JP2013130642A - 露光方法、デバイス製造方法及び露光装置 - Google Patents

露光方法、デバイス製造方法及び露光装置 Download PDF

Info

Publication number
JP2013130642A
JP2013130642A JP2011278676A JP2011278676A JP2013130642A JP 2013130642 A JP2013130642 A JP 2013130642A JP 2011278676 A JP2011278676 A JP 2011278676A JP 2011278676 A JP2011278676 A JP 2011278676A JP 2013130642 A JP2013130642 A JP 2013130642A
Authority
JP
Japan
Prior art keywords
substrate
exposure
transfer
substrates
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011278676A
Other languages
English (en)
Inventor
Naoya Sako
直也 酒匂
Yuki Kanamaru
雄紀 金丸
Manabu Toguchi
学 戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011278676A priority Critical patent/JP2013130642A/ja
Publication of JP2013130642A publication Critical patent/JP2013130642A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】高スループット化を実現すること。
【解決手段】露光装置EXは、基板Pにアライメントマークを含むパターンを転写する照明システムIS及び投影システムPSと、基板Pを保持して走査方向に移動させる基板ステージ2と、基板Pに転写されたアライメントマークの位置を計測する第1アライメントシステムと、第1アライメントシステムとは異なる位置に配置されて基板Pに転写されたアライメントマークの位置を計測する第2アライメントシステムと、前工程において第1アライメントシステムが計測した結果を用いて、後工程で第1アライメントシステム及び第2アライメントシステムの計測した結果を補正するための補正値を制御する制御装置5と、を含む。
【選択図】図1

Description

本発明は、露光方法、デバイス製造方法及び露光装置に関する。
従来、液晶表示デバイスや半導体デバイス等の各種デバイスは、マスク等に設けられたパターンを感光基板に転写するフォトリソグラフィ工程を利用して製造されている。このフォトリソグラフィ工程で使用される露光装置では、例えば、マスクが載置されたマスクステージと、感光基板が載置された基板ステージとを同期走査しつつ、マスクに形成されたパターンを感光基板に転写する。
一般に、液晶表示デバイスに対するフォトリソグラフィ工程では、1枚の感光基板上に複数の露光領域(例えば、液晶表示デバイスの表示画面に対応する領域)を設定し、各露光領域を順次露光してパターンを転写することが行われている(例えば、特許文献1)。特許文献1に記載の露光方法では、各露光領域の近傍に設けられたアライメントマークを検出し、この検出結果に基づいて露光領域毎に位置合わせを行って露光する処理が繰り返される。
特開2003−347184号公報
近年、上述のようなフォトリソグラフィ工程では、さらなる高スループット化が要望されている。本発明の態様は、さらなる高スループット化を実現することができる露光方法、デバイス製造方法及び露光装置を提供することを目的とする。
本発明の第1の態様に従えば、複数の第1基板及び複数の第2基板それぞれに露光光を照射して、それぞれの前記第1基板及び前記第2基板にパターンを転写する際に、それぞれの前記第1基板及びそれぞれの前記第2基板に設けられた位置マークを計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板及びそれぞれの前記第2基板にパターンを転写する第1転写工程と、前記第1転写工程の後に、それぞれの前記第1基板に設けられた位置マークを計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板にパターンを転写する予備転写工程と、前記予備転写工程で得られたマーク情報と、前記第1転写工程で得られたマーク情報とに基づいた転写条件で、それぞれの前記第2基板にパターンを転写する第2転写工程と、を含むことを特徴とする露光方法が提供される。
本発明の第2の態様に従えば、前記露光方法を用いて前記複数の第1基板及び前記複数の第2基板を露光する工程と、露光された前記複数の第1基板及び前記複数の第2基板を現像して、転写された前記パターンに対応する露光パターン層を形成する工程と、前記露光パターン層を介して前記複数の第1基板及び前記複数の第2基板を加工する工程と、を含むことを特徴とするデバイス製造方法が提供される。
本発明の第3の態様に従えば、複数の第1基板及び複数の第2基板それぞれに露光光を照射して、それぞれの前記第1基板及び前記第2基板にパターンを転写するパターン転写装置と、基板を保持するとともに、前記パターン転写装置から出射される露光光の投影領域に対して基板を走査方向に移動させる基板ステージと、基板に設けられた位置マークのマーク情報を計測する計測装置と、それぞれの前記第1基板及びそれぞれの前記第2基板に設けられた位置マークを前記計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板及びそれぞれの前記第2基板にパターンを転写する第1転写処理と、前記第1転写処理の後に、それぞれの前記第1基板に設けられた位置マークを前記計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板にパターンを転写する予備転写処理と、前記予備転写処理で得られたマーク情報と、前記第1転写処理で得られたマーク情報とに基づいて求めた転写条件で、それぞれの前記第2基板にパターンを転写する第2転写処理と、を実行する制御装置と、を含むことを特徴とする露光装置が提供される。
本発明の態様によれば、高スループット化を実現することができる。
図1は、本実施形態に係る露光装置を走査方向側から見た図である。 図2は、本実施形態に係る露光装置の斜視図である。 図3は、本実施形態に係る露光装置の側面図である。 図4は、投影領域と、露光領域との位置関係の一例を示す模式図である。 図5は、本実施形態に係る露光方法を示すフローチャートである。 図6は、パターンが転写される前の基板を示す模式図である。 図7は、1層目のパターンが形成された基板を示す模式図である。 図8は、サンプル基板及びオブジェクト基板の考え方を示す概念図である。 図9−1は、マーク情報の計測を説明するための模式図である。 図9−2は、マーク情報の計測を説明するための模式図である。 図9−3は、マーク情報の計測を説明するための模式図である。 図9−4は、マーク情報の計測を説明するための模式図である。 図9−5は、マーク情報の計測を説明するための模式図である。 図10は、2層目のパターンが形成された基板を示す模式図である。 図11は、3層目のパターンが形成された基板を示す模式図である。 図12は、オブジェクト基板を露光する際の転写条件を求める手法の一例を示すフローチャートである。 図13−1は、オブジェクト基板を露光する際の転写条件を求める手法の説明図である。 図13−2は、オブジェクト基板を露光する際の転写条件を求める手法の説明図である。 図14は、オブジェクト基板の露光時における転写条件を求める手順のフローチャートである。 図15は、基板全体の線形成分を求める場合に用いるアライメントマークの位置を説明するための図である。 図16は、基板全体の線形成分を求める場合に用いるアライメントマークの位置を説明するための図である。 図17は、基板全体の線形成分を求める場合に用いるアライメントマークの位置を説明するための図である。 図18は、基板全体の線形成分を求める場合に用いるアライメントマークの位置を説明するための図である。 図19は、基板全体の線形成分を求める場合に用いるアライメントマークの位置を説明するための図である。 図20は、基板全体の線形成分を求める場合に用いるアライメントマークの位置の違いによる補正値の精度を評価した結果を示す図である。 図21は、基板全体の線形成分を求める場合に用いるアライメントマークの位置の違いによる補正値の精度を評価した結果を示す図である。 図22−1は、投影光学系に排気ダクトを有さない露光装置の例を示す図である。 図22−2は、投影光学系に排気ダクトを有さない露光装置の例を示す図である。 図23−1は、投影光学系に排気ダクトを有する露光装置の例を示す図である。 図23−2は、投影光学系に排気ダクトを有する露光装置の例を示す図である。 図24は、第2アライメントシステムが有する検出器の計測再現性の実験結果を示す図である。 図25は、本実施形態に係るデバイス製造方法の手順を示すフローチャートである。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下に記載の実施形態により本発明が限定されるものではない。
本実施形態に係る露光装置は、照明光学系及び投影光学系に対して感光基板(以下、適宜、基板という)を移動(走査)させつつ、基板にマスクのパターン(マスクパターン)を露光する走査型の露光装置である。以下においては、適宜図に示すようにX軸、Y軸及びZ軸を設定し、これらの3軸からなるXYZ直交座標系を参照しつつ説明する。X軸、Y軸、及びZ軸周りの回転(傾斜)方向は、それぞれ、θX方向、θY方向及びθZ方向と表現する。まず、露光装置の概要を説明する。
<露光装置>
図1は、本実施形態に係る露光装置EXを走査方向側から見た図である。図2は、露光装置EXの斜視図である。図3は、露光装置EXの側面図である。露光装置EXは、マスクステージ1と、基板ステージ2と、マスクステージ駆動システム3と、基板ステージ駆動システム4と、照明システムISと、投影システムPSと、制御装置5とを備えている。
また、露光装置EXは、ボディ13を備えている。ボディ13は、ベースプレート10と、第1コラム11と、第2コラム12とを有する。ベースプレート10は、例えばクリーンルーム内の支持面(例えば床面)FL上に防振台BLを介して配置される。第1コラム11は、ベースプレート10上に配置される。第2コラム12は、第1コラム11上に配置される。ボディ13は、投影システムPS、マスクステージ1及び基板ステージ2のそれぞれを支持する。投影システムPSは、定盤14を介して、第1コラム11に支持される。マスクステージ1は、第2コラム12に対して移動可能に支持される。基板ステージ2は、ベースプレート10に対して移動可能に支持される。
露光装置EXは、マスクMと基板Pとを所定の走査方向に同期させて移動させながら、マスクパターンの像を基板Pに投影する。すなわち、露光装置EXは、いわゆるマルチレンズ型スキャン露光装置である。マスクMは、基板Pに投影されるデバイスパターンが形成されたレチクルを含む。基板Pは、基材と、その基材の表面に形成された感光膜(塗布された感光剤)と、を含む。基材は、大型のガラスプレートを含み、その一辺のサイズ又は対角長(対角線)のサイズは、例えば500mm以上である。本実施形態においては、基材として、一辺が約3000mmの矩形形状のガラスプレートを用いる。
露光装置EXは、照明光学系として、7個の照明モジュールIL1〜IL7を有する照明システムISを備える。また、露光装置EXは、7個の投影光学系PL1〜PL7を有する投影システムPSを備える。なお、投影光学系及び照明光学系の数は7個に限定されず、例えば投影システムPSが投影光学系を11個有し、照明システムISが照明光学系を11個有してもよい。以下においては、必要に応じて、投影光学系PL1〜PL7を第1〜第7投影光学系PL1〜PL7という。
照明システムISは、例えば7つの照明モジュールIL1〜IL7を有する。照明モジュールIL1〜IL7は、例えばマスクMのうち7つの照明領域IR1〜IR7を、それぞれがほぼ均一な照度分布とした露光光ELで照明する。照明システムISから射出される露光光ELとしては、例えば水銀ランプから射出される輝線(g線、h線、i線)等が用いられる。
マスクステージ1は、マスクMを保持した状態で、照明領域IR1〜IR7に対して移動させる装置である。マスクステージ1は、マスクMを保持可能なマスク保持部15を有する。マスク保持部15は、マスクMを真空吸着可能なチャック機構を含み、マスクMを脱着できる。マスク保持部15は、マスクMの投影システムPS側の面(パターン形成面)とX軸及びY軸を含むXY平面とがほぼ平行となるように、マスクMを保持する。
マスクステージ駆動システム3は、マスクステージ1を移動させるシステムである。マスクステージ駆動システム3は、例えばリニアモータを含み、第2コラム12のガイド面12G上においてマスクステージ1を移動可能である。マスクステージ1は、マスクステージ駆動システム3の作動により、マスク保持部15でマスクMを保持した状態で、ガイド面12G上を、X軸、Y軸及びθZ方向の3つの方向に移動可能である。
基板ステージ2は、基板Pを保持するとともに、パターン転写装置としての照明システムIS及び投影システムPSから照射される露光光ELの投影領域PR1〜PR7に対して基板Pを走査方向(X軸方向)に移動させる。基板ステージ2は、基板Pを保持可能な基板保持部16を有する。基板保持部16は、基板Pを真空吸着可能なチャック機構を含み、基板Pが脱着できるようになっている。基板保持部16は、基板Pの表面(露光面)とXY平面とがほぼ平行となるように、基板Pを保持する。
基板ステージ駆動システム4は、基板ステージ2を移動させるシステムである。基板ステージ駆動システム4は、例えばリニアモータを含み、ベースプレート10のガイド面10G上において基板ステージ2を移動可能である。基板ステージ2は、基板ステージ駆動システム4が動作することにより、基板保持部16で基板Pを保持した状態で、ガイド面10G上を、X軸、Y軸、Z軸、θX、θY及びθZ方向の6方向に移動可能である。
照明システムISは、マスクMを露光光ELで照明するシステムである。照明システムISは、光源17と、楕円鏡18と、ダイクロイックミラー19と、リレー光学系21と、干渉フィルタ22と、ライトガイドユニット23とを備えている。光源17は、超高圧水銀ランプを有する。楕円鏡18は、光源17から射出された光を反射する。ダイクロイックミラー19は、楕円鏡18からの光の少なくとも一部を反射する。シャッタ装置は、ダイクロイックミラー19からの光の進行を通過又は遮断する。リレー光学系21は、ダイクロイックミラー19からの光が入射するコリメートレンズ21A及び集光レンズ21Bを含む。干渉フィルタ22は、所定波長領域の光のみを通過させる。ライトガイドユニット23は、リレー光学系21からの光を分岐して、複数の照明モジュールIL1〜IL7のそれぞれに供給する。
以下では、複数の照明モジュールIL1〜IL7を、適宜第1〜第7照明モジュールIL1〜IL7という。第1〜第7照明モジュールIL1〜IL7は、いずれも同等の構成である。リレー光学系21からの光は、ライトガイドユニット23に入射し、第1〜第7照明モジュールIL1〜IL7に向かって射出される。第1〜第7照明モジュールIL1〜IL7を通過した光は、露光光ELとして照明領域IR1〜IR7に照射される。照明領域IR1〜IR7は、それぞれを均一な照度分布の露光光ELで照明される。換言すると、第1〜第7照明モジュールIL1〜IL7のそれぞれは、各照明領域IR1〜IR7を均一な照度分布の露光光ELで照明する。すなわち、照明システムISは、照明領域IR1〜IR7のそれぞれに配置されるマスクMの部分的な領域を、均一な照度分布の露光光ELで照明する。
投影システムPSは、露光光ELで照明されたマスクMのパターンの像を基板Pに投影するシステムである。投影システムPSは、所定の投影領域PR1〜PR7にそれぞれ所定の倍率でパターンの像を投影する複数の投影光学系PL1〜PL7を有する。投影領域PR1〜PR7は、各投影光学系PL1〜PL7から射出された露光光ELが照射される領域である。
第1投影光学系PL1は、図3に示すように、像面調整部33と、シフト調整部34と、2組の反射屈折型光学系31、32と、視野絞り35と、スケーリング調整部36とを備えている。
照明領域IR1に照射され、マスクMを通過した露光光ELは、像面調整部33に入射する。像面調整部33は、第1投影光学系PL1の像面の位置(Z軸、θX及びθY方向に関する位置)を調整することができる。像面調整部33は、マスクM及び基板Pに対して光学的にほぼ共役な位置に配置されている。像面調整部33は、第1光学部材33A及び第2光学部材33Bと、第2光学部材33Bに対して第1光学部材33Aを移動させることができる光学系駆動装置とを備えている。
第1光学部材33Aと第2光学部材33Bとは、気体軸受により、所定のギャップを介して対向する。第1光学部材33A及び第2光学部材33Bは、露光光ELを透過するガラス板であり、それぞれくさび形状を有する。図1に示す制御装置5は、光学系駆動装置を動作させて、第1光学部材33Aと第2光学部材33Bとの位置関係を調整することにより、第1投影光学系PL1の像面の位置を調整することができる。像面調整部33を通過した露光光ELは、シフト調整部34に入射する。
シフト調整部34は、基板Pの表面におけるマスクMのパターンの像をX軸方向及びY軸方向にシフトさせることができる。シフト調整部34を透過した露光光ELは、1組目の反射屈折型光学系31に入射する。反射屈折型光学系31は、マスクMのパターンの中間像を形成する。反射屈折型光学系31から射出された露光光ELは、視野絞り35に入射する。視野絞り35は、反射屈折型光学系31により形成されるマスクパターンの中間像の位置に配置されている。視野絞り35は、投影領域PR1を規定する。本実施形態において、視野絞り35は、基板P上における投影領域PR1を台形状に規定する。視野絞り35を通過した露光光ELは、2組目の反射屈折型光学系32に入射する。
反射屈折型光学系32は、反射屈折型光学系31と同様の構造である。反射屈折型光学系32から射出された露光光ELは、スケーリング調整部36に入射する。スケーリング調整部36は、マスクパターンの像の倍率(スケーリング)を調整することができる。スケーリング調整部36を介した露光光ELは、基板Pに照射される。本実施形態において、第1投影光学系PL1は、マスクパターンの像を、基板P上に正立等倍で投影するが、これに限定されるものではない。例えば、第1投影光学系PL1は、マスクパターンの像を拡大又は縮小したり、倒立で投影したりしてもよい。
なお、投影光学系PL1〜PL7は、いずれも同等の構造である。上述した照明システムIS及び投影システムPSは、複数の基板Pそれぞれに露光光ELを照射して、それぞれの基板Pに転写するパターン転写装置に相当する。
図2及び図3に示すように、基板保持部16に対して−X側の基板ステージ2の投影システムPS側における表面には、基準部材43が配置されている。基準部材43の投影システムPS側における表面44は、基板保持部16に保持された基板Pの表面とほぼ同一の平面内に配置される。また、基準部材43の表面44に、露光光ELを透過可能な透過部45が配置されている。基準部材43の下方(基板ステージ2の内部側)には、透過部45を透過した光を受光可能な受光装置46が配置されている。受光装置46は、透過部45を介した光が入射するレンズ系47と、レンズ系47を介した光を受光する光センサ48とを有する。本実施形態において、光センサ48は、撮像素子(例えば、CCD:Charge Coupled Device)を含む。光センサ48は、受光した光に応じた信号を制御装置5に出力する。
図1及び図2に示すように、干渉計システム6は、マスクステージ1の位置情報を計測するレーザ干渉計ユニット6Aと、基板ステージ2の位置情報を計測するレーザ干渉計ユニット6Bとを有する。レーザ干渉計ユニット6Aは、マスクステージ1に配置された計測ミラー1Rを用いて、マスクステージ1の位置情報を計測可能である。レーザ干渉計ユニット6Bは、基板ステージ2に配置された計測ミラー2Rを用いて、基板ステージ2の位置情報を計測可能である。本実施形態において、干渉計システム6は、レーザ干渉計ユニット6A、6Bを用いて、X軸、Y軸及びθX方向に関するマスクステージ1及び基板ステージ2それぞれの位置情報を計測可能である。
第1検出システム7は、マスクMの投影システムPS側における面(パターン形成面)のZ軸方向の位置を検出する。第1検出システム7は、いわゆる斜入射方式の多点フォーカス・レベリング検出システムであり、図3に示すように、マスクステージ1に保持されたマスクMの投影システムPS側の面と対向配置される複数の検出器7A〜7Fを有する。検出器7A〜7Fのそれぞれは、検出領域MZ1〜MZ6に検出光を照射する投射部と、検出領域MZ1〜MZ6に配置されたマスクMの下面(投影システムPS側における表面)からの検出光を受光可能な受光部とを有する。第1検出システム7は、検出領域MZ1〜MZ6に配置されたマスクMの下面におけるZ軸方向の位置が変化した場合、そのマスクMの下面のZ軸方向における変位量に応じて、受光部に対する検出光の入射位置が変位する。検出器7A〜7Fのそれぞれは、それらの受光部に対する検出光の入射位置の変位量に対応する信号を制御装置5に出力する。受光部の撮像信号は、制御装置5に出力され、制御装置5は、検出器7A〜7Fのそれぞれの受光部からの信号に基づいて、検出領域MZ1〜MZ6に配置されたマスクMの下面のZ軸方向における位置を求めることができる。
第2検出システム8は、基板Pの表面(露光面)におけるZ軸方向の位置を検出する。第2検出システム8は、いわゆる斜入射方式の多点フォーカス・レベリング検出システムであり、図3に示すように、基板ステージ2に保持された基板Pの表面と対向配置される複数の検出器8A〜8Hを有する。検出器8A〜8Hのそれぞれは、検出領域PZ1〜PZ8に検出光を照射する投射部と、検出領域PZ1〜PZ8に配置された基板Pの表面からの検出光を受光可能な受光部とを有する。第2検出システム8は、検出領域PZ1〜PZ8に配置された基板Pの表面におけるZ軸方向の位置が変化した場合、その基板Pの表面のZ軸方向における変位量に応じて、受光部に対する検出光の入射位置が変位する。検出器8A〜8Hのそれぞれは、それらの受光部に対する検出光の入射位置の変位量に対応する信号を制御装置5に出力する。制御装置5は、検出器8A〜8Hのそれぞれの受光部からの信号に基づいて、検出領域PZ1〜PZ8に配置された基板Pの表面のZ軸方向における位置を求めることができる。
アライメントシステム9は、基板Pに設けられた位置検出用のマーク(位置マーク)としてのアライメントマークを検出し、マーク情報を計測する。マーク情報は、アライメントマークの位置に関する情報(位置情報)を含む。アライメントマークの位置情報は、例えば、露光装置EXのXY座標系における位置の情報である。アライメントマークは、露光によって基板Pに転写されて、基板Pの表面に設けられる。本実施形態において、アライメントシステム9は、投影システムPSに対してX軸方向(走査方向)の−X側に配置された、計測装置としての第1アライメントシステム91と、+X側に配置された、計測装置としての第2アライメントシステム92とを有する。このように、第1アライメントシステム91と第2アライメントシステム92とは、異なる位置、より具体的には、走査方向(X軸方向)における異なる位置に配置されている。
第1アライメントシステム91及び第2アライメントシステム92は、いわゆるオフアクシス方式のアライメントシステムである。図3に示すように、第1アライメントシステム91は、基板ステージ2に保持された基板Pの表面と対向配置される複数(本実施形態では6個)の第1検出器91A〜91Fを有する。第1検出器91A〜91Fのそれぞれは、検出領域SA1〜SA6に検出光を照射する投射部と、検出領域SA1〜SA6に配置されたアライメントマークの光学像を取得する顕微鏡及び受光部とを有する。第1検出器91A〜91F及び検出領域SA1〜SA6は、走査方向と直交する方向、すなわちY軸の方向に沿って配列されている。
第2アライメントシステム92は、基板ステージ2に保持された基板Pの表面と対向配置される複数(本実施形態では2個)の第2検出器92A、92Bを有する。第2検出器92A、92Bのそれぞれは、検出領域SB1、SB2に検出光を照射する投射部と、検出領域SA1、SB2に配置されたアライメントマークの光学像を取得する顕微鏡及び受光部とを有する。第1検出器91A〜91F及び検出領域SB1、SB2は、走査方向と直交する方向、すなわちY軸の方向に配列されている。第1検出器91A〜91F、92A、92Bのそれぞれは、検出領域SA1〜SA6、SB1、SB2に配置された基板Pの表面のアライメントマークを検出することができる。本実施形態において、第2アライメントシステム92が有する第2検出器92A、92Bの数は、第1アライメントシステム91が有する第1検出器91A〜91Fの数よりも少ない。このため、第2アライメントシステム92が検出して計測することができるアライメントマークの数は、第1アライメントシステム91が検出して計測することができるアライメントマークの数よりも少ない。
制御装置5は、露光装置EXの動作を制御するとともに、本実施形態に係る露光方法を実行する。制御装置5は、例えば、コンピュータであり、処理部と、記憶部と、入出力部とを有する。処理部は、例えば、CPU(Central Processing Unit)である。記憶部は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)若しくはハードディスク装置又はこれらを組み合わせたものである。入出力部は、干渉計システム6、アライメントシステム9、マスクステージ駆動システム3及び基板ステージ駆動システム4等と接続するためのインターフェース、入力ポート及び出力ポート等を備えている。次に、基板Pにおける投影領域と検出領域との関係を説明する。
図4は、投影領域と、露光領域との位置関係の一例を示す模式図である。図4は、基板Pの表面を含む平面内における投影領域と露光領域との位置関係を示している。図4に示すように、本実施形態において、基板Pの表面には、マスクパターンの像が投影される複数の露光領域(露光対象領域)PA1〜PA4が設定されている。本実施形態において、基板Pには、表面に4個の露光領域PA1、PA2、PA3、PA4が設定されている。露光領域PA1、PA2は、Y軸方向に所定の間隔で配置され、露光領域PA3、PA4は、Y軸方向に所定の間隔で配置される。露光領域PA1、PA2は、露光領域PA3、PA4に対して+X側に配置されている。
本実施形態において、投影領域PR1〜PR7のそれぞれは、XY平面内において台形である。本実施形態において、投影光学系PL1、PL3、PL5、PL7による投影領域PR1、PR3、PR5、PR7が、Y軸方向にほぼ等間隔で配置され、投影光学系PL2、PL4、PL6による投影領域PR2、PR4、PR6が、Y軸方向にほぼ等間隔で配置されている。投影領域PR1、PR3、PR5、PR7は、投影領域PR2、PR4、PR6に対して−X側に配置されている。また、Y軸方向に関して、投影領域PR1、PR3、PR5、PR7のそれぞれの間に、投影領域PR2、PR4、PR6が配置される。
複数の投影領域PR1〜PR7のうち、投影領域PR1と投影領域PR7との間隔は、露光領域PA1のY軸方向の幅とほぼ同じか又はわずかに大きい。本実施形態において、露光領域PA1〜PA4のそれぞれの寸法及び形状は、ほぼ同一である。
第1アライメントシステム91が有する複数の第1検出器91A〜91Fによる複数の検出領域SA1〜SA6は、Y軸方向に所定の間隔で配置される。第2アライメントシステム92が有する複数の第2検出器92A、92Bによる複数の検出領域SB1、SB2は、Y軸方向に所定の間隔で配置される。本実施形態において、第1アライメントシステム91は、6個の検出領域SA1〜SA6を有し、第2アライメントシステム92は、2個の検出領域SB1、SB2を有する。第2アライメントシステム92の検出領域SB1、SB2の数は、第1アライメントシステム91の検出領域SA1〜SA6の数よりも少ない。複数の検出領域SA1〜SA6は、投影領域PR1〜PR7に対してX軸方向、すなわち走査方向の−X側に配置されている。複数の検出領域SB1、SB2は、投影領域PR1〜PR7に対してX軸方向の+X側に配置されている。
本実施形態において、第1アライメントシステム91のY軸方向における両端の検出領域SA1及び検出領域SA6のY軸方向に関する位置は、第2アライメントシステム92のY軸方向における両端の検出領域SB1及び検出領域SB2のY軸方向に関する位置とほぼ同じ位置に配置される。
図4に示すように、本実施形態において、基板Pの表面には、Y軸方向に所定間隔で複数(本実施形態では6個)のアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64が配置されている。これらのアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64は、X軸方向においては4箇所に配置される。アライメントマークm11、m21、m31は露光領域PA4のX軸方向における一端部(−X側の端部、以下同様)に隣接して設けられる。アライメントマークm41、m51、m61は露光領域PA3のX軸方向における一端部に隣接して設けられる。アライメントマークm12、m22、m32は露光領域PA4の他端部(+X側の端部、以下同様)に隣接して設けられる。アライメントマークm42、m52、m62は露光領域PA3のX軸方向における他端部に隣接して設けられる。アライメントマークm13、m23、m33は露光領域PA1のX軸方向における一端部に隣接して設けられる。アライメントマークm43、m53、m63は露光領域PA2のX軸方向における一端部に隣接して設けられる。アライメントマークm14、m24、m34は露光領域PA1のX軸方向における他端部に隣接して設けられる。アライメントマークm44、m54、m64は露光領域PA2のX軸方向における他端部に隣接して設けられる。
以下において、X軸方向の4箇所に配置されるアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64の4個のグループのうち、基板Pの−X側のエッジに最も近いアライメントマークm11〜m61のグループを適宜列G1といい、列G1の+X側に隣接するアライメントマークm12〜m62のグループを適宜列G2といい、列G2の+X側に隣接するアライメントマークm13〜m63のグループを適宜列G3といい、列G3の+X側に隣接するアライメントマークm14〜m64のグループを適宜列G4という。
第1アライメントシステム91及び第2アライメントシステム92は、基板Pの表面に設けられている複数のアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64を検出する。本実施形態において、基板Pの表面にY軸方向に向かって配置される6個のアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64に対応して、第1アライメントシステム91の検出領域SA1〜SA6(第1検出器91A〜91F)が配置されている。第1検出器91A〜91Fは、例えば、アライメントマークm11〜m61が検出領域SA1〜SA6に同時に配置されるように設けられる。第1アライメントシステム91は、第1検出器91A〜91Fを用いて、6個のアライメントマークm11〜m61等を同時に検出することができる。
基板Pの表面にY軸方向に向かって配置される6個のアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64のうち、Y軸方向における両端のアライメントマークm11、m61等に対応して、第2アライメントシステム92の検出領域SA1、SA2(第2検出器92A、92B)が配置されている。第2検出器92A、92Bは、アライメントマークm11、m61等が検出領域SB1、SB2に同時に配置されるように設けられる。第2アライメントシステム92は、第2検出器92A、92Bを用いて、2個のアライメントマークm11、m61等を同時に検出することができる。
次に、露光装置EXが基板Pに露光する際の動作の一例を説明する。露光装置EXにおいて、露光動作等の動作の少なくとも一部は、予め定められている露光に関する制御情報(露光制御情報)に基づいて実行される。露光制御情報は、露光装置EXの動作を規定する制御命令群を含み、露光レシピとも呼ばれる。以下の説明において、露光に関する制御情報を適宜、露光レシピという。露光レシピは、制御装置5が有する記憶部に予め記憶されている。少なくとも基板Pの露光時(マスクM及び基板Pに対する露光光ELの照射動作時)における露光装置EXの動作条件は、露光レシピによって予め決定されている。制御装置5は、露光レシピに基づいて、露光装置EXの動作を制御する。
露光レシピは、基板Pの露光時におけるマスクステージ1及び基板ステージ2の移動条件を含む。基板Pの露光時に、制御装置5は、露光レシピに基づいて、マスクステージ1及び基板ステージ2を移動する。本実施形態において、露光装置EXは、マルチレンズ型スキャン露光装置である。露光装置EXは、基板Pの露光領域PA1〜PA4の露光時において、マスクM及び基板PをXY平面内の所定の走査方向に移動させる。制御装置5は、露光レシピに基づいて、マスクMと基板Pとを同期させながら走査方向に移動させる過程で、マスクMの上面(照明システムIS側の面)のパターン領域(所定のパターンが設けられた領域)に露光光ELを照射する。そして、露光装置EXは、パターン領域を介して基板Pの表面の露光領域PA1〜PA4に露光光ELを照射して、それら露光領域PA1〜PA4を露光し、マスクパターンを転写する。
本実施形態において、基板Pの表面に設けられた複数の露光領域PA1〜PA4に対する露光処理は、投影領域PR1〜PR7に対して基板Pの露光領域PA1〜PA4を基板Pの表面(XY平面)に沿って走査方向に移動させる。同時に、照明領域IR1〜IR7に対してマスクMのパターン領域をマスクMの下面(XY平面)に沿って走査方向に移動させる。このようにして、露光領域PA1〜PA4に対する露光処理が実行される。
本実施形態においては、基板Pの走査方向(同期移動方向)をX軸方向とし、マスクMの走査方向(同期移動方向)もX軸方向とする。例えば基板Pの露光領域PA1を露光する場合、制御装置5は、投影領域PR1〜PR7に対して基板Pの露光領域PA1をX軸方向に移動するとともに、その基板PのX軸方向への移動と同期して、照明領域IR1〜IR7に対してマスクMのパターン領域をX軸方向に移動しながら、照明領域IR1〜IR7に露光光ELを照射して、投影光学系PL1〜PL7を介してマスクMからの露光光ELを投影領域PR1〜PR7に照射する。このようにすることで、基板Pの露光領域PA1は、投影領域PR1〜PR7に照射された露光光ELで露光され、マスクMのパターン領域に形成されたパターンの像が、基板Pの露光領域PA1に投影される。
例えば露光領域PA1の露光が終了した後、次の露光領域(例えば露光領域PA2)を露光するために、制御装置5は、投影領域PR1〜PR7が次の露光領域PA2の露光開始位置に配置されるように基板ステージ2を制御して、投影領域PR1〜PR7に対して基板PをXY平面内の所定方向に移動する。また、制御装置5は、照明領域IR1〜IR7がパターン領域の露光開始位置に配置されるように、マスクステージ1を制御して、照明領域IR1〜IR7に対してマスクMを移動する。そして、投影領域PR1〜PR7が露光領域PA2の露光開始位置に配置され、照明領域IR1〜IR7がパターン領域の露光開始位置に配置された後、制御装置5は、その露光領域PA2の露光を開始する。
制御装置5は、マスクステージ1が保持するマスクMと基板ステージ2が保持する基板PとをX軸方向に同期させて移動させながら基板Pに露光光ELを照射する動作と、次の露光領域を露光するために、基板PをXY平面内の所定方向(例えばX軸方向)にステッピング移動する動作とを繰り返す。そして、制御装置5は、基板P上に設けられた複数の露光領域PA1〜PA4を、マスクMに設けられたパターン及び投影光学系PL1〜PL7を介して順次露光することにより、基板Pの表面に設けられた複数の露光領域PA1〜PA4に、マスクパターンを転写する。次に、露光装置EXが本実施形態に係る露光方法を実行して基板Pを露光し、基板Pの表面に所定のパターンを転写する例を説明する。
図5は、本実施形態に係る露光方法を示すフローチャートである。図6は、パターンが転写される前の基板を示す模式図である。図7は、1層目のパターンが形成された基板を示す模式図である。図8は、サンプル基板及びオブジェクト基板の考え方を示す概念図である。本実施形態の露光方法は、複数の基板Pそれぞれに、複数のパターンを重ねて転写する際に適用される。特に、本実施形態の露光方法は、所定のパターンを有する層を、同一の基板Pの表面に少なくとも3層形成する場合に好適である。なお、初めての露光前において、基板Pには既にアライメントマークが設けられている場合、本実施形態の露光方法は、所定のパターンを有する層を、同一の基板Pの表面に少なくとも2層形成する場合に好適である。本実施形態では、同一のマスクMを用いて露光されるN枚の基板Pを1ロットとし、1ロットに含まれるそれぞれの基板Pに所定のパターンを有する層を複数形成する。
本実施形態において、図8に示すように、同一のロットに含まれるN枚の基板を、第1基板としてのサンプル基板と、第2基板としてのオブジェクト基板とに分けて取り扱う。サンプル基板及びオブジェクト基板の数は、いずれも複数である。同一のロットに含まれるN枚の基板のうち、サンプル基板の数をm枚とすると、オブジェクト基板の数はN−mになる。サンプル基板の数は3枚から6枚程度であるが、これに限定されるものではない。
本実施形態に係る露光方法を実行するにあたり、露光装置EXの制御装置5は、マスクMをマスクステージ1に搬入(ロード)する。マスクMがマスクステージ1に保持された後、制御装置5は、露光レシピに基づいて、マスクMのアライメント処理、各種計測処理及びキャリブレーション処理を含むセットアップ処理を実行する。本実施形態において、マスクMのアライメント処理は、マスクMに配置されたアライメントマークの像を、投影システムPS及び透過部45を介して受光装置46で受光する。制御装置5は、受光装置46の検出値に基づき、XY平面内におけるマスクMの位置を計測する。マスクMのアライメント処理は、このようなマスクMの位置を計測する処理を含む。
マスクMの位置を計測する処理は、例えば各投影光学系PL1〜PL7から射出される露光光ELの照度を受光装置46が計測する処理、各投影光学系PL1〜PL7の結像特性を受光装置46が計測する処理及びアライメントシステム9の検出領域SA1〜SA6、SB1、SB2とマスクMのパターン像の投影位置との位置関係(ベースライン量)を、アライメントシステム9、透過部45及び受光装置46等を用いて計測する処理の少なくとも一つを含む。
キャリブレーション処理は、計測処理の結果を用いて、各照明モジュールIL1〜IL7から出射される露光光ELの照度を調整する処理及び受光装置46を用いて計測した結像特性の計測結果に基づいて、各投影光学系PL1〜PL7の結像特性を結像特性調整装置30が調整する処理の少なくとも一つを含む。
制御装置5は、上述した各処理を完了させた後、所定のタイミングで、基板Pを基板ステージ2に搬入する(ステップS101)。このときに搬入される基板Pは、予め別途塗布装置等によって表面にレジスト等の感光材料が塗布された状態にしておく。図6に示すように、基板Pは、表面にパターンが形成されていない状態である。基板Pの露光領域PA1〜PA4に、所定のパターンが形成される。基板Pが基板ステージ2に保持された後、露光装置EXは、露光レシピに基づいて、露光条件を調整する処理(露光条件調整処理)を実行する。露光条件は、例えば投影光学系PL1〜PL7による投影像の投影倍率、投影位置、投影像の回転等の結像条件及び基板Pの位置又は姿勢等に関する基板配置条件の少なくとも1つを含む。
露光条件調整処理において、制御装置5は、まずプリアライメント処理を実行する。この場合、制御装置5は、プリアライメント用計測装置に基板Pのエッジ等を検出させる。基板Pのエッジ等が検出された後、制御装置5は、検出結果に応じて投影光学系PL1〜PL7の結像特性調整装置30及び基板ステージ2を駆動させ、露光条件を調整する。露光条件調整処理の後、図7に示すように、基板Pに対して、調整後の露光条件で1層目となる第1パターンPT1を転写する(ステップS102)。第1パターンPT1には、例えば露光領域PA1〜PA4に形成される所定の回路パターンr11〜r14が含まれるとともに、X軸方向、すなわち走査方向に向かって4列のアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64が含まれる。
露光によって第1パターンPT1が転写された基板Pは、露光装置EXの外部に搬出される(ステップS103)。そして、搬出された基板Pは、例えば現像工程及び第1パターンPT1に基づく最初の層(第1層)を形成する工程等の各工程が適宜行われる。本実施形態において、同一のロットが有するN枚の基板に対して上述した処理が繰り返される。少なくとも同一のロットにおいては、同一の露光レシピの下で露光及びパターンの転写が実行される。露光すべき基板Pの枚数(以下、枚数という)nがNになっていない場合(ステップS104、No)、同一のロットが有するすべての基板Pに露光及びパターンの転写が終了していないので、露光装置EXはステップS101〜ステップS104を繰り返す。枚数nがNになった場合(ステップS104、Yes)、同一のロットが有するすべての基板Pに露光及びパターンの転写が終了したので、露光装置EXは処理をステップS105に進める。
ステップS105〜ステップS109は、第1層が形成された基板Pに対して、別の層(第2層)を積層させる工程である。この場合、基板Pの表面(第1層の表面)に感光層が形成される。制御装置5は、基板Pに形成しようとする第2層に対応するマスクMをマスクステージ1に搬入(ロード)する。マスクMがマスクステージ1に保持された後、制御装置5は、露光レシピに基づいて、第1層を形成した場合と同様に、マスクMのアライメント処理、各種計測処理及びキャリブレーション処理を含むセットアップ処理を実行する。
次に、制御装置5は、所定のタイミングで、第1層の表面に感光層が形成された基板Pを基板ステージ2に搬入する(ステップS105)。制御装置5は、基板Pが基板ステージ2に保持された後、露光レシピに基づいて、露光条件を調整する処理を実行させる。この露光条件調整処理において、制御装置5は、アライメントシステム9が有する第1アライメントシステム91を用いて、図7に示す第1パターンPT1のパターン情報を計測する(ステップS106)。
第1パターンPT1のパターン情報は、第1パターンPT1に含まれるアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64の位置情報、すなわちマーク情報を含む。マーク情報は、X座標、Y座標、θZ等を含む(以下同様)。本実施形態では、制御装置5は、基板Pに設けられる4列のアライメントマークm11〜m61(列G1)、m12〜m62(列G2)、m13〜m63(列G3)、m14〜m64(列G4)を、例えば列G1、列G2、列G3、列G4の順に検出させることで、第1パターンPT1のパターン情報を計測する。次に、マーク情報を求める手法について説明する。
図9−1〜図9−5は、マーク情報の計測を説明するための模式図である。アライメントシステム9がマーク情報を計測するにあたり、図9−1に示すように、制御装置5は、干渉計システム6を用いて基板ステージ2の位置を計測しつつ基板ステージ2を移動させる。そして、制御装置5は、第1アライメントシステム91の検出領域SA1〜SA6に列G1のアライメントマークm11〜m61が配置されるように基板Pを移動させる。この状態で、第1アライメントシステム91は、列G1のアライメントマークm11〜m61を検出する。第1アライメントシステム91がアライメントマークm11〜m61を検出することにより、制御装置5は、干渉計システム6によって規定される座標系における列G1のアライメントマークm11〜m61の位置情報、すなわちマーク情報を求めることができる。
次に、図9−2に示すように、制御装置5は、干渉計システム6を用いて基板ステージ2の位置を計測しつつ基板ステージ2を移動させる。そして、制御装置5は、第2アライメントシステム92の検出領域SB1、SB2に列G3のアライメントマークm13、m63が配置されるように基板Pを移動させる。この状態で、第1アライメントシステム92は、列G13のアライメントマークm13、m63を検出する。第2アライメントシステム92がアライメントマークm13、m63を検出することにより、制御装置5は、干渉計システム6によって規定される座標系における列G3のアライメントマークm13、m63の位置情報、すなわちマーク情報を求めることができる。
次に、図9−3に示すように、制御装置5は、干渉計システム6を用いて基板ステージ2の位置を計測しつつ基板ステージ2を移動させる。そして、制御装置5は、第1アライメントシステム91の検出領域SA1〜SA6に列G2のアライメントマークm12〜m62が配置されるように基板Pを移動させる。この状態で、第1アライメントシステム91は、列G2のアライメントマークm12〜m62を検出する。第1アライメントシステム91がアライメントマークm12〜m62を検出することにより、制御装置5は、干渉計システム6によって規定される座標系における列G2のアライメントマークm12〜m62の位置情報、すなわちマーク情報を求めることができる。
次に、図9−4に示すように、制御装置5は、干渉計システム6を用いて基板ステージ2の位置を計測しつつ基板ステージ2を移動させる。そして、制御装置5は、第1アライメントシステム91の検出領域SA1〜SA6に列G3のアライメントマークm13〜m63が配置されるように基板Pを移動させる。この状態で、第1アライメントシステム91は、列G3のアライメントマークm13〜m63を検出する。第1アライメントシステム91がアライメントマークm13〜m63を検出することにより、制御装置5は、干渉計システム6によって規定される座標系における列G3のアライメントマークm13〜m63の位置情報、すなわちマーク情報を求めることができる。
次に、図9−5に示すように、制御装置5は、干渉計システム6を用いて基板ステージ2の位置を計測しつつ基板ステージ2を移動させる。そして、制御装置5は、第1アライメントシステム91の検出領域SA1〜SA6に列G4のアライメントマークm14〜m64が配置されるように基板Pを移動させる。この状態で、第1アライメントシステム91は、列G4のアライメントマークm14〜m64を検出する。第1アライメントシステム91がアライメントマークm14〜m64を検出することにより、制御装置5は、干渉計システム6によって規定される座標系における列G4のアライメントマークm14〜m64の位置情報、すなわちマーク情報を求めることができる。
第1アライメントシステム91と第2アライメントシステム92とは、それぞれの両端の検出領域SA1、SA2と検出領域SB1、SB2とを用いて、基板Pの表面に設けられた同一のアライメントマークm13、m63を検出する。上述したマスクMの位置を計測する処理により、アライメントシステム9の検出領域SA1〜SA6、SB1、SB2とマスクMのパターン像の投影位置との位置関係(ベースライン量)が求められている。すなわち、干渉計システム6によって規定される座標系における第1アライメントシステム91の検出領域SA1〜SA6の位置は既知である。したがって、制御装置5は、干渉計システム6によって基板ステージ2の位置を計測しつつ、第1アライメントシステム91の検出領域SA1、SA6にアライメントマークm13、m63を配置するとともに、第2アライメントシステム92の検出領域SB1、SB2にアライメントマークm13、m63を配置する。このような処理により、制御装置5は、干渉計システム6によって規定される座標系における第2アライメントシステム92の検出領域SB1、SB2の位置を求めることができる。また、制御装置5は、基板Pの表面のアライメントマークm13、m63を第1アライメントシステム91が検出した結果と、このアライメントマークm13、m63を第2アライメントシステム92が検出した結果とに基づいて、第1アライメントシステム91の検出領域SA1〜SA6と、第2アライメントシステム92の検出領域SB1、SB2との位置関係を求めることもできる。
なお、第1アライメントシステム91の検出領域SA1〜SA6と、第2アライメントシステム92の検出領域SB1、SB2との位置関係を求める際には、アライメントマークm13、m63を使用せずに基板ステージ2に設けられた基準マーク(透過部45)を用いてもよい。また、第1アライメントシステム91の検出領域SA1〜SA6と、第2アライメントシステム92の検出領域SB1、SB2との位置関係を求める際には、第1アライメントシステム91が検出するマーク(アライメントマーク又は基準マーク)と第2アライメントシステム92が検出するマーク(アライメントマーク又は基準マーク)が異なっていてもよい。
上述した手法により、制御装置5は、マーク情報を求めることができる。なお、第1アライメントシステム91の検出領域SA1〜SA6と、第2アライメントシステム92の検出領域SB1、SB2との位置関係は、同一のロットについては1回求められていればよく、基板Pに形成される複数の層のそれぞれに対しては求めなくてもよい。また、第1アライメントシステム91の検出領域SA1〜SA6と、第2アライメントシステム92の検出領域SB1、SB2との位置関係が必要ない場合、第2アライメントシステム92はアライメントマークm13、m63を計測しなくてもよい。
制御装置5が第1パターンPT1のパターン情報を計測したら(ステップS106)、制御装置5は、計測結果から得られたアライメントマークの位置情報、すなわちマーク情報に基づいて転写条件を求める。転写条件は、露光時におけるX軸方向及びY軸方向における補正量及び露光条件の調整量等を含む(以下同様)。制御装置5は、求めた転写条件に応じて、投影光学系PL1〜PL7の結像特性調整装置30及び基板ステージ2の基板ステージ駆動システム4を駆動し、上述した転写条件を調整する。また、制御装置5は、基板P毎に、例えば第1パターンPT1の計測結果及び計測結果に対応する転写条件(又は転写条件の調整量)等を対応付けて記憶部に記憶させる。この場合、例えば制御装置5は、基板P毎の識別データと、第1パターンPT1の計測結果のデータと、転写条件のデータとを対応させたデータテーブルを作成して記憶部に記憶させる。
図10は、2層目のパターンが形成された基板を示す模式図である。制御装置5は、転写条件を調整した後、基板Pに対して、調整後の転写条件で図10に示す2層目のパターン(第2パターン)PT2を転写する(ステップS107)。第2パターンPT2には、例えば露光領域PA1〜PA4にそれぞれ形成される所定の回路パターンr21〜r24が含まれる。また、第2パターンPT2には、4列のアライメントマークm11〜m61、m12〜m62、13〜m63、14〜m64が含まれる。これらのアライメントマークは、図7に示す第1パターンPT1が有する4列のアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64に対応する位置に形成される。
上述したステップS106及びステップS107は、第1転写処理又は第1転写工程に相当する。すなわち、ステップS106及びステップS107は、制御装置5が、それぞれのサンプル基板及びそれぞれのサンプル基板に設けられた位置マークとしてのアライメントマークを計測装置としての第1アライメントシステム91によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの第1基板及びそれぞれの第2基板にパターンを転写する処理(工程)である。
露光によって第2パターンPT2が転写された基板Pは、露光装置EXの外部に搬出される(ステップS108)。そして、搬出された基板Pは、例えば現像工程及び第2パターンPT2に基づく2番目の層(第2層)を形成する工程等の各工程が適宜行われる。本実施形態において、同一のロットが有するN枚の基板に対して上述した処理が繰り返される。少なくとも同一のロットにおいては、同一の露光レシピの下で露光及びパターンの転写が実行される。枚数nがNになっていない場合(ステップS109、No)、同一のロットが有するすべての基板Pに露光及びパターンの転写が終了していないので、露光装置EXはステップS105〜ステップS109を繰り返す。枚数nがNになった場合(ステップS109、Yes)、同一のロットが有するすべての基板Pに露光及びパターンの転写が終了したので、露光装置EXは処理をステップS110に進める。
ステップS110〜ステップS118は、第1層及び第2層が形成された基板Pに対して、さらに別の層(第3層以降の層)を積層させる工程である。この場合、基板Pの表面(第2層の表面)に感光層が形成される。制御装置5は、基板Pに形成しようとする第2層に対応するマスクMをマスクステージ1に搬入(ロード)する。マスクMがマスクステージ1に保持された後、制御装置5は、露光レシピに基づいて、第1層を形成した場合と同様に、マスクMのアライメント処理、各種計測処理及びキャリブレーション処理を含むセットアップ処理を実行する。
次に、制御装置5は、所定のタイミングで、第1層の表面に感光層が形成された基板Pを基板ステージ2に搬入する(ステップS110)。制御装置5は、基板Pが基板ステージ2に保持された後、露光レシピに基づいて、露光条件を調整する処理を実行させる。この露光条件調整処理において、制御装置5は、図10に示す第2パターンPT2のパターン情報を計測する(ステップS111)。
第2パターンPT2のパターン情報は、第2パターンPT2が有するアライメントマークm11〜m61、m12〜m62、m13〜m63、m14〜m64の位置情報、すなわちパターン情報を含む。本実施形態では、制御装置5は、第1アライメントシステム91に、基板Pに設けられる4列のアライメントマークm11〜m61(列G1)、m12〜m62(列G2)、m13〜m63(列G3)、m14〜m64(列G4)を、例えば列G1、列G2、列G3、列G4の順に検出させて、第2パターンPT2のパターン情報を計測する。第1アライメントシステム91が4列のアライメントマークm11〜m61(列G1)、m12〜m62(列G2)、m13〜m63(列G3)、m14〜m64(列G4)を検出して、制御装置5がマーク情報を求める手法は上述した通りである。
次に、制御装置5は、計測結果から得られたアライメントマークの位置情報、すなわちマーク情報に基づいて転写条件を求める。制御装置5は、求めた転写条件に応じて、投影光学系PL1〜PL7の結像特性調整装置30及び基板ステージ2の基板ステージ駆動システム4を駆動し、上述した転写条件を調整する。また、制御装置5は、基板P毎に、例えば第1パターンPT1の計測結果及び計測結果に対応する転写条件(又は転写条件の調整量)等を対応付けて記憶部に記憶させる。この場合、例えば制御装置5は、基板P毎の識別データと、第1パターンPT1の計測結果のデータと、転写条件のデータとを対応させたデータテーブルを作成して記憶部に記憶させる。
図11は、3層目のパターンが形成された基板を示す模式図である。制御装置5は、転写条件を調整した後、基板Pに対して、調整後の転写条件で図11に示す3層目のパターン(第3パターン)PT3を転写する(ステップS112)。ステップS112は、予備転写処理又は予備転写工程に相当する。すなわち、ステップS112は、上述した第1転写処理又は工程(ステップS106及びステップS107)の後に、制御装置5が、それぞれの第1基板としてのサンプル基板に設けられた位置マークとしてのアライメントマークを計測装置としての第1アライメントシステム91によって計測し、得られたマーク情報に基づいた転写条件で、それぞれのサンプル基板にパターン(第3パターンPT3)を転写する処理(工程)である。
第3パターンPT3には、例えば露光領域PA1〜PA4にそれぞれ形成される所定の回路パターンr31〜r34が含まれる。また、第3パターンPT3には、4列のアライメントマークm11〜m61、m12〜m62、13〜m63、14〜m64が含まれる。これらのアライメントマークは、図10に示す第2パターンPT2が有する4列のアライメントマークm11〜m61、m12〜m62、13〜m63、m14〜m64に対応する位置に形成される。
露光によって第3パターンPT3が転写された基板Pは、露光装置EXの外部に搬出される(ステップS113)。そして、搬出された基板Pは、例えば現像工程及び第2パターンPT2に基づく3番目の層(第3層)を形成する工程等の各工程が適宜行われる。本実施形態においては、ステップS107で第2パターンPT2が転写されて第2層が形成されたサンプル基板に対して上述した処理が繰り返される。
枚数nがmになっていない場合(ステップS114、No)、すべてのサンプル基板に露光及びパターンの転写が終了していないので、露光装置EXはステップS110〜ステップS114を繰り返す。枚数nがmになった場合(ステップS114、Yes)、すべてのサンプル基板に露光及びパターンの転写が終了したので、露光装置EXは処理をステップS115に進める。
本実施形態では、オブジェクト基板のマーク情報を計測するにあたって、制御装置5は、第1アライメントシステム91及び第2アライメントシステム92の両方を用いる。本実施形態では、制御装置5は、第1アライメントシステム91に、基板Pに設けられる4列のアライメントマークm11〜m61(列G1)を検出させ、第2アライメントシステム92にアライメントマークm13、m63(列G3)を検出させる。このようにすることで、制御装置5は、第1アライメントシステム91及び第2アライメントシステム92によって、オブジェクト基板に形成された第2パターンPT2が有するアライメントマークm11〜m61、m13、m63のマーク情報を計測する。第1アライメントシステム91を用いたアライメントマークm11〜m61のマーク情報の計測は、図9−1を用いて説明した通りであり、第2アライメントシステム92を用いたアライメントマークm13、m63のマーク情報の計測は図9−2を用いて説明した通りである。
このように、本実施形態では、オブジェクト基板を露光してパターンを転写する場合には、第1アライメントシステム91及び第2アライメントシステム92を用いてマーク情報が計測される。そして、その計測結果に基づいて制御装置5が転写条件を求めることになる。第1アライメントシステム91及び第2アライメントシステム92を用いることにより、第1アライメントシステム91で4列のアライメントマークを検出し、マーク情報を計測する場合と比較して、マーク情報を求める時間を短縮できる。すなわち、第1アライメントシステム91及び第2アライメントシステム92が計測するアライメントマークの数が少なくなること及び第2アライメントシステム92は、第1アライメントシステム91よりも列G3に近いので、第1アライメントシステム91が列G1のアライメントマークを検出した後に列G3のアライメントマークまで移動する時間を短縮できる。その結果、露光装置EXは、高スループット化を実現できる。
本実施形態に係る露光方法は、アライメントマークm11〜m61、m13、m63からマーク情報を計測するので、すべてのアライメントマークm11〜m64からマーク情報を計測する場合と比較してデータ数が少なくなる。このため、アライメントマークm11〜m61、m13、m63から得られたマーク情報に基づいて転写条件を求めると、露光時における位置合わせの精度低下を招くおそれがある。本実施形態では、オブジェクト基板に露光してパターンを転写する前に実行された露光及びパターンの転写の工程で得られたマーク情報の計測結果を利用する。このようにすることで、オブジェクト基板を露光する際の位置合わせの精度を向上させる。このため、制御装置5は、ステップS115において、オブジェクト基板におけるマーク情報の未計測箇所の予測値を求める。次に、ステップS115の処理を説明する。
図12は、オブジェクト基板を露光する際の転写条件を求める手法の一例を示すフローチャートである。図13−1、図13−2は、オブジェクト基板を露光する際の転写条件を求める手法の説明図である。図13−2のLは、基板Pの表面に積層された層(積層数)の数を示す。上述したステップS115は、次に説明するステップS1151〜ステップS1156を含む。
オブジェクト基板を露光する際の転写条件を求めるにあたって、制御装置5は、第1転写工程における基板P(サンプル基板及びオブジェクト基板)のマーク情報の計測結果から、基板P全体の線形成分αn’を求める(ステップS1151)。添字のnは、上述したように露光すべき基板Pの枚数を意味する。線形成分αn’は、同一のロットに含まれるすべての基板Pについて、それぞれの基板Pに対して求められる。基板P全体の線形成分とは、基板P単位で見たときにおける基板P全体の線形的な変形分を意味し、基板P毎に算出される。基板P全体の線形成分としては、例えば、基板Pを基板ステージ2に搭載するときにおけるθZ方向の回転によるX軸及びY軸に対する傾き、X軸方向へのずれ又はY軸方向へのずれ等が挙げられる。これらは、例えば、露光装置EXの設計値又は仕様等を基準として求めることができる。線形成分αn’は、例えば、X軸方向の成分と、Y軸方向の成分とに分けて求められる。
線形成分αn’が求められたら、制御装置5は、第1転写工程におけるそれぞれの基板Pにおけるマーク情報の計測結果から線形成分αn’を減算する(ステップS1152)。第1転写工程におけるマーク情報は、第1アライメントシステム91がすべてのアライメントマークm11〜m64について計測するので、すべてのアライメントマークm11〜m64について、線形成分αn’が減算される。基板Pは、露光後における現像工程及び転写されたパターンに基づく各層の形成工程において、溶剤によるレジストの除去及び加熱等によって変形する。線形成分αn’を減算するのは、基板Pを基板ステージ2に搭載する際のずれ量を取り除いた基板Pの変形分を抽出するためである。
線形成分αn’が減算されたら、制御装置5は、予備転写工程におけるサンプル基板SP(図13−1参照)のマーク情報の計測結果から、サンプル基板SP全体の線形成分αnを求める(ステップS1153)。サンプル基板SP全体の線形成分αnは、それぞれのサンプル基板SPについて求められる。このとき、各走査の線形成分βniを計算してもよい。各走査は、1枚のサンプル基板SPに対するそれぞれの走査である。1枚のサンプル基板SPが4個の露光領域PA1〜PA4を有する場合、1枚のサンプル基板SPは、4回走査される。各走査の線形成分βniは、露光装置EXの設計値又は仕様等からのそれぞれの走査のずれ量である。線形成分βniは、例えば、それぞれの露光領域PA1〜PA4に対応するマーク情報の計測結果から求められる。線形成分βniの添字nは、上述したように露光すべき基板P(ここではサンプル基板SP)の枚数を意味する。添字iは、それぞれのサンプル基板SPにおいて、何回目の走査であるかを意味する。例えば、β32の場合、n=3、i=2なので、3枚目のサンプルプレートでの2回目の走査における線形成分であることを意味する。基板P全体の線形成分αnは、上述した線形成分αn’と同様である。次に、制御装置5は、予備転写工程におけるサンプル基板SPのマーク情報の計測結果から線形成分αnを減算する(ステップS1154)。
第1転写工程における基板Pn全体の線形成分αn’及びサンプル基板SPn全体の線形成分αnを求める際には、第1転写工程の基板Pn(より具体的にはサンプル基板SPpn)と予備転写工程のサンプル基板SPnとにおいて使用するマーク情報の計測結果は、それぞれ同じ列、すなわち、走査方向(X軸方向)において同じ位置で計測されたものであることが好ましい。このようにすると、オブジェクト基板OPnの露光時に用いる補正値の精度を向上させることができる。さらに、第1転写工程の基板Pnと後工程のサンプル基板SPnとにおいて使用するマーク情報の計測結果は、それぞれ走査方向(X軸方向)と直交する方向(Y軸方向)においても同じ位置で計測されたものであることが好ましい。このようにすると、オブジェクト基板OPnの露光時における補正値の精度をさらに向上させることができる。この、第1転写工程と予備転写工程とにおいて使用するマーク情報を計測する際に用いるアライメントマークの位置の関係については、後に詳述する。
オブジェクト基板OPnの露光時における全体の線形成分αnは、第1アライメントシステム91及び第2アライメントシステム92の計測結果から求めるが、このときに検出可能なアライメントマークの数は、オブジェクト基板OPnが有するすべてのアライメントマークの数よりも少ない。本実施形態では、第1アライメントシステム91及び第2アライメントシステム92が検出可能なアライメントマークを用いて第1転写工程における基板Pn(より具体的にはサンプル基板SPpn)全体の線形成分αn’及びサンプル基板SPn全体の線形成分αnを求める。
次に、制御装置5は、オフセット値ΔOFを求める(ステップS1155)。オフセット値ΔOFとは、ステップS1154で求めた予備転写工程におけるサンプル基板SPnのマーク情報から線形成分αnを減算した値mcanと、第1転写工程におけるサンプル基板SPpn(図13−1参照)のマーク情報から線形成分αn’を減算した値mcbnとの差分Δmcnの平均値である。すなわち、オフセット値ΔOFは、ΣΔmcn/nとなる。添字nは、上述したように露光すべき基板Pの枚数を意味する。
次に、制御装置5は、オブジェクト基板OP(図13−1参照)の未計測箇所の予測値を求める(ステップS1156)。未計測箇所の予測値は、第1転写工程におけるオブジェクト基板OPpn(図13−1参照)のマーク情報の計測結果から線形成分αn’を減算した値mcbnに、ステップS1155で求めたオフセット値ΔOFを加算した値である。制御装置5は、第1アライメントシステム91及び第2アライメントシステム92を用いてオブジェクト基板OPnのアライメントマークm11〜m61、m13、m63のマーク情報を計測する(図13−2の点線で囲まれた白丸)。したがって、オブジェクト基板OPnは、アライメントマークm12〜m62、m23〜m53、m14〜m64のマーク情報が未計測である。
制御装置5は、第1転写工程におけるオブジェクト基板OPpnのmcbnにオフセット値ΔOFを加算した値を、オブジェクト基板OPnの未計測箇所であるアライメントマークm12〜m62、m23〜m53、m14〜m64のマーク情報の予測値とする。例えば、n=m+1におけるオブジェクト基板OPnの未計測箇所の予測値は、第1転写工程におけるn=m+1のオブジェクト基板OPpnのmcbnにオフセット値ΔOFを加算することによって求めることができる。上述した通り、オブジェクト基板OPpnのmcbnは、アライメントマークm12〜m62、m23〜m53、m14〜m64のマーク情報の計測値からそれぞれ線形成分αn’を減算した値である。
制御装置5は、上述したステップS1151〜ステップS1156をすべてのオブジェクト基板OPnに対して実行することにより、ステップS115が終了する。このように、制御装置5は、ステップS115(ステップS1151〜ステップS1156)を実行することにより、すべてのオブジェクト基板OPnにおけるマーク情報の未計測箇所の予測値を求めることができる。
次に、図5に示すステップS116に進み、制御装置5は、オブジェクト基板OPnに形成された第2パターンPT2のパターン情報を計測する(ステップS116)。ステップS116における第2パターンPT2でのマーク情報の計測において、制御装置5は、第1アライメントシステム91にアライメントマークm11〜m61を検出させ、第2アライメントシステム92にアライメントマークm13、m63を検出させて、これらのマーク情報を計測する。すなわち、制御装置5は、第1アライメントシステム91及び第2アライメントシステム92の両方を用いて、マーク情報を計測する。
次に、制御装置5は、マーク情報を用いて、オブジェクト基板OPnの転写条件を求める(ステップS117)。ステップS117で求めるオブジェクト基板OPn転写条件のうち、露光時におけるX軸方向及びY軸方向における補正量は、ステップS115で求めた、オブジェクト基板OPnにおけるマーク情報の未計測箇所の予測値を用いる。次に、オブジェクト基板OPnの露光時における補正量を求める手法を説明する。このステップS117は、次に説明するステップS1171及びステップS1172を含む。
図14は、オブジェクト基板の露光時における転写条件を求める手順のフローチャートである。制御装置5は、オブジェクト基板OPnの露光時における全体の線形成分αn及び各走査の線形成分βniを求める(ステップS1171)。オブジェクト基板OPnの全体の線形成分αnは、ステップS115でオブジェクト基板OPnにおけるマーク情報の未計測箇所の予測値を求める際に用いたアライメントマークと同じ位置のアライメントマークから求める。前記予測値を求める際に用いたアライメントマークは、第1転写工程における基板Pn全体の線形成分αn’を求める際に用いたアライメントマークと同じ位置である。このような位置にあるアライメントマークを用いてオブジェクト基板OPnの露光時における全体の線形成分αnを求めることにより、線形成分αnをより高精度に求めることができる。
このように、第1転写工程で得られたマーク情報と、第1転写工程よりも後に得られたマーク情報とは、走査方向において同じ位置のアライメントマークから得られることが好ましい。さらに、第1転写工程で得られたマーク情報と、第1転写工程よりも後に得られたマーク情報とは、走査方向と直交する方向においても同じ位置のアライメントマークから得られることが好ましい。このようにすることで、補正値の精度を向上させることができるので、オブジェクト基板OPnを露光する際における基板Pの位置合わせの精度を向上させることができる。
オブジェクト基板OPnの全体の線形成分αnを求めるためのアライメントマークは、ステップS116において第1アライメントシステム91及び第2アライメントシステム92が検出したアライメントマークm11〜m61、m13、m63である。制御装置5は、アライメントマークm11〜m61、m13、m63のマーク情報に基づいて、オブジェクト基板OPnの露光時における全体の線形成分αnを求める。
オブジェクト基板OPnの線形成分βniは、ステップS115で求めたオブジェクト基板OPnにおけるマーク情報の未計測箇所の予測値と、ステップS116において第1アライメントシステム91及び第2アライメントシステム92を用いて計測した第2パターンPT2のマーク情報とから求められる。すなわち、オブジェクト基板OPnは、ステップS115、ステップS116が実行されることにより、アライメントマークm11〜m61、m13、m63のマーク情報の計測値と、マーク情報が未計測であるアライメントマークm12〜m62、m23〜m53、m14〜m64の予測値とを有している。このため、制御装置5は、これらに基づいて各走査の線形成分βniを求めることができる。オブジェクト基板OPnの露光時における全体の線形成分αn及び各走査の線形成分βniが得られたら、制御装置5は、線形成分αnと線形成分βniとの和(αn+βni)を、オブジェクト基板OPnの露光時における補正値とする(ステップS1172)。なお、以下では、この補正値を、適宜“補正値αn+βni”と表記する。
このようにして、オブジェクト基板OPnの露光時における補正量が求まったら、次に、図5に示すステップS118に戻り、制御装置5は、ステップS117で求めた補正値を含む転写条件に基づいて基板ステージ2の動作等を制御しながら、オブジェクト基板OPnに対して図11に示す3層目のパターン(第3パターン)PT3を転写する(ステップS118)。露光によって第3パターンPT3が転写された基板Pは、露光装置EXの外部に搬出される(ステップS119)。そして、搬出された基板Pは、例えば現像工程及び第2パターンPT2に基づく3番目の層(第3層)を形成する工程等の各工程が適宜行われる。
上述したステップS115〜ステップS118が、第2転写処理又は第2転写工程に相当する。すなわち、ステップS115〜ステップS118は、制御装置5が、予備転写工程で得られたマーク情報と、第1転写工程で得られたマーク情報とに基づいた転写条件(補正値αn+βni)で、それぞれの第2基板としてのオブジェクト基板OPnにパターンを転写する処理(工程)である。第2転写処理又は工程において、補正値αn+βniはオフセット値ΔOFに基づいて求められる。すなわち、補正値αn+βniは、予備転写工程で得られたマーク情報と、第1転写工程で得られたマーク情報との差分に基づいて求められる。
本実施形態において、同一のロットが有するN−m枚のオブジェクト基板OPnすべてに対して、上述した処理が繰り返される。枚数nがNになっていない場合(ステップS120、No)、すべてのオブジェクト基板OPnに露光及びパターンの転写が終了していないので、露光装置EXはステップS116〜ステップS120を繰り返す。枚数nがNになった場合(ステップS120、Yes)、すべてのオブジェクト基板OPnに露光及びパターンの転写が終了したので、露光装置EXは処理をステップS121に進める。ステップS121において、基板Pの表面に積層された層の数(積層数)Lが、基板Pに設ける層の数(予定積層数)Kに達していない場合(ステップS121、No)、露光装置EXはステップS110〜ステップS121を繰り返す。積層数Lが予定積層数Kに達した場合(ステップS121、Yes)、本実施形態に係る露光方法は終了する。
以上、露光装置EX及び本実施形態に係る露光方法は、オブジェクト基板OPnを露光する際には、第1アライメントシステム91及び第2アライメントシステム92によってマーク情報を計測するので、アライメントマークの検出に要する時間を短くすることができる。その結果、露光装置EX及び本実施形態に係る露光方法は、高スループット化を実現することができる。また、露光装置EX及び本実施形態に係る露光方法は、第1転写工程及び予備転写工程におけるマーク情報の計測結果を用いて第2転写工程における補正値を求める。その結果、露光装置EX及び本実施形態に係る露光方法は、第2転写工程で第1アライメントシステム91及び第2アライメントシステム92が基板Pのすべてのアライメントマークを検出しなくても、第2転写工程の露光時における位置合わせの精度を向上させることができる。このように、露光装置EX及び本実施形態に係る露光方法は、高スループット化を実現するとともに、露光時における基板Pの位置合わせの精度を向上させることができる。
上述したように、オブジェクト基板OPnを露光する際には、第1アライメントシステム91及び第2アライメントシステム92を用いるので、アライメントマークの検出に要する時間を短くすることができる。このため、オブジェクト基板OPnの数が多くなるほど、スループットが向上する。サンプル基板SPnの数を、オブジェクト基板OPnの数よりも少なくすることで、スループットの向上を図ることができる。サンプル基板SPnの数は、露光時における基板Pの位置合わせの精度を確保できる範囲で、できる限り少ない方が高スループット化を実現するためには好ましい。
本実施形態は、基板Pを初めて露光する前において、既に基板Pにアライメントマークが設けられている場合にも適用できる。この場合、露光装置EXは、本実施形態に係る露光方法を、ステップS105から開始する。また、本実施形態において、同一の露光装置EXを用いて基板Pにすべての層を形成してもよいし、異なる露光装置EXを用いて基板Pにすべての層を形成してもよい。基板Pに複数の層を形成する場合、本実施形態では新たな層を形成する毎に予備転写工程を実行してオフセット値ΔOFを求め、これに基づいて補正値αn+βniを求める。このように、新たな層を形成する毎にオフセット値ΔOFを求め直すことで、位置合わせの精度をより向上させることができる。しかし、これに限定されるものではなく、基板Pに複数の層を形成する場合、一度オフセット値ΔOFを求めた後は、これを利用してすべての層を形成してもよい。このようにすれば、予備転写工程を実行する回数を低減できるので、その分高スループット化が実現できる。
また、本実施形態では、基板Pに初めて形成されたアライメントマークを第1アライメントシステム91が検出することによって得られたマーク情報を用いて、第2転写工程においてオブジェクト基板OPnを露光する際の補正値αn+βniを求める。すなわち、最初の露光前の基板Pにアライメントマークが設けられていない場合は1層目のアライメントマークを、最初の露光前の基板Pにアライメントマークが設けられている場合は、基板Pに予め設けられているアライメントマークを用いて、第2転写工程における補正値αn+βniを求める。
しかし、本実施形態は、これに限定されるものではなく、これから基板Pに転写されるパターンよりも前に基板Pに転写されたパターンのアライメントマークを第1アライメントシステム91が検出することによって得られたマーク情報で、補正値αn+βniを求めればよい。例えば、これから基板Pに転写されるパターンの直前に基板Pに転写されたパターンのアライメントマークを第1アライメントシステム91が検出することによって得られたマーク情報で、補正値αn+βniを求めてもよい。例えば、4層目を形成する場合、3層目のアライメントマークを用いて補正値αn+βniを求めてもよいし、2層目のアライメントマークを用い補正値αn+βniを求めてもよい。
<基板全体の線形成分を求める際のアライメントマークの位置>
本実施形態に係る露光方法は、第2転写工程において、第1アライメントシステム91及び第2アライメントシステム92を用いて、基板Pに形成されたすべてのアライメントマークのうち一部を検出する。そして、一部のアライメントマークから求めたマーク情報を用いて、露光時における補正値αn+βniを求める。補正値αn+βniは、第1転写工程における基板全体の線形成分αn’及び第1転写後の工程(予備転写工程及び第2転写工程)での基板全体の線形成分αnを用いて求めるが、補正値の精度を向上させる観点から、第1転写工程と第1転写後の工程とで用いるアライメントマークの位置を揃えることが好ましい。第1転写工程と第1転写後の工程とで用いるアライメントマークの位置によって、補正値の精度が異なるからである。次に、基板全体の線形成分αn’、αnを求める際のアライメントマークの位置について説明する。次の説明では、便宜上、第1転写工程を前工程といい、第1転写後の工程を後工程という。
図15〜図19は、基板全体の線形成分を求める場合に用いるアライメントマークの位置を説明するための図である。図15〜図19において、前工程における基板はPn(L=2)で表し、後工程における基板はPn(L=3、4・・・)で表す。図15〜図19において、アライメントマークは白丸で示す。点線で囲んだアライメントマークは、マーク情報の計測に用いたものを示す。後工程における基板全体の線形成分αnは、サンプル基板SPnでの線形成分αn及びオブジェクト基板OPnでの線形成分αnの両方を含む。図15は、前工程と後工程とで、マーク情報を計測するアライメントマークを含む列が、一部で一致しない例(以下、必要に応じて例2という)を示す。具体的には、例2は、前工程と後工程とで列G1のアライメントマークを用いる点は共通するが、前工程ではさらに列G4のアライメントマークを用い、後工程ではさらに列G3のアライメントマークを用いる点が異なる。
図16は、前工程と後工程とで、マーク情報を計測するアライメントマークを含む列が一致する例(以下、必要に応じて例3という)を示す。具体的には、例3は、前工程と後工程とでそれぞれ列G1、列G3のアライメントマークを用いる。図17は、前工程と後工程とで、マーク情報を計測するアライメントマークを含む列が一致するが、両者間で列数が異なる例(以下、必要に応じて例4という)を示す。具体的には、例4は、前工程と後工程とで列G1、G3のアライメントマークを用いる点は共通するが、前工程ではさらに列G2、G4のアライメントマークも用いる点が異なる。
図18は、前工程と後工程とで、マーク情報を計測するアライメントマークを含む列が、一部で一致しない例(以下、必要に応じて例5という)を示す。具体的には、例5は、前工程と後工程とで列G1のアライメントマークを用いる点は共通するが、前工程ではさらに列G2のアライメントマークを用い、後工程ではさらに列G3のアライメントマークを用いる点が異なる。図19は、前工程と後工程とで、マーク情報を計測するアライメントマークを含む列が一致する例(以下、必要に応じて例6という)を示す。具体的には、例6は、前工程と後工程とで、いずれも列G1、G3のアライメントマークを用いる。
なお、上述した説明で用いた図13−2は、前工程(Pn(L=2))と後工程(OPn(L=3))とで、マーク情報を計測するアライメントマークを含む列が一致する例(以下、必要に応じて例1という)を示す。具体的には、例1は、前工程と後工程とで、いずれも列G1、G3のアライメントマークを用いるとともに、列G1、G3間においては、マーク情報を計測するアライメントマークの位置がY軸方向において一致する。
図20、図21は、基板全体の線形成分を求める場合に用いるアライメントマークの位置の違いによる補正値の精度を評価した結果を示す図である。図20、図21には、上述した例1〜例6を用いて露光時の補正値を求めて露光した場合における非線形分の残渣と、EGA(Enhanced Global Alignment)及びc−EGA(間引きEGA)を用いて露光した場合の非線形分の残渣とが示される。非線形分の残渣は、設計値からのずれ量である。非線形分の残渣は、露光領域を4個(4スキャン)及び6個(6スキャン)有する基板を対象としたコンピュータシミュレーションで求めた。結果は、4スキャンにおけるX方向及びY方向の残渣と、6スキャンにおけるX方向及びY方向の残渣とを示す。図20は、3σ(σは標準偏差)を示す。3σの値が大きいほど残渣のばらつきは大きい。図21は、残渣の最大値の絶対値|Bmax|を示す。|Bmax|の値が大きいほど補正値の誤差は大きくなる。
図20、図21の評価結果から、例1、例3、例6は、非線形分の残渣のばらつき及び絶対値がともに小さく、c−EGAとEGAとの中間程度の値になる。例1、例3、例6は、いずれも同じ列のアライメントマークを検出して得られたマーク情報の評価結果である。このように、本実施形態に係る露光方法は、前工程における基板全体の線形成分αn’及び後工程における基板全体の線形成分αnを、前工程と後工程とで同じ列のアライメントマークから求めることにより、補正値αn+βniの精度を向上させることができる。
例1、例3、例6の中では、例1が非線形分の残渣のばらつき及び絶対値がともに小さい。例1は、前工程及び後工程において、第1アライメントシステム91が検出する列G1のアライメントマークと、第2アライメントシステム92が検出する列G2のアライメントマークとを用いる。このとき、前工程と後工程とで使用するアライメントマークは、Y軸方向(走査方向と直交する方向)において、列G1と列G2との間で同じ位置とすることが好ましい。このようにすることで、補正値αn+βniの精度をより向上させることができる。
<干渉計の計測精度改善>
図22−1、図22−2は、投影光学系に排気ダクトを有さない露光装置の例を示す図である。図23−1、図23−2は、投影光学系に排気ダクトを有する露光装置の例を示す図である。露光装置EXの露光シーケンス中において、装置の経時変化による各種ズレを校正する処理(キャリブレーション)が定期的に実行される。第2アライメントシステム92を有する露光装置EXも、基準である指標に対する第2アライメントシステム92の第2検出器92A、92Bのズレ(第2検出器92A、92Bのベースライン計測)を定期的に実行する必要がある。この場合、図22−2、図23−2に示す位置に基板ステージ2を移動させる。
露光装置EXは、図22−1、図22−2に示すように、第1、第2投影光学系PL1、PL2等が有する視野絞り、光学部材及び調整機構を動かすための駆動系を冷却する送風ノズル70を有する。送風ノズル70は、ファン又はブロア等の送風機から送られる空気AIを、第1、第3、第5、第7投影光学系PL1、PL3、PL5、PL7と、第2、第4、第6投影光学系PL2、PL4、PL6との間に供給することで、視野絞り、光学部材及び駆動系を冷却する。
露光装置EXは、第1アライメントシステム91及び第2アライメントシステム92を有する。図22−2は、第2アライメントシステム92の第2検出器92A、92Bが、計測ミラー2Rに隣接して設けられる基板ステージ2の表面の指標を検出する際の位置関係を示している。この場合、送風ノズル70から供給され、視野絞り、光学部材及び駆動系を冷却することにより昇温した空気AIは、第1、第2投影光学系PL1、PL2等の基板ステージ2側まで移動する。そして、この部分に熱溜まり領域HAを形成する。熱溜まり領域HAは、レーザ干渉計ユニット6Bの光軸付近に存在してしまうので、第2検出器92A、92Bが基板ステージ2の表面の指標を検出する際には、熱溜り領域HAを干渉計光軸が横切ることになる。その結果、レーザ干渉計ユニット6Bの計測に影響を与えてしまい、第2検出器92A、92Bでの計測再現性が低下するおそれがある。
図23−1、図23−2に示す露光装置EXaは、第1、第3、第5、第7投影光学系PL1、PL3、PL5、PL7と、第2、第4、第6投影光学系PL2、PL4、PL6との間であって、基板ステージ2側の位置に、排気ダクト71を有する。排気ダクト71は、例えばポンプ等の吸引装置に接続されており、送風ノズル70から基板ステージ2へ向かう空気AIを吸引する。排気ダクト71は、送風ノズル70から供給され、視野絞り、光学部材及び駆動系を冷却することにより昇温した空気AIを吸引するので、第1、第2投影光学系PL1、PL2等の基板ステージ2側に熱溜まり領域HAが形成されることを回避できる。その結果、レーザ干渉計ユニット6Bの計測に与える影響を低減できるので、第2検出器92A、92Bでの計測再現性が低下するおそれを低減できる。そして、第2検出器92A、92Bを用いたマーク情報の計測再現性が向上するため、基板Pの表面に複数の層を重ね合わせる際の精度を向上させることができる。このように、排気ダクト71を有する露光装置EXaは、第1アライメントシステム91及び第2アライメントシステム92によって高スループット化を実現するとともに、排気ダクト71によってマーク情報の計測再現性を向上させて、露光時における位置合わせの精度を向上させることができる。
図24は、第2アライメントシステムが有する検出器の計測再現性の実験結果を示す図である。Aは送風ノズル70を設けたが排気ダクト71は設けられていないもの、BはAに対して送風ノズル70の風量を増量したもの(排気ダクト71は設けられていない)、CはBに対して排気ダクト71を設けたもの(送風ノズル70の風量は増量したもの)である。−Y側は、基板PのY軸方向の中央部を基準とした−側であり、+Y側は、基板PのY軸方向の中央部を基準とした+側である。−Y側と+Y側とにおける計測再現性は、第2アライメントシステム92が有する第2検出器92A、92Bが基板ステージ2に設けられた指標を検出したときのX座標及びY座標の測定値を求め、設計値に対する前記測定値のばらつきを3σで評価した。図24の結果から、排気ダクト71を設けることにより、第2アライメントシステム92が有する第2検出器92A、92Bの計測再現性が大幅に向上することが分かる。
<デバイス製造方法>
図25は、本実施形態に係るデバイス製造方法の手順を示すフローチャートである。本実施形態に係るデバイス製造方法は、半導体デバイス等のデバイスを製造する。本実施形態に係るデバイス製造方法では、まず、デバイスの機能・性能設計が行われる(ステップS201)。次に、設計に基づいたマスク(レチクル)が製作される(ステップS202)、次に、デバイスの基材である基板が製造される(ステップS203)。次に、上記実施形態に係る露光方法を用いて、マスクパターンを露光光で基板を露光してマスクパターンを基板に転写する工程と、露光された基板(感光剤)を現像して、転写されたアライメントマークを含むパターンに対応する露光パターン層(現像された感光剤の層)を形成し、この露光パターン層を介して基板を加工する工程とを含む基板処理(露光処理)が実行される(ステップS204)。加工された基板が、ダイシング工程、ボンディング工程、パッケージ工程等の加工プロセスを含むデバイス組立工程(ステップS205)及び検査(ステップS206)等を経ることにより、デバイスが製造される。
上述の実施形態の基板Pとしては、ディスプレイデバイス用のガラス基板のみならず、半導体デバイス製造用の半導体ウエハ、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスク又はレチクルの原版(合成石英、シリコンウエハ)等を適用することができる。
また、露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを介した露光光ELで基板Pを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
また、本実施形態は、米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に記載されているような、複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。
また、本実施形態は、米国特許第6897963号明細書、欧州特許出願公開第1713113号明細書等に開示されているような、基板を保持する基板ステージと、基板を保持せずに、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した計測ステージとを備えた露光装置にも適用することができる。また、複数の基板ステージと計測ステージとを備えた露光装置を採用することができる。
また、露光装置EXの種類としては、液晶表示素子製造用又はディスプレイ製造用の露光装置に限られず、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、レチクル又はマスク等を製造するための露光装置等にも広く適用できる。
また、上記実施形態においては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。
また、上記実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に記載されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしてもよい。
また、上記実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度及び光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、露光装置EXの組立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組立工程は、各種サブシステム相互の機械的接続、電気回路の配線接続及び気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組立工程の前に、各サブシステム個々の組立工程があることはいうまでもない。各種サブシステムの露光装置への組立工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置EXの製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
また、上記実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。さらに、本発明の要旨を逸脱しない範囲で構成要素の置換又は変更を行うこともできる。また、法令で許容される限りにおいて、上述の実施形態で引用した露光装置等に関するすべての公開公報及び米国特許の記載を援用して本明細書の記載の一部とする。このように、上記実施形態に基づいて当業者等によりなされる他の実施形態及び運用技術等は、すべて本発明の範囲に含まれる。
1 マスクステージ
2 基板ステージ
5 制御装置
6 干渉計システム
7 第1検出システム
8 第2検出システム
9 アライメントシステム
10 ベースプレート
13 ボディ
17 光源
30 結像特性調整装置
31、32 反射屈折型光学系
33 像面調整部
33A、33B 光学部材
70 送風ノズル
71 排気ダクト
91 第1アライメントシステム
91A〜91F 第1検出器
92 第2アライメントシステム
92A、92B 第2検出器
EX、EXa 露光装置
M マスク
P 基板

Claims (13)

  1. 複数の第1基板及び複数の第2基板それぞれに露光光を照射して、それぞれの前記第1基板及び前記第2基板にパターンを転写する際に、
    それぞれの前記第1基板及びそれぞれの前記第2基板に設けられた位置マークを計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板及びそれぞれの前記第2基板にパターンを転写する第1転写工程と、
    前記第1転写工程の後に、それぞれの前記第1基板に設けられた位置マークを計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板にパターンを転写する予備転写工程と、
    前記予備転写工程で得られたマーク情報と、前記第1転写工程で得られたマーク情報とに基づいた転写条件で、それぞれの前記第2基板にパターンを転写する第2転写工程と、
    を含むことを特徴とする露光方法。
  2. 前記第2転写工程においては、
    前記予備転写工程で得られたマーク情報と、前記第1転写工程で得られたマーク情報との差分に基づいて転写条件を求める、請求項1に記載の露光方法。
  3. 前記第2転写工程においては、
    さらに、前記計測装置及び前記計測装置とは異なる位置に配置されている計測装置が、前記第2基板の位置マーク計測することによって得られたマーク情報を用いて転写条件を求める、請求項1又は2に記載の露光方法。
  4. 前記第1基板の数は、前記第2基板の数よりも少ない、請求項1から3のいずれか1項に記載の露光方法。
  5. 前記第1転写工程で得られたマーク情報と、前記第1転写工程よりも後に得られたマーク情報とは、走査方向において同じ位置の位置マークから得られる、請求項1から4のいずれか1項に記載の露光方法。
  6. 前記第1転写工程で得られたマーク情報と、前記第1転写工程よりも後に得られたマーク情報とは、前記走査方向と直交する方向においても同じ位置の位置マークから得られる、請求項5に記載の露光方法。
  7. 請求項1から6のいずれか1項に記載の露光方法を用いて前記複数の第1基板及び前記複数の第2基板を露光する工程と、
    露光された前記複数の第1基板及び前記複数の第2基板を現像して、転写された前記パターンに対応する露光パターン層を形成する工程と、
    前記露光パターン層を介して前記複数の第1基板及び前記複数の第2基板を加工する工程と、
    を含むことを特徴とするデバイス製造方法。
  8. 複数の第1基板及び複数の第2基板それぞれに露光光を照射して、それぞれの前記第1基板及び前記第2基板にパターンを転写するパターン転写装置と、
    基板を保持するとともに、前記パターン転写装置から出射される露光光の投影領域に対して基板を走査方向に移動させる基板ステージと、
    基板に設けられた位置マークのマーク情報を計測する計測装置と、
    それぞれの前記第1基板及びそれぞれの前記第2基板に設けられた位置マークを前記計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板及びそれぞれの前記第2基板にパターンを転写する第1転写処理と、
    前記第1転写処理の後に、それぞれの前記第1基板に設けられた位置マークを前記計測装置によって計測し、得られたマーク情報に基づいた転写条件で、それぞれの前記第1基板にパターンを転写する予備転写処理と、
    前記予備転写処理で得られたマーク情報と、前記第1転写処理で得られたマーク情報とに基づいて求めた転写条件で、それぞれの前記第2基板にパターンを転写する第2転写処理と、
    を実行する制御装置と、
    を含むことを特徴とする露光装置。
  9. 前記制御装置は、
    前記予備転写処理で得られたマーク情報と、前記第1転写処理で得られたマーク情報との差分に基づいて転写条件を求める、請求項8に記載の露光装置。
  10. 前記制御装置は、
    前記第2転写処理において、さらに、前記計測装置及び前記計測装置とは異なる位置に配置されている計測装置が、前記第2基板の位置マーク計測することによって得られたマーク情報を用いて転写条件を求める、請求項8又は9に記載の露光装置。
  11. 前記第1基板の数は、前記第2基板の数よりも少ない、請求項8から10のいずれか1項に記載の露光装置。
  12. 前記第1転写処理で得られたマーク情報と、前記第1転写処理よりも後に得られたマーク情報とは、前記走査方向において同じ位置の位置マークから得られる、請求項8から11のいずれか1項に記載の露光装置。
  13. 前記第1転写処理で得られたマーク情報と、前記第1転写処理よりも後に得られたマーク情報とは、前記走査方向と直交する方向においても同じ位置の位置マークから得られる、請求項12に記載の露光装置。
JP2011278676A 2011-12-20 2011-12-20 露光方法、デバイス製造方法及び露光装置 Pending JP2013130642A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278676A JP2013130642A (ja) 2011-12-20 2011-12-20 露光方法、デバイス製造方法及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278676A JP2013130642A (ja) 2011-12-20 2011-12-20 露光方法、デバイス製造方法及び露光装置

Publications (1)

Publication Number Publication Date
JP2013130642A true JP2013130642A (ja) 2013-07-04

Family

ID=48908258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278676A Pending JP2013130642A (ja) 2011-12-20 2011-12-20 露光方法、デバイス製造方法及び露光装置

Country Status (1)

Country Link
JP (1) JP2013130642A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180008713A (ko) * 2015-05-24 2018-01-24 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 노광 장치
CN113495437A (zh) * 2020-04-07 2021-10-12 佳能株式会社 曝光装置、图案形成装置以及曝光方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180008713A (ko) * 2015-05-24 2018-01-24 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 노광 장치
JP2018522287A (ja) * 2015-05-24 2018-08-09 シャンハイ マイクロ エレクトロニクス イクイプメント(グループ)カンパニー リミティド 露光装置
KR102048619B1 (ko) * 2015-05-24 2019-11-25 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 노광 장치
CN113495437A (zh) * 2020-04-07 2021-10-12 佳能株式会社 曝光装置、图案形成装置以及曝光方法

Similar Documents

Publication Publication Date Title
TWI413870B (zh) Detection device, moving body device, pattern forming device and pattern forming method, exposure device and exposure method, and device manufacturing method
JP5903891B2 (ja) 露光方法、露光装置、及びデバイス製造方法
US20090214962A1 (en) Exposure apparatus
US9639008B2 (en) Lithography apparatus, and article manufacturing method
KR101697606B1 (ko) 리소그래피를 위한 센서 시스템
JP5428671B2 (ja) 露光方法、デバイス製造方法、及び露光システム
JP2010186918A (ja) アライメント方法、露光方法及び露光装置、デバイス製造方法、並びに露光システム
US20040156026A1 (en) Exposure apparatus and exposure method
JP2013247258A (ja) アライメント方法、露光方法、及びデバイス製造方法、並びにデバイス製造システム
JPH10223528A (ja) 投影露光装置及び位置合わせ方法
JP2009302400A (ja) 露光装置及びデバイス製造方法
JP5692076B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2013130642A (ja) 露光方法、デバイス製造方法及び露光装置
JP2008166482A (ja) ディストーションマッチング方法、露光システム、及び計測システム
JP6727554B2 (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法
JP2010192744A (ja) 露光装置、露光方法、及びデバイス製造方法
US8699014B2 (en) Measuring member, sensor, measuring method, exposure apparatus, exposure method, and device producing method
JP2010097129A (ja) 露光装置、露光方法、及びデバイス製造方法
JP2004128149A (ja) 収差計測方法、露光方法及び露光装置
JP2012242811A (ja) マスク、露光装置、露光方法、及びデバイス製造方法
JP2010050223A (ja) 基板処理方法、露光装置、及びデバイス製造方法
JP2013246258A (ja) 焦点位置補正方法、露光方法、デバイス製造方法及び露光装置
JP2009266864A (ja) 露光装置
JP2006086163A (ja) 露光装置
TW202244461A (zh) 測量設備、曝光設備及物品製造方法