JP2013030651A - レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド - Google Patents

レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド Download PDF

Info

Publication number
JP2013030651A
JP2013030651A JP2011166377A JP2011166377A JP2013030651A JP 2013030651 A JP2013030651 A JP 2013030651A JP 2011166377 A JP2011166377 A JP 2011166377A JP 2011166377 A JP2011166377 A JP 2011166377A JP 2013030651 A JP2013030651 A JP 2013030651A
Authority
JP
Japan
Prior art keywords
optical fiber
light
hand
laser module
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011166377A
Other languages
English (en)
Inventor
Hirokuni Ogawa
弘晋 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2011166377A priority Critical patent/JP2013030651A/ja
Priority to PCT/JP2012/063727 priority patent/WO2013018426A1/ja
Publication of JP2013030651A publication Critical patent/JP2013030651A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】 信頼性の高いレーザモジュールを製造することができるレーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンドを提供する。
【解決手段】 レーザモジュール1の製造方法は、クラッド12の一部にメタライズ層15が設けられた光ファイバ10、及び、半導体レーザ素子45を有するレーザモジュール本体MBを準備する準備工程P1と、光ファイバ10を配置する配置工程P2と、光ファイバ10のメタライズ層15よりも一方の端部側を光ファイバ用ハンド70で把持する把持工程P3と、半導体レーザ素子45から光を光ファイバ10に入力して、この光が最も多く光ファイバ10のコア11に入力するように、光ファイバ10を調心する調心工程P4とを備え、光ファイバ用ハンド70の光ファイバ10と接触する接触部材72R、72Lの屈折率は、半導体レーザ素子45から出力される光の波長において、クラッド12の屈折率以上とされる。
【選択図】 図5

Description

本発明は、高い強度の光を出力する半導体レーザ素子が搭載される場合であっても、信頼性の高いレーザモジュールを製造することができるレーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンドに関する。
半導体レーザ素子から出力されたレーザ光が光ファイバを介して出力されるレーザモジュールが知られている。このレーザモジュールは、一般的に、基台上に配されたレーザマウント及びファイバマウントと、レーザマウント上に固定された半導体レーザ素子と、ファイバマウント上に固定された光ファイバとを備えており、半導体レーザ素子の光の出力部と、光ファイバの端部との相対的位置が正確に合わされている。そして、半導体レーザ素子から出力される光が、光ファイバの端部からコアに入力する。
半導体レーザ素子の光の出力部と光ファイバの端部との相対的位置を合わせるには、半導体レーザ素子から光ファイバに光を入力して、光ファイバの反対側の端部から出力する光の強度を計測しながら光ファイバを調心する。そして、光ファイバからの光の出力の強度が最も高くなる位置で、光ファイバを固定する(例えば下記特許文献1)。
特開平11−109176号公報
ところで、光ファイバは、ファイバマウント上面に形成されたボンディングパッドにはんだにより固定される場合がある。しかし、光ファイバを形成するガラス素材は、はんだ濡れ性が悪く、光ファイバを形成するガラスにはんだを直接固着することは困難である。このため、光ファイバをはんだで固定する場合、光ファイバのボンディングパッドに相当する位置は、メタライズ層と呼ばれる金属層により被覆されている。
光ファイバを調心する最中においては、光ファイバの位置を動かすため、半導体レーザ素子から出力される光は、光ファイバのコアのみならず、クラッドにも結合され伝播する傾向がある。クラッドを伝播する光は、メタライズ層が設けられている位置に到達し、少なくともその光の一部は、メタライズ層に吸収されて熱に変換される。
近年、半導体レーザ素子から高い強度の光が出力されるレーザモジュールがある。このようなレーザモジュールにおいては、強度の高い出力を得るため、一般的にマルチモードで光を発振する半導体レーザ素子を使用しており、このような半導体レーザ素子においては、出力する光の強度を低くすると、光のピーク位置が、光の強度が高い場合のピーク位置と異なるものがある。このためレーザモジュールを製造する際、半導体レーザ素子から高い強度の光を出力して、光ファイバの調心を行いたいという要望がある。しかし、光ファイバの調心時においては、上述のように半導体レーザ素子から出力される光がクラッドを伝播して、メタライズ層で熱に変換されるため、高い強度の光を光ファイバに入射すると、メタライズ層において発生する熱量が大きく、メタライズ層が酸化したり、光ファイバが損傷したりする虞がある。従って、半導体レーザ素子から高い強度の光を光ファイバに入射して、光ファイバの調心を行うと、半導体レーザモジュールの信頼性を損なう虞がある。一方、半導体レーザ素子から出力される光の強度を低くすると、上述のように、半導体レーザ素子から出力される光のピーク位置が、高い強度の光を出力するときと異なるため、光ファイバの調心位置がずれることがあり、やはり、半導体レーザモジュールの信頼性を損なう虞がある。
そこで、本発明は、高い強度の光を出力する半導体レーザ素子が搭載される場合であっても、信頼性の高いレーザモジュールを製造することができるレーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンドを提供することを目的とする。
上記課題を解決するため、本発明のレーザモジュールの製造方法は、一方の端部から所定距離クラッドが露出すると共に、露出した前記クラッドの外周面上の一部にメタライズ層が設けられた光ファイバ、及び、半導体レーザ素子と前記光ファイバがマウントされるファイバマウントとを有するレーザモジュール本体、を準備する準備工程と、前記メタライズ層が前記ファイバマウント上の所定位置に配置されるように前記光ファイバを配置する配置工程と、前記光ファイバにおける前記メタライズ層よりも前記一方の端部側を光ファイバ用ハンドにより把持する把持工程と、前記光ファイバが前記光ファイバ用ハンドで把持された状態において、前記半導体レーザ素子から出力する光を前記光ファイバの前記一方の端部から入力して、前記光ファイバのコアに、この光が最も多く入力するように、前記光ファイバを調心する調心工程と、を備え、前記光ファイバ用ハンドにおける前記光ファイバと接触する接触部材の屈折率は、前記光の波長において、前記クラッドの屈折率以上であることを特徴とするものである。
このレーザモジュールの製造方法により製造されるレーザモジュールは、光ファイバのメタライズ層をはんだ付けすることにより光ファイバをファイバマウント上に固定するものである。そして、光ファイバと接触する接触部材が、半導体レーザ素子から出力する光の波長において、クラッドの屈折率以上であるため、クラッドを伝播する光は、光ファイバ用ハンドで把持されている部分において、光ファイバ用ハンドに伝播し易い。従って、半導体レーザ素子から出力する光が、光ファイバの一方の端部からクラッドに入力して伝播する場合においても、この光の少なくとも一部は、メタライズ層に到達する前にクラッドから光ファイバ用ハンドに伝播する。このため高い強度の光を出力する半導体レーザ素子が搭載され、この半導体レーザ素子から光ファイバのコアに高い強度の光を入力して、光ファイバを調心する場合においても、メタライズ層の発熱を抑制することができる。従って、熱によるメタライズ層の酸化や光ファイバの損傷を抑制することができ、信頼性の高いレーザモジュールを製造することができる。
また、クラッドを伝播する光が光ファイバ用ハンドにおいて熱に変換される場合においても、光ファイバ用ハンドが光ファイバと接触する部分は光を透過するため、この熱は、光ファイバと離れた場所において発生する。従って、光ファイバ用ハンドの発熱により光ファイバが損傷することを抑制することができる。
なお、このレーザモジュールの製造方法においては、配置工程よりも把持工程が先に行われても良く、また、配置工程の最中に把持工程が行われても良い。
また、前記半導体レーザ素子は、マルチモードで前記光を発振することとしても良い。
さらに、前記接触部材は、弾性変形するこが好ましい。光ファイバと接触する部分が弾性変形することにより、接触部材が光ファイバと適切に密着することができる。このため、クラッドを伝播する光を光ファイバ用ハンドにより適切に伝播させることができ、メタライズ層が発熱することをより抑制することができる。
またさらに、前記接触部材は、シリコン樹脂から成ることが好ましい。シリコン樹脂は、ヤング率が高く、変形しても元に形状に戻る力が強いため、レーザモジュールを多数製造する場合においても、光ファイバ用ハンドの劣化を低減することができる。さらに、シリコン樹脂は、安価に入手することが可能であり、屈折率の調整も容易であることから、半導体レーザ素子から出力される光の波長や、この光の波長におけるクラッドの屈折率に応じて、適切な屈折率の接触部材を有する光ファイバ用ハンドを容易に準備し易く、製造コストの上昇を抑えることができる。
また、前記接触部材は、ガラスから成る支持部材上に設けられていることが好ましい。弾性変形する接触部材がガラスから成る支持部材上に設けられることで、光ファイバを把持した後に接触部材が不適切に変形することを防止することができ、光ファイバの位置の調節をより適切に行うことができる。そして、光ファイバから接触部材に伝播する光は、更に支持部材に伝播することができ、不要な光をより光ファイバから遠ざけることができる。このため、光ファイバから光ファイバ用ハンドに伝播する光が熱に変換される場合においても、熱の発生位置を光ファイバからより遠い位置にすることができ、熱による光ファイバの損傷をさらに抑制することができる。
さらに、前記支持部材の屈折率は、前記光の波長において、前記接触部材の屈折率以上とされることが好ましい。このように構成することでクラッドから接触部材に伝播する光をより支持部材に伝播することができ、不要な光を光ファイバからより遠ざけることができる。
また、本発明は、半導体レーザ素子から出力される光が、光ファイバを介して出力されるレーザモジュールの製造に用いられる光ファイバ用ハンドであって、前記光ファイバと接触する接触部材の屈折率が、前記光の波長において、前記光ファイバのクラッドの屈折率以上であることを特徴とするものである。
このような光ファイバ用ハンドによれば、クラッドを伝播する不要な光が接触部材に伝播することができる。従って、クラッドを伝播する不要な光の少なくとも一部を除去することができる。このため、レーザモジュールを製造する際、半導体レーザ素子から光ファイバに光を入力して、コアに入力する光の強度が最も高くなるように、光ファイバを調心する場合においても、このような光ファイバ用ハンドで光ファイバを把持することで、クラッドを伝播する光に起因する不要な発熱を抑制することができる。
さらに、前記接触部材は、弾性変形することとしても良く、この場合においては、前記接触部材は、シリコン樹脂から成ることとしても良い。また、前記接触部材は、ガラスから成る支持部材上に設けられていることとしても良く、この場合においては、前記支持部材の屈折率は、前記光の波長において、前記接触部材の屈折率以上とされることとしても良い。
以上のように、本発明によれば、高い強度の光を出力する半導体レーザ素子が搭載される場合であっても、光ファイバの調心を行うことができつつ、信頼性の高いレーザモジュールを製造することができるレーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンドが提供される。
本発明の実施形態により製造されるレーザモジュールの一部を示す図である。 光ファイバの長手方向に垂直な断面の構造を示す図である。 レーザモジュールの製造方法の工程を示すフローチャートである。 配置工程後の様子を示す図である。 光ファイバ用ハンドの構造を示す図である。 把持工程後の様子を示す図である。 調心工程の様子を示す図である。 はんだ付け工程の様子を示す図である。 光ファイバ用ハンドの第1の変形例の構造を示す図である。 光ファイバ用ハンドの第2の変形例の構造を示す図である。 光ファイバ用ハンドの第3の変形例の構造を示す図である。
以下、本発明に係るレーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンドの好適な実施形態について図面を参照しながら詳細に説明する。
本発明の実施形態により製造されるレーザモジュールの一部を示す図である。
図1に示すように、レーザモジュール1は、基台20と、基台20上に配置されるレーザマウント40と、レーザマウント40上に配置される半導体レーザ素子45と、基台20上に配置されるファイバマウント30と、を有するレーザモジュール本体MBと、ファイバマウント30上にはんだ50によりはんだ付けされている光ファイバ10とを主な構成として備える。このレーザモジュール1は、半導体レーザ素子45から出力されるレーザ光を光ファイバ10により外部に出力するものである。
レーザモジュール1は、光ファイバ10の一部を除いて、金属等から成る図示しない筐体内に収められている。基台20は、例えば、金属やセラミック製の板状の部材から構成されている。基台20を構成する材料が金属である場合、この金属としては、特に制限されないが、例えば、銅、銅タングステンを挙げることができ、基台20を構成する材料がセラミックである場合、このセラミックとしては、特に制限されないが、例えば、窒化アルミニウム(AlN)や酸化アルミニウム(Al)等を挙げることができる。また、基台20は、筐体と同じ材料である場合には、筐体の一部から構成されても良い。
基台20上に配置されているレーザマウント40は、略直方体の形状をしており、図示しないはんだ材料により基台20上に固定されている。このレーザマウント40を構成する材料としては、特に制限されないが、例えば、AlNやAl等のセラミックを挙げることができ、中でも、熱伝導性に優れる観点からAlNが好ましい。また、基台20とレーザマウント40とが同様の材料から成る場合には、基台20とレーザマウント40とが一体成型により形成されても良い。
半導体レーザ素子45は、レーザマウント40上に図示しないはんだ材料により固定されている。この半導体レーザ素子45においては、複数の半導体層が積層されており、これらの半導体層により共振器構造が形成されている。そして、半導体レーザ素子45の光ファイバ10側の面から、例えば波長が900nm帯のレーザ光が出力する。なお、本実施形態の半導体レーザ素子45は、出力する光の強度が高くなるように、水平方向にマルチモードで光が発振する構成とされている。このような半導体レーザ素子45は、一般に素子に流す電流が小さいときには、発振するモードの数が少なく、光の放射パターンが不安定であり、光のピーク位置が一定しなく、素子に流す電流が大きくなるにしたがって、モードの数が増え、光の放射パターンが安定する。
基台20上に配置されているファイバマウント30は、略直方体の形状をしており、図示しないはんだ材料により基台20上に固定されている。このファイバマウント30を構成する材料としては、特に制限されないが、例えば、レーザマウント40と同様の材料を挙げることができる。また、基台20とファイバマウント30とが同様の材料から成る場合には、基台20とファイバマウント30とが一体成型により形成されても良い。
ファイバマウント30の上面上には、外形が略四角形状のボンディングパッド33が設けられている。このボンディングパッド33は、はんだが固定可能なように構成されており、例えば、ファイバマウント30側にチタン(Ti)層が積層されており、Ti層上に白金(Pt)層が積層されており、Pt層上に金(Au)層が積層されており、このAu層の表面が、ボンディングパッド33のファイバマウント30側と反対側の表面とされている。
ボンディングパッド33上には、はんだ50が固定されている。このはんだ50としては、例えば、金錫系の共晶はんだを挙げることができ、Auと錫(Sn)の比としては、Au80%−Sn20%や、Au10%−Sn90%を挙げることができる。はんだ50がAu80%−Sn20%である場合、はんだ50の融点は約280度とされる。
光ファイバ10は、一方の端部から離れた位置がはんだ50に固定されており、上述の図示しない筐体内から筐体外に導出されている。図2は光ファイバ10の長手方向に垂直な断面の構造を示す図である。図2に示すように、光ファイバ10は、コア11と、コア11の外周面を囲むクラッド12とから構成されている。クラッド12の屈折率はコア11の屈折率よりも低くされており、コアは、例えば、ゲルマニウム等の屈折率を上げるドーパントが添加された石英(ガラス)から成り、クラッドは、例えば、何らドーパントが添加されない純粋な石英から構成される。また、特に図示しないが、クラッド12は、図示しない筐体の外部においては、紫外線硬化樹脂等から成る被覆層で被覆されている。
また、本実施形態においては、光ファイバ10の端部が、先細りに加工されており、レンズとしての機能を有している。そして、光ファイバ10の先細りに加工された端部が、半導体レーザ素子45の出力面に向けられており、半導体レーザ素子45から出力されるレーザ光がコア11に入力するように配置されている。
さらに光ファイバ10は、少なくともはんだ50に固定される部分が、メタライズ層15により被覆されており、このメタライズ層15がはんだ50に固定されている。このメタライズ層15は、はんだ50に濡れやすく、固定され易い構成とされている。メタライズ層の構成としては、特に限定されないが、Ni層とAu層の積層体から成り、Ni層がクラッド12の外周面を被覆しており、Au層がNi層の外周面を被覆している。また、Ni層、Au層の厚さは、特に限定されないが、例えば、Ni層が2μm〜3μmであり、Au層が0.1μm〜0.2μmとされる。一般にレーザモジュールにおいては、はんだ付けをフラックス無しで行うため、メタライズ層15の表面は、酸化を防止し、濡れ性を高めるためAuであることが好ましい。光ファイバ側のNi層は、Auの石英に対する密着性を高めるために下地層として形成されているものである。
このようなレーザモジュール1は、図示しない外部からの電力の供給により、半導体レーザ素子45からレーザ光が出力される。出力されるレーザ光の波長は、上述のように、例えば、900nm帯とされる。出力されたレーザ光は、光ファイバ10のコア11に入力して、コア11を伝播して、レーザモジュール1の外部に出力される。
なお、レーザ光が光ファイバ10に入力するとき、レーザ光は、上述のようにコア11に入力するが、光ファイバ10の端面における屈折や、光ファイバ10及び半導体レーザ素子45における光軸のずれ等により、レーザ光の一部がクラッド12に漏れ光として入力する場合がある。この場合、漏れ光は、主にクラッド12を伝播して、光ファイバ10がメタライズ層15で被覆されている部分に到達して、漏れ光の少なくとも一部がメタライズ層15に吸収され、熱に変換される。このとき生じる熱は、はんだ50、ファイバマウント30、及び、基台20を介して、外部に放出される。
次にレーザモジュール1の製造方法について説明する。
図3は、図1のレーザモジュール1の製造方法の工程を示すフローチャートである。図3に示すように、レーザモジュール1の製造方法は、上述の光ファイバ10及びレーザモジュール本体MBを準備する準備工程P1と、光ファイバ10を所定位置に配置する配置工程P2と、光ファイバ10を光ファイバ用ハンドにより把持する把持工程P3と、光ファイバ10が光ファイバ用ハンドで把持された状態で、光ファイバ10を調心する調心工程P4と、光ファイバ10をファイバマウント30上にはんだ付けするはんだ付け工程P5と、を備える。
<準備工程P1>
まず、レーザモジュール本体MB、及び、光ファイバ10を準備する。
レーザモジュール本体MBの準備においては、まず、基台20、ファイバマウント30、レーザマウント40、半導体レーザ素子45を少なくとも準備する。ファイバマウント30の準備においては、ファイバマウント30の上面にボンディングパッド33を設ける。ボンディングパッド33は、蒸着法、スパッタ法、めっき法等の成膜加工により設ければ良い。
そして、ファイバマウント30の下面を図示しないはんだにより基台20にはんだ付けして、ファイバマウント30を基台20に固定する。
また、基台20にレーザマウント40を図示しないはんだによりはんだ付けして固定すると共に、レーザマウント40上に半導体レーザ素子45を図示しないはんだ材料により固定する。
なお、レーザモジュール本体MBが、上述の図示しない筐体内に設けられる場合には、ファイバマウント30及びレーザマウント40が固定された基台20を筐体の内面に固定する。また、基台20と筐体が一体である場合には、ファイバマウント30及びレーザマウント40を基台20としての筐体内に、上述の固定の方法と同様の方法により固定する。
光ファイバ10の準備においては、クラッド12が被覆層により被覆されている光ファイバを準備して、一方の端部から所定の長さだけ被覆層を剥離してクラッド12を露出させる。次に、ボンディングパッド33にはんだ付けされる領域と同等の長さのメタライズ層15を設ける。このはんだ付けされる領域の長さは、図1に示すように光ファイバ10がボンディングパッド33にはんだ付けされる場合において、ボンディングパッド33における光ファイバ10の長手方向に沿った幅と同じと考えれば良い。従って、この場合には、メタライズ層15の長さが、ボンディングパッド33における光ファイバ10の長手方向に沿った幅と同等の長さになるようにして、メタライズ層15を設ければ良い。
メタライズ層15は、上述のように、例えば、Ni層とAu層との積層体である場合、めっき法により設けられることが好ましい。めっき法によれば、長さ方向に垂直な断面が円形である光ファイバ10の側面に対して、より均一な厚さでメタライズ層15を設けることができるためである。
こうして、一方の端部から所定距離クラッド12が露出すると共に、露出したクラッド12の外周面上の一部にメタライズ層15が設けられた光ファイバ10、及び、半導体レーザ素子45と光ファイバ10がマウントされるファイバマウント30とを有するレーザモジュール本体MBが準備される。
<配置工程P2>
次に、準備したファイバマウント30上に、光ファイバ10、及び、はんだ50を配置する。
図4は、配置工程P2後の様子を示す図である。図4に示すように、本工程においては、ファイバマウント30上のボンディングパッド33上にメタライズ層15が位置するように光ファイバ10を配置する。また、レーザモジュール本体MBが、図示しない筐体内に収められている場合、光ファイバ10のクラッド12が露出している部分が筐体内となるように、光ファイバ10の一部を筐体外から筐体内に導入する。
こうして、メタライズ層15がファイバマウント30上の所定位置に配置されるように光ファイバ10が配置される。
<把持工程P3>
次に光ファイバ10を光ファイバ用ハンドで把持する。
図5は、この光ファイバ用ハンドの一部を示す図である。図5に示すように、光ファイバ用ハンド70は、一対の支持部材71R、71L、及び、支持部材71R、71Lのそれぞれの表面上に設けられ、光ファイバ10と接触する一対の接触部材72R、72Lを有する。
接触部材72R、72Lは、弾性変形可能で、さらに、半導体レーザ素子45が出力する光の波長において、屈折率がクラッド12の屈折率以上とされる。このような接触部材72R、72Lの材料としては、シリコン樹脂を挙げることができる。上述のようにクラッド12が何らドーパントが添加されない純粋な石英から構成される場合、クラッド12の屈折率は1.45となるので、この場合、シリコン樹脂は、例えばハロゲン元素が含有されること、屈折率が1.45以上に調整されれば良い。このようにシリコン樹脂は、屈折率の調整も容易であり、安価に入手できるため、接触部材72R、72Lがシリコン樹脂から構成されることにより、半導体レーザ素子45から出力される光の波長や、この光の波長におけるクラッド12の屈折率に応じて、適切な屈折率の接触部材を有する光ファイバ用ハンド72R、72Lを容易に準備し易い。また、それぞれの接触部材72R、72Lが、互いに対向するそれぞれの対向面には、光ファイバ10が収容可能なように、断面における形状が略半円状の切り欠き73R、73Lが形成されている。但し、後述するように光ファイバ用ハンド70で光ファイバ10を把持して、光ファイバ10が、切り欠き73R、73Lに収まる際、光ファイバ10が不要に動かないように、切り欠き73R、73Lの外径は、光ファイバ10のクラッド12の外径よりも僅かに小さく形成されていることが好ましい。
それぞれの接触部材72R、72Lを支える支持部材71R、71Lは、然程変形することが無い材料から構成されている。また、一方の支持部材71Lの接触部材72Lが設けられる側は、互いに略垂直な2つの面を有しており、これらの面により矩形の切り欠き75が形成されている。従って、接触部材72Lは、この支持部材71Lにおける互いに略垂直なそれぞれの面上において、薄く形成される部位Pa、Pbを有している。また、他方の支持部材71Rの接触部材72Rが設けられる側の面は、略平面の形状とされる。従って、接触部材72Rは、薄く形成される部位Pcを有している。この接触部材72R、72Lが薄く形成される部位Pa、Pb、Pcにおいては、接触部材72R、72Lが然程変形できない。このため、接触部材72R、72Lが、薄く形成される部位が3カ所形成されることで、後述のように光ファイバ10を把持する際、光ファイバ10が不安定になることが防止できる。
また、それぞれの支持部材71R、71Lは、光透過性の材料から形成されることが好ましく、更に支持部材71R、71Lの屈折率が、半導体レーザ素子45から出力される光の波長において、接触部材72R、72Lの屈折率以上であることが好ましい。光透過性の支持部材71R、71Lを構成する材料としては、ガラス(石英)を挙げることができ、接触部材72R、72Lの屈折率以上である支持部材71R、71Lを構成する材料としては、ゲルマニウムが添加されたガラス(石英)を挙げることができる。また、支持部材71R、71Lが光透過性の材料である場合、支持部材71R、71Lの接触部材72R、72Lが設けられる側と反対側には、ステンレス等から成る光熱変換部材が設けられることが好ましい。この光熱変換部材は、図中において省略されている。このような部材が設けられることで、支持部材71R、71Lに伝播する光を熱に変換し、光が不要に放射されることを抑制することができる。なお、この光熱変換部材は、図中において省略されている。また、支持部材71R、71Lが光透過性を有しない場合、支持部材71R、71Lを構成する材料としては、セラミックやステンレスを挙げることができる。
本工程においては、それぞれの支持部材71R、71Lが図5において破線矢印で示す方向に図示しない機構により移動して、図6に示すように光ファイバ10を把持する。具体的には、接触部材72R、72Lに形成された切り欠き73R、73L内に、クラッド12が露出しているメタライズ層15よりも半導体レーザ素子45側(一方の端部側)が収容されて、クラッド12が接触部材72R、72Lに接触するようにして、光ファイバ用ハンド70で光ファイバ10を挟み込み把持する。このとき、接触部材72R、72Lが弾性変形するため、光ファイバ10が傷つくことが防止されつつも、支持部材71R、71Lは、然程変形しないため、光ファイバ10は安定して把持される。さらに、シリコン樹脂は、ヤング率が高く、変形しても元に形状に戻る力が強いため、上述のように接触部材72R、72Lがシリコン樹脂から構成される場合、レーザモジュール1を多数製造するために多数回把持が行われる場合においても、光ファイバ用ハンド70の劣化を低減することができる。
なお、本工程は、配置工程P2の前に行うことが可能な場合には、配置工程P2の前に行っても良く、配置工程P2の途中に行っても良い。例えば、レーザモジュール本体MBが上述のように図示しない筐体内に収容されている場合、光ファイバ10のクラッド12が露出された部分を筐体内に導入して、次に、光ファイバ用ハンド70により光ファイバ10を把持し、その後、メタライズ層15がボンディングパッド33上に位置するように光ファイバ10を配置すればよい。こうして、図6に示すように、メタライズ層15がボンディングパッド33上に位置して、光ファイバ10が光ファイバ用ハンド70により把持された状態となる。
<調心工程P4>
次に光ファイバ10を調心する。
この調心においては、まず、光ファイバ10の一方の端部と、半導体レーザ素子45の出射部とが対向するように光ファイバ10の位置を粗調整する。この調整は、光ファイバ用ハンド70の位置を図7の実線矢印の様に動かして調整することにより行う。但し、この調整は、上述の配置工程中に行っても良い。また、この実線矢印で示された以外の方向にも動かす場合がある。
次に、図7において破線矢印で示すように、半導体レーザ素子45から光を出力する。このときの光は、レーザモジュール1の使用時に半導体レーザ素子から出力される光と、同じ強度分布となる程度まで強度を高くする。この段階においては、光ファイバ10の一方の端部と、半導体レーザ素子45の出射部とが対向するように光ファイバ10の位置が調整されているため、光は光ファイバ10に入力する。しかし、この段階においては、一般に、光ファイバ10は正確に調心されておらず、光が最も適切な状態でコア11に入力しない。そこで、光ファイバ10の他方の端部のコア11から出力される光の強度を観察しながら、光ファイバ用ハンドの位置を微調整することで、光ファイバ10の位置を微調整し、最も強度の高い光が光ファイバから出力される状態となるように、光ファイバ10を調心する。こうすることで、半導体レーザ素子45から出力される光が、光ファイバ10のコア11に最も適切に入力される状態とすることができる。
しかし、本工程の最中においては、半導体レーザ素子45から出力される光が、光ファイバ10のクラッド12にも入力する。クラッド12に入力した光は、クラッド12を伝播して、光ファイバ用ハンド70により把持されている部分まで到達する。上述のように、光ファイバ用ハンド70の接触部材72R、72Lは、クラッド12以上の屈折率であるため、クラッド12を伝播して光ファイバ用ハンド70により把持されている部分まで到達する光の少なくとも一部は、クラッド12から接触部材72R、72Lに伝播する。こうして、クラッド12を伝播する光は、光ファイバ10から離れる。また、クラッド12の光ファイバ用ハンド70により把持されている部分を通過する光は、メタライズ層15が設けられている部分に到達して、一部がメタライズ層15に吸収されて熱になる。しかし、既に少なくとも一部の光が光ファイバ用ハンド70に伝播しているため、メタライズ層15で発生する熱量は少ない。
こうしてメタライズ層15等に熱による損傷が与えられることが防止されて、光ファイバ10は、調心される。
<はんだ付け工程P5>
次に、光ファイバ10をボンディングパッドにはんだ付けする。
このはんだ付け工程は、上述の光ファイバ用ハンド70で調心された光ファイバ10の位置を固定して行う。まず、光ファイバ10のメタライズ層15に接触するように、ボンディングパッド33上にはんだ50を配置する。そして、このはんだ50を加熱により溶融して、ボンディングパッド33及びメタライズ層15に付着させる。図8は、はんだ付け工程P5の様子を光ファイバ10の長手方向に沿って見た図である。図8に示すように、はんだの加熱は、レーザ光Lの照射により行われる。レーザ光Lは、はんだ50に直接照射されても良いが、はんだ50が局所的に溶融したり、はんだ50が変質することを防止する観点から、図8に示すようにファイバマウント30に照射されることが好ましい。このようにファイバマウント30にレーザ光Lが照射される場合、ファイバマウント30における加熱された部分からの熱伝導により、ボンディングパッド33が加熱されて、更にこの熱がはんだ50に伝導して、はんだ50が溶融する。
溶融したはんだ50は、ボンディングパッド33の露出している表面全体に濡れ広がり、ボンディングパッド33に付着すると共に、光ファイバ10のメタライズ層15を巻き込むようにしてメタライズ層15に濡れ広がり付着する。そして、レーザ光Lの照射が終了後に、溶融したはんだ50が固化して、光ファイバ10がファイバマウント30に固定され、図1に示すレーザモジュール1を得る。
なお、本工程は、はんだ50の酸化を防止する観点から不活性ガス雰囲気下において行うことが好ましい。
以上説明したように、本実施形態のレーザモジュール1の製造方法によれば、光ファイバ10のクラッド12と接触する接触部材72R、72Lが、半導体レーザ素子45から出力する光の波長において、クラッド12の屈折率以上であるため、クラッド12から光ファイバ用ハンド70に光が伝播し易い。そして、光ファイバ10のメタライズ層15よりも、半導体レーザ素子45側を光ファイバ用ハンド70で把持するため、半導体レーザ素子45から出力する光が、光ファイバ10の一端からクラッド12に入力して伝播する場合においても、この光の少なくとも一部は、メタライズ層15に到達する前にクラッド12から光ファイバ用ハンド70に伝播する。このため半導体レーザ素子45から光ファイバ10に高い強度の光を入力して、光ファイバ10を調心する場合においても、メタライズ層15の発熱を抑制することができる。従って、熱によるメタライズ層15の酸化や光ファイバ10の損傷を抑制することができ、信頼性の高いレーザモジュール1を製造することができる。
また、クラッド12を伝播する光が光ファイバ用ハンド70において熱に変換される場合においても、光ファイバ用ハンド70が光ファイバ10と接触する部分は光を透過するため、この熱は、光ファイバ10と離れた場所において発生する。従って、光ファイバ用ハンド70の発熱により光ファイバ10が損傷することを抑制することができる。
以上、本発明について、実施形態を例に説明したが、本発明はこれらに限定されるものではない。
例えば、光ファイバ用ハンド70は、半導体レーザ素子45から出力される光の波長において、光ファイバ10と接触する接触部材の屈折率が、クラッド12の屈折率以上である限りにおいて、適宜変形することができる。
次に、光ファイバ用ハンド70の変形例について図9〜図11を参照して詳細に説明する。なお、上記実施形態に対応する構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
図9は、光ファイバ用ハンド70の第1の変形例の構造を示す図である。本変形例の光ファイバ用ハンド70aは、それぞれの支持部材71R、71Lに、断面の形状が半円状の切り欠き75R、75Lが形成されている。そして、それぞれの接触部材72R、72Lは、この切り欠き75R、75Lを形成する支持部材71R、71Lの対向面上に一定の厚さで形成されており、上記実施形態と同様の略半円状の切り欠き73R、73Lが形成されている。このような光ファイバ用ハンド70aによれば、接触部材72R、72Lが、一定の厚さであるため、光ファイバ10を把持する際において、接触部材から光ファイバ10にかかる力を均等にすることができる。
図10は、光ファイバ用ハンド70の第2の変形例の構造を示す図である。本変形例の光ファイバ用ハンド70bは、それぞれの支持部材71R、71Lは、上記実施形態と同様の構成であり、それぞれの支持部材71R、71Lが、上記実施形態のそれぞれの接触部材72R、72Lを兼ねている形態である。従って、本変形例においては、接触部材が弾性変形しない。このような形態の光ファイバ用ハンド70bにおいては、光ファイバ10を把持する際、光ファイバ10と接触部材との接触面積が少ないが、光ファイバ10と接触部材とが接触している部分において、クラッド12を伝播する光が、光ファイバ用ハンド70bに伝播する。本変形例の光ファイバ用ハンド70bによれば、接触部材が弾性変形しないため、光ファイバを安定して把持することができる。
図11は、光ファイバ用ハンド70の第3の変形例の構造を示す図である。本変形例の光ファイバ用ハンド70cは、それぞれの支持部材71R、71Lは、上記第1の変形例と略同様の構成であるが、半円状のそれぞれの切り欠き75R、75Lの直径が、光ファイバ10のクラッドの外径と同様とされる。そして、それぞれの支持部材71R、71Lが、上記第1の変形例のそれぞれの接触部材72R、72Lを兼ねている。従って、本変形例においては、上記第2の変形例と同様に、接触部材が弾性変形しない。このような形態の光ファイバ用ハンド70cによれば、接触部材が弾性変形しないため、光ファイバを安定して把持することができ、かつ、接触部材が光ファイバ10のクラッド12と広い面積で接触することができるため、効率良くクラッド12を伝播する光が光ファイバ用ハンド70cに伝播することができる。
また、上記実施形態において、光ファイバ用ハンドの接触部材が、部位Pa、Pb、Pcで、厚さがゼロとなり、これらの部位Pa、Pb、Pcにおいて、支持部材71R、71Lが露出していても良い。このように構成することで、更に安定して光ファイバ10を把持することができる。
以上説明したように、本発明によれば、高い強度の光を出力する半導体レーザ素子が搭載される場合であっても、信頼性の高いレーザモジュールを製造することができるレーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンドが提供され、ファイバレーザ装置に用いる励起光源等の製造に適用可能である。
1・・・レーザモジュール
10・・・光ファイバ
11・・・コア
12・・・クラッド
15・・・メタライズ層
20・・・基台
30・・・ファイバマウント
33・・・ボンディングパッド
40・・・レーザマウント
45・・・半導体レーザ素子
50・・・はんだ
70、70a、70b、70c・・・光ファイバ用ハンド
71R、71L・・・支持部材
72R、72L・・・接触部材
73R、73L・・・切り欠き
75、75R、75L・・・切り欠き
MB・・・レーザモジュール本体
P1・・・準備工程
P2・・・配置工程
P3・・・把持工程
P4・・・調心工程
P5・・・はんだ付け工程

Claims (11)

  1. 一方の端部から所定距離クラッドが露出すると共に、露出した前記クラッドの外周面上の一部にメタライズ層が設けられた光ファイバ、及び、半導体レーザ素子と前記光ファイバがマウントされるファイバマウントとを有するレーザモジュール本体、を準備する準備工程と、
    前記メタライズ層が前記ファイバマウント上の所定位置に配置されるように前記光ファイバを配置する配置工程と、
    前記光ファイバにおける前記メタライズ層よりも前記一方の端部側を光ファイバ用ハンドにより把持する把持工程と、
    前記光ファイバが前記光ファイバ用ハンドで把持された状態において、前記半導体レーザ素子から出力する光を前記光ファイバの前記一方の端部から入力して、前記光ファイバのコアに、この光が最も多く入力するように、前記光ファイバを調心する調心工程と、
    を備え、
    前記光ファイバ用ハンドにおける前記光ファイバと接触する接触部材の屈折率は、前記光の波長において、前記クラッドの屈折率以上である
    ことを特徴とするレーザモジュールの製造方法。
  2. 前記半導体レーザ素子は、マルチモードで前記光を発振することを特徴とする請求項1に記載のレーザモジュールの製造方法。
  3. 前記接触部材は、弾性変形することを特徴とする請求項1または2に記載のレーザモジュールの製造方法。
  4. 前記接触部材は、シリコン樹脂から成ることを特徴とする請求項3に記載のレーザモジュールの製造方法。
  5. 前記接触部材は、ガラスから成る支持部材上に設けられていることを特徴とする請求項3または4に記載のレーザモジュールの製造方法。
  6. 前記支持部材の屈折率は、前記光の波長において、前記接触部材の屈折率以上とされることを特徴とする請求項5に記載のレーザモジュールの製造方法。
  7. 半導体レーザ素子から出力される光が、光ファイバを介して出力されるレーザモジュールの製造に用いられる光ファイバ用ハンドであって、
    前記光ファイバと接触する接触部材の屈折率が、前記光の波長において、前記光ファイバのクラッドの屈折率以上である
    ことを特徴とする光ファイバ用ハンド。
  8. 前記接触部材は、弾性変形することを特徴とする請求項7に記載の光ファイバ用ハンド。
  9. 前記接触部材は、シリコン樹脂から成ることを特徴とする請求項8に記載の光ファイバ用ハンド。
  10. 前記接触部材は、ガラスから成る支持部材上に設けられていることを特徴とする請求項8または9に記載の光ファイバ用ハンド。
  11. 前記支持部材の屈折率は、前記光の波長において、前記接触部材の屈折率以上とされることを特徴とする請求項10に記載の光ファイバ用ハンド。
JP2011166377A 2011-07-29 2011-07-29 レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド Withdrawn JP2013030651A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011166377A JP2013030651A (ja) 2011-07-29 2011-07-29 レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド
PCT/JP2012/063727 WO2013018426A1 (ja) 2011-07-29 2012-05-29 レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166377A JP2013030651A (ja) 2011-07-29 2011-07-29 レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド

Publications (1)

Publication Number Publication Date
JP2013030651A true JP2013030651A (ja) 2013-02-07

Family

ID=47628966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166377A Withdrawn JP2013030651A (ja) 2011-07-29 2011-07-29 レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド

Country Status (2)

Country Link
JP (1) JP2013030651A (ja)
WO (1) WO2013018426A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026909A (ja) * 1983-07-25 1985-02-09 Nec Corp 光ファイバ付半導体レーザ装置
JPS6316684A (ja) * 1986-07-09 1988-01-23 Fujitsu Ltd 光半導体装置組立方法
JPS63125909A (ja) * 1986-11-15 1988-05-30 Oki Electric Ind Co Ltd 光フアイバ付半導体レ−ザ装置
JPH0750230B2 (ja) * 1986-12-01 1995-05-31 沖電気工業株式会社 光ファイバー半田接続方法
JPH0621892B2 (ja) * 1987-07-14 1994-03-23 沖電気工業株式会社 光ファイバ付き半導体レ−ザ装置の製造方法及びそのパッケ−ジ
JPS6450589A (en) * 1987-08-21 1989-02-27 Fujitsu Ltd Semiconductor laser module with external resonator
JPH02211411A (ja) * 1989-02-13 1990-08-22 Fujitsu Ltd 光結合系の調整方法
JPH03137606A (ja) * 1989-10-24 1991-06-12 Fujitsu Ltd 光軸合わせ方法
JPH03206406A (ja) * 1990-08-17 1991-09-09 Nec Corp 光ファイバ付半導体レーザ装置の製造方法
JPH04291213A (ja) * 1991-03-19 1992-10-15 Fujikura Ltd 迷光除去装置
US5832156A (en) * 1996-10-31 1998-11-03 Lucent Technologies Inc. Article comprising an optical waveguide tap
JP2007322493A (ja) * 2006-05-30 2007-12-13 Miyachi Technos Corp 光ファイバ保持装置及びファイバレーザ加工装置
GB2450116A (en) * 2007-06-13 2008-12-17 Gsi Group Ltd Termination of an optical fibre comprising angled capillary and cladding mode stripper

Also Published As

Publication number Publication date
WO2013018426A1 (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4704126B2 (ja) 光モジュール
JP2013080900A (ja) 発光モジュール
WO2010108399A1 (zh) 侧向耦合光纤构件及其加工方法
JP5203505B2 (ja) 半導体レーザモジュールおよび半導体レーザモジュールの製造方法
JP2008032835A (ja) 光デバイスおよびその製造方法
US8687663B2 (en) Laser device
TW200848824A (en) Optical assemblies and their methods of formation
JP2006301597A (ja) レーザー装置およびその組立方法
JP4985139B2 (ja) 光コネクタ
US7632022B2 (en) Component assembly and fabrication method
JP2006267237A (ja) レーザー装置およびその組立方法並びにその取付構造
JP4967803B2 (ja) 光電気複合基板の製造方法
TWI233509B (en) Optoelectronic package structure and process for planar passive optical and optoelectronic devices
JP5244585B2 (ja) 光伝送基板及びその製造方法並びに光伝送装置
WO2013018426A1 (ja) レーザモジュールの製造方法、及び、それに用いる光ファイバ用ハンド
JP5102380B2 (ja) ファイバマウント装置、及び、それを用いた光モジュール、及び、光モジュールの製造方法
JP2009093041A (ja) 光モジュール
US9335489B2 (en) Manufacturing method for optical module
JP5534155B2 (ja) デバイス、及びデバイス製造方法
JP2001127373A (ja) 光モジュール
JP2007333912A (ja) 光モジュール
JP2002111113A (ja) 光モジュール
JP2013231895A (ja) 光モジュール
JP2004191903A (ja) 光路変換部品及びその製造方法並びにそれを用いた光表面実装導波路
JP2020056930A (ja) 光通信装置、及び光回路基板搭載方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007