JP2013127859A - 被検査試料測定装置及び被検査試料測定装置の制御方法 - Google Patents

被検査試料測定装置及び被検査試料測定装置の制御方法 Download PDF

Info

Publication number
JP2013127859A
JP2013127859A JP2011276211A JP2011276211A JP2013127859A JP 2013127859 A JP2013127859 A JP 2013127859A JP 2011276211 A JP2011276211 A JP 2011276211A JP 2011276211 A JP2011276211 A JP 2011276211A JP 2013127859 A JP2013127859 A JP 2013127859A
Authority
JP
Japan
Prior art keywords
sample
indenter
inspected
tip
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011276211A
Other languages
English (en)
Inventor
Shoji Kamiya
庄司 神谷
Takashi Sato
尚 佐藤
Nobuyuki Shishido
信之 宍戸
Takeshi Nokuo
毅 野久尾
Tadahiro Nagasawa
忠広 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Nagoya Institute of Technology NUC
Original Assignee
Jeol Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nagoya Institute of Technology NUC filed Critical Jeol Ltd
Priority to JP2011276211A priority Critical patent/JP2013127859A/ja
Publication of JP2013127859A publication Critical patent/JP2013127859A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】圧子の先端と被検査試料の測定点との位置合わせをユーザの技量に依存せず正確に行うことが可能な、被検査試料測定装置及び被検査試料測定装置の制御方法を提供すること。
【解決手段】走査画像上で圧子20先端と傾斜軸TAとを一致させた状態で圧子20を所定角度だけ傾斜させたときの圧子20先端の該走査画像上での移動量を求め、求めた移動量に基づき圧子20先端と傾斜軸TAの距離Lを算出し、走査画像上で試料Sの測定点と傾斜軸TAとを一致させた状態で試料Sを所定角度だけ傾斜させたときの試料Sの測定点の該走査画像上での移動量を求め、求めた移動量に基づき試料Sの測定点と傾斜軸TAの距離mを算出し、距離Lと距離mとに基づいて、圧子20の先端と試料Sの測定点との位置合わせを行う。
【選択図】図1

Description

本発明は、走査型電子顕微鏡の試料室内に備えた圧子により被検査試料に対して荷重を印加して被検査試料の荷重変位特性を測定する被検査試料測定装置及び被検査試料測定装置の制御方法に関する。
従来から、走査型電子顕微鏡の試料室内に備えた圧子により被検査試料の荷重変位特性を測定する被検査試料測定装置が知られている。図19に、従来の被検査試料測定装置の構成を示す。図19に示すように、真空装置100内に設置された走査コイル110及び対物レンズ120は、電子銃130からの電子線Bを、真空装置100における試料室100a内に配置された被検査試料S上で走査・集束させる。このとき被検査試料S及び圧子140から発生する二次電子は検出器150により検出され電子顕微鏡像(走査画像)として画像化される。該走査画像は、図示しない表示手段により表示される。ユーザは、この画像から被検査試料Sと圧子140の先端との位置関係を認識し、ステージ160の移動機構を用いて被検査試料Sを圧子140の先端の移動範囲内に移動させ、被検査試料Sの荷重変位特性の測定を開始する。図19の構成では、圧子140及びトランスデューサ160が試料室100a内に固定された固定部170に取り付けられるため、圧子140の先端が常に電子線Bの照射領域(すなわち、電子線Bの光軸近傍となる領域)に位置することになり、試料交換やステージ160の移動に制約が生じる。また、荷重変位特性の測定を行わない場合には、試料室100aを一旦大気開放して、圧子140及びトランスデューサ160を試料室100aから取り外さなければならない。
また、図20に示すように、一次イオンビームIBを被検査試料Sの表面に照射して被検査試料Sを加工する場合には、被検査試料Sの加工面が一次イオンビームIBに対して垂直になるようにステージ160を傾斜させる。この場合にも、被検査試料Sの加工を行う前に、試料室100aを一旦大気開放し、圧子140及びトランスデューサ160を取り外して試料室外に退避しなければならない。
また、上記の構成とは別に、試料と圧子とを同一のステージに配置するように構成された被検査試料測定装置も知られている(例えば、特許文献1)。
特開2000−97836号公報
従来の被検査試料測定装置では、ユーザは表示された電子顕微鏡像により被検査試料と圧子との相対位置関係を認識し、被検査試料の測定点を圧子の先端に正確に合わせることが要求された。この作業では、2次元走査画像である電子顕微鏡像の目視によって、水平面での位置合わせのみならず、奥行き方向(垂直方向)の位置合わせをも行う必要があるため、ユーザに過度な負担をかけていた。
本発明は、以上のような問題点に鑑みてなされたものであり、本発明のいくつかの態様によれば、圧子の先端と被検査試料の測定点との位置合わせをユーザの技量に依存せず正確に行うことが可能な、被検査試料測定装置及び被検査試料測定装置の制御方法を提供することができる。
(1)本発明は、走査型電子顕微鏡の試料室内に備えた圧子により被検査試料に対して荷重を印加して被検査試料の荷重変位特性を測定する被検査試料測定装置であって、
前記圧子を移動するための圧子移動機構と、
前記被検査試料を移動するための被検査試料移動機構と、
前記圧子及び前記被検査試料を傾斜軸を中心に傾斜させるための傾斜機構と、
前記圧子及び前記被検査試料の移動及び傾斜を制御して、前記圧子の先端と前記被検査試料の測定点との位置合わせを行う制御部とを含み、
前記制御部が、
前記走査型電子顕微鏡により取得される走査画像上で前記圧子先端と前記傾斜軸とを一致させた状態で前記圧子を所定角度だけ傾斜させたときの前記圧子先端の該走査画像上での移動量を求め、求めた移動量に基づき前記圧子先端と前記傾斜軸の距離を算出し、前記走査型電子顕微鏡により取得される走査画像上で前記被検査試料の測定点と前記傾斜軸とを一致させた状態で前記被検査試料を所定角度だけ傾斜させたときの前記被検査試料の測定点の該走査画像上での移動量を求め、求めた移動量に基づき前記被検査試料の測定点と前記傾斜軸の距離を算出し、前記圧子先端と前記傾斜軸の距離と、前記被検査試料の測定点と前記傾斜軸の距離とに基づいて、前記圧子の先端と前記被検査試料の測定点との位置合わせを行う。
また本発明は、走査型電子顕微鏡の試料室内に備えた圧子により被検査試料に対して荷重を印加して被検査試料の荷重変位特性を測定する被検査試料測定装置の制御方法であって、
前記被検査試料測定装置は、
前記圧子を移動するための圧子移動機構と、
前記被検査試料を移動するための被検査試料移動機構と、
前記圧子及び前記被検査試料を傾斜軸を中心に傾斜させるための傾斜機構とを備え、
前記走査型電子顕微鏡により取得される走査画像上で前記圧子先端と前記傾斜軸とを一致させた状態で前記圧子を所定角度だけ傾斜させたときの前記圧子先端の該走査画像上での移動量を求め、求めた移動量に基づき前記圧子先端と前記傾斜軸の距離を算出する工程と、
前記走査型電子顕微鏡により取得される走査画像上で前記被検査試料の測定点と前記傾斜軸とを一致させた状態で前記被検査試料を所定角度だけ傾斜させたときの前記被検査試料の測定点の該走査画像上での移動量を求め、求めた移動量に基づき前記被検査試料の測定点と前記傾斜軸の距離を算出する工程と、
前記圧子先端と前記傾斜軸の距離と、前記被検査試料の測定点と前記傾斜軸の距離とに基づいて、前記圧子の先端と前記被検査試料の測定点との位置合わせを行う位置合わせ工程とを含む。
本発明によれば、圧子及び被検査試料を傾斜させたときの圧子先端の走査画像上での移動量と、被検査試料の測定点の走査画像上での移動量とをそれぞれ求め、求めた移動量に基づき圧子先端と傾斜軸の距離と、被検査試料の測定点と傾斜軸の距離とをそれぞれ算出し、算出した距離に基づき圧子の先端と前記被検査試料の測定点との位置合わせを行うことで、ユーザの技量に依存しない正確な位置合わせを可能にし、操作性の向上と測定の効率化を図ることができる。
(2)また、本発明に係る被検査試料測定装置では、
前記制御部が、
前記圧子の先端と前記被検査試料の測定点とを前記傾斜軸に一致させる制御を行ってもよい。
また、本発明に係る被検査試料測定装置の制御方法では、
前記位置合わせ工程において、
前記圧子の先端と前記被検査試料の測定点とを前記傾斜軸に一致させる制御を行ってもよい。
本発明によれば、圧子の先端及び被検査試料の測定点を傾斜軸に一致させるので、傾斜機構により圧子及び被検査試料を傾斜させても、画像上における両者の位置移動が生じることなく、圧子の先端と被検査試料の測定点との位置合わせにおける操作性をより向上させることができる。
さらに、本発明によれば、被検査試料を傾斜させてイオンビーム等による加工を行う場合に、加工位置を圧子の先端位置に正確に一致させることが可能となる。
本実施形態に係る被検査試料測定装置の構成の一例を示す図。 本実施形態の第1の手法の処理の一例を示すフローチャート図。 本実施形態の第1の手法について説明するための図。 本実施形態の第1の手法について説明するための図。 本実施形態の第1の手法について説明するための図。 本実施形態の第1の手法について説明するための図。 本実施形態の第1の手法について説明するための図。 本実施形態の第2の手法の処理の一例を示すフローチャート図。 本実施形態の第2の手法について説明するための図。 本実施形態の第2の手法について説明するための図。 本実施形態の第2の手法について説明するための図。 本実施形態の第2の手法について説明するための図。 本実施形態の第2の手法について説明するための図。 変形例について説明するための図。 変形例について説明するための図。 変形例について説明するための図。 変形例について説明するための図。 変形例について説明するための図。 従来技術について説明するための図。 従来技術について説明するための図。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.構成
図1に、本実施形態に係る被検査試料測定装置の構成の一例を示す。なお本実施形態の被検査試料測定装置は図1の構成要素(各部)の一部を省略した構成としてもよい。
図1に示すように、被検査試料測定装置は、走査型電子顕微鏡を構成する真空装置1内に設置された、電子銃10、コンデンサレンズ12、走査コイル14、対物レンズ16、検出器18、圧子20、トランスデューサ22、試料移動機構30、載置台40及びステージ50と、真空装置1外に設置された、増幅器19、トランスデューサ制御装置23、ステージ制御装置59、処理部60、操作部70、表示部72、記憶部74及び情報記憶媒体76とを含んでいる。ここで、検出器18、圧子20、トランスデューサ22、試料移動機構30、載置台40及びステージ50は、真空装置1における試料室1a内に配置されている。
電子銃10は、電子銃制御装置(図示省略)により制御され、電子を加速し電子ビームBを試料室1aに向けて放出する。コンデンサレンズ12は、試料S(被検査試料)に到達する電子ビームBの照射電流量及び開き角を制御するものであり、コンデンサレンズ制御装置(図示省略)により制御される。対物レンズ16は、電子ビームBを試料Sの表面で集束させるためのものであり、対物レンズ制御装置(図示省略)により制御される。走査コイル14は、対物レンズ16によって集束された電子ビームBの試料S上での走査を行うための電磁コイルであり、走査コイル制御装置(図示省略)により制御される。
検出器18は、集束された電子ビームBの走査に基づいて試料S等から放出される二次電子や反射電子(電子ビームBの走査に基づき試料S等から生じる信号)を検出する。検出器18によって検出された検出信号(二次電子や反射電子の強度信号)は、増幅器19によって増幅された後、処理部60に供給される。
トランスデューサ22は、圧子20を介して試料Sに荷重を印加するものであり、トランスデューサ制御装置23により制御される。圧子20は、トランスデューサ22によって印加された荷重を試料Sに加えるものである。トランスデューサ22は、圧子20を介して試料Sに実際に印加された荷重を検出する荷重検出器と、圧子20を介して荷重を印加したときの試料Sの変位量を検出する変位検出器と、圧子20を微小に移動(微動)させる微動機構とを含む。トランスデューサ22の荷重検出器及び変位検出器で検出された荷重及び変位量の検出信号は、処理部60に出力される。
試料移動機構30(被検査試料移動機構)は、試料Sを水平方向(X−Y方向)及び垂直方向(Z方向)に移動させる試料ステージであり、ステージ制御装置59により制御される。試料移動機構30は、試料SをX軸方向に移動させるX軸移動機構と、試料SをY軸方向に移動させるY軸移動機構と、試料SをZ軸方向に移動させるZ軸移動機構から構成される。試料移動機構30とトランスデューサ22は、載置台40の載置面40aに固定される。
ステージ50は、ステージ制御装置59により制御され、載置台40を水平方向及び垂直方向に移動させ、また載置台40を回転、傾斜させる。ステージ50は、載置台40をその載置面40aに直交する回転軸を中心に回転させる回転機構51と、載置台40をY軸方向に直交する方向に移動させるX軸移動機構52と、載置台40をY軸方向に移動させるY軸移動機構53と、載置台40をその載置面40aに直交する方向に微小に移動(微動)させるZ軸微動機構54と、載置台40をY軸に平行な傾斜軸TAを中心に回動して傾斜させる傾斜機構55と、載置台40をZ軸方向に移動させるZ軸移動機構56から構成される。なお、傾斜機構55による載置台40の傾斜がない状態においては、上記回転軸はZ軸に平行な軸となり、X軸移動機構52による載置台40の移動方向は、X軸方向に沿う方向となり、Z軸微動機構54による載置台40の移動方向は、Z軸方向に沿う方向となる。ここで、X軸移動機構52、Y軸移動機構53及びZ軸微動機構54は、圧子20を移動するための圧子移動機構として機能し、傾斜機構55は、圧子20及び試料Sを傾斜軸TAを中心に傾斜させるための傾斜機構として機能する。
操作部70は、ユーザが操作情報を入力するためのものであり、入力された操作情報を処理部60に出力する。操作部70の機能は、キーボード、マウス、ボタン、タッチパネル型ディスプレイなどのハードウェアにより実現することができる。
表示部72は、処理部60によって生成された画像を表示するものであり、その機能は、LCD、CRTなどにより実現できる。表示部72は、処理部60により生成された、電子顕微鏡像(集束された電子ビームBの走査に基づく試料S等の二次電子像或いは反射電子像等の走査像(走査画像))を表示する。これにより、走査画像としての電子顕微鏡像が取得されて表示される。
記憶部74は、処理部60のワーク領域となるもので、その機能はRAMなどにより実現できる。情報記憶媒体76(コンピュータにより読み取り可能な媒体)は、プログラムやデータなどを格納するものであり、その機能は、光ディスク(CD、DVD)、光磁気ディスク(MO)、磁気ディスク、ハードディスク、磁気テープ、或いはメモリ(ROM)などにより実現できる。処理部60は、情報記憶媒体76に格納されるプログラム(データ)に基づいて本実施形態の種々の処理を行う。情報記憶媒体76には、処理部60としてコンピュータを機能させるためのプログラムを記憶することができる。
処理部60は、上述したコンデンサレンズ制御装置、走査コイル制御装置、対物レンズ制御装置を制御する処理や、トランスデューサ制御装置23を制御してトランスデューサ22を動作させる処理や、ステージ制御装置59を制御してステージ50及び試料移動機構30を動作させる処理や、増幅器19によって増幅された検出器18からの検出信号を、走査コイル制御装置に供給される電子ビームBの走査信号と同期された画像データ(電子顕微鏡像となる走査像データ)とする処理などの処理を行う。処理部60の機能は、各種プロセッサ(CPU、DSP等)、ASIC(ゲートアレイ等)などのハードウェアや、プログラムにより実現できる。
特に本実施形態の処理部60(本発明の制御部に対応)は、操作部70からの操作情報や、電子顕微鏡像(走査画像)に対する画像処理の処理結果に基づき圧子20及び試料Sの移動及び傾斜を制御して、圧子20の先端と試料Sの測定点との位置合わせを行う。具体的には、処理部60は、まず、電子顕微鏡像上で圧子20先端と傾斜軸TAとを一致させた状態で圧子20を所定角度だけ傾斜させたときの圧子20の先端20aの電子顕微鏡像上での移動量を求め、求めた移動量に基づき圧子20の先端20aと傾斜軸TAとの間の距離を算出する。次に、電子顕微鏡像上で試料Sの測定点と傾斜軸TAとを一致させた状態で試料Sを所定角度だけ傾斜させたときの試料Sの測定点の電子顕微鏡像上での移動量を求め、求めた移動量に基づき試料Sの測定点と傾斜軸TAとの間の距離を算出する。そして、圧子20の先端20aと傾斜軸TAとの間の距離と、試料Sの測定点と傾斜軸TAとの間の距離とに基づいて、圧子20の先端20aと試料Sの測定点との位置合わせを行う。また、処理部60は、試料Sの測定点を圧子20の先端20aに一致させる制御を行ってもよいし、圧子20の先端20aを試料Sの測定点に一致させる制御を行ってもよいし、圧子20の先端20aと試料Sの測定点とを傾斜軸TAに一致させる制御を行ってもよい。
2.本実施形態の手法
次に本実施形態の手法について図面を用いて説明する。
2−1.第1の手法
まず、圧子先端と試料の測定点との位置合わせを行う第1の手法について、図2のフローチャートを用いて説明する。第1の手法では、試料Sの測定点を圧子20の先端20aに一致させることで両者の位置合わせを行う。
まず、処理部60は、圧子20先端の座標(位置)と、試料Sの測定点の座標(位置)を登録する処理を行う(ステップS10)。ユーザは、表示部72に表示される電子顕微鏡像上で、圧子20の先端20aの位置と、試料Sの測定点(圧子20の先端20aによって荷重が印加される位置)とを、マウス等の操作部70を用いてそれぞれ指定し、これら指定された位置が登録される。このとき、電子顕微鏡像の中心位置(走査画像の中心位置)が、傾斜軸TAの位置に対応するように、電子ビームBの走査領域を予め設定しておく。
次に、ステップS10で登録した圧子20先端の座標に基づき、処理部60は、ステージ50のX軸移動機構52及びY軸移動機構53を制御して、圧子20先端を電子顕微鏡像(走査画像)の中心に移動させる(ステップS12)。図3に示すように、電子顕微鏡像EIの中心位置PCは、電子顕微鏡像EI上の傾斜軸TAの位置と一致するため、ステップS12の処理により、電子顕微鏡像EI上で圧子20の先端20aと傾斜軸TAとを一致させることができる。これにより、図4(A)に示すように、圧子20先端と傾斜軸TAのXY座標を一致させることができる。なお、図3では、電子顕微鏡像EIにおける試料Sの像の図示を省略し、図4では、試料Sと試料移動機構30の図示を省略している。
次に、ステージ50の傾斜機構55を制御して、載置台40を角度θだけ傾斜させ(ステップS14)、傾斜させたときの圧子20先端の移動量Dを算出する(ステップS16)。図4(A)に示すように、傾斜軸TAと圧子20先端の位置がZ軸方向(垂直方向)にずれていると、図4(B)に示すように、傾斜軸TA回りの傾斜によって圧子20先端がX軸方向に移動する。移動量Dは、圧子20先端の電子顕微鏡像上での移動量を画像処理によって求め、求めた移動量に電子顕微鏡像の倍率を掛け合わせることで算出することができる。なお、ここでの移動量Dは、X軸における+X軸方向での移動量とする。よって、図4(B)の例では、移動量Dは正の値となる。
次に、ステップS14で算出した移動量Dに基づいて、傾斜前における圧子20先端と傾斜軸TAの距離Lを算出する(ステップS18)。移動量をDとし、傾斜角度をθとすると、距離Lは次式により表される。
L=|D|/sinθ (1)
ここで、|D|は、移動量Dの絶対値である。
次に、図4(C)に示すように、トランスデューサ22の圧子微動機構を制御して、圧子20を傾斜軸TAから離れる方向に所定距離Δだけ移動させる(ステップS20)。これは、荷重変位特性の測定に必要な空間を圧子20先端の前方に確保するためである。次に、ステージ50の傾斜機構55を制御して、載置台40の傾斜角度を0度に戻す(ステップS22)。
次に、ステップS10で登録した試料Sの測定点の座標に基づき、試料移動機構30のX軸移動機構及びY軸移動機構を制御して、試料Sの測定点を電子顕微鏡像の中心に移動させる(ステップS24)。上述したように、電子顕微鏡像EIの中心位置PCは、電子顕微鏡像EI上の傾斜軸TAの位置と一致するため、ステップS24の処理により、図5に示すように、電子顕微鏡像EI上で試料Sの測定点MP(試料Sの被測定部MDにおいて、圧子20の先端20aによって荷重が印加される位置)と傾斜軸TAとを一致させることができる。これにより、図6(A)に示すように、試料Sの測定点MPと傾斜軸TAのXY座標を一致させる。なお、図5では、電子顕微鏡像EIにおける圧子20の像の図示を省略し、図6では、圧子20とトランスデューサ22の図示を省略している。
次に、ステージ50の傾斜機構55を制御して、載置台40を角度θだけ傾斜させ(ステップS26)、傾斜させたときの試料Sの測定点の移動量dを算出する(ステップS28)。図6(A)に示すように、傾斜軸TAと測定点MPの位置がZ軸方向(垂直方向)にずれていると、図6(B)に示すように、傾斜軸TA回りの傾斜によって測定点MPがX軸方向に移動する。移動量dは、測定点MPの電子顕微鏡像上での移動量を画像処理によって求め、求めた移動量に電子顕微鏡像の倍率を掛け合わせることで算出することができる。なお、ここでの移動量dも、X軸における+X軸方向での移動量とする。よって、図6(B)の例では、移動量dは負の値となる。
次に、ステップS16で算出した移動量DとステップS28で算出した移動量dとの差の絶対値が所定の閾値TH以内であるか否かを判断する(ステップS30)。移動量Dと移動量dとの差の絶対値が所定の閾値TH以内でないと判断した場合(ステップS30のN)には、圧子20先端と試料Sの測定点MPの位置が一致していないと判断して、ステップS28で算出した移動量dに基づいて、傾斜前における測定点MPと傾斜軸TAのZ軸方向(垂直方向)の距離mを算出する(ステップS32)。傾斜角度をθとすると、距離mは次式により表される。
m=|d|/sinθ (2)
ここで、|d|は、移動量dの絶対値である。
次に、試料移動機構30のZ軸移動機構を制御して、試料Sを、ステップS18で算出した距離LとステップS32で算出した距離mの差だけ移動させる(ステップS34)。この差の算出については、距離L及び距離mが、傾斜軸TAに対して+Z軸方向での距離であるか、或いは−Z軸方向での距離であるかを加味して行われる。ここでは、移動量D(移動量d)が正の値のときには距離L(距離m)は−Z軸方向での距離となり、移動量D(移動量d)が負の値のときには距離L(距離m)は+Z軸方向での距離となる。従って、図4(A)に示すように、圧子20先端の位置は傾斜軸TAから−Z軸方向に距離Lだけずれており、図6(A)に示すように、測定点MPの位置は傾斜軸TAから+Z軸方向に距離mだけずれているため、算出される差は、(−L−m)=−(L+m)となる。よって、図6(C)に示すように、試料Sを試料移動機構30の−Z軸方向に距離(L+m)だけ移動させると、試料Sの測定点MPのZ軸方向の位置を圧子20先端のZ軸方向の位置に一致させることができる。なお、ここでは載置台40が角度θだけ傾斜しているため、試料移動機構30のZ軸も角度θだけ傾斜している。
次に、ステップS22の処理に進み、ステップS30において移動量Dと移動量dの差の絶対値が閾値TH以内であると判断されるまで、ステップS22〜ステップS34の処理を繰り返す。このようにすると、試料移動機構30のZ軸移動機構の動作に誤差がある場合であっても、正確に位置合わせを行うことができる。
ステップS30において、移動量Dと移動量dの差の絶対値が閾値TH以内であると判断した場合には、圧子20の先端と試料Sの測定点MPの位置が許容される範囲内で一致したと判断して、図7(A)に示すように、ステージ50の傾斜機構55を制御して、載置台40の傾斜角度を0度に戻す(ステップS36)。
その後、図7(B)に示すように、トランスデューサ22の圧子微動機構を制御して、圧子20を傾斜軸TAに近づく方向に所定距離Δだけ移動させることで、圧子20先端を試料Sの測定点MPに一致させて荷重変位特性の測定を行うことができる。
このように、本実施形態によれば、圧子20及び試料Sを傾斜させたときの圧子20先端の電子顕微鏡像上での移動量Dと、試料Sの測定点MPの電子顕微鏡像上での移動量dとをそれぞれ求め、求めた移動量D、dに基づき圧子20先端と傾斜軸TAの距離Lと、測定点MPと傾斜軸TAの距離mとをそれぞれ算出し、算出した距離L、mに基づいて、試料の測定点MPを圧子20の先端に一致させる制御を行うことで、ユーザの技量に依存せずに、正確な位置合わせを行うことができる。
2−2.第2の手法
次に、圧子先端と試料の測定点との位置合わせを行う第2の手法について、図8のフローチャートを用いて説明する。第2の手法では、試料Sの測定点と圧子20先端とを傾斜軸TAに一致させることで、試料Sの測定点と圧子20先端との位置合わせを行う。
図8のステップS40〜ステップS46は、図2のステップS10〜ステップS16と同様である。まず、処理部60は、圧子20先端の座標と、試料Sの測定点の座標を登録する処理を行う(ステップS40)。
次に、ステップS40で登録した圧子20先端の座標に基づき、処理部60は、ステージ50のX軸移動機構52及びY軸移動機構53を制御して、圧子20先端を電子顕微鏡像の中心に移動させる(ステップS42)。すなわち、図3に示すように、電子顕微鏡像EI上で圧子20の先端20aと傾斜軸TAとを一致させ、図9(A)に示すように、圧子20先端と傾斜軸TAのXY座標を一致させる。なお、図9、図10では、試料Sと試料移動機構30の図示を省略している。
次に、図9(B)に示すように、ステージ50の傾斜機構55を制御して、載置台40を角度θだけ傾斜させ(ステップS44)、傾斜させたときの圧子20先端の移動量Dを算出する(ステップS46)。
次に、ステップS46で算出した移動量Dの絶対値が所定の閾値TH以内であるか否かを判断する(ステップS48)。移動量Dの絶対値が所定の閾値TH以内でないと判断した場合(ステップS48のN)には、圧子20先端と傾斜軸TAが一致していないと判断して、ステップS46で算出した移動量Dに基づいて、圧子20先端と傾斜軸TAの距離Lを、式(1)により算出する(ステップS50)。
次に、ステージ50のZ軸微動機構54を制御して、載置台40をステップS50で算出した距離Lだけ移動させる(ステップS52)。図9(A)に示すように、圧子20先端の位置は傾斜軸TAから−Z軸方向に距離Lだけずれているため、図9(C)に示すように、圧子20(載置台40)をステージ50の+Z軸方向に距離Lだけ移動させると、圧子20先端を傾斜軸TAに一致させることができる。なお、ここではZ軸微動機構54が傾斜機構54により角度θだけ傾斜させているため、Z軸微動機構54のZ軸が角度θだけ傾斜している。
次に、ステージ50の傾斜機構55を制御して、載置台40の傾斜角度を0度に戻す(ステップS54)。次に、ステップS42の処理に進み、ステップS48において移動量Dの絶対値が閾値TH以内であると判断されるまで、ステップS42〜ステップS54の処理を繰り返す。このようにすると、Z軸微動機構54の動作に誤差がある場合であっても、正確に位置合わせを行うことができる。
ステップS48において、移動量Dの絶対値が閾値TH以内であると判断した場合には、圧子20の先端と傾斜軸TAの位置が許容される範囲内で一致したと判断して、図10(A)に示すように、ステージ50の傾斜機構55を制御して、載置台40の傾斜角度を0度に戻す(ステップS56)。次に、図10(B)に示すように、トランスデューサ22の圧子微動機構を制御して、圧子20を傾斜軸TAから離れる方向に所定距離Δだけ移動させる(ステップS58)。これは、荷重変位特性の測定に必要な空間を圧子20先端の前方に確保するためである。
図8のステップS60〜ステップS64は、図2のステップS24〜ステップS28と同様である。次に、ステップS40で登録した試料Sの測定点の座標に基づき、試料移動機構30のX軸移動機構及びY軸移動機構を制御して、試料Sの測定点を電子顕微鏡像の中心に移動させる(ステップS60)。すなわち、図5に示すように、電子顕微鏡像EI上で試料Sの測定点MPと傾斜軸TAとを一致させ、図11(A)に示すように、試料Sの測定点MPと傾斜軸TAのXY座標を一致させる。なお、図11、図12では、圧子20とトランスデューサ22の図示を省略している。
次に、図11(B)に示すように、ステージ50の傾斜機構55を制御して、載置台40を角度θだけ傾斜させ(ステップS62)、傾斜させたときの試料Sの測定点MPの移動量dを算出する(ステップS64)。
次に、ステップS64で算出した移動量dの絶対値が所定の閾値TH以内であるか否かを判断する(ステップS66)。移動量dの絶対値が所定の閾値TH以内でないと判断した場合(ステップS66のN)には、試料Sの測定点MPと傾斜軸TAが一致していないと判断して、ステップS64で算出した移動量dに基づいて、測定点MPと傾斜軸TAの距離mを、式(2)により算出する(ステップS68)。
次に、試料移動機構30のZ軸微動機構を制御して、試料SをステップS68で算出した距離mだけ移動させる(ステップS70)。図11(A)に示すように、試料Sの測定点MPの位置は傾斜軸TAから+Z軸方向に距離mだけずれているため、図12に示すように、試料Sを試料移動機構30の−Z軸方向に距離mだけ移動させると、試料Sの測定点MPを傾斜軸TAに一致させることができる。なお、ここでは載置台40が角度θだけ傾斜しているため、試料移動機構30のZ軸も角度θだけ傾斜している。
次に、ステージ50の傾斜機構55を制御して、載置台40の傾斜角度を0度に戻す(ステップS72)。次に、ステップS60の処理に進み、ステップS66において移動量dの絶対値が閾値TH以内であると判断されるまで、ステップS60〜ステップS72の処理を繰り返す。このようにすると、試料移動機構30のZ軸移動機構の動作に誤差がある場合であっても、正確に位置合わせを行うことができる。
ステップS66において、移動量dの絶対値が閾値TH以内であると判断した場合には、試料Sの測定点MPと傾斜軸TAの位置が許容される範囲内で一致したと判断して、図13(A)に示すように、ステージ50の傾斜機構55を制御して、載置台40の傾斜角度を0度に戻す(ステップS74)。
その後、図13(B)に示すように、トランスデューサ22の圧子微動機構を制御して、圧子20を傾斜軸TAに近づく方向に所定距離Δだけ移動させることで、圧子20先端を試料Sの測定点MPに一致させて荷重変位特性の測定を行うことができる。
このように、本実施形態の第2の手法によれば、圧子20の先端と試料Sの測定点MPとをユーザの技量に依存せずに、正確に傾斜軸TAに一致させることができる。試料Sの測定点MPと圧子20の先端とを傾斜軸TAに一致させると、イオンビーム等による試料Sの加工を行う際に試料Sを傾斜させた場合でも測定点MPの位置を固定することができ、試料の測定点の加工を容易にするとともに、加工位置を圧子の先端位置に一致させることができる。
3.変形例
なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変形が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
例えば、上記実施形態では、ステージ50のX軸移動機構52、Y軸移動機構53及びZ軸微動機構54を制御して、圧子20を移動させる場合について説明したが、図14に示すように、圧子20及びトランスデューサ22を移動するためのトランスデューサ移動機構24を載置台40に設けて、ステージ制御装置59を介してトランスデューサ移動機構24を制御することで圧子20を移動させるように構成してもよい。すなわち、図14に示す例においては、トランスデューサ移動機構24が、本発明の圧子移動機構として機能する。トランスデューサ移動機構24は、圧子20をX軸方向に移動させるX軸移動機構と、圧子20をY軸方向に移動させるY軸移動機構と、圧子20をZ軸方向に移動させるZ軸移動機構から構成される。図14に示す構成では、図2のステップS12及び図6のステップ42において、トランスデューサ移動機構24のX軸移動機構及びY軸移動機構を制御することで、圧子20先端を電子顕微鏡像の中心に移動させ、図8のステップS52において、トランスデューサ移動機構24のZ軸移動機構を制御することで、圧子20を距離Lだけ移動させることができる。
また、図15に示すように、試料SをY軸に平行な軸を中心に回動して傾斜させる試料傾斜機構32と、試料SをZ軸に平行な軸を中心に回転させる試料回転機構34とを試料移動機構30に設けるようにしてもよい。図15に示す構成では、一次イオンビームIBを試料Sの表面に照射して試料Sを加工する場合に、試料傾斜機構32を制御して、試料Sの加工面が一次イオンビームIBに対して垂直になるように試料Sを傾斜させる。この場合には、トランスデューサ移動機構24を制御して、圧子を試料Sから離れた位置に移動させる。すなわち、図15の構成では、試料Sの加工前に試料室1aを大気開放して圧子20及びトランスデューサ22を真空外に退避する必要が無くなる。
図16は、図15の構成を電子線Bの照射方向から見たときの構成を模式的に示す図である。図15の構成において、試料回転機構34を制御して試料SをZ軸と平行な軸を中心に回転させることで、図16に示すように、試料Sの加工端面を、試料室1a(真空容器)内に配置されたEDS(エネルギー分散型X線分析装置)、EBSD(電子線後方散乱回折解析装置)及び圧子20の各分析装置に正対させることができる。すなわち、イオンビームIBによる加工から、各分析装置による試料Sの分析を、真空内における一連の作業で行うことができる。
また、図17に示すように、載置台40に配置される試料移動機構30、試料回転機構34、試料傾斜機構32、試料S、トランスデューサ移動機構24、トランスデューサ22及び圧子20を一体として、仕切り弁2の開閉により主真空容器である試料室1aと予備室である副真空容器3との間を移動可能に構成してもよい。試料室1a内には、載置台40上の各機器(試料移動機構30、試料回転機構34、試料傾斜機構32及びトランスデューサ22)に電源を供給するための電源コネクタ42が配置されている。電源コネクタ42は、載置台40上の各機器が副真空容器3から試料室1aに搬送されたときに、載置台40上の各機器と接点を確保するように構成されている。図17のように構成すると、試料室1aの大気開放を伴わずに試料Sの測定を行うことができる。
また、図18に示すように、試料回転機構34を省略して、ステージ50の回転機構51の駆動力を試料移動機構30に伝達する回転伝達機構44を設けてもよい。このように構成すると、電源コネクタ42との接続により載置台40の回転が制限された状況下であっても、ステージ50の回転機構51を制御して、試料移動機構34、試料傾斜機構32及び試料Sを一体として回転させることができる。
1 真空装置、1a 試料室、2 仕切り弁、3 副真空容器、10 電子銃、12 コンデンサレンズ、14 走査コイル、16 対物レンズ、18 検出器、19 増幅器、20 圧子、20a 圧子先端、22 トランスデューサ、23 トランスデューサ制御装置、24 トランスデューサ移動機構、30 試料移動機構、32 試料傾斜機構、34 試料回転機構、40 載置台、40a 載置面、42 電源コネクタ、44 回転伝達機構、50 ステージ、51 回転機構、52 X軸移動機構、53 Y軸移動機構、54 Z軸微動機構、55 傾斜機構、56 Z軸移動機構、59 ステージ制御装置、60 処理部、70 操作部、72 表示部、74 記憶部、76 情報記憶媒体

Claims (4)

  1. 走査型電子顕微鏡の試料室内に備えた圧子により被検査試料に対して荷重を印加して被検査試料の荷重変位特性を測定する被検査試料測定装置であって、
    前記圧子を移動するための圧子移動機構と、
    前記被検査試料を移動するための被検査試料移動機構と、
    前記圧子及び前記被検査試料を傾斜軸を中心に傾斜させるための傾斜機構と、
    前記圧子及び前記被検査試料の移動及び傾斜を制御して、前記圧子の先端と前記被検査試料の測定点との位置合わせを行う制御部とを含み、
    前記制御部が、
    前記走査型電子顕微鏡により取得される走査画像上で前記圧子先端と前記傾斜軸とを一致させた状態で前記圧子を所定角度だけ傾斜させたときの前記圧子先端の該走査画像上での移動量を求め、求めた移動量に基づき前記圧子先端と前記傾斜軸の距離を算出し、前記走査型電子顕微鏡により取得される走査画像上で前記被検査試料の測定点と前記傾斜軸とを一致させた状態で前記被検査試料を所定角度だけ傾斜させたときの前記被検査試料の測定点の該走査画像上での移動量を求め、求めた移動量に基づき前記被検査試料の測定点と前記傾斜軸の距離を算出し、前記圧子先端と前記傾斜軸の距離と、前記被検査試料の測定点と前記傾斜軸の距離とに基づいて、前記圧子の先端と前記被検査試料の測定点との位置合わせを行う、被検査試料測定装置。
  2. 請求項1において、
    前記制御部が、
    前記圧子の先端と前記被検査試料の測定点とを前記傾斜軸に一致させる制御を行う、被検査試料測定装置。
  3. 走査型電子顕微鏡の試料室内に備えた圧子により被検査試料に対して荷重を印加して被検査試料の荷重変位特性を測定する被検査試料測定装置の制御方法であって、
    前記被検査試料測定装置は、
    前記圧子を移動するための圧子移動機構と、
    前記被検査試料を移動するための被検査試料移動機構と、
    前記圧子及び前記被検査試料を傾斜軸を中心に傾斜させるための傾斜機構とを備え、
    前記走査型電子顕微鏡により取得される走査画像上で前記圧子先端と前記傾斜軸とを一致させた状態で前記圧子を所定角度だけ傾斜させたときの前記圧子先端の該走査画像上での移動量を求め、求めた移動量に基づき前記圧子先端と前記傾斜軸の距離を算出する工程と、
    前記走査型電子顕微鏡により取得される走査画像上で前記被検査試料の測定点と前記傾斜軸とを一致させた状態で前記被検査試料を所定角度だけ傾斜させたときの前記被検査試料の測定点の該走査画像上での移動量を求め、求めた移動量に基づき前記被検査試料の測定点と前記傾斜軸の距離を算出する工程と、
    前記圧子先端と前記傾斜軸の距離と、前記被検査試料の測定点と前記傾斜軸の距離とに基づいて、前記圧子の先端と前記被検査試料の測定点との位置合わせを行う位置合わせ工程とを含む、被検査試料測定装置の制御方法。
  4. 請求項3において、
    前記位置合わせ工程において、
    前記圧子の先端と前記被検査試料の測定点とを前記傾斜軸に一致させる制御を行う、被検査試料測定装置の制御方法。
JP2011276211A 2011-12-16 2011-12-16 被検査試料測定装置及び被検査試料測定装置の制御方法 Pending JP2013127859A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011276211A JP2013127859A (ja) 2011-12-16 2011-12-16 被検査試料測定装置及び被検査試料測定装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011276211A JP2013127859A (ja) 2011-12-16 2011-12-16 被検査試料測定装置及び被検査試料測定装置の制御方法

Publications (1)

Publication Number Publication Date
JP2013127859A true JP2013127859A (ja) 2013-06-27

Family

ID=48778288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011276211A Pending JP2013127859A (ja) 2011-12-16 2011-12-16 被検査試料測定装置及び被検査試料測定装置の制御方法

Country Status (1)

Country Link
JP (1) JP2013127859A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157688A (ja) * 2015-02-23 2016-09-01 株式会社日立ハイテクサイエンス 試料加工評価装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588256A (en) * 1978-12-26 1980-07-03 Jeol Ltd Sample compression tester for electron microscope or the like
JPH04284342A (ja) * 1991-03-14 1992-10-08 Fine Ceramics Center 電子顕微鏡用試料引張装置
JPH10135288A (ja) * 1996-11-01 1998-05-22 Jeol Ltd 部品検査システム
JP2009117196A (ja) * 2007-11-07 2009-05-28 Jeol Ltd 隔膜型ガス雰囲気試料ホルダ
JP2011175908A (ja) * 2010-02-25 2011-09-08 National Institute For Materials Science 試料ホルダおよび走査型透過電子顕微鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588256A (en) * 1978-12-26 1980-07-03 Jeol Ltd Sample compression tester for electron microscope or the like
JPH04284342A (ja) * 1991-03-14 1992-10-08 Fine Ceramics Center 電子顕微鏡用試料引張装置
JPH10135288A (ja) * 1996-11-01 1998-05-22 Jeol Ltd 部品検査システム
JP2009117196A (ja) * 2007-11-07 2009-05-28 Jeol Ltd 隔膜型ガス雰囲気試料ホルダ
JP2011175908A (ja) * 2010-02-25 2011-09-08 National Institute For Materials Science 試料ホルダおよび走査型透過電子顕微鏡

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016157688A (ja) * 2015-02-23 2016-09-01 株式会社日立ハイテクサイエンス 試料加工評価装置
JP2020205289A (ja) * 2015-02-23 2020-12-24 株式会社日立ハイテクサイエンス 試料加工評価装置
JP7212377B2 (ja) 2015-02-23 2023-01-25 株式会社日立ハイテクサイエンス 試料加工評価装置

Similar Documents

Publication Publication Date Title
US9978557B2 (en) System for orienting a sample using a diffraction pattern
JP3951590B2 (ja) 荷電粒子線装置
JP5302595B2 (ja) 傾斜観察方法および観察装置
JP7221393B2 (ja) 荷電粒子ビームを集束させるためのシステム及び方法
JP4383950B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
US8907303B2 (en) Stage device and control method for stage device
JP4928987B2 (ja) 荷電粒子線調整方法及び荷電粒子線装置
JP6336887B2 (ja) 試料作製装置及び試料作製方法
US9558911B2 (en) Method for analyzing and/or processing an object as well as a particle beam device for carrying out the method
JP2013127859A (ja) 被検査試料測定装置及び被検査試料測定装置の制御方法
JP2006173038A (ja) 荷電粒子線装置、試料像表示方法及びイメージシフト感度計測方法
JP2002286663A (ja) 試料分析および試料観察装置
JP2012209050A (ja) 電子顕微鏡および3次元像構築方法
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
CN111081515A (zh) 带电粒子束装置和试样加工观察方法
US20230197403A1 (en) Microscopy feedback for improved milling accuracy
US20230377836A1 (en) Analysis System
JP2003045370A (ja) 走査電子顕微鏡
JP7308710B2 (ja) 集束イオンビーム装置
JP5055607B2 (ja) 荷電粒子ビーム描画装置を用いた荷電粒子ビーム描画方法
TW202212964A (zh) 帶電粒子束裝置的操作方法
JP5174483B2 (ja) 荷電粒子ビーム装置、及び試料の表面の帯電状態を知る方法
JP2023089965A (ja) 改善されたミリング精度のための顕微鏡的フィードバック
JPH0372923B2 (ja)
CN109839399A (zh) 基于kb镜的同步辐射共聚焦荧光实验装置的仪器校准方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151202