態判断部76を含む。ここで、限界走行状態とは、回転電機18の冷却が電動オイルポンプ44のみで賄える限度の車両走行状態のことである。
また、制御装置70は、電動オイルポンプ44の動作を制御するEOP動作制御部78と、動力装置12の動作モードがEV動作モードかHV動作モードかを判断する動力装置動作モード判断部80を含んで構成される。ここで、EV動作モードとは、エンジン14を動作させずに回転電機18を動作させる動作モードで、HV動作モードとは、エンジン14と回転電機18を共に動作可能とする動作モードである。
制御装置70のこれらの機能は、ソフトウェアを実行することで実現できる。具体的には、オイルポンプ動作制御プログラムを実行することで実現できる。
図2は、キャリア周波数fを変更したときに機械式オイルポンプ42と電動オイルポンプ44を使い分ける方法の最も基本的な手順を示すフローチャートである。各手順は、オイルポンプ動作制御プログラムの各処理手順に対応する。
ここでは、まず、電動オイルポンプ44が停止中か否かが判断される(S10)。この判断は、電動オイルポンプ44の回転数を検出する手段が設けられている場合には、その回転数がゼロか否かに基づいて行うことができる。あるいは、制御装置70からEOP駆動回路に駆動指令信号が出力されているか否かに基づいて判断することもできる。
S10の判断が肯定されると、次に、キャリア周波数fが予め定めた閾値周波数f0以下か否かが判断される(S12)。この手順は、制御装置70のキャリア周波数判断部72の機能によって実行される。具体的には制御装置70においてインバータ36に対し設定されるキャリア周波数fの値が閾値周波数f0と比較される。閾値周波数f0は、キャリア周波数fが下がってくることで回転電機18の温度θMが上昇することに基づいて設定される。
インバータ36におけるキャリア周波数fは、回転電機18の制御性を確保するため、制御に用いられる基本波信号の周波数に応じてあらかじめ設定される。基本波信号の周波数が高いときはキャリア周波数fが高く設定され、基本波信号の周波数が低いときはキャリア周波数fが低く設定される。基本波信号の周波数は、回転電機18の回転数に対応する周波数である。基本波信号にはこのキャリア周波数によるノイズがリップルとして現れる。
図3は、基本波信号の周期とリップルノイズの大きさを示す図である。図3(a)は基本波信号の周期が短い場合で、回転電機18の回転数が高く、ハイブリッド車両の車速が高速のときに対応する。図3(b)は基本波信号の周期が長い場合で、回転電機18の回転数が低く、ハイブリッド車両の車速が低速の場合に対応する。これらの図の横軸は時間、縦軸は、信号振幅を示す電圧である。それぞれの図に、約1周期分の基本波信号波形が示されており、この基本波信号波形に重畳して周期的なリップルノイズが現れている。
図3(a)のリップルノイズの振幅ΔVr1と図3(b)のリップルノイズの振幅ΔVr2を比較すると、基本波信号の周期が長くキャリア周波数fが低い図3(b)の方がリップルノイズの振幅が大きい。リップルノイズの振幅が大きいと、回転電機18における損失が大きくなり、回転電機18の温度θMが上昇し、冷却が必要になる。このように、キャリア周波数fが下がってくることで回転電機18の温度θMが上昇するので、冷却が必要となるキャリア周波数fを閾値周波数f0にして設定する。
図2に戻り、S12の判断が肯定されると、停止している電動オイルポンプ44が駆動される(S14)。この手順は、制御装置70のEOP動作制御部78の機能により実行される。具体的には、制御装置70からEOP駆動回路62に対し駆動指令信号が出力される。S12の判断が否定されると、電動オイルポンプ44は駆動されず停止したままである。
S14において、機械式オイルポンプ42を用いずに電動オイルポンプ44を駆動するのは以下の理由による。すなわち、機械式オイルポンプはエンジン14によって駆動されるので、エンジン14の回転数に応じて冷媒50の吐出量が決まる。このように、機械式オイルポンプ42はエンジン14の動作状態によってその冷却能力が変化する。例えば、エンジン14の回転数が低いと、回転電機18を冷却するのに必要な冷媒50が吐出されない。これに対し、電動オイルポンプ44はエンジン14の動作状態に関係なく、一定量の冷媒50を吐出できるので、回転電機18を適切に冷却することができる。この相違のために、S12の判断が肯定されると、機械式オイルポンプ42ではなく、電動オイルポンプ44が駆動されるのである。
電動オイルポンプ44が駆動されると、そのために電力を消費するので、ハイブリッド車両の全体の燃費が低下する。そこで、実際に必要なときにのみ電動オイルポンプ44を駆動させることが好ましい。図4は、図2の手順の改良版で、燃費低下を抑制するための手順を示すフローチャートである。各手順は、オイルポンプ動作制御プログラムの各処理手順に対応する。
図4でS12とS14は図2と同じであるので、詳細な説明を省略する。ここで、S12の判断が肯定されると、次に、回転電機18の実際の温度θMが予め定めた閾値温度θM0以上であるか否かが判断される(S16)。この手順は、制御装置70の回転電機温度判断部74の機能によって実行される。具体的には、温度検出器24の検出データが取得されて制御装置70に伝送され、閾値温度θM0と比較される。閾値温度θM0としては、回転電機18が過熱状態とならない温度を用いることができる。
S16の判断が肯定されると、停止している電動オイルポンプ44が駆動される(S14)。この手順は、図2で説明した内容と同じであるので詳細な説明を省略する。回転電機18の温度θMが閾値温度θM0未満のときはS16の判断が否定され、電動オイルポンプ44は駆動されずに停止したままとされ、S10に戻される。
図4と図2を比較すると、図4では、S16の手順が追加されている。図2では、回転電機18の温度上昇を示すものとしてキャリア周波数fの低下を用いているが、図4では、これに加え、回転電機18の温度θMを用いて回転電機18の温度上昇があるか否かを判断している。これによって、電動オイルポンプ44の不要な駆動を抑制でき、ハイブリッド車両の全体の燃費低下を抑制できる。
電動オイルポンプ44は、一定量の冷媒50を吐出するが、その吐出量が回転電機18の冷却に対し不十分なことがある。図5は、図4の改良版で、電動オイルポンプ44の冷却能力が不足するときに対応する手順を示すフローチャートである。各手順は、オイルポンプ動作制御プログラムの各処理手順に対応する。
ここでは、最初に、動力装置12の動作モードがEV動作モードか否かが判断される(S18)。この判断は、制御装置70から動力装置12に出力される動作指令信号に基づいて行うことができる。あるいは、エンジン14と回転電機18にそれぞれ回転数検出手段が設けられている場合には、エンジン14が回転しているか否か、回転電機18が回転しているか否かに基づいて判断することもできる。すなわち、回転電機18が回転し、エンジン14が回転していないときには、S18の判断が肯定される。
S18の判断が否定されるときは動力装置12の動作モードがHV動作モードであるので、それ以上のステップに進まない。図2、図4でもこのことは同様であるが、図5の場合には、S26においてHV動作モードに切り替える処理が行われるために、注意的にS18の手順を示したものである。
S18の判断が肯定されると、図4で説明したS10,S12,S16,S14の順にこれらの手順が実行される。その内容は、図4で説明したものと同じであるので、詳細な説明を省略する。
S14の処理を行った後、回転電機18の実際の温度θMが予め定めた第2閾値温度θM1以上であるか否かが判断される(S20)。この手順はS16と同様の内容であるが、温度検出器24の検出データとの比較が閾値温度θM0ではなくて、閾値温度θM0よりも高い第2閾値温度θM1であることが異なる。第2閾値温度θM1は、電動オイルポンプ44の冷却が十分か不十分化を判断するために用いるものであるので、(θM1−θM0)は、測定誤差を考慮して、数℃から10℃程度の適当な値とすることができる。
S20の判断が否定されるときは、電動オイルポンプ44の冷却が十分であるので、次に、回転電機18のθMが閾値温度θM0未満であるか否かが判断される(S22)。この手順における判断内容はS16と反対の内容である。S22が肯定されるときは、電動オイルポンプ44の冷却が十分であって回転電機18が過熱状態でないので、もはや冷却が不要である。そこで、電動オイルポンプ44の駆動が停止され(S24)、S16に戻される。S22が否定されるときは電動オイルポンプ44の駆動を継続し、S20に戻って、回転電機18の温度θMが第2閾値温度θM1以上とならないかの判断監視を継続する。
S20の判断が肯定されるときは、電動オイルポンプ44による冷却では不十分であるので、動力装置12の動作モードをEV動作モードからHV動作モードへ切り替える(S26)。動作モードをHV動作モードに変更することで、エンジン14を始動させて機械式オイルポンプ42を作動させることができる。機械式オイルポンプ42は、エンジン14の回転数を上げることで吐出量が増加するので、これによって必要な冷却能力を確保できる。なお、ハイブリッド車両に対する必要出力にエンジン14の出力が寄与するので、回転電機18の出力を低くでき、これによっても回転電機18の温度を抑制できる。
機械式オイルポンプ42が駆動されるときに、電動オイルポンプ44は駆動されたままとしてもよい。このときには、電動オイルポンプ44の冷却能力と機械式オイルポンプ42の冷却能力が加算されるので、回転電機18が効果的に冷却される。電動オイルポンプ44の駆動には電力を消費するので、機械式オイルポンプ42の駆動するときに電動オイルポンプ44の駆動を停止するものとしてもよい。この場合には、電動オイルポンプ44の駆動停止によって逆止弁48が完全に閉状態となってから、機械式オイルポンプ42の駆動を開始するようにする。このようにすることで、機械式オイルポンプ42と電動オイルポンプ44との間で冷媒50が逆流することを防止できる。
回転電機18の温度が上昇する場合、回転電機18を電動オイルポンプ44のみで冷却できるかどうかは、回転電機18の温度θMが第2閾値温度θM1以上となるかどうかを判断しなくても、ハイブリッド車両の走行状態を知ることで判断できる。図6は、図4の改良版で、電動オイルポンプ44の冷却能力が不足するかどうかをハイブリッド車両に対するユーザの要求走行状態に基づいて判断する方法の手順を示すフローチャートである。各手順は、オイルポンプ動作制御プログラムの各処理手順に対応する。
ここでは、S18,S10,S12,S16,S14までの手順は、図5と全く同様である。S14の処理が行われた後、ハイブリッド車両に対する要求走行状態が取得される(S28)。要求走行状態は、ユーザのアクセル踏み度、ブレーキペダルの操作等から、ハイブリッド車両に対する要求出力、要求車速として取得することができる。そして、取得した要求走行状態が限界走行状態を超えるか否かが判断される(S30)。この手順は、制御装置70の車両要求走行状態判断部76の機能によって実行される。
ここで、限界走行状態とは、ハイブリッド車両の走行状態に対応するポンプユニット40の必要冷却能力が、電動オイルポンプ44のみで賄える限度となる車両走行状態のことである。限界走行状態を示す値としては、回転電機18の温度θM以外のものであればよい。例えば、動力装置12の出力としてのパワーまたはトルク、ハイブリッド車両の車速、これらに対応するアクセル踏み度、アクセル踏み度の時間的変化率、車軸回転数、回転電機18の回転数、エンジン14の回転数等を用いることができる。
図7に限界走行状態を示す値として、エンジン14の回転数NEについての閾値回転数NE0を用いる例を示す。図7は、横軸がエンジン14の回転数NEで、縦軸が機械式オイルポンプ42の冷却能力または電動オイルポンプ44の冷却能力である。ここでは、NEに対し右肩上がりの直線的特性線がMOPとして示されているが、これが機械式オイルポンプ42の冷却能力特性線である。また、NEに対し一定値特性線がEOPとして示されているが、これが電動オイルポンプ44の冷却能力特性線である。
閾値回転数NE0は、機械式オイルポンプ42の冷却能力特性線と、電動オイルポンプ44の冷却能力特性線と交差するエンジン14の回転数NEである。エンジン14の回転数NEが閾値回転数NE0のときは、機械式オイルポンプ42の冷却能力は電動オイルポンプ44の冷却能力よりも低いので、この範囲では電動オイルポンプ44を駆動させることが好ましい。一方、エンジン14の回転数NEが閾値回転数NE0以上のときは、機械式オイルポンプ42の冷却能力は電動オイルポンプ44の冷却能力よりも高い。したがって、この範囲において、電動オイルポンプ44の冷却能力が回転電機18の冷却に対し不十分であるときは、機械式オイルポンプ42を駆動させることが好ましい。このように、閾値回転数NE0は、限度走行状態を示す値として用いることができる。
再び図6に戻り、S30の判断が否定されるときは電動オイルポンプ44の駆動を継続し、S28に戻る。S30の判断が肯定されるときは、動力装置12の動作モードをEV動作モードからHV動作モードに切り替える(S26)。これによって、エンジン14が始動され、機械式オイルポンプ42が駆動される。この内容は図5のS26と同じであるので、詳細な説明を省略する。このようにして、回転電機18の温度θMを第2閾値温度θM1と比較することなく、回転電機18の冷却を適切なものとできる。
本発明に係る車両制御システムは、機械式オイルポンプと電動オイルポンプとを搭載する車両に利用できる。
10 車両制御システム、12 動力装置、14 エンジン、16 動力伝達機構、18 回転電機、20 出力軸、22 ケース体、24 温度検出器、30 電源装置、32 蓄電装置、34 電圧変換器、36 インバータ、37,38 平滑コンデンサ、40 ポンプユニット、42 機械式オイルポンプ、44 電動オイルポンプ、46,48 逆止弁、50 冷媒、52 冷媒排出路、54 冷媒供給路、60 接続軸、62 EOP駆動回路、64 低電圧電源、70 制御装置、72 キャリア周波数判断部、74 回転電機温度判断部、76 車両要求走行状態判断部、78 EOP動作制御部、80 動力装置動作モード判断部。

Claims (5)

  1. 少なくとも回転電機を有する動力装置と、
    回転電機に接続され、予め定めたキャリア周波数に基づいて動作する駆動回路と、
    回転電機を冷却する冷媒を循環させるポンプユニットと、
    キャリア周波数が予め設定された閾値周波数以下のときに、回転電機に対するポンプユニットの冷却能力を増加させる制御装置と、
    を備えることを特徴とする車両制御システム。
  2. 請求項1に記載の車両制御システムにおいて、
    ポンプユニットは少なくとも電動オイルポンプを有し、
    制御装置は、
    キャリア周波数が閾値周波数以下のときに電動オイルポンプを駆動させることを特徴とする車両制御システム。
  3. 請求項2に記載の車両制御システムにおいて、
    制御装置は、
    キャリア周波数が閾値周波数以下であり、かつ回転電機の温度が予め定めた閾値温度以上のときに電動オイルポンプを駆動させ、
    キャリア周波数が閾値周波数以下であっても回転電機の温度が予め定めた閾値温度未満のときは電動オイルポンプを駆動しないことを特徴とする車両制御システム。
  4. 請求項3に記載の車両制御システムにおいて、
    動力装置は、さらに内燃機関を有し、
    ポンプユニットは、さらに内燃機関によって駆動される機械式オイルポンプを有し、
    制御装置は、
    電動オイルポンプを駆動させた後に、回転電機の温度が閾値温度よりも高い温度であって予め定めた第2閾値温度以上のときに、内燃機関を動作させずに回転電機を動作させるEV動作モードから、内燃機関と回転電機を共に動作可能とするHV動作モードに動力装置の動作モードを切り替えることで、内燃機関を始動させ機械式オイルポンプを駆動させることを特徴とする車両制御システム。
  5. 請求項3に記載の車両制御システムにおいて、
    動力装置は、さらに内燃機関を有し、
    ポンプユニットは、さらに内燃機関によって駆動される機械式オイルポンプを有し、
    制御装置は、
    車両の走行状態に対応するポンプユニットの必要冷却能力について予め電動オイルポンプのみで賄える限度の車両走行状態を限界走行状態とし、
    内燃機関を動作させずに回転電機を動作させるEV動作モードのときに、キャリア周波数が閾値周波数以下であり、かつ回転電機の温度が予め定めた閾値温度以上となって電動オイルポンプを駆動させた後に、
    車両の要求走行状態が限界走行状態に至らないときには、EV動作モードのままとし、
    車両の要求走行状態が限界走行状態を超えるには、EV動作モードから、内燃機関と回転電機を共に動作可能とするHV動作モードに動力装置の動作モードを切り替えることで、内燃機関を始動させ機械式オイルポンプを駆動させることを特徴とする車両制御システム。
JP2011289159A 2011-12-28 2011-12-28 車両制御システム Active JP5781919B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011289159A JP5781919B2 (ja) 2011-12-28 2011-12-28 車両制御システム
US13/726,712 US8909402B2 (en) 2011-12-28 2012-12-26 Vehicle control system and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289159A JP5781919B2 (ja) 2011-12-28 2011-12-28 車両制御システム

Publications (2)

Publication Number Publication Date
JP2013138584A true JP2013138584A (ja) 2013-07-11
JP5781919B2 JP5781919B2 (ja) 2015-09-24

Family

ID=48695549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289159A Active JP5781919B2 (ja) 2011-12-28 2011-12-28 車両制御システム

Country Status (2)

Country Link
US (1) US8909402B2 (ja)
JP (1) JP5781919B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083907A (ja) * 2012-10-22 2014-05-12 Toyota Motor Corp 車両の制御装置
KR20170074795A (ko) * 2015-12-21 2017-06-30 도요타지도샤가부시키가이샤 차량 냉각 시스템
US10287964B2 (en) 2015-12-21 2019-05-14 Toyota Jidosha Kabushiki Kaisha Vehicular cooling system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912705B2 (ja) * 2012-03-16 2016-04-27 トヨタ自動車株式会社 車両制御システム
KR20140086303A (ko) * 2012-12-28 2014-07-08 현대자동차주식회사 전동식 오일펌프 시스템 및 그 제어방법
JP6211321B2 (ja) * 2013-07-16 2017-10-11 日立オートモティブシステムズ株式会社 車両用電動オイルポンプの制御装置
CN105452733A (zh) * 2013-09-30 2016-03-30 爱信艾达株式会社 车辆用液压供给装置的控制装置
US9657831B2 (en) * 2014-06-11 2017-05-23 Ford Global Technologies, Llc Methods and systems for improving hybrid vehicle cooling
KR101673673B1 (ko) * 2014-09-17 2016-11-17 현대자동차주식회사 차량용 변속기의 페일 세이프 제어 방법
DE102016211226B3 (de) * 2016-06-23 2017-06-29 Bayerische Motoren Werke Aktiengesellschaft Schmierstoffversorgung für einen Elektroantrieb und Kraftfahrzeug mit einer solchen Schmierstoffversorgung
JP7172762B2 (ja) * 2019-03-13 2022-11-16 トヨタ自動車株式会社 車両用油供給装置の制御装置
US11608884B2 (en) * 2019-03-29 2023-03-21 Aisin Corporation Vehicle drive device
KR20220132982A (ko) * 2021-03-24 2022-10-04 현대자동차주식회사 하이브리드 차량의 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271835A (ja) * 1997-03-21 1998-10-09 Hitachi Ltd インバータ制御装置
JP2009096326A (ja) * 2007-10-17 2009-05-07 Toyota Motor Corp オイルポンプユニットの駆動制御装置及びその駆動制御装置を搭載したハイブリッド車両
JP2010213461A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 車両用モータ温度制御装置
JP2010279084A (ja) * 2009-05-26 2010-12-09 Fuji Electric Systems Co Ltd 電動機駆動システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004027991A (ja) * 2002-06-27 2004-01-29 Calsonic Kansei Corp 車両用制御装置
JP4472935B2 (ja) 2003-02-27 2010-06-02 トヨタ自動車株式会社 車両の制御装置
JP4293176B2 (ja) 2005-10-20 2009-07-08 トヨタ自動車株式会社 動力出力装置及びこれを搭載する車両並びに動力出力装置の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271835A (ja) * 1997-03-21 1998-10-09 Hitachi Ltd インバータ制御装置
JP2009096326A (ja) * 2007-10-17 2009-05-07 Toyota Motor Corp オイルポンプユニットの駆動制御装置及びその駆動制御装置を搭載したハイブリッド車両
JP2010213461A (ja) * 2009-03-10 2010-09-24 Toyota Motor Corp 車両用モータ温度制御装置
JP2010279084A (ja) * 2009-05-26 2010-12-09 Fuji Electric Systems Co Ltd 電動機駆動システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083907A (ja) * 2012-10-22 2014-05-12 Toyota Motor Corp 車両の制御装置
KR20170074795A (ko) * 2015-12-21 2017-06-30 도요타지도샤가부시키가이샤 차량 냉각 시스템
KR101899221B1 (ko) * 2015-12-21 2018-09-14 도요타지도샤가부시키가이샤 차량 냉각 시스템
US10287964B2 (en) 2015-12-21 2019-05-14 Toyota Jidosha Kabushiki Kaisha Vehicular cooling system

Also Published As

Publication number Publication date
US8909402B2 (en) 2014-12-09
JP5781919B2 (ja) 2015-09-24
US20130173104A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5781919B2 (ja) 車両制御システム
JP5912705B2 (ja) 車両制御システム
US7823669B2 (en) Hybrid vehicle
JP5590214B2 (ja) 車両の冷却システム
JP5177324B2 (ja) 車両用制御装置および車両用制御方法
JP2013172596A (ja) 回転電機冷却システム
JP2014000848A (ja) 回転電機冷却システム
JPWO2013051141A1 (ja) ハイブリッド車両の制御装置
US8793044B2 (en) Vehicle control system
JP5912802B2 (ja) 車両制御システム
JP5042816B2 (ja) 内燃機関制御装置
JP2013060056A (ja) ハイブリッド車の制御装置
JP2009254206A (ja) 電源制御システム
JP2013193511A (ja) 車両制御システム
JP5885250B2 (ja) 回転電機冷却システム
JP5985844B2 (ja) 車両制御システム
JP2008278557A (ja) 電動車両の制御装置
JP5837458B2 (ja) 回転電機冷却システム
JP2014043164A (ja) 車両制御システム
JP2011213275A (ja) ハイブリッド車の制御装置
JP5876290B2 (ja) 車両制御システム
JP2014231329A (ja) ハイブリッド車両の駆動装置
JP5644297B2 (ja) 車両駆動制御装置
JP2013118773A (ja) 回転電機制御システム
JP2014183662A (ja) 車両の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150716

R151 Written notification of patent or utility model registration

Ref document number: 5781919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250