JP2013093279A - Organic el device manufacturing apparatus - Google Patents

Organic el device manufacturing apparatus Download PDF

Info

Publication number
JP2013093279A
JP2013093279A JP2011235965A JP2011235965A JP2013093279A JP 2013093279 A JP2013093279 A JP 2013093279A JP 2011235965 A JP2011235965 A JP 2011235965A JP 2011235965 A JP2011235965 A JP 2011235965A JP 2013093279 A JP2013093279 A JP 2013093279A
Authority
JP
Japan
Prior art keywords
substrate
clamp
arm
substrate holder
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011235965A
Other languages
Japanese (ja)
Inventor
An Zushi
庵 圖師
Hiroki Kameyama
大樹 亀山
Makoto Fukushima
真 福島
Jae Hun Cheng
載勳 鄭
Sang-Woo Lee
相雨 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Samsung Display Co Ltd
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp, Samsung Display Co Ltd filed Critical Hitachi High Technologies Corp
Priority to JP2011235965A priority Critical patent/JP2013093279A/en
Priority to KR1020120064227A priority patent/KR101411249B1/en
Priority to TW101139491A priority patent/TW201324675A/en
Priority to CN2012104141654A priority patent/CN103094492A/en
Publication of JP2013093279A publication Critical patent/JP2013093279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL device manufacturing apparatus which securely holds a substrate without providing an actuator.SOLUTION: An organic EL device manufacturing apparatus includes: a substrate holder 91; a substrate receiving pin 66 for receiving a substrate 6 from a substrate transfer machine; a substrate holder lifting mechanism 68; a substrate holding mechanism provided at an end part of the substrate holder 91 and composed of a substrate clamp 61, a clamp support metal fitting 62, and a clamp biasing spring; and a clamp opening and closing pin 67 for releasing the substrate 6 from the substrate clamp 61. The clamp support metal fitting 62 rotates in the vertical direction and has a first arm 62a and a second arm 62c. One end of the substrate clamp 61 is fixed to an end of the first arm 62a, and a rotation part rotating in the vertical direction is provided at an end of the second arm 62c. The substrate clamp 61 presses the substrate 6 against the substrate holder 91.

Description

本発明は、有機EL(Electro−Luminescence)デバイス製造装置に係わり、特に成膜時等において好適に基板を保持することのできる有機ELデバイス製造装置に関する。   The present invention relates to an organic EL (Electro-Luminescence) device manufacturing apparatus, and more particularly to an organic EL device manufacturing apparatus capable of suitably holding a substrate during film formation.

有機ELデバイスを製造する有力な方法として真空蒸着法がある。真空蒸着法は、真空処理室内において、基板とマスクとを重ねた状態で処理ガスに晒し、蒸着処理を実施するものである。また、近年、処理基板は大型化しており、G6世代の基板サイズは1500mm×1800mmになる。このような大型基板に対応するため、基板面を垂直に保持した状態で処理ガスに晒し、蒸着処理を実施することが行われている。下記の特許文献1には、基板面を垂直に保持した状態で蒸着処理を実施する技術が開示されている。   There exists a vacuum evaporation method as an influential method of manufacturing an organic EL device. In the vacuum deposition method, a deposition process is performed by exposing the substrate and a mask to a processing gas in a state where the substrate and the mask are stacked. Further, in recent years, the processing substrate has been enlarged, and the substrate size of the G6 generation is 1500 mm × 1800 mm. In order to cope with such a large substrate, the deposition process is performed by exposing the substrate surface to a processing gas while maintaining the substrate surface vertically. The following Patent Document 1 discloses a technique for performing a vapor deposition process with the substrate surface held vertically.

上述したように、真空処理室内において基板面を垂直に保持した状態で蒸着処理を実施する場合、安定した蒸着処理を行うためには、基板を安定して保持することが必要であり、基板を安定して保持するためには、基板を確実に保持することのできる基板保持機構を設けることが必要である。しかし、基板保持のためのアクチュエータ(動作装置)を、真空処理室内に設けた場合は、粉塵等により有機ELデバイスが汚染される恐れがある。したがって、基板保持のためのアクチュエータを真空処理室内に設けることなく基板を確実に保持することが望まれていた。   As described above, in the case where the deposition process is performed with the substrate surface held vertically in the vacuum processing chamber, in order to perform a stable deposition process, it is necessary to stably hold the substrate. to stably held, it is necessary to provide a substrate holding mechanism capable of securely holding the substrate. However, when an actuator (operation device) for holding the substrate is provided in the vacuum processing chamber, the organic EL device may be contaminated by dust or the like. Therefore, it has been desired to securely hold the substrate without providing an actuator for holding the substrate in the vacuum processing chamber.

特開2010−086956号公報JP 2010-086956 A

本発明の目的は、基板保持のためのアクチュエータを真空処理室内に設けることなく、基板を確実に保持することのできる有機ELデバイス製造装置を提供することにある。   The objective of this invention is providing the organic EL device manufacturing apparatus which can hold | maintain a board | substrate reliably, without providing the actuator for board | substrate holding in a vacuum processing chamber.

上記の目的を達成するために、本発明に係る有機ELデバイス製造装置においては、
真空処理室内に設けられ基板を載置するための基板ホルダーと、
前記真空処理室外に設けられた基板搬送機から基板を受取るための、前記真空処理室内に垂直方向に立設して固定された基板受けピンと、
前記基板受けピンに対し前記基板ホルダーを昇降させる基板ホルダー昇降機構と、
前記基板ホルダーの端部に設けられ、基板を前記基板ホルダーに保持するための基板保持機構と、
基板を前記基板保持機構から解放するための、前記真空処理室内に垂直方向に立設して固定されたクランプ開閉ピンとを備え、
前記基板保持機構は、基板を前記基板ホルダーに押圧する板状の基板クランプと、前記基板クランプを支持するクランプ支持金具と、前記基板クランプが基板を前記基板ホルダーに押圧するように付勢するバネとを有し、
前記クランプ支持金具は、水平方向の第1の軸を中心にして回転動作可能であり、前記第1の軸から延伸する第1の腕と第2の腕を有し、前記第1の腕の端には前記基板クランプの一端が固定され、前記第2の腕の端には、水平方向の第2の軸を中心にして回転動作可能な回転部が設けられ、前記第1の軸と前記2つの腕の端を結ぶ直線が3角形を形成する形状であって、
前記真空処理室外に設けられた基板搬送機から前記基板受けピンが基板を受取る状態では、前記第2の腕の回転部が前記クランプ開閉ピンにより押し上げられて、前記第1の腕と第2の腕を結ぶ直線が略水平の状態かつ前記基板クランプが略垂直の状態になり、前記受取った基板を前記基板ホルダーに載置した状態では、前記第1の腕と第2の腕を結ぶ直線が略垂直の状態かつ前記基板クランプが略水平の状態になり、前記基板クランプが基板を前記基板ホルダーに押圧する状態になることを特徴とする。
In order to achieve the above object, in the organic EL device manufacturing apparatus according to the present invention,
A substrate holder provided in the vacuum processing chamber for mounting the substrate;
A substrate receiving pin fixed in an upright direction in the vacuum processing chamber for receiving a substrate from a substrate transfer machine provided outside the vacuum processing chamber;
A substrate holder elevating mechanism for elevating the substrate holder relative to the substrate receiving pin;
A substrate holding mechanism provided at an end of the substrate holder for holding the substrate on the substrate holder;
A clamp opening / closing pin fixed in an upright direction in the vacuum processing chamber for releasing the substrate from the substrate holding mechanism;
The substrate holding mechanism includes a plate-like substrate clamp that presses the substrate against the substrate holder, a clamp support fitting that supports the substrate clamp, and a spring that biases the substrate clamp so as to press the substrate against the substrate holder. And
The clamp support bracket is rotatable around a first axis in the horizontal direction, and has a first arm and a second arm extending from the first axis. One end of the substrate clamp is fixed to the end, and a rotation part capable of rotating around a second axis in the horizontal direction is provided at the end of the second arm, and the first axis and the A straight line connecting the ends of two arms forms a triangle,
In a state where the substrate receiving pin receives a substrate from a substrate transfer machine provided outside the vacuum processing chamber, the rotating portion of the second arm is pushed up by the clamp opening / closing pin, and the first arm and the second arm When the straight line connecting the arms is in a substantially horizontal state and the substrate clamp is in a substantially vertical state, and the received substrate is placed on the substrate holder, a straight line connecting the first arm and the second arm is The substrate clamp is in a substantially vertical state and in a substantially horizontal state, and the substrate clamp is in a state of pressing the substrate against the substrate holder.

本発明によれば、基板保持のためのアクチュエータを真空処理室内に設けることなく、基板を確実に保持することのできる有機ELデバイス製造装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the organic EL device manufacturing apparatus which can hold | maintain a board | substrate reliably can be provided, without providing the actuator for board | substrate holding in a vacuum processing chamber.

本発明の実施形態における有機ELデバイス製造装置を示す図である。It is a figure which shows the organic EL device manufacturing apparatus in embodiment of this invention. 本発明の実施形態における搬送チャンバと処理チャンバの構成の概要を示す図である。It is a figure which shows the outline | summary of a structure of the conveyance chamber and process chamber in embodiment of this invention. 本発明の実施形態における搬送チャンバと処理チャンバの構成の模式図と動作説明図である。It is the schematic diagram and operation | movement explanatory drawing of a structure of the conveyance chamber and processing chamber in embodiment of this invention. 本発明の実施形態における動作フローを示す図である。It is a figure which shows the operation | movement flow in embodiment of this invention. 本発明の実施形態における基板受取状態での基板保持機構を示す図である。It is a figure which shows the board | substrate holding | maintenance mechanism in the board | substrate receiving state in embodiment of this invention. 本発明の実施形態における基板保持状態での基板保持機構を示す図である。It is a figure which shows the board | substrate holding | maintenance mechanism in the board | substrate holding state in embodiment of this invention. 本発明の実施形態における基板旋回手段及び基板密着手段を示す図である。It is a figure which shows the board | substrate turning means and board | substrate contact | adherence means in embodiment of this invention. 本発明の実施形態におけるアライメント部の構成を示す図である。It is a figure which shows the structure of the alignment part in embodiment of this invention. 本発明の実施形態における基板マスク固定手段の実施例を示す図で、図7に前記実施例を加えた図である。It is a figure which shows the Example of the substrate mask fixing means in embodiment of this invention, and is the figure which added the said Example to FIG.

本発明の実施形態を、図1から図9を用いて説明する。有機ELデバイス製造装置は、単に発光材料層(EL層)を形成し電極で挟むだけの構造ではなく、陽極の上に正孔注入層や輸送層、陰極の上に電子注入層や輸送層を形成するなど、様々な材料が薄膜としてなる多層構造を形成したり、基板を洗浄したりする。図1は、その製造装置の一例を示した水平断面図である。   An embodiment of the present invention will be described with reference to FIGS. Organic EL device manufacturing equipment is not simply a structure in which a light emitting material layer (EL layer) is formed and sandwiched between electrodes, but a hole injection layer or transport layer on the anode, and an electron injection layer or transport layer on the cathode. like form, or a multilayer structure in which various materials are made as a thin film, or washing the substrate. FIG. 1 is a horizontal sectional view showing an example of the manufacturing apparatus.

本実施形態における有機ELデバイス製造装置100は、大別して処理対象の基板6(以下、単に基板ともいう)を搬入するロードクラスタ3、前記基板6を処理する4つのクラスタ(A〜D)、各クラスタ間又はクラスタとロードクラスタ3あるいは次工程(封止工程)との間に設置された5つの受渡室4(4a〜4e)から構成されている。本実施形態の有機ELデバイス製造装置100では、基板の蒸着面を上面にして搬送し、蒸着するときに基板を立てて蒸着する。   The organic EL device manufacturing apparatus 100 according to the present embodiment is roughly divided into a load cluster 3 that carries a substrate 6 to be processed (hereinafter also simply referred to as a substrate), four clusters (A to D) that process the substrate 6, It is comprised from the five delivery chambers 4 (4a-4e) installed between the clusters or between the cluster and the load cluster 3, or the next process (sealing process). In the organic EL device manufacturing apparatus 100 according to the present embodiment, the substrate is transported with the deposition surface of the substrate as an upper surface, and the substrate is deposited while being deposited when the deposition is performed.

ロードクラスタ3は、前後に真空を維持するためにゲート弁10を有するロードロック室31と、前記ロードロック室31から基板6を受取り、旋回して受渡室4aに基板を搬入する搬送ロボット5Rからなる。各ロードロック室31及び各受渡室4は、前後にゲート弁10を有し、当該ゲート弁10の開閉を制御し真空を維持しながら、ロードクラスタ3あるいは次のクラスタ等へ基板を受渡する。   The load cluster 3 includes a load lock chamber 31 having a gate valve 10 for maintaining a vacuum in the front and rear directions, and a transfer robot 5R that receives the substrate 6 from the load lock chamber 31 and turns to carry the substrate into the delivery chamber 4a. Become. Each load lock chamber 31 and each delivery chamber 4 have gate valves 10 at the front and rear, and deliver the substrate to the load cluster 3 or the next cluster while controlling the opening and closing of the gate valve 10 and maintaining a vacuum.

各クラスタ(A〜D)は、それぞれ、一台の搬送ロボット5を有する搬送チャンバ2と、搬送ロボット5から基板を受取り、所定の処理をする図面上で上下に配置された2つの処理チャンバ1(第1の添え字a〜dはクラスタを示し、第2の添え字u、dは上側下側を示す)を有する。搬送チャンバ2と処理チャンバ1の間には、ゲート弁10が設けてある。   Each of the clusters (A to D) includes a transfer chamber 2 having a single transfer robot 5 and two processing chambers 1 arranged vertically on the drawing that receives a substrate from the transfer robot 5 and performs a predetermined process. (First subscripts a to d indicate clusters, and second subscripts u and d indicate upper and lower sides). A gate valve 10 is provided between the transfer chamber 2 and the processing chamber 1.

図2は、搬送チャンバ2と処理チャンバ1の構成の概要を示す斜視図である。処理チャンバ1の構成は処理内容によって異なるが、真空で蒸着材料である発光材料を蒸着しEL層を形成する真空蒸着チャンバ1buを例にとって説明する。図3は、搬送チャンバ2bと真空蒸着チャンバ1buの構成の模式図と動作説明図である。図2における搬送ロボット5は、全体を上下に移動可能(図3の矢印59参照)で、左右に旋回可能な3リンク構造のアーム57を有し、その先端には基板搬送用の櫛歯状ハンド58を上下二段に2本有する。
1本ハンドの場合は、基板を次の工程に渡すための回転動作、前の工程から基板を受取るための回転動作、及びこれに付随するゲート弁の開閉動作が搬入出処理の間に必要だが、上下二段にすることによって、片方のハンドに搬入する基板を持たせ、基板を保持していない方のハンドで真空蒸着チャンバから基板の搬出動作をさせた後、連続して搬入動作を行なうことができる。2本ハンドにするか1本ハンドにするかは要求される生産能力によって決める。以後の説明では、説明を簡単にするために1本ハンドで説明する。
FIG. 2 is a perspective view showing an outline of the configuration of the transfer chamber 2 and the processing chamber 1. Although the configuration of the processing chamber 1 varies depending on the content of processing, a vacuum deposition chamber 1bu that deposits a light emitting material as a deposition material in vacuum to form an EL layer will be described as an example. FIG. 3 is a schematic diagram and an operation explanatory diagram of the configuration of the transfer chamber 2b and the vacuum deposition chamber 1bu. The transfer robot 5 in FIG. 2 has a three-link structure arm 57 that can move up and down as a whole (see arrow 59 in FIG. 3) and can turn left and right. Two hands 58 are provided in two upper and lower stages.
In the case of a single hand, a rotation operation for transferring the substrate to the next process, a rotation operation for receiving the substrate from the previous process, and an accompanying gate valve opening / closing operation are necessary during the loading / unloading process. By making the upper and lower two stages, the substrate to be carried into one hand is held, the substrate is carried out from the vacuum deposition chamber with the other hand not holding the substrate, and then the carrying-in operation is continuously performed. be able to. Whether to use two hands or one hand depends on the required production capacity. In the following description, a single hand is used for the sake of simplicity.

一方、真空蒸着チャンバ1buは、大別して、発光材料を昇華させ基板6に蒸着させる蒸着部7と、基板6の必要な部分に蒸着させるために基板6とシャドウマスク81の位置合せを行うアライメント部8と、及び搬送ロボット5と基板6の受渡しを行い、蒸着部7へ基板6を移動させる処理受渡部9からなる。
アライメント部8と処理受渡部9は、右側Rラインと左側Lラインの2系統設ける。本実施形態での処理の基本的な考え方は、一方のライン(例えばRライン)で蒸着している間に、他方のLラインでは基板6を搬出入し、基板6とシャドウマスク81とのアライメントをし、蒸着する準備を完了させることである。この処理を交互に行なうことによって、蒸着材料を基板6に蒸着させずに無駄に昇華している時間を減少させることができる。
On the other hand, the vacuum deposition chamber 1bu is roughly divided into a deposition unit 7 that sublimates the luminescent material and deposits it on the substrate 6, and an alignment unit that aligns the substrate 6 and the shadow mask 81 in order to deposit on a necessary part of the substrate 6. 8 and a processing delivery part 9 that delivers the transfer robot 5 and the substrate 6 and moves the substrate 6 to the vapor deposition part 7.
The alignment unit 8 and the processing delivery unit 9 are provided in two systems, a right R line and a left L line. The basic concept of processing in the present embodiment is that while the vapor deposition is performed on one line (for example, the R line), the substrate 6 is carried in and out on the other L line, and the alignment between the substrate 6 and the shadow mask 81 is performed. And complete the preparation for vapor deposition. By alternately performing this process, the time during which the vapor deposition material is sublimated without vapor deposition on the substrate 6 can be reduced.

本実施形態では、図4に示すように、まず、(1)基板6を処理受渡部9に搬入し、基板ホルダー91に固定する。この固定方法については後述する。その後、(2)前記基板をほぼ垂直に立て、次に、(3)基板6をシャドウマスク81から一定の距離、例えば0.5mm離れた位置まで接近させ、(4)その状態でアライメントを行なう。アライメント終了後、(5)基板サイズが大きくても、基板6とシャドウマスク81の間の隙間が数十μm以下になるように、基板6とシャドウマスク81を密着させ、(6)磁石により基板6とシャドウマスク81を吸着固定し、(7)蒸着材料を基板6に蒸着する。蒸着終了後は、(8)磁石による基板6とシャドウマスク81の固定を解除し、(9)基板6をシャドウマスク81から一定の距離を離し、(10)基板6を水平にし、(11)基板6を処理受渡部9から搬出する。   In the present embodiment, as shown in FIG. 4, first, (1) the substrate 6 is carried into the processing delivery unit 9 and fixed to the substrate holder 91. This fixing method will be described later. After that, (2) the substrate is set almost vertically, then (3) the substrate 6 is brought close to the shadow mask 81 to a position, for example, 0.5 mm away, and (4) alignment is performed in that state. . After the alignment, (5) even if the substrate size is large, the substrate 6 and the shadow mask 81 are brought into close contact so that the gap between the substrate 6 and the shadow mask 81 is several tens of μm or less. 6 and the shadow mask 81 is sucked and fixed, depositing (7) vapor deposition material on the substrate 6. After the deposition, (8) the substrate 6 and the shadow mask 81 are unfixed by the magnet, (9) the substrate 6 is separated from the shadow mask 81 by a certain distance, (10) the substrate 6 is leveled, and (11) The substrate 6 is unloaded from the processing delivery unit 9.

次に、上記本実施形態のステップである(1)〜(10)ステップを実現する構成及び動作を順に説明する。
まず、(1)ステップを実現する構成及び動作を、図5と図6を用いて説明する。図5は、本発明の実施形態における基板受取状態での基板保持機構を示す図であり、真空処理室外に設けられた基板搬送機である搬送ロボット5から、基板6を、円柱状の基板受けピン66が受取った状態である。図5において、基板受けピン66は、基板6を支えるよう3本以上設けられ、基板ホルダー91に設けられた貫通穴91aを垂直方向に貫き、真空処理室内の固定ベース69に垂直方向に立設して固定されている。基板ホルダー91の端は、垂直方向に延びる垂直端部91bと接続され、垂直端部91bの下部には、水平方向に延びる水平端部91cが接続されている。垂直端部91bと水平端部91cから、基板ホルダー端部が構成される。水平端部91cには、基板ホルダーサポート91eを介して、基板ホルダー昇降機構68が接続されている。基板ホルダー昇降機構68は、固定された基板受けピン66に対し、基板ホルダー91を昇降させるものである。
Next, the structure and operation | movement which implement | achieve (1)-(10) steps which are the steps of the said embodiment are demonstrated in order.
First, the configuration and operation for realizing the (1) step will be described with reference to FIGS. FIG. 5 is a diagram showing a substrate holding mechanism in a substrate receiving state according to an embodiment of the present invention. A substrate 6 is received from a transfer robot 5 which is a substrate transfer machine provided outside the vacuum processing chamber. The pin 66 has been received. In FIG. 5, three or more substrate receiving pins 66 are provided to support the substrate 6, penetrate the through hole 91 a provided in the substrate holder 91 in the vertical direction, and stand upright on the fixed base 69 in the vacuum processing chamber. And fixed. An end of the substrate holder 91 is connected to a vertical end 91b extending in the vertical direction, and a horizontal end 91c extending in the horizontal direction is connected to a lower portion of the vertical end 91b. A substrate holder end portion is constituted by the vertical end portion 91b and the horizontal end portion 91c. A substrate holder lifting mechanism 68 is connected to the horizontal end portion 91c through a substrate holder support 91e. The substrate holder raising / lowering mechanism 68 is for raising and lowering the substrate holder 91 with respect to the fixed substrate receiving pins 66.

水平端部91cには、貫通穴91dが設けられている。この貫通穴91dを貫通して、円柱状のクランプ開閉ピン67が、固定ベース69に垂直方向に立設して固定されている。クランプ開閉ピン67は、基板6を後述する基板保持機構から解放するためのものである。垂直端部91bには、固定金具65が取付けられ、固定金具65に、略「く」の字型のクランプ支持金具62が、水平方向の第1の軸62cを中心にして、矢印Dのように回転動作するように設けられている。クランプ支持金具62は、巻きバネ63により、図5において左回転方向に付勢されている。   A through hole 91d is provided in the horizontal end 91c. A cylindrical clamp opening / closing pin 67 is erected and fixed vertically to the fixed base 69 through the through hole 91d. Clamp driving pin 67 is intended to release from the substrate holding mechanism to be described later of the substrate 6. A fixing bracket 65 is attached to the vertical end 91b, and a substantially “<”-shaped clamp support fitting 62 is attached to the fixing bracket 65 as shown by an arrow D about the first axis 62c in the horizontal direction. It is provided to rotate. Clamp support bracket 62, the coil spring 63 is biased in the left rotation direction in FIG.

クランプ支持金具62は、第1の軸62cから延伸する第1の腕62aと第2の腕62bを有し、第1の腕62aの端には基板クランプ61の一端が固定され、第2の腕62bの端には、回転部64が設けられている。回転部64は、水平方向の第2の軸64cを中心にして回転動作可能である。回転部64には、巻きバネ63により、略下方向の力が働いており、クランプ開閉ピン67の上部先端で、回転部64を受け止めている。
かくして、第1の軸62cと前記2つの腕62a、62bの端を結ぶ直線が3角形を形成する形状となっている。このように図5においては、第2の腕62bの回転部64がクランプ開閉ピン67の上部先端に押され、第1の腕62aと第2の腕62bを結ぶ直線が略水平の状態になり、基板クランプ61が略垂直の状態になる。したがって、基板6を基板受けピン66で受取ってから、基板ホルダー91上に載置するまでの間、基板クランプ61が妨げとなることがない。
The clamp support fitting 62 has a first arm 62a and a second arm 62b extending from the first shaft 62c. One end of the substrate clamp 61 is fixed to the end of the first arm 62a, and the second arm 62a is fixed to the second arm 62a. A rotating portion 64 is provided at the end of the arm 62b. The rotating unit 64 can rotate around the second axis 64c in the horizontal direction. A substantially downward force is applied to the rotating portion 64 by the winding spring 63, and the rotating portion 64 is received by the upper end of the clamp opening / closing pin 67.
Thus, a straight line connecting the first shaft 62c and the ends of the two arms 62a and 62b has a shape forming a triangle. In this way, in FIG. 5, the rotating portion 64 of the second arm 62b is pushed by the upper end of the clamp opening / closing pin 67, and the straight line connecting the first arm 62a and the second arm 62b becomes substantially horizontal. The substrate clamp 61 is in a substantially vertical state. Therefore, the substrate clamp 61 is not hindered after the substrate 6 is received by the substrate receiving pins 66 until it is placed on the substrate holder 91.

基板クランプ61は、弾性を有する金属製の板であり、その一端が、クランプ支持金具62の第1の腕62aの端に固定され、他端が、基板ホルダー91に載置された基板6を押圧する(後述の図6参照)。   The substrate clamp 61 is a metal plate having elasticity, one end of which is fixed to the end of the first arm 62 a of the clamp support fitting 62, and the other end of the substrate 6 placed on the substrate holder 91. Press (see FIG. 6 described later).

このように、基板ホルダー91の端部には、基板6を基板ホルダー91に保持するための基板保持機構として、基板6を基板ホルダー91に押圧する板状の基板クランプ61と、基板クランプ61を支持するクランプ支持金具62と、基板クランプ61が基板6を基板ホルダー91に押圧するように付勢するバネ63が設けられている。   As described above, at the end of the substrate holder 91, as a substrate holding mechanism for holding the substrate 6 on the substrate holder 91, a plate-like substrate clamp 61 that presses the substrate 6 against the substrate holder 91 and the substrate clamp 61 are provided. A clamp support fitting 62 to be supported and a spring 63 for biasing the substrate clamp 61 so as to press the substrate 6 against the substrate holder 91 are provided.

次に、搬送ロボット5から基板6を基板受けピン66で受取った後、基板6が、基板ホルダー91上に載置されるまでの状態について説明する。図6は、本発明の実施形態における基板保持状態での基板保持機構を示す図であり、基板6が、基板ホルダー91上に載置され、板状の基板クランプ61により、基板ホルダー91の上面に押圧されている。
図6においては、基板ホルダー91が、基板ホルダー昇降機構68により上昇され、基板受けピン66の上部先端が、基板ホルダー91の上面よりも低くなっている。これにより、基板6が、基板受けピン66の上部先端から離れ、基板ホルダー91上に載置される。
Next, a state until the substrate 6 is placed on the substrate holder 91 after the substrate 6 is received from the transfer robot 5 by the substrate receiving pins 66 will be described. FIG. 6 is a diagram showing a substrate holding mechanism in the substrate holding state in the embodiment of the present invention. The substrate 6 is placed on the substrate holder 91, and the upper surface of the substrate holder 91 is secured by the plate-like substrate clamp 61. Is pressed.
In FIG. 6, the substrate holder 91 is raised by the substrate holder lifting mechanism 68, and the upper end of the substrate receiving pin 66 is lower than the upper surface of the substrate holder 91. As a result, the substrate 6 is separated from the top end of the substrate receiving pin 66 and placed on the substrate holder 91.

また、基板ホルダー91が上昇したことにより、クランプ開閉ピン67の上部先端が、水平端部91cの上面近くに位置し、クランプ開閉ピン67の上部先端と回転部64が離間している。このとき、回転部64には、巻きバネ63により、略下方向の力が働いている。このように図6においては、巻きバネ63のバネ力により、第1の腕62aと第2の腕62bを結ぶ直線が、略垂直の状態になり、基板クランプ61が略水平の状態になり、基板クランプ61が基板6を基板ホルダー91に押圧する状態になる。
図5から図6の状態に移る際に、回転部64とクランプ開閉ピン67の位置が水平方向にずれるが、回転部64が、クランプ開閉ピン67の上を回転しながら移動するので、粉塵等の発生を抑制することができる。
Further, the upper end of the clamp opening / closing pin 67 is positioned near the upper surface of the horizontal end portion 91c, and the upper end of the clamping opening / closing pin 67 and the rotating portion 64 are spaced apart by raising the substrate holder 91. At this time, a substantially downward force is applied to the rotating portion 64 by the winding spring 63. Thus, in FIG. 6, the straight line connecting the first arm 62a and the second arm 62b is in a substantially vertical state due to the spring force of the winding spring 63, and the substrate clamp 61 is in a substantially horizontal state. The substrate clamp 61 presses the substrate 6 against the substrate holder 91.
When moving from the state shown in FIG. 5 to FIG. 6, the position of the rotating unit 64 and the clamp opening / closing pin 67 is shifted in the horizontal direction. Can be suppressed.

次に、図7を用いて、(2)(10)を実現する基板旋回手段92を説明する。図7は、上記ステップのうち、(2)(10)を実現する基板旋回手段92、及び(3)(5)(9)を実現する基板密着手段93を有する処理受渡部9(図3参照) を示したもので、しかも、配線の被覆材からのアウトガスの問題を解消する真空内配線リンク機構の適用を示した図である。
基板旋回手段92は、処理受渡部9に搬入された基板を載置し保持する基板ホルダー91及び基板6を一体として、アライメント実施前にほぼ垂直に立て、アライメント終了後は水平状態に戻す機能を有する。
Next, the substrate turning means 92 for realizing (2) and (10) will be described with reference to FIG. FIG. 7 shows the processing delivery section 9 (see FIG. 3) having the substrate turning means 92 for realizing (2) and (10) and the substrate contact means 93 for realizing (3), (5) and (9). In addition, this is a diagram showing the application of the in-vacuum wiring link mechanism that solves the problem of outgas from the coating material of the wiring.
The substrate turning means 92 has a function of bringing the substrate holder 91 and the substrate 6 on which the substrate carried into the processing delivery section 9 is placed and held together into an integrated state, standing substantially vertically before alignment, and returning to a horizontal state after the alignment is completed. Have.

図7において、基板旋回手段92は、大別して、旋回対象である基板6及び基板ホルダー91などの旋回部を旋回させる真空内配線リンク機構92Lと、前記旋回部を矢印Aの方向に前記機構を介して旋回駆動する旋回駆動部92Bとからなる。
真空内配線リンク機構92Lは、第1リンク92L1と第2リンク92L2、及びそれらを真空側から隔離し、その内部を大気雰囲気にするシール部92Sからなる。前記第1リンク92L1は、一端を回転支持台92kに支持され、他端を大気連通部94Hに、中空部を持つように接続されている。前記第2リンク92L2は、大気連通部94Hに対し前記第1リンク92L1との反対側に設けられ、一端を第1リンク92L1同様、中空部を持つように大気連通部94Hに、他端を図1に示す仕切り部11に設けられた支持部11Aに接続されている。
In FIG. 7, the substrate turning means 92 is roughly divided into an in-vacuum wiring link mechanism 92L for turning a turning portion such as the substrate 6 and the substrate holder 91 to be turned, and the turning portion in the direction of arrow A. And a turning drive unit 92B that is driven to turn.
The in-vacuum wiring link mechanism 92L includes a first link 92L1 and a second link 92L2, and a seal portion 92S that isolates them from the vacuum side and places the inside in an air atmosphere. One end of the first link 92L1 is supported by the rotation support base 92k, and the other end is connected to the atmosphere communication portion 94H so as to have a hollow portion. The second link 92L2 is provided on the side opposite to the first link 92L1 with respect to the atmosphere communication portion 94H, and one end is connected to the atmosphere communication portion 94H so as to have a hollow portion as in the case of the first link 92L1, and the other end is illustrated. 1 is connected to a support portion 11A provided in the partition portion 11 shown in FIG.

前記シール部92Sは、一端を大気連通部94Hの接続部に、他端を真空蒸着チャンバ1buの側壁に接続された第1シール部92S1と、一端を大気連通部94Hの接続部に、他端を支持部11Aに接続された第2シール部92S2からなる。それぞれのシール部92S1、92S2は、それぞれの両端を繋ぐベローズ92V1、92V2を有しており、また、それぞれのシール部92S1、92S2の大気連通部94H側の接続部は、第1リンク92L1と第2リンク92L2を回転可能に支持している。
上記実施形態では、配線94fをリンク内に敷設するためにリンク内を中空にしたが、シール部92Sはそれぞれのリンクを包含するように構成しているので、リンクと真空シール部の間に配線を敷設してもよい。この場合、リンクは必ずしも中空にする必要はない。
The seal portion 92S has one end connected to the atmosphere communication portion 94H and the other end connected to the side wall of the vacuum deposition chamber 1bu, and one end connected to the atmosphere communication portion 94H and the other end. The second seal portion 92S2 is connected to the support portion 11A. Each of the seal portions 92S1 and 92S2 has bellows 92V1 and 92V2 connecting the both ends, and the connection portion on the atmosphere communication portion 94H side of each of the seal portions 92S1 and 92S2 is connected to the first link 92L1. The two links 92L2 are rotatably supported.
In the above embodiment, the inside of the link is made hollow in order to lay the wiring 94f in the link. However, since the seal portion 92S is configured to include each link, the wiring is provided between the link and the vacuum seal portion. May be laid. In this case, the link does not necessarily have to be hollow.

一方、旋回駆動部92Bは、大気側に設けられた旋回用モータ92mと、旋回用モータ92mの旋回運動を前記第1リンク92L1に伝達する歯車92h1、92h2と、第1リンクL1の一端を支持する回転支持台92kとを有する。なお、旋回用モータ92mは大気側に設けられた制御装置60で制御される。   On the other hand, the turning drive unit 92B supports a turning motor 92m provided on the atmosphere side, gears 92h1 and 92h2 that transmit the turning motion of the turning motor 92m to the first link 92L1, and one end of the first link L1. Rotating support base 92k. Incidentally, the rotation motor 92m is controlled by the control unit 60 provided on the atmosphere side.

なお、図7は、真空蒸着チャンバ1buのRラインを示しており、図1に示す仕切り部11を面対象中心として、真空蒸着チャンバ1buのLラインにも同一構造が配置される。従って、Rラインの第1リンク92L1、大気連通部94H、第2リンク92L2、及びLラインの第1リンク92L1、大気連通部94H、第2リンク92L2の各中空部は、仕切り部11に設けられた支持部11Aを介して、大気で繋がっている構造となる。第2リンク92L2は必ずしも中空である必要はないが、後述するように第2リンク92L2は、仕切り部11の中空部で図7に示すB方向に移動する必要があるので、移動部で粉塵が出る可能性があり、支持部11Aの中空部に繋げて、大気に繋がる構造とした。   FIG. 7 shows the R line of the vacuum deposition chamber 1bu, and the same structure is also arranged in the L line of the vacuum deposition chamber 1bu with the partition portion 11 shown in FIG. Accordingly, the first link 92L1 of the R line, the atmospheric communication portion 94H, the second link 92L2, and the hollow portions of the first link 92L1, the atmospheric communication portion 94H, and the second link 92L2 of the L line are provided in the partition portion 11. It becomes the structure connected with the atmosphere through the support part 11A. The second link 92L2 does not necessarily have to be hollow, but as described later, the second link 92L2 needs to move in the direction B shown in FIG. There is a possibility of coming out, and it is connected to the hollow part of the support part 11A, and the structure is connected to the atmosphere.

以上、本実施形態による基板旋回手段92を用いると、基板蒸着面を上面にして搬送しているので、基板6を立てればそのまま前述したアライメントができる。   As described above, when the substrate turning means 92 according to the present embodiment is used, the substrate is transported with the substrate vapor deposition surface as the upper surface.

次に、ステップ(4)のアライメントを達成する構成と動作を、図8を用いて説明する。図8に、本実施形態によるアライメント部8を示す。本実施形態では、図8に示すように、基板6とシャドウマスク81を概ね垂直に立てて、アライメントを行なう。アライメント部8は、シャドウマスク81、シャドウマスク81を固定するアライメントベース82、アライメントベース82を保持し、アライメントベース82即ちシャドウマスク81のXZ平面での姿勢を規定するアライメント駆動部83、アライメントベース82を下から支持し、アライメント駆動部83の動きに協調してシャドウマスク81の姿勢を規定するアライメント従動部84、基板6と前記シャドウマスク81に設けられたアライメントマークを検出する4箇所に設けられたアライメント光学系85、アライメントマークの映像を処理し、アライメント量を求めアライメント駆動部83を制御する制御装置60(図7参照)からなる。   Next, the configuration and operation to achieve the alignment of step (4) will be described with reference to FIG. FIG. 8 shows the alignment unit 8 according to the present embodiment. In this embodiment, as shown in FIG. 8, alignment is performed with the substrate 6 and the shadow mask 81 standing substantially vertically. The alignment unit 8 holds a shadow mask 81, an alignment base 82 that fixes the shadow mask 81, and an alignment base 82, and an alignment driving unit 83 that defines the orientation of the alignment base 82, that is, the shadow mask 81 in the XZ plane, and an alignment base 82. Are provided at four locations for detecting the alignment mark provided on the substrate 6 and the shadow mask 81. The alignment follower 84 defines the posture of the shadow mask 81 in cooperation with the movement of the alignment driving unit 83. The alignment optical system 85 includes a control device 60 (see FIG. 7) that processes the image of the alignment mark, obtains an alignment amount, and controls the alignment driving unit 83.

このような、構成を用いて次のようにアライメントを行なう。アライメントベース82は、その四隅近くであって、上部に2ヶ所81a、81b、その2ヶ所のそれぞれの下に設けられた81c、81dの計4ヶ所の回転支持部により回転可能に支持されている。
前記4箇所に設けられたアライメント光学系85により、基板6とシャドウマスク81の位置ズレ(ΔX、ΔY、θ)を検出する。θは、図8のXZ面における傾きである。この結果に基づいて、アライメントベース82上部に設けた回転支持部81aを図8に示すX方向、Z方向に、同じく上部に設けた回転支持部81bをZ方向に移動させて、前記位置ズレを解消し、アライメントする。このとき、アライメントベース82の上記移動にともない、回転支持部81bはX方向に、アライメントベース82下部に設けた回転支持部81c、81dはX及びZ方向に従動的に移動する。回転支持部81aの駆動は、真空蒸着チャンバ1buの上部壁1T上に設けられた駆動モータを有するアライメント駆動部83L、回転支持部81bの駆動及び受動はアライメント駆動部83R、及び回転支持部81c、81dの従動は真空蒸着チャンバ1buの下部壁1Y下に設けられたアライメント従動部84L、84Rで行なう。
Using such a configuration, alignment is performed as follows. The alignment base 82 is rotatably supported by four rotation support portions in total near the four corners, two locations 81a and 81b at the top, and 81c and 81d provided below each of the two locations. .
The alignment optical system 85 provided at the four locations detects the positional deviation (ΔX, ΔY, θ) between the substrate 6 and the shadow mask 81. θ is the inclination in the XZ plane of FIG. Based on this result, the rotation support portion 81a provided on the upper portion of the alignment base 82 is moved in the X and Z directions shown in FIG. Eliminate and align. At this time, with the above movement of the alignment base 82, the rotation support portion 81b moves in the X direction, and the rotation support portions 81c and 81d provided at the lower portion of the alignment base 82 move in the X and Z directions. The rotation support unit 81a is driven by an alignment drive unit 83L having a drive motor provided on the upper wall 1T of the vacuum deposition chamber 1bu, and the rotation support unit 81b is driven and passively by the alignment drive unit 83R and the rotation support unit 81c. 81d is driven by alignment driven portions 84L and 84R provided under the lower wall 1Y of the vacuum deposition chamber 1bu.

アライメントのための機構部は、シール部を介して大気側に設けられており、真空蒸着に悪影響及ぼす粉塵等を真空内に持ち込まないようしており、また、このことによって保守性も向上できる。さらに、アライメント光学系85についても、カメラ及び光源等を、真空側に突き出た内部が大気中である収納筒に収納し、同様な効果を奏している。   The mechanism for alignment is provided on the atmosphere side through a seal portion so that dust or the like that adversely affects vacuum deposition is not brought into the vacuum, and this also improves maintainability. Further, the alignment optical system 85 also has a similar effect when the camera, the light source, and the like are housed in a housing cylinder that protrudes toward the vacuum side in the atmosphere.

次に、ステップ(3)(5)(9)の基板6とシャドウマスク81を密着させる基板密着手段93の構成及び動作について、図7を用いて説明する。基板密着手段93は、基板旋回手段92を全体的に、矢印B方行に移動させることによって、基板6を、まず、シャドウマスク81まで一定距離のところまで近づけ、その後密着させ、蒸着後は元の位置まで戻す手段である。そのために、基板密着手段93は、基板旋回手段92を載置する旋回駆動部載置台93tと、旋回駆動部載置台93tの走行用のレール93rと、旋回駆動部載置台93tをボールネジ93nを介して駆動する接近用モータ93mを有する。仕切り部11の中空部にも、旋回駆動部載置台93tの動きに従動して、基板旋回手段92の第2リンク92L2をB方向に移動させるレール(図示せず)がある。レールと言っても、その稼動長さは高々2mm位である。このような機構を制御装置60によって制御することで、基板6をシャドウマスク81に密着させることができる。   Next, the configuration and operation of the substrate contact means 93 for contacting the substrate 6 and the shadow mask 81 in steps (3), (5), and (9) will be described with reference to FIG. The substrate contact means 93 moves the substrate turning means 92 in the direction of arrow B as a whole, thereby bringing the substrate 6 first close to the shadow mask 81 to a certain distance, and then bringing the substrate 6 into close contact with each other. It is a means to return to the position of. For this purpose, the substrate contact means 93 includes a turning drive unit mounting table 93t for mounting the substrate turning unit 92, a traveling rail 93r for the turning drive unit mounting table 93t, and the turning drive unit mounting table 93t via a ball screw 93n. And an approaching motor 93m to be driven. There is also a rail (not shown) that moves the second link 92L2 of the substrate turning means 92 in the B direction in accordance with the movement of the turning drive portion mounting table 93t in the hollow portion of the partition portion 11 as well. Even if it says a rail, the operating length is about 2 mm at most. By controlling such a mechanism with the control device 60, the substrate 6 can be brought into close contact with the shadow mask 81.

上記実施形態によれば、基板6とシャドウマスク81が接触しない距離、例えば0.5mm前後を保ちながらアライメントでき、その後、基板6をシャドウマスク81に密着させることで、蒸着におけるボケを低減でき、高精度の蒸着が可能となる。   According to the above embodiment, alignment can be performed while maintaining a distance at which the substrate 6 and the shadow mask 81 do not contact, for example, around 0.5 mm, and then the substrate 6 is brought into close contact with the shadow mask 81, thereby reducing blur in vapor deposition, High-precision deposition is possible.

また、図7に示した実施形態においては、大気連通部94H内部は、基板旋回手段92のところで説明したように、第1リンク92L1を介して大気側に開放されている。その結果、押圧に伴うモータ等の粉塵は、大気に排出され、真空蒸着に悪影響を与えることはない。また、モータへの駆動線及びセンサ部からの信号線94fを、大気連通部94Hと第1リンク92L1を介して制御装置60に接続している真空内配線機構を実現しているので、配線の被覆材からのアウトガスによる真空度低下の問題の発生もない。さらに、前記大気連通部94Hや前記リンクを錆に強く十分な強度を持つ金属、例えばステンレス、アルミニウムで構成しているので、アウトガスの発生もない。
従って、上記実施形態によれば、高真空を保持でき、信頼性の高い蒸着処理をすることができる。
In the embodiment shown in FIG. 7, the atmosphere communication portion 94H is opened to the atmosphere via the first link 92L1 as described in the substrate turning means 92. As a result, the dust from the motor and the like accompanying the pressing is discharged to the atmosphere and does not adversely affect vacuum deposition. In addition, since the in-vacuum wiring mechanism is realized in which the drive line to the motor and the signal line 94f from the sensor unit are connected to the control device 60 via the atmosphere communication unit 94H and the first link 92L1, There is no problem of lowering the degree of vacuum due to outgas from the coating material. Further, since the atmosphere communicating portion 94H and the link are made of a metal that is strong against rust and has sufficient strength, such as stainless steel and aluminum, no outgas is generated.
Therefore, according to the said embodiment, a high vacuum can be hold | maintained and a highly reliable vapor deposition process can be performed.

次に、ステップ(6)(8)、即ち蒸着時に基板6とシャドウマスク81とを固定し、安定して蒸着できるようにし、蒸着終了後にその固定を解除する基板マスク固定手段20の本実施形態における実施例を、図9を用いて説明する。図9は、図7に基板マスク固定手段20を付加した図である。図面の複雑さを考慮し、説明に直接関係ない符号を省略している。
本実施形態における基板マスク固定手段20は、基板6とシャドウマスク81を吸着固定する永久磁石21Jを保持する基板マスク吸着体21と、前記基板マスク吸着体21を処理受渡部9の上部から矢印Cのように旋回し、前記基板マスク吸着体21を基板ホルダー91の位置まで移動させる吸着体移動手段である吸着体旋回手段22とからなる。
Next, this embodiment of the substrate mask fixing means 20 for fixing the substrate 6 and the shadow mask 81 at the time of vapor deposition (steps 6 and 8), enabling stable vapor deposition, and releasing the fixation after vapor deposition is completed. An embodiment will be described with reference to FIG. FIG. 9 is a view in which a substrate mask fixing means 20 is added to FIG. In consideration of the complexity of the drawings, reference numerals not directly related to the description are omitted.
The substrate mask fixing means 20 in the present embodiment includes a substrate mask adsorbing body 21 that holds a permanent magnet 21J that adsorbs and fixes the substrate 6 and the shadow mask 81, and the substrate mask adsorbing body 21 from the upper part of the processing delivery unit 9 by an arrow C. And the adsorbent rotating means 22 which is an adsorbent moving means for moving the substrate mask adsorbing body 21 to the position of the substrate holder 91.

前記基板マスク吸着体21は、旋回して基板ホルダー91に近づくと、非磁性材料の基板6を挟んで、磁性材料で構成されたシャドウマスク81を吸着し始め、近づくにつれて吸着力を強くし、接触すると吸着固定する。このとき、吸着力が強すぎてシャドウマスク81が変形する場合は、接触させずに、適切な吸着力が得られる位置まで旋回させて吸着固定してもよい。その結果、基板6とシャドウマスク81は一体化し、その一体化した状態で蒸着することで安定して確実に蒸着できる。   When the substrate mask adsorbing body 21 turns and approaches the substrate holder 91, the substrate 6 made of a non-magnetic material is sandwiched between the substrate mask adsorbing body 21 and begins to adsorb the shadow mask 81 made of a magnetic material. When contacted, it is fixed by suction. At this time, if the shadow mask 81 is deformed because the suction force is too strong, the shadow mask 81 may be swung to a position where an appropriate suction force can be obtained without being brought into contact. As a result, the substrate 6 and the shadow mask 81 are integrated, and deposition can be performed stably and reliably by performing deposition in the integrated state.

図9において、吸着体旋回手段22は、大別して、旋回対象である基板マスク吸着体21を旋回させるリンク機構22Lと、前記旋回物を矢印Cの方向に前記機構を介して旋回駆動する吸着体旋回駆動部22Bとからなる。
リンク機構22Lは、第1リンク22L1及び第2リンク22L2と、並びにそれらを真空側から隔離するシール部22Sとからなる。リンク機構22Lの基本的な構成は、基板密着手段93の真空内配線リンク機構92Lと同じであるが、次の点が異なる。
In FIG. 9, the adsorbent rotating means 22 is roughly divided into a link mechanism 22L for rotating the substrate mask adsorbing body 21 to be rotated, and an adsorbent for driving the swirling object to rotate in the direction of arrow C via the mechanism. It comprises a turning drive unit 22B.
The link mechanism 22L includes a first link 22L1 and a second link 22L2, and a seal portion 22S that isolates them from the vacuum side. The basic structure of the link mechanism 22L is the same as that of the in-vacuum wiring link mechanism 92L of the substrate contact means 93, but the following points are different.

第1に、本実施形態では、ステップ(6)は、図4に示す基板密着手段93で基板6をシャドウマスクに密着させるステップ(5)の後に行なうので、基板マスク固定手段20を前後に移動させる必要はない。従って、リンクを前後に移動させるためのベローズは不要となり、シール部22Sも真空蒸着チャンバ1buの側壁に第1シール部22s1を、支持部11Aに第2シール部22s2を、リンク機構22が回転可能に設ければよい。逆に言えば、前記動作フロー(5)の前に行なうのであれば、真空内配線リンク機構92Lと同一構造とし、基板旋回手段92と同様に吸着体旋回手段22全体を前後に移動させることが必要である。   First, in this embodiment, since step (6) is performed after step (5) in which the substrate 6 is brought into close contact with the shadow mask by the substrate contact means 93 shown in FIG. 4, the substrate mask fixing means 20 is moved back and forth. There is no need to let them. Accordingly, the bellows for moving the link back and forth is unnecessary, and the seal portion 22S can rotate the first seal portion 22s1 on the side wall of the vacuum deposition chamber 1bu, the second seal portion 22s2 on the support portion 11A, and the link mechanism 22 can rotate. Should be provided. In other words, if it is performed before the operation flow (5), the same structure as the in-vacuum wiring link mechanism 92L is used, and the entire adsorbent swiveling means 22 is moved back and forth like the substrate swiveling means 92. is necessary.

第2に、真空内配線リンク機構92Lのリンクは配線をするために中空であったが、リンク機構22Lでは配線がないので必ずしも中空である必要はない。
また、第2リンク22L2の支持部11A内の回転支持体(図示せず)において、仮に粉塵が発生しても、真空内配線リンク機構92Lの第2リンクの支持体と同一空間を有しているので、前記真空内配線リンク機構92Lを介して前記粉塵を大気側に排気することが可能である。
Second, the link of the in-vacuum wiring link mechanism 92L is hollow for wiring, but the link mechanism 22L does not necessarily have to be hollow because there is no wiring.
Further, even if dust is generated in the rotation support body (not shown) in the support portion 11A of the second link 22L2, it has the same space as the support body of the second link of the in-vacuum wiring link mechanism 92L. Therefore, the dust can be exhausted to the atmosphere side via the in-vacuum wiring link mechanism 92L.

一方、吸着体旋回駆動部22Bは、前述した旋回駆動部92Bとパワー的な規模は異なるものの、基本的には旋回駆動部92Bと同一の構造を有している。従って、基板旋回手段92における符号番号を92から22に置換えることができるので、ここでは説明を省略する。なお、基板マスク吸着体21の待機位置は、基板旋回手段92の旋回が支障とならないよう、基板旋回手段92の旋回領域の上部に設けるとよい。   On the other hand, the adsorbent turning drive unit 22B basically has the same structure as the turning drive unit 92B, although the scale of power is different from that of the turning drive unit 92B described above. Therefore, the reference number in the substrate turning means 92 can be replaced with 92 to 22, and the description is omitted here. The standby position of the substrate mask adsorbing body 21 is preferably provided above the turning area of the substrate turning means 92 so that the turning of the substrate turning means 92 is not hindered.

基板マスク固定手段20の本実施形態によれば、基板マスク吸着体21を処理受渡部9と分離した、あるいは別体の独立した構造とすることができるので、基板マスク吸着体21あるいは処理受渡部9の構成機構を、故障等により交換する必要が生じても、基板マスク吸着体21については、処理受渡部9に関係なく、基板マスク吸着体21のみを交換すればよく、処理受渡部9については、基板マスク吸着体21に関係なく、処理受渡部9のみを交換すればよい。さらに、特に処理受渡部9について言えば、その構造が簡素化し保守し易くなる。従って、保守性の高い基板マスク吸着体あるいは処理受渡部を提供できる。   According to the present embodiment of the substrate mask fixing means 20, the substrate mask adsorbing body 21 can be separated from the processing delivery section 9 or can be formed as a separate and independent structure. 9, even if it is necessary to replace the configuration mechanism 9 due to a failure or the like, the substrate mask adsorption body 21 may be replaced only with respect to the process delivery section 9 regardless of the process delivery section 9. Therefore, it is sufficient to replace only the processing delivery unit 9 regardless of the substrate mask adsorbing body 21. Furthermore, especially As for processing delivery unit 9, the structure tends to simplify maintenance. Therefore, it is possible to provide a substrate mask adsorbing body or a process delivery section with high maintainability.

最後に、ステップ(7)の蒸着処理について、本実施形態における実施例を、図3を用いて説明する。蒸着部7は、図3に示すように、蒸着源71をレール76上に沿って上下方向に移動させる上下駆動手段72、蒸着源71をレール75上に沿って左右のアライメント部間移動する左右駆動ベース74を有する。蒸着源71は、内部に蒸着材料である発光材料を有し、前記蒸着材料を加熱制御(図示せず)することによって安定した蒸発速度が得られ、図3の引出し図に示すように、ライン状に並んだ複数の噴射ノズルから噴射73される構造となっている。必要により、安定した蒸着が得られるように添加剤も同時に加熱して蒸着する。   Finally, the deposition process of step (7), an example of the present embodiment will be described with reference to FIG. As shown in FIG. 3, the vapor deposition section 7 includes a vertical driving means 72 that moves the vapor deposition source 71 in the vertical direction along the rail 76, and a left and right movement that moves the vapor deposition source 71 between the left and right alignment sections along the rail 75. A drive base 74 is provided. The vapor deposition source 71 has a light emitting material that is a vapor deposition material inside, and a stable evaporation rate can be obtained by heating control (not shown) of the vapor deposition material. As shown in the drawing of FIG. It has the structure where it injects 73 from the some injection nozzle arranged in a line. Required by also deposited simultaneously heated additives as stable deposition can be obtained.

なお、上記説明では有機ELデバイスを例に説明したが、有機ELデバイスと同じ背景にある蒸着処理をする成膜装置にも適用できる。   In the above description, the organic EL device is described as an example. However, the present invention can also be applied to a film forming apparatus that performs vapor deposition processing in the same background as the organic EL device.

1:処理チャンバ、1bu:真空蒸着チャンバ、2:搬送チャンバ、3:ロードクラスタ、6:基板、7:蒸着部、8:アライメント部、9:処理受渡部、11:仕切り部、20:基板マスク固定手段、21:永久磁石を保持する基板マスク吸着体、21J:永久磁石、22:吸着体旋回手段、22B:吸着体旋回駆動部、23:電磁石を保持する基板マスク吸着体、23d:電磁石、23H:23の収納ケース、60:制御装置、61:基板クランプ、62:クランプ支持金具、62a:第1の腕、62b:第2の腕、62c:第1の軸、63:巻きバネ、64:回転部、64c:第2の軸、65:固定金具、66:基板受けピン、67:クランプ開閉ピン、68:基板ホルダー昇降機構、69:固定ベース、71:蒸発源、81:シャドウマスク、81a〜d:回転支持部、82:アライメントベース、83:アライメント駆動部、83Z:Z軸駆動部、83X:X軸駆動部、84:アライメント従動部、85:アライメント光学系、91:基板ホルダー、91a:貫通穴、91b:垂直端部、91c:水平端部、91d:貫通穴、91e:基板ホルダーサポート、92:基板旋回手段、93:基板密着手段、94H:大気連通部、100:有機ELデバイスの製造装置、A〜D:クラスタ。   1: processing chamber, 1bu: vacuum deposition chamber, 2: transfer chamber, 3: load cluster, 6: substrate, 7: deposition unit, 8: alignment unit, 9: processing delivery unit, 11: partition unit, 20: substrate mask Fixing means, 21: Substrate mask adsorption body holding a permanent magnet, 21J: Permanent magnet, 22: Adsorption body turning means, 22B: Adsorption body turning drive unit, 23: Substrate mask adsorption body holding an electromagnet, 23d: Electromagnet, 23H: 23 storage case, 60: control device, 61: substrate clamp, 62: clamp support fitting, 62a: first arm, 62b: second arm, 62c: first shaft, 63: winding spring, 64 : Rotating part, 64c: second shaft, 65: fixing bracket, 66: substrate receiving pin, 67: clamp opening / closing pin, 68: substrate holder lifting mechanism, 69: fixing base, 71: evaporation source, 81: shadow Mask, 81a to d: Rotation support part, 82: Alignment base, 83: Alignment drive part, 83Z: Z axis drive part, 83X: X axis drive part, 84: Alignment driven part, 85: Alignment optical system, 91: Substrate Holder, 91a: Through hole, 91b: Vertical end, 91c: Horizontal end, 91d: Through hole, 91e: Substrate holder support, 92: Substrate swiveling means, 93: Substrate contact means, 94H: Atmospheric communication part, 100: Organic EL device manufacturing apparatus, A to D: clusters.

Claims (3)

真空処理室内に設けられ基板を載置するための基板ホルダーと、
前記真空処理室外に設けられた基板搬送機から基板を受取るための、前記真空処理室内に垂直方向に立設して固定された基板受けピンと、
前記基板受けピンに対し前記基板ホルダーを昇降させる基板ホルダー昇降機構と、
前記基板ホルダーの端部に設けられ、基板を前記基板ホルダーに保持するための基板保持機構と、
基板を前記基板保持機構から解放するための、前記真空処理室内に垂直方向に立設して固定されたクランプ開閉ピンとを備え、
前記基板保持機構は、基板を前記基板ホルダーに押圧する板状の基板クランプと、前記基板クランプを支持するクランプ支持金具と、前記基板クランプが基板を前記基板ホルダーに押圧するように付勢するバネとを有し、
前記クランプ支持金具は、水平方向の第1の軸を中心にして回転動作可能であり、前記第1の軸から延伸する第1の腕と第2の腕を有し、前記第1の腕の端には前記基板クランプの一端が固定され、前記第2の腕の端には、水平方向の第2の軸を中心にして回転動作可能な回転部が設けられ、前記第1の軸と前記2つの腕の端を結ぶ直線が3角形を形成する形状であって、
前記真空処理室外に設けられた基板搬送機から前記基板受けピンが基板を受取る状態では、前記第2の腕の回転部が前記クランプ開閉ピンにより押し上げられて、前記第1の腕と第2の腕を結ぶ直線が略水平の状態かつ前記基板クランプが略垂直の状態になり、前記受取った基板を前記基板ホルダーに載置した状態では、前記第1の腕と第2の腕を結ぶ直線が略垂直の状態かつ前記基板クランプが略水平の状態になり、前記基板クランプが基板を前記基板ホルダーに押圧する状態になることを特徴とする有機ELデバイス製造装置。
A substrate holder provided in the vacuum processing chamber for mounting the substrate;
A substrate receiving pin fixed in an upright direction in the vacuum processing chamber for receiving a substrate from a substrate transfer machine provided outside the vacuum processing chamber;
A substrate holder elevating mechanism for elevating the substrate holder relative to the substrate receiving pin;
A substrate holding mechanism provided at an end of the substrate holder for holding the substrate on the substrate holder;
A clamp opening / closing pin fixed in an upright direction in the vacuum processing chamber for releasing the substrate from the substrate holding mechanism;
The substrate holding mechanism includes a plate-like substrate clamp that presses the substrate against the substrate holder, a clamp support fitting that supports the substrate clamp, and a spring that biases the substrate clamp so as to press the substrate against the substrate holder. And
The clamp support bracket is rotatable around a first axis in the horizontal direction, and has a first arm and a second arm extending from the first axis. One end of the substrate clamp is fixed to the end, and a rotation part capable of rotating around a second axis in the horizontal direction is provided at the end of the second arm, and the first axis and the A straight line connecting the ends of two arms forms a triangle,
In a state where the substrate receiving pin receives a substrate from a substrate transfer machine provided outside the vacuum processing chamber, the rotating portion of the second arm is pushed up by the clamp opening / closing pin, and the first arm and the second arm When the straight line connecting the arms is in a substantially horizontal state and the substrate clamp is in a substantially vertical state, and the received substrate is placed on the substrate holder, a straight line connecting the first arm and the second arm is An organic EL device manufacturing apparatus, wherein the substrate clamp is in a substantially vertical state and is in a substantially horizontal state, and the substrate clamp is in a state of pressing the substrate against the substrate holder.
前記基板保持機構が、前記基板ホルダーの垂直端部に設けられたことを特徴とする、請求項1に記載された有機ELデバイス製造装置。   The organic EL device manufacturing apparatus according to claim 1, wherein the substrate holding mechanism is provided at a vertical end portion of the substrate holder. 前記基板ホルダー昇降機構が、前記真空処理室外に設けられたことを特徴とする、請求項1又は請求項2に記載された有機ELデバイス製造装置。   The organic EL device manufacturing apparatus according to claim 1, wherein the substrate holder lifting mechanism is provided outside the vacuum processing chamber.
JP2011235965A 2011-10-27 2011-10-27 Organic el device manufacturing apparatus Pending JP2013093279A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011235965A JP2013093279A (en) 2011-10-27 2011-10-27 Organic el device manufacturing apparatus
KR1020120064227A KR101411249B1 (en) 2011-10-27 2012-06-15 Manufacturing apparatus for organic el devices
TW101139491A TW201324675A (en) 2011-10-27 2012-10-25 Organic EL device manufacturing apparatus
CN2012104141654A CN103094492A (en) 2011-10-27 2012-10-25 Manufacturing apparatus for organic EL devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235965A JP2013093279A (en) 2011-10-27 2011-10-27 Organic el device manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2013093279A true JP2013093279A (en) 2013-05-16

Family

ID=48206829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235965A Pending JP2013093279A (en) 2011-10-27 2011-10-27 Organic el device manufacturing apparatus

Country Status (4)

Country Link
JP (1) JP2013093279A (en)
KR (1) KR101411249B1 (en)
CN (1) CN103094492A (en)
TW (1) TW201324675A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203140A (en) * 2014-04-15 2015-11-16 日新イオン機器株式会社 Ion injector
WO2016091303A1 (en) * 2014-12-10 2016-06-16 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber
WO2016112951A1 (en) * 2015-01-12 2016-07-21 Applied Materials, Inc. Holding arrangement for supporting a substrate carrier and a mask carrier during layer deposition in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a substrate carrier supporting a substrate and a mask carrier
WO2019082868A1 (en) * 2017-10-24 2019-05-02 株式会社アルバック Substrate treatment device and support pin
JP2019165140A (en) * 2018-03-20 2019-09-26 日新電機株式会社 Clamp mechanism and substrate holding apparatus provided with the same
WO2020083462A1 (en) * 2018-10-22 2020-04-30 Applied Materials, Inc. Material deposition apparatus, vacuum deposition system and method of processing a large area substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436090B2 (en) * 2013-10-30 2018-12-12 株式会社ニコン Substrate holding apparatus, exposure apparatus, and device manufacturing method
WO2019004351A1 (en) * 2017-06-28 2019-01-03 株式会社アルバック Sputtering device
CN107591497B (en) * 2017-08-31 2019-04-16 武汉华星光电半导体显示技术有限公司 A kind of adjustable oscillator sensor installation seat
KR102651505B1 (en) * 2020-08-06 2024-03-28 세메스 주식회사 Apparatus for treating substrate
KR102649713B1 (en) * 2020-12-23 2024-03-22 세메스 주식회사 Apparatus for treating substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378058U (en) * 1989-12-01 1991-08-07
JPH0913172A (en) * 1995-06-28 1997-01-14 Ulvac Japan Ltd Lifting mechanism for vacuum device
WO2006054663A1 (en) * 2004-11-22 2006-05-26 Sharp Kabushiki Kaisha Substrate holding apparatus, substrate processing apparatus and liquid crystal display device
JP2010086956A (en) * 2008-09-04 2010-04-15 Hitachi High-Technologies Corp Apparatus and method for manufacturing organic el device, and apparatus and method for forming film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6729927B2 (en) * 2002-08-01 2004-05-04 Eastman Kodak Company Method and apparatus for making a shadow mask array
JP4447256B2 (en) * 2003-06-27 2010-04-07 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
US20060086321A1 (en) * 2004-10-22 2006-04-27 Advantech Global, Ltd Substrate-to-mask alignment and securing system with temperature control for use in an automated shadow mask vacuum deposition process
KR100603408B1 (en) * 2004-12-16 2006-07-20 삼성에스디아이 주식회사 Vertical mask tray and deposit apparatus with the same
KR100761100B1 (en) * 2006-02-08 2007-09-21 주식회사 아바코 Deposition method of Organic Light Emitting Diodes and apparatus thereof
JP2010069606A (en) * 2008-09-22 2010-04-02 Asahi Diamond Industrial Co Ltd Rotary tool for cutting surface layer
JP5074429B2 (en) * 2009-01-16 2012-11-14 株式会社日立ハイテクノロジーズ Deposition equipment
JP5337632B2 (en) * 2009-02-13 2013-11-06 株式会社日立ハイテクノロジーズ Film forming apparatus and organic EL device manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378058U (en) * 1989-12-01 1991-08-07
JPH0913172A (en) * 1995-06-28 1997-01-14 Ulvac Japan Ltd Lifting mechanism for vacuum device
WO2006054663A1 (en) * 2004-11-22 2006-05-26 Sharp Kabushiki Kaisha Substrate holding apparatus, substrate processing apparatus and liquid crystal display device
JP2010086956A (en) * 2008-09-04 2010-04-15 Hitachi High-Technologies Corp Apparatus and method for manufacturing organic el device, and apparatus and method for forming film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203140A (en) * 2014-04-15 2015-11-16 日新イオン機器株式会社 Ion injector
KR20190104464A (en) * 2014-12-10 2019-09-09 어플라이드 머티어리얼스, 인코포레이티드 Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber
WO2016091303A1 (en) * 2014-12-10 2016-06-16 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber
US11718904B2 (en) 2014-12-10 2023-08-08 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber
KR20170092689A (en) * 2014-12-10 2017-08-11 어플라이드 머티어리얼스, 인코포레이티드 Mask arrangement for masking a substrate in a processing chamber
US20170342541A1 (en) * 2014-12-10 2017-11-30 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber
KR102164588B1 (en) * 2014-12-10 2020-10-13 어플라이드 머티어리얼스, 인코포레이티드 Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber
US20190301002A1 (en) * 2014-12-10 2019-10-03 Applied Materials, Inc. Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber
KR102019490B1 (en) * 2014-12-10 2019-09-06 어플라이드 머티어리얼스, 인코포레이티드 Mask arrangement for masking a substrate in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a mask arrangement for masking a substrate in a processing chamber
JP2018504526A (en) * 2015-01-12 2018-02-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Holding device for supporting a substrate carrier and mask carrier during layer deposition in a processing chamber, method for aligning a substrate carrier and mask carrier supporting a substrate
TWI669776B (en) * 2015-01-12 2019-08-21 美商應用材料股份有限公司 Holding arrangement for supporting a substrate carrier and a mask carrier during layer deposition in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a substrate carrier supporting a substrate and a mask carr
US10837111B2 (en) 2015-01-12 2020-11-17 Applied Materials, Inc. Holding arrangement for supporting a substrate carrier and a mask carrier during layer deposition in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a substrate carrier supporting a substrate and a mask carrier
WO2016112951A1 (en) * 2015-01-12 2016-07-21 Applied Materials, Inc. Holding arrangement for supporting a substrate carrier and a mask carrier during layer deposition in a processing chamber, apparatus for depositing a layer on a substrate, and method for aligning a substrate carrier supporting a substrate and a mask carrier
JPWO2019082868A1 (en) * 2017-10-24 2019-11-14 株式会社アルバック Substrate processing equipment, support pins
WO2019082868A1 (en) * 2017-10-24 2019-05-02 株式会社アルバック Substrate treatment device and support pin
JP2019165140A (en) * 2018-03-20 2019-09-26 日新電機株式会社 Clamp mechanism and substrate holding apparatus provided with the same
WO2019181775A1 (en) * 2018-03-20 2019-09-26 日新電機株式会社 Clamp mechanism and substrate holding device with said clamp mechanism
JP7255078B2 (en) 2018-03-20 2023-04-11 日新電機株式会社 CLAMP MECHANISM AND SUBSTRATE HOLDING DEVICE INCLUDING THE CLAMP MECHANISM
WO2020083462A1 (en) * 2018-10-22 2020-04-30 Applied Materials, Inc. Material deposition apparatus, vacuum deposition system and method of processing a large area substrate
CN112771198A (en) * 2018-10-22 2021-05-07 应用材料公司 Material deposition apparatus, vacuum deposition system and method for processing large area substrates

Also Published As

Publication number Publication date
TW201324675A (en) 2013-06-16
KR20130046340A (en) 2013-05-07
CN103094492A (en) 2013-05-08
KR101411249B1 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
JP2013093279A (en) Organic el device manufacturing apparatus
JP5337632B2 (en) Film forming apparatus and organic EL device manufacturing apparatus
JP5074429B2 (en) Deposition equipment
JP6741594B2 (en) System for depositing one or more layers on a substrate supported by a carrier, and methods of using the system
JP5506824B2 (en) Film forming apparatus and film forming method
JP5173699B2 (en) Organic EL device manufacturing equipment
TW201441392A (en) Deposition apparatus and method of manufacturing organic light emitting diode display
JP2013093278A (en) Organic el device manufacturing apparatus
CN109154063A (en) Vacuum system and method for depositing multiple materials on substrate
WO2014097879A1 (en) Film formation device
KR101346071B1 (en) organic matter evaporation system
JP4768001B2 (en) ORGANIC EL DEVICE MANUFACTURING APPARATUS, ITS MANUFACTURING METHOD, FILM-FORMING APPARATUS, AND FILM-FORMING METHOD
JP2013237914A (en) Film deposition device and film deposition method
JP5277015B2 (en) Organic EL device manufacturing apparatus, film forming apparatus, and shadow mask exchange apparatus
JP2014070241A (en) Vapor deposition device and vapor deposition method
JP5260212B2 (en) Deposition equipment
JP2014133923A (en) Retaining device, film deposition device, and conveying method
JP5358697B2 (en) Deposition equipment
JP2020518122A (en) Apparatus for operating a carrier in a vacuum chamber, vacuum deposition system, and method of operating a carrier in a vacuum chamber
KR101225212B1 (en) Oled manufacturing apparatus and method of the same
JP2013151760A (en) Method for replacing shadow mask
JP2023038028A (en) Film deposition apparatus, substrate transportation device, substrate transportation method, and manufacturing method of electronic device
KR20230068479A (en) In-line deposition system having mask chucking mechanism with a lifting module
JP2023038027A (en) Film deposition apparatus
JP2023038029A (en) Film deposition apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105