JP2012526199A - Thin film deposition apparatus and thin film deposition system including the same - Google Patents

Thin film deposition apparatus and thin film deposition system including the same Download PDF

Info

Publication number
JP2012526199A
JP2012526199A JP2012509732A JP2012509732A JP2012526199A JP 2012526199 A JP2012526199 A JP 2012526199A JP 2012509732 A JP2012509732 A JP 2012509732A JP 2012509732 A JP2012509732 A JP 2012509732A JP 2012526199 A JP2012526199 A JP 2012526199A
Authority
JP
Japan
Prior art keywords
substrate
thin film
chambers
film deposition
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012509732A
Other languages
Japanese (ja)
Other versions
JP5506917B2 (en
Inventor
ギョンビン ベ,
ヒョンソク ユン,
チャンホ カン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SNU Precision Co Ltd
Original Assignee
SNU Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNU Precision Co Ltd filed Critical SNU Precision Co Ltd
Publication of JP2012526199A publication Critical patent/JP2012526199A/en
Application granted granted Critical
Publication of JP5506917B2 publication Critical patent/JP5506917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【解決手段】本発明は、基板が搬送される搬送チャンバーと、前記搬送チャンバーの両側にそれぞれ結合された第1および第2の工程チャンバーと、を備え、前記第1および第2の工程チャンバーのそれぞれは、互いに離間して設けられる第1および第2の基板ホルダーと、前記第1および第2の基板ホルダーの間に設けられて前記第1および第2の基板ホルダーに向けて順次に蒸着原料を供給する噴射ユニットと、を備える薄膜蒸着装置およびこれを備える薄膜蒸着システムを提供する。このように、本発明は、搬送チャンバーの両側に同じ工程を行う多数の工程チャンバーが連結されることにより、多数の基板に対する薄膜工程を並行して実施して工程速度を高めることができる。
【選択図】図2
The present invention includes a transfer chamber in which a substrate is transferred, and first and second process chambers coupled to both sides of the transfer chamber, respectively, of the first and second process chambers. Each of the first and second substrate holders provided to be separated from each other, and the deposition raw material sequentially provided toward the first and second substrate holders provided between the first and second substrate holders. And a thin film deposition apparatus including the same, and a thin film deposition system including the same. As described above, according to the present invention, a plurality of process chambers that perform the same process are connected to both sides of the transfer chamber, so that a thin film process can be performed on a large number of substrates in parallel to increase the process speed.
[Selection] Figure 2

Description

本発明は薄膜蒸着装置に係り、さらに詳しくは、基板の上に薄膜を形成する薄膜蒸着装置およびこの種の薄膜蒸着装置がインライン方式により連結された薄膜蒸着システムに関する。 The present invention relates to a thin film deposition apparatus, and more particularly to a thin film deposition apparatus for forming a thin film on a substrate and a thin film deposition system in which this type of thin film deposition apparatus is connected in an in-line manner.

有機発光素子(OLED:Organic Light Emitted Diode)は、液晶表示装置とは異なり、自体発光が可能であるため、バックライトを必要とせず、しかも、消費電力が小さい。また、視野角が広く、且つ、応答速度が早いことから、これを用いた表示装置は、視野角および残像の問題がない優れた画像を実現することができる。 Unlike a liquid crystal display device, an organic light emitting element (OLED: Organic Light Emitted Diode) does not require a backlight and has low power consumption. In addition, since the viewing angle is wide and the response speed is fast, a display device using the viewing angle can realize an excellent image without problems of viewing angle and afterimage.

この種の有機発光素子は、ガラス基板の上に有機膜および金属膜などの多層の薄膜を積み重ねて製作する。このため、従来より、円形の搬送チャンバーの周りに一連の単位工程が行われる多数の単位チャンバーが連結されたクラスター方式が主として汎用されてきており、それぞれのチャンバーの間にガラス基板が水平に並んでいる状態で基板の搬送および素子工程が行われるように構成されている。かようなクラスター方式は、一連の工程を連続して速やかに行うことができるというメリットがあり、有機発光素子の製造に際して欠かせない蒸着マスクの交換が簡単に行えるというメリットがある。 This type of organic light emitting device is manufactured by stacking multiple thin films such as an organic film and a metal film on a glass substrate. For this reason, conventionally, a cluster system in which a large number of unit chambers in which a series of unit processes are performed around a circular transfer chamber has been mainly used, and glass substrates are horizontally arranged between the chambers. In this state, the substrate is transported and the element process is performed. Such a cluster method has an advantage that a series of steps can be performed quickly and continuously, and has an advantage that an evaporation mask which is indispensable for manufacturing an organic light emitting device can be easily replaced.

一方、最近には、高精細金属マスク(FMM:Fine Metal Mask)を用いて、大面積の基板の上に青色(B)、緑色(G)および赤色(R)の発光層をこの順に形成する、いわゆる、三原色独立画素方式の有機発光素子が注目を集めている。かような三原色独立画素方式は、色純度および光効率が良好であり、しかも、価格競争力の確保に有利であることが知られている。 Recently, blue (B), green (G), and red (R) light emitting layers are formed in this order on a large-area substrate using a high-definition metal mask (FMM). So-called three primary color independent pixel type organic light emitting devices are attracting attention. Such three primary color independent pixel systems are known to have good color purity and light efficiency, and are advantageous in securing price competitiveness.

しかしながら、三原色独立画素方式は、それぞれ独立した工程チャンバーにおいて青色(B)、緑色(G)および赤色(R)の発光層をこの順に形成せねばならないため、それぞれの単位工程を行う工程チャンバーが一列に連設されているインライン方式を採用することが好適である。このため、従来のクラスター方式をインライン方式に切り換える必要があるが、インライン方式は、クラスター方式に比べて、重複する装備が多いため生産ラインの構築コストが高くつき、工程速度が遅いため生産性が低いという問題点があった。 However, in the three primary color independent pixel method, since the blue (B), green (G), and red (R) light emitting layers must be formed in this order in independent process chambers, the process chambers for performing each unit process are arranged in a row. It is preferable to adopt an in-line method that is connected to the. For this reason, it is necessary to switch from the conventional cluster method to the inline method. However, the inline method has more redundant equipment than the cluster method, so the construction cost of the production line is high and the productivity is low because the process speed is slow. There was a problem that it was low.

さらに、従来のクラスター方式は、基板を水平に並べて薄膜工程(有機膜成膜工程)を行うが、これにより、基板の垂れ下がり現象が深刻に現れて、素子の製作に際して相当の難点があった。なお、大面積の基板用蒸着マスクは、荷重が数百kg以上であるため、基板の垂れ下がり現象が一層深刻であり、その結果、基板破断などの深刻な問題が引き起こされる。 Furthermore, the conventional cluster system performs the thin film process (organic film forming process) by horizontally arranging the substrates, but this causes a serious phenomenon of sagging of the substrate, and there is a considerable difficulty in manufacturing the device. In addition, since a large-area substrate deposition mask has a load of several hundred kg or more, the sagging phenomenon of the substrate is more serious, resulting in serious problems such as substrate breakage.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、多数の基板を並行処理し、基板の搬入/固定作業および蒸着マスクの配置/整列作業などの工程待ち時間を最短化させることにより、高い生産性を達成することのできる薄膜蒸着装置およびこれを備える薄膜蒸着システムを提供する。 The present invention has been made in view of the above-mentioned problems, and its object is to process a large number of substrates in parallel to minimize the waiting time for processes such as substrate loading / fixing operations and deposition mask arranging / alignment operations. Accordingly, a thin film deposition apparatus and a thin film deposition system including the same can be achieved.

また、本発明は、重複する装備の共用を極大化させることにより、生産ラインの構築コストを節減することのできる薄膜蒸着装置およびこれを備える薄膜蒸着システムを提供する。 In addition, the present invention provides a thin film deposition apparatus and a thin film deposition system including the same that can reduce the construction cost of a production line by maximizing the sharing of overlapping equipment.

さらに、本発明は、基板を垂直状態で並べて薄膜工程を行うことにより、基板の垂れ下がり現象を克服することのできる薄膜蒸着装置およびこれを備える薄膜蒸着システムを提供する。 Furthermore, the present invention provides a thin film deposition apparatus and a thin film deposition system including the same that can overcome the sagging phenomenon of the substrate by performing the thin film process by arranging the substrates in a vertical state.

本発明の一側面による薄膜蒸着装置は、基板が搬送される搬送チャンバーと、前記搬送チャンバーの両側にそれぞれ結合された第1および第2の工程チャンバーと、を備え、前記第1および第2の工程チャンバーのそれぞれは、互いに離間して設けられる第1および第2の基板ホルダーと、前記第1および第2の基板ホルダーの間に設けられて前記第1および第2の基板ホルダーに向けて順次に蒸着原料を供給する噴射ユニットと、を備える。 A thin film deposition apparatus according to an aspect of the present invention includes a transfer chamber in which a substrate is transferred, and first and second process chambers coupled to both sides of the transfer chamber, respectively. Each of the process chambers is provided between the first and second substrate holders provided apart from each other and the first and second substrate holders, and sequentially toward the first and second substrate holders. And an injection unit for supplying a vapor deposition raw material to the apparatus.

好ましくは、前記第1および第2の基板ホルダーは、基板を垂直状態で保持する。 Preferably, the first and second substrate holders hold the substrate in a vertical state.

また、好ましくは、前記搬送チャンバーには、基板を回転させて垂直状態に立てたり、水平状態に横たえたりする基板回転部材が設けられる。 Preferably, the transfer chamber is provided with a substrate rotating member that rotates the substrate to stand in a vertical state or lies in a horizontal state.

さらに、好ましくは、前記噴射ユニットは、第1の基板ホルダーと第2の基板ホルダーとの間において回転可能である。 Further, preferably, the ejection unit is rotatable between the first substrate holder and the second substrate holder.

さらに、好ましくは、前記噴射ユニットは、点状、線状および面状のうちのいずれかの噴射構造を有する。 Further preferably, the injection unit has an injection structure of any one of a dot shape, a line shape, and a planar shape.

さらに、好ましくは、前記第1および第2の工程チャンバーのそれぞれには、前記第1および第2の基板ホルダーのそれぞれに蒸着マスクを提供するか、あるいは、蒸着マスクを交換するためのマスクチャンバーが連結される。 Further, preferably, each of the first and second process chambers includes a mask chamber for providing a deposition mask to each of the first and second substrate holders, or for replacing the deposition mask. Connected.

本発明の他の側面による薄膜蒸着システムは、一列に連設されて基板が搬送される多数の搬送チャンバーと、前記多数の搬送チャンバーのうちの少なくとも一つの両側にそれぞれ結合された第1および第2の工程チャンバーと、を備え、前記第1および第2の工程チャンバーのそれぞれは、互いに離間して設けられる第1および第2の基板ホルダーと、前記第1および第2の基板ホルダーの間に設けられて前記第1および第2の基板ホルダーに向けて順次に蒸着原料を供給する噴射ユニットと、を備える。 According to another aspect of the present invention, there is provided a thin film deposition system including a plurality of transfer chambers connected in a row to transfer a substrate, and first and first coupled to both sides of at least one of the plurality of transfer chambers. Two process chambers, and each of the first and second process chambers is provided between first and second substrate holders provided apart from each other and the first and second substrate holders. And an injection unit that sequentially supplies vapor deposition materials toward the first and second substrate holders.

好ましくは、前記多数の搬送チャンバーは、前記第1および第2の工程チャンバーに連結されて基板を分配する多数の分配チャンバーと、隣り合う分配チャンバーの間に連結されて基板が一時的に待機する多数の緩衝チャンバーと、を備える。 Preferably, the plurality of transfer chambers are connected to the first and second process chambers to distribute the substrate, and are connected between adjacent distribution chambers so that the substrate temporarily stands by. A number of buffer chambers.

また、好ましくは、前記薄膜蒸着システムは、前記多数の搬送チャンバーのうち、先端に連結されて外部から基板が搬入される搬入チャンバーと、前記多数の搬送チャンバーのうち、後端に連結されて基板が外部に搬出される搬出チャンバーと、を備える。 Preferably, the thin film deposition system includes a loading chamber connected to a front end of the plurality of transfer chambers and a substrate loaded from outside, and a substrate connected to a rear end of the plurality of transfer chambers. And an unloading chamber for unloading to the outside.

さらに、好ましくは、前記第1および第2の基板ホルダーは、基板を垂直状態で保持する。 Further preferably, the first and second substrate holders hold the substrate in a vertical state.

さらに、好ましくは、前記搬送チャンバーには、基板を回転させて垂直状態に立てたり、水平状態に横たえたりする基板回転部材が設けられる。 Further preferably, the transfer chamber is provided with a substrate rotating member that rotates the substrate to stand in a vertical state or lies in a horizontal state.

さらに、好ましくは、前記噴射ユニットは、第1の基板ホルダーと第2の基板ホルダーとの間において回転可能である。 Further, preferably, the ejection unit is rotatable between the first substrate holder and the second substrate holder.

本発明によれば、搬送チャンバーの両側に同じ工程を行う多数の工程チャンバーが連結されることにより、多数の基板に対する薄膜工程を並行して実施して工程速度を高めることができる。 According to the present invention, by connecting a plurality of process chambers that perform the same process on both sides of the transfer chamber, it is possible to increase the process speed by performing thin film processes on a large number of substrates in parallel.

また、本発明によれば、単一の噴射ユニットを通じて工程チャンバー内に設けられた多数の基板に対する薄膜工程を順次に行うことにより、コスト節減および生産性向上を両立させることができる。 Further, according to the present invention, it is possible to achieve both cost saving and productivity improvement by sequentially performing a thin film process on a large number of substrates provided in a process chamber through a single injection unit.

さらに、本発明によれば、工程チャンバーの内部の両側に多数の工程手段が設けられることにより、ある工程が行われる間に残りの他の工程に対する事前準備作業を行ったり、事後整理作業を行ったりすることができる。これにより、全体的な作業待ち時間を短縮して生産性を大幅に高めることができる。 Furthermore, according to the present invention, by providing a large number of process means on both sides inside the process chamber, it is possible to perform preparatory work for the remaining other processes while performing a certain process, or perform post-sorting work. Can be. Thereby, overall work waiting time can be shortened, and productivity can be significantly increased.

さらに、本発明は、基板の搬送時には基板が水平状態で並ぶため、基板の搬送中に基板が破断される虞がなく、薄膜工程時には基板が垂直状態で並ぶため、基板の垂れ下がり現象があまりなく、その結果、素子の製作が簡単に行える。 Furthermore, since the substrates are arranged in a horizontal state when the substrate is transferred in the present invention, the substrate is not broken during the transfer of the substrate, and the substrates are arranged in a vertical state during the thin film process, so that the substrate does not hang down so much. As a result, the device can be easily manufactured.

図1は、本発明の実施形態による薄膜蒸着システムを示す平面図である。FIG. 1 is a plan view showing a thin film deposition system according to an embodiment of the present invention. 図2は、図1に示す薄膜蒸着システムにおける一部のチャンバーを示す平面図である。FIG. 2 is a plan view showing some chambers in the thin film deposition system shown in FIG. 図3から図8は、本発明の実施形態による薄膜蒸着システムの単位工程を説明するための平面図である。3 to 8 are plan views for explaining a unit process of the thin film deposition system according to the embodiment of the present invention.

110:搬入チャンバー、
120:搬出チャンバー、
200A、200B:工程チャンバー、
311、312、321、322:マスクチャンバー、
410:分配チャンバー、
420:緩衝チャンバー、
511、512、611、612:ゲート、
520、530、620、630:基板ホルダー、
521:保持台、
522:クランプ、
G:基板、
M:マスク、
110: loading chamber,
120: Unloading chamber,
200A, 200B: process chamber,
311, 312, 321, 322: mask chamber,
410: distribution chamber,
420: buffer chamber,
511, 512, 611, 612: gate,
520, 530, 620, 630: substrate holder,
521: holding stand,
522: clamp,
G: substrate
M: Mask

以下、添付図面に基づき、本発明の実施形態を詳述する。しかしながら、本発明は下記の実施形態に限定されるものではなく、様々な形態に実現可能であり、単にこれらの実施形態は本発明の開示を完全たるものにし、通常の知識を持った者に発明の範疇を完全に知らせるために提供されるものである。図中、同じ符号は同じ要素を指し示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described below, and can be implemented in various forms. These embodiments merely complete the disclosure of the present invention, and can be used by those having ordinary knowledge. It is provided to fully inform the scope of the invention. In the drawings, the same reference numerals indicate the same elements.

図1は、本発明の実施形態に係る薄膜蒸着システムを示す平面図であり、図2は、図1の薄膜蒸着システムにおける一部のチャンバーを示す平面図である。 FIG. 1 is a plan view showing a thin film deposition system according to an embodiment of the present invention, and FIG. 2 is a plan view showing some chambers in the thin film deposition system of FIG.

図1および図2を参照すれば、薄膜蒸着システムは、先端の搬入チャンバー110と後端の搬出チャンバー120との間に多数の搬送チャンバー410、420(400)が一列に連設され、これらのうちの一部の搬送チャンバー410の両側に第1および第2の工程チャンバー200A、200Bが連結されて、全体的に基板の搬送および単位工程が一列に行われるインライン方式を採用している。このとき、第1および第2の工程チャンバー200A、200Bのそれぞれの内部空間に2枚の基板G1/G2、G3/G4が搬入することができるので、一方の基板G1/G2に対する単位工程を行う間に、他方の基板G3/G4に対する単位工程の事前準備作業を行うことができる。 Referring to FIGS. 1 and 2, the thin film deposition system includes a plurality of transfer chambers 410 and 420 (400) arranged in a row between a leading-in loading chamber 110 and a trailing-out loading chamber 120. The first and second process chambers 200 </ b> A and 200 </ b> B are connected to both sides of some of the transfer chambers 410 to adopt an in-line method in which the substrate transfer and unit processes are performed in a row as a whole. At this time, since the two substrates G1 / G2 and G3 / G4 can be loaded into the internal spaces of the first and second process chambers 200A and 200B, the unit process for one substrate G1 / G2 is performed. In the meantime, it is possible to perform a preliminary preparation for the unit process for the other substrate G3 / G4.

搬入チャンバー110は、所定の先行工程を終えた基板G1、G2、G3、G4を大気圧状態で受け取って、これを真空状態の搬送チャンバー400に搬入する役割を果たし、搬出チャンバー120は、一連の単位工程を終えた基板G1、G2、G3、G4を搬送チャンバー400から受け取って、これを後行工程のために大気圧状態で搬出する役割を果たす。このため、搬入チャンバー110および搬出チャンバー120は、大気圧状態と真空状態とが相互に切り換えできるように構成される。また、図示はしないが、前記搬入チャンバー110および搬出チャンバー120は、ロボットアームなどの基板搬送手段および基板カセットなどの基板積載手段と連結されてもよい。 The carry-in chamber 110 plays a role of receiving the substrates G1, G2, G3, and G4 that have finished a predetermined preceding process in an atmospheric pressure state, and carrying them into the vacuum-state transfer chamber 400. The substrate G1, G2, G3, and G4 that have completed the unit process are received from the transfer chamber 400, and the substrate G1, G2, G3, and G4 are carried out in an atmospheric pressure state for the subsequent process. For this reason, the carry-in chamber 110 and the carry-out chamber 120 are configured to be able to switch between an atmospheric pressure state and a vacuum state. Although not shown, the carry-in chamber 110 and the carry-out chamber 120 may be connected to a substrate carrying unit such as a robot arm and a substrate stacking unit such as a substrate cassette.

搬送チャンバー400は、前記第1および第2の工程チャンバー200A、200Bに連結されて基板G1、G2、G3、G4を分配する分配チャンバー410および隣り合う分配チャンバーの間に連結されて基板G1、G2、G3、G4が一時的に待機する緩衝チャンバー420を備える。このとき、緩衝チャンバー420は、工程待機のために、基板G1、G2、G3、G4が暫くの間に留まる臨時空間を提供する。前記分配チャンバー410には、基板G1、G2、G3、G4を回転させて垂直状態に立てたり、水平状態に横たえたりする基板回転部材(図示せず)が設けられる。このような基板回転部材によって、先行チャンバーから水平状態で搬送された基板G1、G2、G3、G4は垂直状態に立てられて第1および第2の工程チャンバー200A、200Bに投入され、第1および第2の工程チャンバー200A、200Bから垂直状態で搬出された基板G1、G2、G3、G4は水平状態に横たえられて後続チャンバーに搬送される。このため、薄膜工程時には、基板G1、G2、G3、G4を垂直状態で並べて基板の垂れ下がり現象を極力抑えることができ、基板の搬送時には、基板G1、G2、G3、G4を垂直状態で並べて流動による基板の破損を極力抑えることができる。もちろん、基板の搬送時にも、基板G1、G2、G3、G4が垂直状態で並べられてもよく、この場合には、分配チャンバー410に基板回転部材が設けられる必要がない。 The transfer chamber 400 is connected to the first and second process chambers 200A and 200B and is connected between the distribution chamber 410 for distributing the substrates G1, G2, G3, and G4 and the adjacent distribution chambers, and is connected to the substrates G1, G2. , G3, G4 are provided with a buffer chamber 420 that temporarily stands by. At this time, the buffer chamber 420 provides a temporary space where the substrates G1, G2, G3, and G4 stay for a while in order to wait for the process. The distribution chamber 410 is provided with a substrate rotating member (not shown) for rotating the substrates G1, G2, G3, and G4 to stand in a vertical state or to lie in a horizontal state. By such a substrate rotating member, the substrates G1, G2, G3, and G4 transferred in a horizontal state from the preceding chamber are set in a vertical state and are put into the first and second process chambers 200A and 200B. The substrates G1, G2, G3, and G4 carried out in the vertical state from the second process chambers 200A and 200B are laid in a horizontal state and transferred to the subsequent chambers. For this reason, during the thin film process, the substrates G1, G2, G3, and G4 can be arranged in a vertical state to suppress the drooping phenomenon of the substrate as much as possible. When the substrate is transported, the substrates G1, G2, G3, and G4 are arranged in a vertical state and flowed. It is possible to suppress the damage to the substrate as much as possible. Of course, the substrates G 1, G 2, G 3, and G 4 may be arranged in a vertical state when the substrates are transported. In this case, it is not necessary to provide the substrate rotating member in the distribution chamber 410.

一方、それぞれの分配チャンバー410には、両側に第1および第2の工程チャンバー200A、200Bが連結され、前記第1および第2の工程チャンバー200A、200Bのそれぞれにも蒸着マスクM1/M3、M2/M4を供給する第1および第2のマスクチャンバー311/321、312/322が連結される。前記第1および第2のマスクチャンバー311/321、312/322には、薄膜工程時に用いるか、あるいは、交換して用いる蒸着マスクが保存される。もちろん、第1および第2のマスクチャンバー311/321、312/322は、共用されることもあるため、前記第1および第2の工程チャンバー200A、200Bのそれぞれには、一つの共用マスクチャンバーのみ連結されてもよい。 On the other hand, the first and second process chambers 200A and 200B are connected to the respective distribution chambers 410 on both sides, and the deposition masks M1 / M3 and M2 are also connected to the first and second process chambers 200A and 200B, respectively. The first and second mask chambers 311/321 and 312/322 for supplying / M4 are connected. In the first and second mask chambers 311/321 and 312/322, vapor deposition masks that are used during the thin film process or exchanged are stored. Of course, since the first and second mask chambers 311/321 and 312/322 may be shared, each of the first and second process chambers 200A and 200B has only one shared mask chamber. It may be connected.

また、同じ分配チャンバー410に連結された第1および第2の工程チャンバー200A、200Bは、同じ単位工程を行うように構成され、一列に連設された分配チャンバーに連結された第1および第2の工程チャンバー211/221/231/241/251/261、212/222/232/242/252/262が基板の上に一連の素子工程を行うように構成される。例えば、この実施形態は、外部において陽極(アノード)が形成された基板Gの上に正孔注入層(Hole Injection Layer;HIL)、正孔輸送層(Hole Transport Layer;HTL)、発光層(Emitting material Layer;EML)、電子輸送層(Electron Transport Layer;ETL)、電子注入層(Electron Injection Layer;EIL)および陰極(カソード)がこの順に積層された有機発光素子を形成し得るように構成される。このために、第1の分配チャンバーには、正孔注入層の形成のための第1および第2の工程チャンバー211、212が連結され、第2の分配チャンバーには、正孔輸送層の形成のための第1および第2の工程チャンバー221、222が連結される。また、第3の分配チャンバーには、発光層の形成のための第1および第2の工程チャンバー231、232が連結され、第4の分配チャンバーには、電子輸送層の形成のための第1および第2の工程チャンバー241、242が連結される。さらに、第5の分配チャンバーには、電子注入層の形成のための第1および第2の工程チャンバー251、252が連結され、第6の搬送チャンバーには、陰極の形成のための第1および第2の工程チャンバー261、262が連結される。このとき、前記発光層の形成のための第1および第2のチャンバー231、232は、天然色の実現のために、青色(B)、緑色(G)および赤色(R)の発光層を形成する多数のチャンバー231a/231b、231c、232a/232b/232cを備えていてもよく、陰極の形成のための第1および第2のチャンバー261、262は、多層構造の陰極を形成する多数のチャンバー261a/261b、261c、262a/262b/262cを備えていてもよい。 Further, the first and second process chambers 200A and 200B connected to the same distribution chamber 410 are configured to perform the same unit process, and the first and second process chambers connected to the distribution chambers arranged in a row. The process chambers 211/221/231/241/251/261, 212/222/232/242/252/262 are configured to perform a series of device processes on the substrate. For example, in this embodiment, a hole injection layer (HIL), a hole transport layer (HTL), and a light emitting layer (Emitting) are formed on a substrate G on which an anode (anode) is formed on the outside. A material layer (EML), an electron transport layer (ETL), an electron injection layer (EIL), and a cathode (cathode) are configured to form an organic light emitting device stacked in this order. . For this purpose, the first distribution chamber is connected to first and second process chambers 211 and 212 for forming a hole injection layer, and the second distribution chamber is formed with a hole transport layer. First and second process chambers 221 and 222 are connected to each other. The third distribution chamber is connected to first and second process chambers 231 and 232 for forming a light emitting layer, and the fourth distribution chamber is connected to a first distribution chamber for forming an electron transport layer. And the second process chambers 241 and 242 are connected. Further, the fifth distribution chamber is connected to first and second process chambers 251 and 252 for forming an electron injection layer, and the sixth transfer chamber is connected to first and second process chambers for forming a cathode. The second process chambers 261 and 262 are connected. At this time, the first and second chambers 231 and 232 for forming the light emitting layer form blue (B), green (G) and red (R) light emitting layers in order to realize a natural color. A plurality of chambers 231a / 231b, 231c, 232a / 232b / 232c, and the first and second chambers 261 and 262 for forming a cathode are a plurality of chambers for forming a cathode having a multilayer structure. 261a / 261b, 261c, 262a / 262b / 262c may be provided.

それぞれの工程チャンバー200A、200Bは、四角い箱状に製作されて、内部には、基板G1、G2、G3、G4を処理し得る所定の反応空間が設けられる。前記反応空間には、基板G1、G2、G3、G4を垂直状態で保持する第1および第2の基板ホルダー520/620、530/630が互いに離間して設けられ、第1および第2の基板ホルダー520/620、530/630の間に噴射ユニット540、640が設けられる。また、それぞれの工程チャンバー200A、200Bには、分配チャンバー410と連結されて基板Gが搬入若しくは搬出される第1および第2のゲート511/611、512/612が互いに離間して形成される。このとき、第1および第2のゲート511/611、512/612は、スリット弁から構成されてもよい。 Each of the process chambers 200A and 200B is manufactured in a rectangular box shape, and a predetermined reaction space capable of processing the substrates G1, G2, G3, and G4 is provided therein. In the reaction space, first and second substrate holders 520/620, 530/630 for holding the substrates G1, G2, G3, G4 in a vertical state are provided apart from each other, and the first and second substrates are provided. Injection units 540 and 640 are provided between the holders 520/620 and 530/630. In each of the process chambers 200A and 200B, first and second gates 511/611 and 512/612, which are connected to the distribution chamber 410 and into which the substrate G is loaded or unloaded, are formed apart from each other. At this time, the first and second gates 511/611, 512/612 may be formed of slit valves.

前記第1および第2の基板ホルダー520/620、530/630のそれぞれは、基板G1、G2、G3、G4の背面を保持する保持台521と、前記保持台521に設けられて基板Gを固定するクランプ522および基板の温度を制御する温度制御部523を備える。前記温度制御部523は、前記保持台521の内部または下部に設けられて保持台521の上に載置された基板G1/G2、G3/G4が工程の遂行に適した温度に保たれるように制御する。このような温度制御手段521は、基板G1/G2、G3/G4を冷却する冷却手段および基板G1/G2、G3/G4を加熱する加熱手段のうちの少なくともいずれか一方の組み合わせから構成されてもよい。この実施形態においては、保持台521の胴体に冷却流路が形成されて基板の温度が工程温度に一定に保たれることにより、基板G1/G2、G3/G4の上面に蒸着される蒸着物質との反応性を高める。 Each of the first and second substrate holders 520/620, 530/630 holds the substrate G1, G2, G3, G4, a holding base 521, and is provided on the holding base 521 to fix the substrate G. And a temperature controller 523 for controlling the temperature of the substrate. The temperature controller 523 is provided in or below the holding table 521 so that the substrates G1 / G2 and G3 / G4 placed on the holding table 521 are maintained at a temperature suitable for performing the process. To control. Such temperature control means 521 may be composed of a combination of at least one of a cooling means for cooling the substrates G1 / G2 and G3 / G4 and a heating means for heating the substrates G1 / G2 and G3 / G4. Good. In this embodiment, a cooling channel is formed in the body of the holding table 521, and the temperature of the substrate is kept constant at the process temperature, so that the vapor deposition material deposited on the upper surfaces of the substrates G1 / G2 and G3 / G4. Increase reactivity with.

前記クランプ522は、基板G1、G2、G3、G4の周縁を把持することにより、保持台521の上に載置された基板G1、G2、G3、G4が工程中に流動することを防ぐ。この実施形態の場合には、基板G1、G2、G3、G4の上に形成される薄膜パターンを規制するために、基板G1、G2、G3、G4の上に蒸着マスクM1、M2、M3、M4が配置されるため、前記クランプ522は、基板G1、G2、G3、G4と蒸着マスクM1、M2、M3、M4をいずれも保持台521の上に固定できるように構成されることが好ましい。 The clamp 522 holds the periphery of the substrates G1, G2, G3, and G4, thereby preventing the substrates G1, G2, G3, and G4 placed on the holding table 521 from flowing during the process. In this embodiment, in order to regulate the thin film pattern formed on the substrates G1, G2, G3, and G4, the deposition masks M1, M2, M3, and M4 are formed on the substrates G1, G2, G3, and G4. Therefore, the clamp 522 is preferably configured to fix the substrates G1, G2, G3, and G4 and the vapor deposition masks M1, M2, M3, and M4 on the holding table 521.

前記噴射ユニット540、640は、第1および第2の基板ホルダー520/620、530/630の間に設けられて第1の基板ホルダーに向けて、または、第2の基板ホルダーに向けて気化状態の原料物質を吹き付ける。このとき、図示はしないが、それぞれの噴射ユニット540、640は、原料物質が貯蔵されるルツボと、前記原料物質を気化させる加熱部および気化された原料物質を吹き付ける噴射部を備え、噴射部は、点状、線状および面状のうちのいずれかの噴射構造を有する。例えば、この実施形態においては、多数の点状蒸着源を一列に並べてなる線状蒸着源540を使用し、このような線状蒸着源540、640は、往復駆動部材(図示せず)によって左右に往復しつつ基板G1、G2、G3、G4の全体の面積に亘って原料物質を均一に吹き付ける。 The injection units 540 and 640 are provided between the first and second substrate holders 520/620 and 530/630 and are vaporized toward the first substrate holder or toward the second substrate holder. Spray the raw material. At this time, although not shown, each of the injection units 540 and 640 includes a crucible in which the raw material is stored, a heating unit that vaporizes the raw material, and an injection unit that sprays the vaporized raw material. The spray structure has any one of a dot shape, a line shape, and a planar shape. For example, in this embodiment, a linear vapor deposition source 540 in which a large number of point vapor deposition sources are arranged in a line is used, and such linear vapor deposition sources 540 and 640 are left and right by a reciprocating drive member (not shown). The source material is sprayed uniformly over the entire area of the substrates G1, G2, G3 and G4 while reciprocating.

特に、この実施形態による噴射ユニット540、640は、第1の基板ホルダー520、620を基準として180°回転して、第2の基板ホルダー530、630に向けて原料物質を吹き付けるか、あるいは、逆に、180°回転して第1の基板ホルダー520、620に向けて原料物質を吹き付けるように構成される。これにより、単一のチャンバー200Aまたは200Bの内部の両側に設けられた多数の基板G1/G2、G3/G4に対する薄膜工程を一つの噴射ユニットを用いて順次に行うことができる。 In particular, the injection units 540 and 640 according to this embodiment rotate 180 ° with respect to the first substrate holders 520 and 620 and spray the raw material toward the second substrate holders 530 and 630, or vice versa. In addition, the material material is sprayed toward the first substrate holders 520 and 620 by rotating 180 °. Thereby, the thin film process with respect to many board | substrates G1 / G2 and G3 / G4 provided in the both sides inside the single chamber 200A or 200B can be sequentially performed using one injection unit.

このように構成された薄膜蒸着システムを用いた薄膜蒸着工程について、図1に基づき簡略に説明すれば、下記の通りである。 The thin film deposition process using the thin film deposition system configured as described above will be briefly described below with reference to FIG.

まず、先行工程を通じて陽極が形成された基板Gは、大気圧状態で搬入チャンバー110に搬入され、搬入チャンバー110の内部は真空状態に切り替わる。次いで、真空状態の基板Gは、搬入チャンバー110と一列に連結された多数の搬送チャンバー410、420に順次に搬送され、一部の搬送チャンバー、すなわち、分配チャンバー410と連結されたそれぞれの工程チャンバー211/221/231/241/251/261、212/222/232/242/252/262に投入されて単位工程が行われる。すなわち、基板Gは、真空状態で正孔注入層形成チャンバー211、212、正孔輸送層形成チャンバー221、222および発光層形成チャンバー231、232に順次に投入される。これにより、基板Gの陽極の上には、正孔注入層、正孔輸送層および発光層がこの順に形成される。この後、基板Gは、電子輸送層形成チャンバー241、242、電子注入層形成チャンバー251、252、陰極形成チャンバー261、262に順次に投入される。これにより、基板Gの発光層の上には、電子輸送層、電子注入層および多層の陰極が形成されて有機発光素子が製作される。この後、素子工程を終えた基板Gは、搬出チャンバー120に搬送されて大気圧状態で外部に搬出される。 First, the substrate G on which the anode is formed through the preceding process is carried into the carry-in chamber 110 in an atmospheric pressure state, and the inside of the carry-in chamber 110 is switched to a vacuum state. Next, the substrate G in a vacuum state is sequentially transferred to a plurality of transfer chambers 410 and 420 connected to the carry-in chamber 110 in a row, and each process chamber connected to some transfer chambers, that is, the distribution chamber 410. The unit process is carried out in the 211/221/231/241/251/261 and 212/222/232/242/252/262. That is, the substrate G is sequentially put into the hole injection layer forming chambers 211 and 212, the hole transport layer forming chambers 221 and 222, and the light emitting layer forming chambers 231 and 232 in a vacuum state. Thereby, a hole injection layer, a hole transport layer, and a light emitting layer are formed in this order on the anode of the substrate G. Thereafter, the substrate G is sequentially put into the electron transport layer forming chambers 241 and 242, the electron injection layer forming chambers 251 and 252, and the cathode forming chambers 261 and 262. As a result, an electron transport layer, an electron injection layer, and a multilayer cathode are formed on the light emitting layer of the substrate G to manufacture an organic light emitting device. Thereafter, the substrate G that has completed the element process is transferred to the carry-out chamber 120 and carried out to the outside in an atmospheric pressure state.

一方、前記薄膜蒸着工程において、基板Gは、垂直状態または水平状態で搬送され、垂直状態で薄膜工程が行われる。このとき、基板の搬送が水平状態で行われる場合には、それぞれの搬送チャンバー410内において水平状態の基板Gを垂直状態に切り換える過程が必要である。以下、水平状態の基板Gを垂直状態に切り換えて単位工程を行う過程について、図3から図8に基づいて詳述する。ここで、図3から図8は、本発明の実施形態による薄膜蒸着システムの単位工程を説明するための平面図である。 Meanwhile, in the thin film deposition process, the substrate G is transported in a vertical state or a horizontal state, and the thin film process is performed in the vertical state. At this time, when the substrate is transferred in a horizontal state, a process of switching the horizontal substrate G to the vertical state in each transfer chamber 410 is necessary. Hereinafter, a process of performing the unit process by switching the substrate G in the horizontal state to the vertical state will be described in detail with reference to FIGS. Here, FIGS. 3 to 8 are plan views for explaining a unit process of the thin film deposition system according to the embodiment of the present invention.

まず、図3および図4に示すように、水平状態の第1および第2の基板G1、G2は、分配チャンバー410の内部に搬入された後に垂直状態に切り換わり、第1および第2の工程チャンバー200A、200Bの内部に搬入された後にそれぞれの基板ホルダー520、630に固定される。このとき、第1および第2の基板G1、G2の搬送は同時に行われても良く、所定の時間差をあけて行われてもよい。次いで、第1および第2の工程チャンバー200A、200Bのそれぞれに連結されたマスクチャンバー311、322から蒸着マスクM1、M2が提供され、提供された蒸着マスクM1、M2は、第1および第2の基板G1、G2の蒸着面の手前側に並ぶ。次いで、図5に示すように、噴射ユニット540、640の噴射方向が第1および第2の基板G1、G2の蒸着面と向かい合うように位置させ、噴射ユニット540、640を介して第1および第2の基板G1、G2の蒸着面に気化状態の原料物質を吹き付けて第1および第2の基板G1、G2に対する第1の薄膜工程を行う。 First, as shown in FIGS. 3 and 4, the first and second substrates G1 and G2 in the horizontal state are switched to the vertical state after being loaded into the distribution chamber 410, and the first and second steps. After being carried into the chambers 200A and 200B, they are fixed to the respective substrate holders 520 and 630. At this time, the transfer of the first and second substrates G1 and G2 may be performed simultaneously, or may be performed with a predetermined time difference. Next, deposition masks M1 and M2 are provided from mask chambers 311 and 322 connected to the first and second process chambers 200A and 200B, respectively. The provided deposition masks M1 and M2 are first and second deposition chambers. It is arranged in front of the deposition surfaces of the substrates G1 and G2. Next, as shown in FIG. 5, the injection units 540 and 640 are positioned so that the injection directions of the injection units 540 and 640 face the vapor deposition surfaces of the first and second substrates G <b> 1 and G <b> 2. The first thin film process is performed on the first and second substrates G1 and G2 by spraying the vaporized raw material on the deposition surfaces of the second substrates G1 and G2.

次いで、図5および図6に示すように、第1の薄膜工程を行う間に、第3及び第4の基板G3、G4が分配チャンバー410の内部に搬入される。前記第3及び第4の基板G3、G4は、分配チャンバー410において垂直状態に切り換わり、第1および第2の工程チャンバー200A、200Bの内部に搬入された後にそれぞれの基板ホルダー520、630に固定される。次いで、第1および第2の工程チャンバー200A、200Bのそれぞれに連結されたマスクチャンバー312、321から蒸着マスクM3、M4が提供され、提供された蒸着マスクM3、M4は、第3及び第4の基板G3、G4の蒸着面の手前側に並ぶ。このように、第3及び第4の基板G3、G4の搬入/固定作業およびこのための蒸着マスクM3、M4の配置/整列作業は、第1の薄膜工程を行う間に実施することが好ましい。このため、次回の第2の薄膜工程を行うための待ち時間を短縮して生産性を高めることができる。 Next, as shown in FIGS. 5 and 6, the third and fourth substrates G3 and G4 are carried into the distribution chamber 410 during the first thin film process. The third and fourth substrates G3 and G4 are switched to a vertical state in the distribution chamber 410, and are fixed to the respective substrate holders 520 and 630 after being loaded into the first and second process chambers 200A and 200B. Is done. Next, deposition masks M3 and M4 are provided from mask chambers 312 and 321 connected to the first and second process chambers 200A and 200B, respectively, and the provided deposition masks M3 and M4 are third and fourth. It is arranged in front of the deposition surface of the substrates G3 and G4. As described above, it is preferable that the operation of carrying in / fixing the third and fourth substrates G3 and G4 and the arrangement / alignment operation of the vapor deposition masks M3 and M4 for this purpose are performed during the first thin film process. For this reason, the waiting time for performing the next second thin film process can be shortened to increase productivity.

次いで、図7に示すように、第1の薄膜工程が終わると、噴射ユニット540、640の噴射方向を反対方向に180°回転させる。これにより、第3及び第4の基板G3、G4の蒸着面と噴射ユニット540、640の噴射方向とが向かい合うと、噴射ユニット540、640を介して第3及び第4の基板G3、G4の蒸着面に気化状態の原料物質を吹き付けて第3及び第4の基板G3、G4に対する第2の薄膜工程を行う。 Next, as shown in FIG. 7, when the first thin film process is completed, the injection directions of the injection units 540 and 640 are rotated 180 ° in the opposite direction. Accordingly, when the vapor deposition surfaces of the third and fourth substrates G3 and G4 and the spraying direction of the spray units 540 and 640 face each other, the vapor deposition of the third and fourth substrates G3 and G4 via the spray units 540 and 640 is performed. A second thin film process is performed on the third and fourth substrates G3 and G4 by spraying a vaporized source material on the surface.

次いで、図7および図8に示すように、第2の薄膜工程を行う間に第1の薄膜工程を終えた第1および第2の基板G1、G2から蒸着マスクM1、M2が取り外され、蒸着マスクM1、M2の取り外された第1および第2の基板G1、G2はさらに分配チャンバー410の内部に搬入される。次いで、第1および第2の基板G1、G2は分配チャンバー410において水平状態に切り換わった後、水平に搬送されて一連の素子工程を行う後続工程チャンバーに順次に投入される。このように、第1および第2の基板G1、G2の搬出/分離作業およびこのときに用いられる蒸着マスクM1、M2の取り外し作業は、第2の薄膜工程を行う間に実施することが好ましい。これにより、次回の第1の薄膜工程を行うための待ち時間を短縮して生産性を高めることができる。 Next, as shown in FIGS. 7 and 8, the vapor deposition masks M1 and M2 are removed from the first and second substrates G1 and G2 that have completed the first thin film process during the second thin film process, and vapor deposition is performed. The first and second substrates G1, G2 from which the masks M1, M2 have been removed are further carried into the distribution chamber 410. Next, after the first and second substrates G1 and G2 are switched to a horizontal state in the distribution chamber 410, the first and second substrates G1 and G2 are sequentially transferred to a subsequent process chamber that is transported horizontally and performs a series of element processes. Thus, it is preferable to carry out the operation of carrying out / separating the first and second substrates G1, G2 and the operation of removing the vapor deposition masks M1, M2 used at this time while performing the second thin film process. Thereby, the waiting time for performing the next first thin film process can be shortened and the productivity can be increased.

一方、前記第1および第2の薄膜工程に用いられた蒸着マスクM1、M2、M3、M4は、当該チャンバーに留まって次回の薄膜工程に用いられ、汚染、破損などの交換要因が発生する場合に、蒸着マスクM1、M2、M3、M4と対応付けられた当該マスクチャンバー311、312、313、314に搬送されて大気中に取り出される。この後、前記蒸着マスクは、洗浄、修理などの作業を経て再使用される。もちろん、マスクチャンバー311、312、313、314に用いられた蒸着マスクと交換して用いる余分の蒸着マスクが貯蔵されて、交換作業時の工程中断時間を最短化させることができる。 On the other hand, the deposition masks M1, M2, M3, and M4 used in the first and second thin film processes remain in the chamber and are used in the next thin film process, and exchange factors such as contamination and damage occur. Are transferred to the mask chambers 311, 312, 313 and 314 associated with the vapor deposition masks M 1, M 2, M 3 and M 4 and taken out to the atmosphere. Thereafter, the vapor deposition mask is reused through operations such as cleaning and repair. Of course, extra vapor deposition masks used in exchange for the vapor deposition masks used in the mask chambers 311, 312, 313, and 314 are stored, and the process interruption time during the exchange operation can be minimized.

このように、本発明の実施形態による薄膜蒸着システムは、搬送チャンバー400の両側に同じ工程を行う多数の工程チャンバー200A、200Bが連結されることにより、多数の基板G1/G2、G3/G4に対する薄膜工程を並行して実施して工程速度を高めることができる。また、工程チャンバー200Aまたは200Bには、多数の基板ホルダー520/530、620/630に向けて順次に原料物質を吹き付ける単一の噴射ユニット540、640が設けられることにより、単一の噴射ユニット540、640を介して多数の基板G1/G2、G3/G4に対する薄膜工程を順次に行ってコスト節減および生産性の向上を両立させることができる。さらに、工程チャンバー200Aまたは200Bには、内部の両側に多数の工程手段520/530、620/630が設けられることにより、ある工程が行われる間に残りの他の工程に対する事前準備作業、例えば、基板の搬入/固定作業および蒸着マスクの配置/整列作業を行ったり、事後整理作業、例えば、基板の搬出/分離作業および蒸着マスクの取り外し作業を行ったりすることができる。その結果、全体的な作業待ち時間を短縮して生産性を大幅に高めることができる。 As described above, in the thin film deposition system according to the embodiment of the present invention, a plurality of process chambers 200A and 200B that perform the same process are connected to both sides of the transfer chamber 400, so that a plurality of substrates G1 / G2 and G3 / G4 are connected. The thin film process can be performed in parallel to increase the process speed. In addition, the process chamber 200A or 200B is provided with a single injection unit 540, 640 for sequentially spraying the raw material toward the multiple substrate holders 520/530, 620/630, thereby providing a single injection unit 540. , 640 to sequentially perform thin film processes on a large number of substrates G1 / G2 and G3 / G4, thereby reducing both cost and productivity. Further, the process chamber 200A or 200B is provided with a large number of process means 520/530, 620/630 on both sides of the process chamber, so that a preparatory work for the remaining other processes while a certain process is performed, for example, Substrate loading / fixing operations and deposition mask placement / alignment operations can be performed, and post-sorting operations such as substrate unloading / separation operations and deposition mask removal operations can be performed. As a result, overall work waiting time can be shortened and productivity can be greatly increased.

以上、本発明について上述した実施形態および添付図面に基づいて説明したが、本発明はこれに限定されるものではなく、後述する特許請求の範囲によって限定される。よって、この技術分野における通常の知識を持った者であれば、後述する特許請求の範囲の技術的思想から逸脱しない範囲内において本発明は様々に変形および修正可能である。 As mentioned above, although this invention was demonstrated based on embodiment mentioned above and attached drawing, this invention is not limited to this, It is limited by the claim which is mentioned later. Therefore, those who have ordinary knowledge in this technical field can variously modify and modify the present invention without departing from the technical idea of the claims to be described later.

Claims (12)

基板が搬送される搬送チャンバーと、
前記搬送チャンバーの両側にそれぞれ結合された第1および第2の工程チャンバーと、
を備え、
前記第1および第2の工程チャンバーのそれぞれは、互いに離間して設けられる第1および第2の基板ホルダーと、
前記第1および第2の基板ホルダーの間に設けられて前記第1および第2の基板ホルダーに向けて順次に蒸着原料を供給する噴射ユニットと、
を備える薄膜蒸着装置。
A transfer chamber in which a substrate is transferred;
First and second process chambers respectively coupled to both sides of the transfer chamber;
With
Each of the first and second process chambers includes first and second substrate holders provided to be spaced apart from each other;
An injection unit that is provided between the first and second substrate holders and sequentially supplies the deposition raw material toward the first and second substrate holders;
A thin film deposition apparatus comprising:
前記第1および第2の基板ホルダーは、基板を垂直状態で保持する請求項1に記載の薄膜蒸着装置。 The thin film deposition apparatus according to claim 1, wherein the first and second substrate holders hold the substrate in a vertical state. 前記搬送チャンバーには、基板を回転させて垂直状態に立てたり、水平状態に横たえたりする基板回転部材が設けられる請求項2に記載の薄膜蒸着装置。 The thin film deposition apparatus according to claim 2, wherein the transfer chamber is provided with a substrate rotating member that rotates the substrate to stand in a vertical state or lies in a horizontal state. 前記噴射ユニットは、第1の基板ホルダーと第2の基板ホルダーとの間において回転可能である請求項1に記載の薄膜蒸着装置。 The thin film deposition apparatus according to claim 1, wherein the spray unit is rotatable between a first substrate holder and a second substrate holder. 前記噴射ユニットは、点状、線状および面状のうちのいずれかの噴射構造を有する請求項1に記載の薄膜蒸着装置。 The thin film deposition apparatus according to claim 1, wherein the spray unit has a spray structure of any one of a dotted shape, a linear shape, and a planar shape. 前記第1および第2の工程チャンバーのそれぞれには、
前記第1および第2の基板ホルダーのそれぞれに蒸着マスクを提供するか、あるいは、蒸着マスクを交換するためのマスクチャンバーが連結される請求項1に記載の薄膜蒸着装置。
Each of the first and second process chambers includes:
2. The thin film deposition apparatus according to claim 1, wherein each of the first and second substrate holders is provided with a deposition mask or connected to a mask chamber for exchanging the deposition mask.
一列に連設されて基板が搬送される多数の搬送チャンバーと、
前記多数の搬送チャンバーのうちの少なくとも一つの両側にそれぞれ結合された第1および第2の工程チャンバーと、
を備え、
前記第1および第2の工程チャンバーのそれぞれは、
互いに離間して設けられる第1および第2の基板ホルダーと、
前記第1および第2の基板ホルダーの間に設けられて前記第1および第2の基板ホルダーに向けて順次に蒸着原料を供給する噴射ユニットと、
を備える薄膜蒸着システム。
A number of transfer chambers connected in a row to transfer substrates;
First and second process chambers respectively coupled to both sides of at least one of the plurality of transfer chambers;
With
Each of the first and second process chambers includes:
First and second substrate holders provided apart from each other;
An injection unit that is provided between the first and second substrate holders and sequentially supplies the deposition raw material toward the first and second substrate holders;
A thin film deposition system comprising:
前記多数の搬送チャンバーは、
前記第1および第2の工程チャンバーに連結されて基板を分配する多数の分配チャンバーと、
隣り合う分配チャンバーの間に連結されて基板が一時的に待機する多数の緩衝チャンバーと、
を備える請求項7に記載の薄膜蒸着システム。
The multiple transfer chambers are:
A plurality of distribution chambers connected to the first and second process chambers for distributing substrates;
A number of buffer chambers connected between adjacent distribution chambers and temporarily waiting for a substrate;
A thin film deposition system according to claim 7.
前記多数の搬送チャンバーのうち、先端に連結されて外部から基板が搬入される搬入チャンバーと、
前記多数の搬送チャンバーのうち、後端に連結されて基板が外部に搬出される搬出チャンバーと、
を備える請求項7に記載の薄膜蒸着システム。
Among the multiple transfer chambers, a loading chamber connected to the tip and loaded with a substrate from the outside,
Of the multiple transfer chambers, an unloading chamber connected to the rear end and unloading the substrate to the outside;
A thin film deposition system according to claim 7.
前記第1および第2の基板ホルダーは、基板を垂直状態で保持する請求項7に記載の薄膜蒸着システム。 The thin film deposition system according to claim 7, wherein the first and second substrate holders hold the substrate in a vertical state. 前記搬送チャンバーには、基板を回転させて垂直状態に立てたり、水平状態に横たえたりする基板回転部材が設けられる請求項7に記載の薄膜蒸着システム。 The thin film deposition system according to claim 7, wherein the transfer chamber is provided with a substrate rotating member that rotates the substrate to stand in a vertical state or lies in a horizontal state. 前記噴射ユニットは、第1の基板ホルダーと第2の基板ホルダーとの間において回転可能である請求項7に記載の薄膜蒸着システム。 The thin film deposition system according to claim 7, wherein the spray unit is rotatable between a first substrate holder and a second substrate holder.
JP2012509732A 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system including the same Active JP5506917B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0039826 2009-05-07
KR1020090039826A KR101119853B1 (en) 2009-05-07 2009-05-07 Apparatus for depositing film and system for depositing film having the same
PCT/KR2010/002887 WO2010128811A2 (en) 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system comprising same

Publications (2)

Publication Number Publication Date
JP2012526199A true JP2012526199A (en) 2012-10-25
JP5506917B2 JP5506917B2 (en) 2014-05-28

Family

ID=43050634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509732A Active JP5506917B2 (en) 2009-05-07 2010-05-06 Thin film deposition apparatus and thin film deposition system including the same

Country Status (5)

Country Link
JP (1) JP5506917B2 (en)
KR (1) KR101119853B1 (en)
CN (1) CN102421933B (en)
TW (1) TWI386500B (en)
WO (1) WO2010128811A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014795A (en) * 2011-06-30 2013-01-24 Ulvac Japan Ltd Vacuum processing device and method for producing lithium ion secondary battery
JP2019513289A (en) * 2017-03-17 2019-05-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of handling a mask device in a decompression system, mask handling device and decompression system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151234B1 (en) * 2010-03-30 2012-06-14 주식회사 케이씨텍 Upright type deposition apparatus and transfer method for substrate
KR101700608B1 (en) * 2011-04-15 2017-02-01 이찬용 Substrate treatment system
KR101467195B1 (en) * 2013-05-14 2014-12-01 주식회사 아바코 Gas sprayer and thin film depositing apparatus having the same
KR102426712B1 (en) * 2015-02-16 2022-07-29 삼성디스플레이 주식회사 Apparatus and method of manufacturing display apparatus
US11133430B2 (en) * 2017-08-09 2021-09-28 Kaneka Corporation Photoelectric conversion element production method
CN109673158B (en) * 2017-08-17 2021-04-02 应用材料公司 Method for processing several masks in a vacuum coating process, method for processing a substrate by depositing several layers of different materials on a substrate and apparatus for coating a substrate
KR101921648B1 (en) * 2017-12-28 2018-11-26 주식회사 올레드온 Cluster type manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices
KR20210081597A (en) * 2019-12-24 2021-07-02 캐논 톡키 가부시키가이샤 Film forming system, and manufacturing method of electronic device
KR102407505B1 (en) * 2020-04-29 2022-06-13 주식회사 선익시스템 Deposition apparatus and in-line deposition system
CN111663104A (en) * 2020-06-24 2020-09-15 武汉华星光电半导体显示技术有限公司 Vapor deposition system and vapor deposition method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299959U (en) * 1989-01-24 1990-08-09
JPH0941142A (en) * 1995-07-26 1997-02-10 Balzers & Leybold Deutsche Holding Ag Device for alternately positioning substrates to be coated in vacuo
JP2000277585A (en) * 1999-03-23 2000-10-06 Hitachi Ltd Substrate conveyor and vacuum treatment apparatus
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
JP2008019477A (en) * 2006-07-13 2008-01-31 Canon Inc Vacuum vapor deposition apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051378A (en) * 1991-03-25 1993-01-08 Shin Meiwa Ind Co Ltd Substrate holder conveyor for in-line film forming device
US20040123804A1 (en) * 2002-09-20 2004-07-01 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and manufacturing method of light emitting device
KR20040088238A (en) * 2003-04-09 2004-10-16 (주)네스디스플레이 System and Method for vacuum deposition
JP4397655B2 (en) * 2003-08-28 2010-01-13 キヤノンアネルバ株式会社 Sputtering apparatus, electronic component manufacturing apparatus, and electronic component manufacturing method
PL1775353T3 (en) * 2005-09-15 2009-04-30 Applied Mat Gmbh & Co Kg Coating apparatus and method for operating a coating apparatus
JP2007239071A (en) 2006-03-10 2007-09-20 Fujifilm Corp Vacuum vapor deposition apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299959U (en) * 1989-01-24 1990-08-09
JPH0941142A (en) * 1995-07-26 1997-02-10 Balzers & Leybold Deutsche Holding Ag Device for alternately positioning substrates to be coated in vacuo
JP2000277585A (en) * 1999-03-23 2000-10-06 Hitachi Ltd Substrate conveyor and vacuum treatment apparatus
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
JP2008019477A (en) * 2006-07-13 2008-01-31 Canon Inc Vacuum vapor deposition apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014795A (en) * 2011-06-30 2013-01-24 Ulvac Japan Ltd Vacuum processing device and method for producing lithium ion secondary battery
JP2019513289A (en) * 2017-03-17 2019-05-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of handling a mask device in a decompression system, mask handling device and decompression system

Also Published As

Publication number Publication date
WO2010128811A3 (en) 2011-03-17
TW201107507A (en) 2011-03-01
JP5506917B2 (en) 2014-05-28
TWI386500B (en) 2013-02-21
CN102421933A (en) 2012-04-18
KR20100120941A (en) 2010-11-17
CN102421933B (en) 2014-07-23
WO2010128811A2 (en) 2010-11-11
KR101119853B1 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
JP5506917B2 (en) Thin film deposition apparatus and thin film deposition system including the same
JP5364200B2 (en) Thin film deposition apparatus, thin film deposition method and thin film deposition system
JP5686185B2 (en) Thin film deposition equipment
JP5676175B2 (en) Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8833294B2 (en) Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
KR100800236B1 (en) Continuous OLED coating machine
US9353436B2 (en) Coating apparatus with rotation module
JP7262212B2 (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
KR101174883B1 (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR20100132517A (en) Coating apparatus with rotation module
JP2017506703A (en) System for depositing one or more layers on a substrate supported by a carrier and method of using the system
KR20130004831A (en) Apparatus for thin layer deposition
KR101146981B1 (en) Apparatus of evaporation and control method the same
JP2011047048A (en) Thin film vapor deposition apparatus and method for manufacturing organic luminescent display device using the same
KR20120006322A (en) Method for manufacturing of organic light emitting display apparatus
CN103074578A (en) Rotary deposition apparatus
JP2004241319A (en) Film forming device
KR101528243B1 (en) Apparatus of evaporation and control method the same
KR20130074169A (en) Substrate process system
KR20120054778A (en) Substrate processing system
KR101175988B1 (en) Substrate treatment apparatus and method of the same
KR20200061751A (en) Cluster type manufacturing evaporator using vertical type belt plane source evaporation for very large size QD-OLED TV devices
KR20120074417A (en) Oled manufacturing apparatus and method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250