JP2012525013A - 後続の高温でのiii族堆積用の基板前処理 - Google Patents

後続の高温でのiii族堆積用の基板前処理 Download PDF

Info

Publication number
JP2012525013A
JP2012525013A JP2012507453A JP2012507453A JP2012525013A JP 2012525013 A JP2012525013 A JP 2012525013A JP 2012507453 A JP2012507453 A JP 2012507453A JP 2012507453 A JP2012507453 A JP 2012507453A JP 2012525013 A JP2012525013 A JP 2012525013A
Authority
JP
Japan
Prior art keywords
gas
group iii
pretreatment
exposing
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012507453A
Other languages
English (en)
Inventor
ユリー ムニェルニーク,
オルガ クリリオーク,
英博 小尻
哲也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2012525013A publication Critical patent/JP2012525013A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明の実施形態は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスを製造するための基板の前処理のための装置および方法に関する。本発明の一実施形態は、酸化アルミニウム含有基板の面をアンモニア(NH)およびハロゲンガスを含む前処理ガス混合物に暴露することにより酸化アルミニウム含有基板を前処理することを含む。

Description

本発明の実施形態は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスの製造に関する。より詳細には、本発明の実施形態は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスを製造するための基板前処理用の装置および方法に関する。
III族窒化物半導体は、短波長の発光ダイオード(LED)、レーザダイオード(LD)、ならびに大電力、高周波数、かつ高温度のトランジスタおよび集積回路を含む電子デバイスなどの様々な半導体デバイスの開発および製造において重要性が増している。発光ダイオード(LED)およびレーザダイオード(LD)は、サファイア基板上にIII族窒化物を堆積することにより製作される。III族窒化物は、水素化物気相エピタキシ(HVPE)、有機金属気相成長法(MOCVD)、化学的気相成長法(CVD)、および/または物理的気相成長法(PVD)によってサファイア基板などの酸化アルミニウム含有基板上に堆積することができる。
低欠陥密度のIII族窒化物層を生成するには、III族窒化物を堆積する前に、酸化アルミニウム含有基板を前処理する必要がある。しかし、酸化アルミニウム含有基板を処理する従来の方法では、反応チャンバ、排気系統、およびポンプの壁に副生成物が残る可能性があり、製造プロセスが汚染され、設備の歩留まりが低下する。
したがって、酸化アルミニウム含有基板を処理するための、副産物形成が低減された方法および装置に対する全般的な必要性がある。
本発明は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスを製造するための装置および方法を全般的に提供する。詳細には、本発明の実施形態は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスを製造するための基板前処理用の装置および方法に関する。
本発明の一実施形態は、1つまたは複数の酸化アルミニウム含有基板を前処理温度に加熱することと、1つまたは複数のそれぞれの酸化アルミニウム含有基板の面を、同面が前処理温度にあるときに前処理ガス混合物に暴露して、前処理された面を形成することであって、前処理気体混合物がアンモニア(NH)およびハロゲンガスを含むこととを含む、III族金属窒化物皮膜を形成する方法を提供する。いくつかの実施形態では、ハロゲンガスは塩素(Cl)ガスを含む。
本発明の別の実施形態は、1つまたは複数の酸化アルミニウム含有基板を前処理温度に加熱することと、1つまたは複数のそれぞれの酸化アルミニウム含有基板の面を、同面が前処理温度にあるときに前処理ガス混合物に暴露して、前処理された面を形成することであって、前処理ガス混合物が、アンモニア(NH)、金属ハロゲン化物ガス、およびハロゲンガスを含むエッチャント含有ガスを含むことと、前処理された面の上に金属窒化物層を形成することとを含むIII族金属窒化物皮膜を形成する方法を提供する。
本発明の別の実施形態は、酸化アルミニウム含有面を有する基板を設けることと、アンモニアおよび塩素を含むガス混合物を用いて酸化アルミニウム含有面をエッチングすることにより、酸化アルミニウム含有面上にバッファ皮膜を形成して、AlONまたはAlNを形成することと、ガリウム源および窒素源を含む前駆物質ガス混合物から窒化ガリウム皮膜を形成することとを含む複合窒化物構造体を形成する方法を提供する。
本発明のさらに別の実施形態は、複数のサファイア基板を設けることと、処理チャンバ内に複数のサファイア基板を位置決めすることと、処理チャンバに第1のガス混合物を流しながら複数のサファイア基板を加熱することと、処理チャンバに前処理ガス混合物を流すことであって、前処理ガス混合物がアンモニアおよびハロゲンガスを含むことと、前駆物質ガス混合物を流して複数のサファイア基板上にIII族金属窒化物皮膜を形成することであって、前駆物質ガス混合物がIII族金属源および窒素源を含むこととを含む複合窒化物構造体を形成する方法を提供する。
本発明の上述の特徴が詳細に理解されるように、上記に簡単に要約した本発明のより詳細な説明を、いくつかが添付図面に示されている実施形態を参照することによって行う。しかしながら、添付図面は本発明の典型的な実施形態のみを示しており、したがって本発明の範囲を限定するものと見なされるべきではなく、というのは、本発明は、他の同様に有効な実施形態を認めることができるからであることに留意されたい。
GaNベースのLED構造体の概略側断面図である。 GaNベースのLD構造体の概略側断面図である。 本発明の一実施形態による、基板を前処理する方法の流れ図である。 本発明の一実施形態による方法の流れ図である。 本発明の一実施形態による方法の流れ図である。 本発明の一実施形態による方法の流れ図である。 本発明の一実施形態による方法の流れ図である。 本発明の一実施形態による方法の流れ図である。 本発明の一実施形態による方法の流れ図である。 本発明の一実施形態によるクラスタツールの図である。 本発明の一実施形態によるHVPEチャンバの概略断面図である。
理解を容易にするために、諸図に共通の同一要素を示すのに、可能なところでは同一の参照数字が用いられている。1つの実施形態で開示された要素は、特定の記述なしで他の実施形態に対して有利に利用され得るように企図されている。
本発明の実施形態は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスの製造に関する。より詳細には、本発明の実施形態は、発光ダイオード(LED)またはレーザダイオード(LD)などのデバイスを製造するための酸化アルミニウム含有基板の前処理用の装置および方法に関する。
本発明の一実施形態は、アンモニアと、ハロゲンガスを含むエッチャント含有ガスとを含む前処理ガス混合物に酸化アルミニウム含有面を暴露することによる、酸化アルミニウム含有面を有する基板の処理を提供する。ハロゲンガスは、フッ素ガス、塩素ガス、臭素ガス、ヨウ素ガス、これらの組合せ、およびこれら混合物から成る群から選択されてよい。アンモニアとハロゲンのガス混合物は、酸化アルミニウム含有基板をエッチングし、酸化アルミニウム含有基板上に、窒化アルミニウム(AlN)および/またはアルミニウムオキシナイトライド(AlON)の層、または形成された領域を形成する。AlONまたはAlNの層は、後続のIII族金属窒化物堆積のためのバッファ層として働くことができる。バッファ層は、基板材料と堆積される(1つまたは複数の)皮膜層の間の格子不一致によって生成される結晶欠陥数の最小化、および後に堆積される層の皮膜応力の低減または調整にも用いることができる。アンモニアおよびハロゲンガスを用いる酸化アルミニウム含有基板の前処理は、HVPE、MOCVD、CVD、およびPVDなどの任意の堆積技法の準備に用いることができる。
前処理プロセスでハロゲンガスを使用すると、有害な副生成物の形成が劇的に減少するので、本発明の実施形態は、従来の前処理および酸化アルミニウム含有基板の窒化物形成に対して利点を有する。例えば、サファイア基板上にIII族窒化物層を堆積する前の、HClおよびアンモニアを用いる従来のサファイア基板の前処理では、副産物としてアンモニア塩化物(NHCl)が形成する。アンモニア塩化物は、固体の粉末に昇華して、反応チャンバ、排気系統および真空ポンプの壁に張り付く可能性がある。アンモニア塩化物の粉末は、プロセスシステム全体を通じて、例えば基板、キャリア、またはロボットでも伝送され得る。有害な副産物形成の劇的な減少により、本発明の実施形態は、LEDおよびLDの製造などの適用可能な製造プロセスにおいて、処理能力を改善し、品質を向上する。
一実施形態では、窒化プロセスは、前処理ガス混合物への酸化アルミニウム含有基板の暴露と組み合わせて実行される。窒化プロセスは、酸化アルミニウム含有基板を、窒素源を含む窒化ガス混合物に暴露することにより実行されてよい。窒素源はアンモニアでよい。窒化プロセスは、前処理プロセスの前または後に実行されてよい。
一実施形態では、前処理の後にIII族金属窒化物バッファ層が形成される。III族金属窒化物バッファ層は、窒化アルミニウムバッファ層または窒化ガリウムバッファ層でよい。窒化アルミニウムバッファ層は、酸化アルミニウム含有基板を、アルミニウム前駆物質を含むバッファガス混合物に基板を暴露することにより、同基板上に形成することができる。窒化ガリウムバッファ層は、酸化アルミニウム含有基板を、ガリウム前駆物質および窒素源を含むバッファガス混合物に基板を暴露することにより、同基板上に形成することができる。別の実施形態では、III族金属窒化物バッファ層は、アンモニアなどの窒素源、塩素ガスなどのハロゲンガス、および塩化アルミニウムまたは塩化ガリウムなどのIII族金属ハロゲン化物の前駆物質を同時に流すことにより、前処理と同時に形成される。一実施形態では、前処理プロセスは、窒化プロセスおよびバッファ層形成プロセスをさらに含む。バッファ層は、窒化アルミニウム(AlN)および/またはアルミニウムオキシナイトライド(AlON)、あるいは窒化ガリウム(GaN)を含んでよい。
図1Aは、窒化ガリウムベースのLED構造体100の概略側断面図である。LED構造体100は、酸化アルミニウム含有基板104の上に製作される。基板104は、(0001)のC軸結晶方位を有する単結晶サファイア基板などの固体の酸化アルミニウムから形成されてよい。基板104は、その上に複合窒化物構造体を製作するための酸化アルミニウム含有面を有する合成基板でもよい。パターン付き基板を作製するために平面状の基板からフィーチャを形成するのに、マスキングおよびエッチングなどの任意の周知の方法を利用することができる。特定の実施形態では、パターン付き基板は、(0001)のパターン付きサファイア基板(PSS)である。パターン付きサファイア基板は、新世代固体照明デバイスの製造で有用な光抽出効率を向上させるので、LEDの製造に使用するのに理想的であり得る。
一実施形態では、LED構造体100は、前処理プロセスの後に基板104上に形成される。熱的洗浄プロシージャは、基板104を、加熱しながら、アンモニアおよび搬送ガスを含む洗浄ガス混合物に暴露することにより実行されてよい。一実施形態では、前処理プロセスは、基板を、高い温度範囲で加熱しながら前処理ガス混合物に暴露することを含む。一実施形態では、前処理ガス混合物は、ハロゲンガスを含むエッチング剤である。一実施形態では、前処理ガス混合物は、ハロゲンガスおよびアンモニアを含む。図1Aに示されるように、基板104上に形成されたLED構造体100は、一般に、洗浄して前処理された基板104の上に堆積されたバッファ層112を備える。バッファ層112は、HVPEプロセスまたはMOCVDプロセスによって形成され得る。伝統的に、バッファ層112は、堆積を達成するために、処理チャンバに、ガリウムおよび窒素の前駆物質および熱を供給することにより堆積され得る。一般的なバッファ層112の厚さは約300Åであり、これは約550℃の温度で約5分間にわたって堆積され得る。本発明の一実施形態では、バッファ層112は、基板104に対する前処理プロセスの後に、または同プロセス中に形成された窒化アルミニウム(AlN)層である。
次に、GaNバッファ層112上にn−GaN(n型にドープされたGaN)層116が堆積される。n−GaN層116は、HVPEプロセスまたはMOCVDプロセスによって形成され得る。一実施形態では、n−GaN層116は、例えば約1050℃のより高温で堆積されてよい。n−GaN層116は、約140分を必要としてほぼ4μmの厚さに堆積され、比較的厚い。
次に、n−GaN層116の上に、InGaN多重量子井戸(MQW)層120が堆積される。InGaNのMQW層120の厚さは約750Åでよく、形成するのに約750℃で約40分かかる。
多重量子井戸層120の上に、p−AlGaN(p型にドープされたAlGaN)層124が堆積される。p−AlGaN層124は、約200Åの厚さを有してよく、形成するのに約950℃の温度で約5分かかる。
次いで、p−AlGaN層124の上に、p−GaN(p型にドープされたGaN)接触層128が堆積される。p−GaN接触層128は、約0.4μmの厚さを有してよく、形成するのに約1050℃で約25分必要である。
図1Bは、酸化アルミニウム含有基板105上に形成されたGaNベースのLD構造体150の概略側断面図である。酸化アルミニウム含有基板105は、図1Aの酸化アルミニウム含有基板104に類似のものでよい。基板105は、サファイア(0001)などの固体の酸化アルミニウムから形成されてよい。基板105は、その上に複合窒化物構造体を製作するための酸化アルミニウム含有面を有する合成基板でもよい。
一実施形態では、LD構造体150は、熱的洗浄プロシージャおよび前処理プロセスの後に基板105上に形成される。熱的洗浄プロシージャは、基板105を、加熱しながら、アンモニアおよび搬送ガスを含む洗浄ガス混合物に暴露することにより実行されてよい。一実施形態では、前処理プロセスは、基板を、高温で加熱しながら前処理ガス混合物に暴露することを含む。一実施形態では、前処理ガス混合物は、ハロゲンガスを含むエッチング剤である。
LD構造体150は、基板105上に形成されたIII族金属窒化物層のスタックである。LD構造体150は、n型GaN接触層152から開始する。LD構造体150は、n型クラッド層154をさらに備える。クラッド層154は、AlGaNを含んでよい。クラッド層154の上に非ドープのガイド層156が形成される。ガイド層156は、InGaNを含んでよい。ガイド層156上に、多重量子井戸(MQW)構造を有する活性層158が形成される。活性層158の上に、非ドープのガイド層160が形成される。非ドープのガイド層160の上に、p型の電子ブロック層162が形成される。p型の電子ブロック層162の上に、p型の接触GaN層164が形成される。
図2は、本発明の一実施形態によって基板を処理する方法200の流れ図である。
ボックス210で、1つまたは複数の酸化アルミニウム含有基板が処理チャンバに入れられる。一実施形態では、酸化アルミニウム含有基板はサファイア基板でよい。一実施形態では、複数のサファイア基板が、基板キャリアに位置決めされ、処理チャンバに移転されてよい。基板キャリアは、一般に、プロセスの間に基板を支持するように適合される。基板キャリア616(図10)は、1つまたは複数の窪みを含んでよく、この中に、1つまたは複数の基板がプロセス中に配置されてよい。基板キャリアは、6枚以上の基板を搬送することができる。一実施形態では、基板キャリアは8枚の基板を搬送する。より多くの基板またはより少ない基板が基板キャリア上で搬送され得ることを理解されたい。基板サイズは、直径で50mm〜100mmの範囲にあるかまたはより大きく、一方基板キャリアのサイズは直径で200mm〜500mmの範囲にある。基板キャリア616は、SiCまたはSiCコーティングされた黒鉛を含む様々な材料から形成されてよい。
一実施形態では、処理チャンバは、後続の堆積のために基板の洗浄および処理用として指定されてよい。次いで、洗浄して処理された基板は、LEDまたはLDの構造体を形成するのに使用される層を堆積するために、1つまたは複数の堆積チャンバへ移転される。別の実施形態では、1つまたは複数の酸化アルミニウム含有基板が処理チャンバの中に入れられてよく、次に、LEDまたはLD構造体の皮膜の少なくとも1つの層が形成される。
ボックス220で、搬送ガスを処理チャンバのプロセスボリュームに送達しながら、1つまたは複数の酸化アルミニウム含有基板を処理チャンバの中で加熱してよい。搬送ガスは、窒素ガス、アルゴンまたはヘリウムなどの不活性ガス、またはそれらの組合せを含んでよい。一実施形態では、1つまたは複数の酸化アルミニウム含有基板を加熱しながら熱的洗浄を実行してよい。一実施形態では、1つまたは複数の基板を洗浄温度に加熱しながら処理チャンバに洗浄ガス混合物を流すことにより、熱的洗浄を実行してよい。一実施形態では、洗浄ガス混合物は、アンモニアおよび搬送ガスを含む。一実施形態では、搬送ガスは窒素ガス(N)を含む。洗浄温度は、約900℃と約1100℃の間であってよい。一実施例では、洗浄温度は約900℃と約1050℃の間であってよい。別の実施例では、洗浄温度は約900℃より高くてよい。一実施例では、熱的洗浄プロセスは、(1つまたは複数の)基板を約1050℃の温度に維持しながら洗浄ガス混合物を約10分間流すことにより実行されてよい。熱的洗浄プロシージャは、温度を定率で上昇させる(ramp−up)ことおよび低下させる(ramp−down)ことができるように、ほぼ10分程度のさらなる時間をかけてよい。一実施形態では、温度上昇の割合は、約1℃/秒から約5℃/秒であり、あるいは、処理チャンバのハードウェア次第で、他の上昇割合である。一実施形態では、温度を定率で上昇させるかまたは低下させる期間中、処理チャンバの中に洗浄ガスを送達してよい。
ボックス230で、酸化アルミニウム含有基板の上に高品質GaN皮膜を形成することを可能にする前処理のために、1つまたは複数の基板が高温で前処理ガス混合物に暴露される。一実施形態では、前処理プロセスは、約500℃から約1200℃の間の温度範囲で実行されてよい。一実施形態では、前処理プロセスは、約600℃から約1150℃の間の温度範囲で実行されてよい。一実施形態では、前処理プロセスは、約900℃と約1000℃の間の温度で実行されてよい。一実施例では、前処理プロセスの温度は、約900℃より高くてよい。
前処理ガス混合物は、アンモニアと、フッ素ガス(F)、塩素ガス(Cl)、臭素ガス(Br)、ヨウ素ガス(I)、それらの組合せ、およびそれらの混合物から成る群から選択されたハロゲンガスとを含んでよい。
一実施形態では、前処理ガス混合物はアンモニアおよび塩素ガスを含み、前処理は、アンモニアおよび塩素の存在下で酸化アルミニウム含有基板をエッチングすることにより、酸化アルミニウム含有基板をAlONまたはAlNに変換することを含む。一実施形態では、1つまたは複数の酸化アルミニウム含有基板を前処理ガス混合物に暴露することは、アンモニアガスを約500sccmと約9000sccmの間の流速で流すことと、塩素ガスを約200sccmと約1000sccmの間の流速で流すこととを含む。一実施形態では、前処理は、約1分から約20分にわたって実行されてよい。
ボックス240で、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。III族金属の窒化物皮膜は、HVPEプロセス、MOCVDプロセス、CVDプロセス、またはPVDプロセスによって形成されてよい。一実施形態では、III族金属の窒化物皮膜は、堆積を達成するために、処理チャンバにIII族金属および窒素前駆物質の流れを供給し、熱的プロセスを用いることにより堆積され得る。一実施例では、III族金属の前駆物質は、以下で論じられる金属ハロゲン化物の前駆物質ガスでよい。一実施形態では、前処理が実行されるのと同じチャンバの中でIII族金属の窒化物皮膜が形成される。別の実施形態では、III族金属の窒化物皮膜は、熱的洗浄および前処理が実行される処理チャンバからの個別の処理チャンバの中で形成されてよい。
一実施形態では、ボックス240のプロセスの間に、HVPEプロセスによってGaN皮膜が形成され得る。一実施形態では、HVPEプロセスは、1つまたは複数の基板の上に、約550℃と約1100℃の間の温度でガリウム含有前駆物質および窒素源を流すことを含む。一実施形態では、ボックス230で実行される前処理プロセスの温度は、HVPEプロセス温度より100℃程度低い。一実施形態では、HVPEプロセスは、1つまたは複数の基板の上に、約950℃と約1100℃の間の温度で塩化ガリウム含有前駆物質および窒素源を流すことを含む。一実施形態では、ガリウム含有前駆物質は、50℃から約1000℃の間の温度に維持された液体のガリウムの上に、塩素ガスを約20sccmから約150sccmの間の流速で流すことにより生成され得る。堆積プロセスの間、チャンバ圧力は、約10トルと約760トルの間、約70トルと約550トルの間など、例えば約450トルに維持されてよく、チャンバ壁温度は約450℃以上に維持される。窒素源は、約1SLMと約20SLMの間の流速のアンモニアでよい。別の実施形態では、窒素源は、窒素ガス(N)、亜酸化窒素(NO)、アンモニア(NH)、ヒドラジン(N)、ジイミド(N)、アジ化水素酸(HN)などの窒素含有材料の遠隔プラズマから導出された1つまたは複数の活性窒素種でよい。水素化物気相エピタキシ(HVPE)という用語は、本明細書に記述される一種の堆積プロセスを説明するのに用いられるが、一般に、本明細書に記述されるプロセスは、堆積プロセスの間に水素化物含有堆積ガス(例えばHCl)の代わりにハロゲンガス(例えばCl)を用いるので、この用語は、本明細書に記述される本発明の範囲に関して限定するようには意図されていない。
図10は、ボックス240で説明されたプロセスを用いて形成されたGaN皮膜などの金属窒化物皮膜を堆積するのに使用することができるHVPE装置600の概略断面図である。HVPE装置600は、蓋604によって囲まれたチャンバ602を含む。チャンバ602および蓋604が、プロセスボリューム607を画定する。プロセスボリューム607の上部領域に、シャワーヘッド606が配置される。サセプタ614が、プロセスボリューム607のシャワーヘッド606と向かい合って配置される。サセプタ614は、プロセスの間にその上に複数の基板615を支持するように構成される。一実施形態では、サセプタ614によって支持されている基板キャリア616上に複数の基板615が配置される。サセプタ614は、電動機680によって回転されてよく、SiCまたはSiCコーティングされた黒鉛を含む様々な材料から形成されてよい。
一実施形態では、HVPE装置600は、サセプタ614上の基板615を加熱するように構成された加熱組立体628を含む。一実施形態では、チャンバ底部602aは水晶から形成され、加熱組立体628は、水晶のチャンバ底部602aを通して基板615を加熱するようにチャンバ底部602aの下に配置されたランプ組立体である。一実施形態では、加熱組立体628は、基板、基板キャリア、および/またはサセプタにわたって均一の温度分布をもたらすように分配されたランプの配列を含む。
HVPE装置600は、チャンバ602の側壁608の内側に配置された前駆物質供給管622、624をさらに備える。管622および624は、プロセスボリューム607および前駆物質源モジュール632内に見られる注入チューブ621と流体連通している。シャワーヘッド606は、プロセスボリューム607および第1のガス源610と流体連通している。プロセスボリューム607は、出口626を介して排出口651と流体連通している。
HVPE装置600は、チャンバ602の壁608の中に埋め込まれた加熱器630をさらに備える。壁608の中に埋め込まれた加熱器630は、必要に応じて、堆積プロセスの間にさらなる熱を与えることができる。処理チャンバの内部温度を測定するのに、熱電対を使用することができる。熱電対からの出力は、熱電対(図示せず)からの示度に基づいて加熱器630(例えば抵抗加熱要素)に加えられる電力を調節することによりチャンバ602の壁の温度を制御するコントローラ641へフィードバックされてよい。例えば、チャンバが冷たすぎる場合、加熱器630を作動させてよい。チャンバが熱すぎる場合、加熱器630を停止させることになる。さらに、加熱器630から供給される熱の量が最小限になるように、加熱器630から供給される熱量を制御してよい。
第1のガス源610からのプロセスガスは、ガス送達シャワーヘッド606を通ってプロセスボリューム607へ送達される。一実施形態では、第1のガス源610は、窒素含有混合物を含んでよい。一実施形態では、第1のガス源610は、アンモニアまたは窒素を含むガスを送達するように構成される。一実施形態では、ガス送達シャワーヘッド606またはチャンバ602の壁608に配置された管624のいずれかを通して、ヘリウムまたは2価の窒素などの不活性ガスを導入してもよい。第1のガス源610とガス送達シャワーヘッド606の間に、エネルギー源612が配置されてよい。一実施形態では、エネルギー源612は、加熱器または遠隔RFプラズマ源を備えてよい。エネルギー源612は、第1のガス源610から送達されたガスにエネルギーを与えることができ、その結果、遊離基またはイオンが形成され得て、その結果、窒素含有ガスの窒素の反応性がより高くなる。
供給源モジュール632は、供給源ボート634のウェル634Aに接続されたハロゲンガス源618およびウェル634Aに接続された不活性ガス源619を含む。アルミニウム、ガリウムまたはインジウムなどの原材料(source material)623がウェル634Aに配置される。熱源620が、供給源ボート634を囲む。入口タブ621が、ウェル634Aを、管622および624を介してプロセスボリューム607に接続する。
一実施形態では、プロセスの間に、金属ハロゲン化物ガスまたは金属ハロゲン化物前駆物質ガスを生成するために、ハロゲンガス(例えばCl、Br、F、またはI)が、ハロゲンガス源618から供給源ボート634のウェル634Aに送達される。一実施形態では、金属ハロゲン化物ガスは、塩化ガリウム(例えばGaCl、GaCl)、インジウム塩化物(例えばICl)または塩化アルミニウム(例えばAlCl)などのIII族金属ハロゲン化物ガスである。ハロゲンガスと固体または液体の原材料623の相互作用により、金属ハロゲン化物前駆物質の形成が可能になる。原材料623を加熱して金属ハロゲン化物前駆物質を形成することを可能にするために、供給源ボート634が熱源620によって加熱されてよい。次いで、金属ハロゲン化物前駆物質が、注入チューブ621を通してHVPE装置600のプロセスボリューム607に送達される。一実施形態では、ウェル634Aで形成された金属ハロゲン化物前駆物質を、注入チューブ621、管622および624を通してHVPE装置600のプロセスボリューム607へ搬送するかまたは押し進めるのに、不活性ガス源619から送達された不活性ガス(例えばAr、He、N)が用いられる。窒素含有前駆物質ガス(例えばアンモニア(NH)、N)がシャワーヘッド606を通ってプロセスボリューム607に導入されてよく、一方、金属ハロゲン化物前駆物質もプロセスボリューム607に供給され、その結果、プロセスボリューム607の中に配置された基板615の面上に金属窒化物層が形成され得る。
図3は、本発明の一実施形態による方法300の流れ図である。方法300は、1つまたは複数の酸化アルミニウム含有基板に対する前処理に先立って窒化物形成プロセスを実行することを含む。
ボックス310で、1つまたは複数の酸化アルミニウム含有基板が処理チャンバの中に入れられる。一実施例では、処理チャンバは、前述のHVPE装置600に類似である。一実施形態では、酸化アルミニウム含有基板はサファイア基板である。
ボックス320では、1つまたは複数の酸化アルミニウム含有基板が、方法200のボックス220に関して上述したプロセスと同様のプロセスで、加熱または熱的洗浄される。
ボックス325で、1つまたは複数の酸化アルミニウム含有基板に対して窒化物形成プロセスが実行される。窒化物形成の間に、1つまたは複数の酸化アルミニウム含有基板が、処理チャンバに窒化ガス混合物を約5分間から約15分間まで流しながら約850℃から約1100℃の間の温度に加熱されてよい。一実施形態では、窒化ガス混合物はアンモニアおよび搬送ガスを含む。一実施形態では、搬送ガスは窒素ガスである。一実施形態では、窒化ガス混合物の全体的流速は、約3SLMと約16SLMの間にある。
ボックス330で、窒化プロセスの後に、酸化アルミニウム含有基板の上に高品質GaN皮膜を形成することを可能にするために、基板が高温で前処理ガス混合物に暴露される。一実施形態では、前処理プロセスは、アンモニアおよび塩素の存在下で酸化アルミニウム含有基板をエッチングすることにより、酸化アルミニウム含有基板をAlONまたはAlNに変換することを含む。ボックス330のプロセスは、上記の方法200のボックス230で説明されたプロセスに類似である。
ボックス340で、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。ボックス340で実行されるプロセスは、方法200のボックス240と一緒に上記で説明されたプロセスに類似のものでよい。
図4は、本発明の一実施形態による方法300aの流れ図である。方法300aは、前処理の後に窒化プロセスが実行される点を除けば方法300に類似である。
ボックス310では、1つまたは複数の酸化アルミニウム含有基板が処理チャンバの中に入れられる。一実施例では、処理チャンバは、前述のHVPE装置600に類似である。一実施形態では、酸化アルミニウム含有基板はサファイア基板である。
ボックス320では、方法200のボックス220で実行されたプロセスと同様に、1つまたは複数の酸化アルミニウム含有基板が加熱されてよく、あるいは1つまたは複数の酸化アルミニウム含有基板に対して、加熱中に熱的洗浄が実行されてよい。
ボックス330aでは、方法200のボックス230で実行された前処理と同様に、酸化アルミニウム含有基板の上に高品質GaN皮膜の形成を可能にする前処理のために、1つまたは複数の基板が高温で前処理ガス混合物に暴露される。ボックス330およびボックス230と同様に、アンモニアおよび塩素の存在下で酸化アルミニウム含有基板をエッチングすることにより、酸化アルミニウム含有基板上にAlONまたはAlNの層が形成される。
ボックス335で、前処理の後、1つまたは複数の酸化アルミニウム含有基板の上で窒化物形成プロセスが実行される。ボックス335の窒化物形成プロセスは、方法300の窒化物形成プロセス325に類似である。窒化物形成の間に、1つまたは複数の酸化アルミニウム含有基板が、処理チャンバに窒化ガス混合物を約5分から約15分間流しながら約850℃から約1100℃の間の温度に加熱されてよい。
ボックス340では、方法200のボックス240のIII族金属窒化物皮膜を形成するプロセスと同様に、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。
図5は、本発明の一実施形態による方法400を示すプロセスの流れ図である。方法400は、LEDまたはLDの構造体用のGaN皮膜を形成する以前の、1つまたは複数の酸化アルミニウム含有基板の処理を開示する。方法400はLEDまたはLDの構造体用のIII族金属の窒化物皮膜を形成する以前の、熱的洗浄、窒化、および1つまたは複数の酸化アルミニウム含有基板上にバッファ層を形成することを含む。
ボックス410で、1つまたは複数の酸化アルミニウム含有基板が処理チャンバの中に入れられる。一実施例では、処理チャンバは、前述のHVPE装置600に類似である。
ボックス420で、1つまたは複数の酸化アルミニウム含有基板が、方法200のボックス220で説明された熱的洗浄プロセスに類似のプロセスを用いて、加熱され、かつ/または洗浄される。
次いで、ボックス425で、1つまたは複数の酸化アルミニウム含有基板を加熱しながら窒化ガス混合物に暴露することにより、1つまたは複数の酸化アルミニウム含有基板に対して窒化プロセスが実行される。この窒化プロセスは、方法300のボックス325で説明された窒化プロセスに似たものでよい。
次いで、ボックス436で、1つまたは複数の酸化アルミニウム含有基板上にバッファ層が形成される。バッファ層は、窒化アルミニウム(AlN)および/またはアルミニウムオキシナイトライド(AlON)、あるいは窒化ガリウム(GaN)を含んでよい。
一実施形態では、バッファ層は、窒素源としてアンモニアを用いるHVPEによって形成されたAlN、およびアルミニウム金属源に対してハロゲンを流すことにより生成されたハロゲン化アルミニウムガスを含む。例えば、バッファ層は、図6に示されるHVPE装置600を使用して形成され得る。バッファ層は、塩化アルミニウム前駆物質などの金属ハロゲン化物の前駆物質を生成し、処理チャンバ602の中で、1つまたは複数の基板を約550℃と約950℃の間の温度に維持しながらプロセス領域607に対して金属ハロゲン化物の前駆物質ガスおよび窒素含有前駆物質ガスを流すことにより形成され得る。一実施形態では、塩化アルミニウム前駆物質は、約50℃から約650℃の間の温度に維持された固体のアルミニウムの上に、塩素ガス(Cl)を約70sccmから約140sccmの間の流速で流すことにより生成され得る。一実施形態では、アルミニウム原材料は、約450℃から約650℃の間に維持される。一実施形態では、アルミニウム原材料は、基板プロセス領域の遠方の位置に配置され、アルミニウム源の加工温度は約50℃から約150℃の間に維持されてよい。
一実施形態では、バッファ層は、1つまたは複数の基板を約550℃から約1100℃の間の温度に加熱しながら、処理チャンバに塩化ガリウム前駆物質および窒素源を流すことにより形成され得る。洗浄温度は、約900℃と約1100℃の間であってよい。一実施形態では、バッファ層は、1つまたは複数の基板を約950℃と約1100℃の間の温度に加熱しながら、処理チャンバに塩化ガリウム前駆物質および窒素源を流すことにより形成され得る。一実施例では、温度は約1050℃に維持される。一実施形態では、塩化ガリウム前駆物質は、約550℃から約1000℃の間の温度に維持されたガリウムの上に、塩素ガスを約5sccmから約300sccmの間の流速で流すことにより生成される。一実施形態では、塩化ガリウム前駆物質は、約550℃から約1000℃の間の温度に維持されたガリウムの上に、塩化水素ガスを約5sccmから約300sccmの間の流速で流すことにより生成される。
一実施形態では、窒素源はアンモニアでよい。別の実施形態では、窒素源は、窒素ガス(N)、亜酸化窒素(NO)、アンモニア(NH)、ヒドラジン(N)、ジイミド(N)、アジ化水素酸(HN)などの窒素含有材料の遠隔プラズマから導出された1つまたは複数の活性窒素種でよい。一実施形態では、窒素源の流速は、約3000sccmから約9000sccmの間にあってよい。
ボックス440では、方法200のボックス240のIII族金属窒化物皮膜を形成するプロセスと同様に、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。
図6は、本発明の一実施形態による方法500を示すプロセスの流れ図である。方法500は、LEDまたはLDの構造体用のGaN皮膜を形成する以前の、1つまたは複数の酸化アルミニウム含有基板の処理を開示する。方法500はLEDまたはLDの構造体用のIII族金属の窒化物皮膜を形成する以前の、熱的洗浄、窒化、前処理、および1つまたは複数の酸化アルミニウム含有基板上にバッファ層を形成することを含む。
ボックス510で、1つまたは複数の酸化アルミニウム含有基板が処理チャンバに位置決めされる。一実施例では、処理チャンバは、前述のHVPE装置600に類似である。
ボックス520で、1つまたは複数の酸化アルミニウム含有基板が、方法200のボックス220で説明された熱的洗浄プロセスに類似のプロセスを用いて、加熱され、かつ/または洗浄される。
次いで、ボックス525で、1つまたは複数のアルミニウム含有基板を加熱しながら窒化ガス混合物に暴露することにより、1つまたは複数の酸化アルミニウム含有基板に対して窒化プロセスが実行される。この窒化プロセスは、方法300のボックス325で説明された窒化プロセスに似たものでよい。
ボックス530で、酸化アルミニウム含有基板の上に高品質GaN皮膜の形成を可能にする前処理のために、1つまたは複数の基板が高温で前処理ガス混合物に暴露される。ボックス330およびボックス230と同様に、アンモニアおよび塩素の存在下で酸化アルミニウム含有基板をエッチングすることにより、酸化アルミニウム含有基板上にAlONまたはAlNの層が形成される。
次いで、ボックス536で、前処理された酸化アルミニウム含有基板上にバッファ層が形成される。バッファ層は、窒化アルミニウム(AlN)および/またはアルミニウムオキシナイトライド(AlON)、あるいは窒化ガリウムを含んでよい。一実施形態では、バッファ層は、上記の方法400のボックス436で説明されたプロセスのうちの1つによって形成される。
ボックス540で、方法200のボックス240のIII族金属窒化物皮膜を形成するプロセスと同様に、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。
図7は、本発明の一実施形態による方法700を示すプロセスの流れ図である。方法700は、前処理プロセスの後に窒化物形成プロセスが実行される点を除けば、図6の方法500に類似である。
ボックス710で、1つまたは複数の酸化アルミニウム含有基板が処理チャンバに位置決めされる。一実施例では、処理チャンバは、前述のHVPE装置600に類似である。
ボックス720で、1つまたは複数の酸化アルミニウム含有基板が、方法200のボックス220で説明された熱的洗浄プロセスに類似のプロセスを用いて、加熱され、かつ/または洗浄される。
ボックス730で、酸化アルミニウム含有基板の上に高品質GaN皮膜の形成を可能にする、方法500のボックス530で説明された前処理プロセスに似た前処理のために、1つまたは複数の基板が高温で前処理ガス混合物に暴露される。
次いで、ボックス735で、1つまたは複数の酸化アルミニウム含有基板を加熱しながら窒化ガス混合物に暴露することにより、1つまたは複数の酸化アルミニウム含有基板に対して窒化プロセスが実行される。この窒化プロセスは、方法300のボックス325で説明された窒化プロセスに似たものでよい。
次いで、ボックス736で、1つまたは複数の酸化アルミニウム含有基板上にバッファ層が形成される。バッファ層は、窒化アルミニウム(AlN)および/またはアルミニウムオキシナイトライド(AlON)、あるいは窒化ガリウムを含んでよい。バッファ層は、方法500のボックス536で説明されたのと類似のやり方で形成され得る。
ボックス740では、方法200のボックス240のIII族金属窒化物皮膜を形成するプロセスと同様に、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。
図8は、本発明の一実施形態による方法800の流れ図である。方法800は、LEDまたはLDの構造体用のGaN皮膜を形成する以前の、1つまたは複数の酸化アルミニウム含有基板の処理を開示する。方法800は、LEDまたはLDの構造体用のIII族金属の窒化物皮膜を形成する以前の、前処理と1つまたは複数の酸化アルミニウム含有基板上にバッファ層を形成することとを組み合わせたプロセスを含む。
ボックス810で、1つまたは複数の酸化アルミニウム含有基板が処理チャンバの中に入れられる。一実施例では、このプロセスは、上記で論じられたHVPE装置600に類似のチャンバの中で実行される。
ボックス820で、1つまたは複数の酸化アルミニウム含有基板が、方法200のボックス220で説明された熱的洗浄プロセスに類似の加熱または熱的洗浄のプロセスを経る。
ボックス830で、1つまたは複数の基板が、酸化アルミニウム含有面を前処理してバッファ層を形成するために、前処理ガス/バッファガス混合物に暴露される。一実施形態では、前処理ガス/バッファガス混合物は、窒素源と、ハロゲンガスと、アルミニウムまたはガリウムを含む前駆物質とを含む。窒素源はアンモニアでよい。ハロゲンガスは、フッ素ガス、塩素ガス、臭素ガス、ヨウ素ガス、これらの組合せ、およびこれら混合物から成る群から選択されてよい。アルミニウム含有前駆物質は、ボックス536の記述で説明されたアルミニウム前駆物質と同様に、高温に維持された固体アルミニウムの上に塩素ガスを流すことから生成される塩化アルミニウム前駆物質でよい。
ボックス840では、方法200のボックス240のIII族金属窒化物皮膜を形成するプロセスと同様に、酸化アルミニウム含有基板の処理された面の上にIII族金属の窒化物皮膜が形成される。
上記で論じられたように、本発明の実施形態によって説明された方法は、1つのチャンバで実行されるか、またはクラスタツールの2つ以上のチャンバで実行されてよい。
一実施形態では、方法のプロセスが1つのチャンバで実行されるとき、プロセスの間に、アンモニアおよび/または窒素ガスが、温度の定率上昇、温度の定率低下、熱的洗浄、前処理、窒化物形成、バッファ層堆積、およびGaN堆積の期間中、一定不変で流されてよい。
別の実施形態では、1つまたは複数の基板が、最初に1つのチャンバの中で処理され、次いで、後続のプロセスのために、ツールの中の別のチャンバへ移動する。図9は、本発明の一実施形態によるプロセスで使用され得るクラスタツール900である。クラスタツール900は、LEDおよび/またはLD用の窒化物混合物構造体を形成するように構成されている。
一実施形態では、クラスタツール900は、本明細書に説明された実施形態による複合窒化物半導体デバイスを製作するために、トランスファポット906に接続された1つのHVPEチャンバ902ならびに複数のMOCVDチャンバ903aおよび903bを備える。1つのHVPEチャンバ902ならびに2つのMOCVDチャンバ903aおよび903bが示されているが、1つまたは複数のMOCVDチャンバと1つまたは複数のHVPEチャンバのあらゆる組合せがトランスファポット906と結合され得ることを理解されたい。例えば、一実施形態では、クラスタツール900は3つのMOCVDチャンバを備えてよい。別の実施形態で、本明細書で説明されたプロセスは、1つのMOCVDチャンバで実行されてよい。クラスタツールが示されているが、本明細書で説明された実施形態は、線形処理システムを使用して実行することもできることも理解されたい。
一実施形態では、さらなるチャンバ904がトランスファポット906に結合される。さらなるチャンバ904は、MOCVDチャンバ、HVPEチャンバ、メトロロジーチャンバ、ガス抜きチャンバ、配向チャンバ、冷却チャンバ、前処理/前洗浄チャンバ、焼鈍後のチャンバなどでよい。一実施形態では、トランスファポット906は、6面の6角形状であって、処理チャンバ取付け用の6つの位置を有する。別の実施形態では、トランスファポット906は他の形状を有し、対応する数の処理チャンバ取付け位置を伴う5つ、7つ、8つまたはより多くの面を有してよい。
HVPEチャンバ902は、熱した基板上に複合窒化物半導体材料の厚い層をエピタキシャル成長させるのに気体の金属ハロゲン化物が用いられるHVPEプロセスを実行するように適合される。HVPEチャンバ902は、基板を処理するように据えるチャンバ本体914と、ガス前駆物質をチャンバ物体914へ送達する化学物質送達モジュール918と、クラスタツール900のHVPEチャンバ用の電気的システムを含む電気的モジュール922とを備える。一実施形態では、HVPEチャンバ902は、図10で説明されたHVPE装置600に類似のものでよい。
各MOCVDチャンバ903a、903bは、基板を処理するように据える処理領域を形成するチャンバ本体912a、912bと、前駆物質、パージガス、および洗浄ガスなどのガスをチャンバ本体912a、912bへ送達する化学物質送達モジュール916a、916bと、クラスタツール900の各MOCVDチャンバ用の電気的システムを含む、各MOCVDチャンバ903a、903b用の電気的モジュール920a、920bとを備える。各MOCVDチャンバ903a、903bは、有機金属前駆物質(例えばTMG、TMA)が金属水素化物元素と反応して複合窒化物半導体材料の薄い層を形成するCVDプロセスを実行するように適合される。
クラスタツール900は、トランスファポット906に収容されたロボット組立体907と、トランスファポット906に結合されたロードロックチャンバ908と、基板を貯蔵するためにトランスファポット906に結合されたバッチロードロックチャンバ909とをさらに備える。クラスタツール900は、ロードロックチャンバ908に結合された、基板を載せるためのロードステーション910をさらに備える。ロボット組立体907は、基板を取り上げて、ロードロックチャンバ908、バッチロードロックチャンバ909、HVPEチャンバ902、およびMOCVDチャンバ903a、903bの間を移転するように動作可能である。一実施形態では、ロードステーション910は、カセットから基板キャリアまたはロードロックチャンバ908まで基板を直接載せ、基板を基板キャリアまたはロードロックチャンバ908からカセットへ降ろすように構成された自動積荷ステーションである。
トランスファポット906は、プロセスの間は真空および/または大気圧未満の圧力のままでよい。トランスファポット906の真空レベルは、対応する処理チャンバの真空レベルと一致するように調節されてよい。一実施形態では、トランスファポット906は、基板移転のために、90%を上回るNを有する環境を維持する。別の実施形態では、トランスファポット906は、基板移転のために、高純度NHの環境を維持する。一実施形態では、基板は、90%を上回るNHを有する環境の中を運ばれる。別の実施形態では、トランスファポット906は、基板移転のために、高純度Hの環境を維持する。一実施形態では、基板は、90%を上回るHを有する環境の中を運ばれる。
クラスタツール900は、活動および動作パラメータを制御するシステムコントローラ960をさらに備える。システムコントローラ960は、コンピュータプロセッサおよびプロセッサに結合されたコンピュータ可読メモリを含む。プロセッサは、メモリに記憶されたコンピュータプログラムなどのシステム制御ソフトウェアを実行する。
一実施形態では、処理チャンバ902、903a、903b、または904のうちの1つは、LED/LD構造体を形成する以前に前述の方法によって基板を洗浄し、かつ前処理するように構成される。一実施形態では、基板は、HVPEチャンバ902の中で洗浄され、前処理され、窒化され、かつ/またはバッファ層で覆われ、次いでLED/LD構造体用のIII族金属窒化物層を形成するために処理チャンバ903a、903b、または904に移動されてよい。別の実施形態では、基板が、HVPEチャンバ902の中で洗浄され、前処理され、窒化され、かつ/またはバッファ層で覆われ、次いで後続のLED/LD構造体用の層を形成するために処理チャンバ903a、903b、または904へ移動された後、処理チャンバ902の中に1つまたは複数のLED/LD構造体層を形成してよい。
LEDまたはLDの構造体を製作するプロセスの間に、まず複数のサファイア基板が処理チャンバの中に入れられる。次いで、サファイア基板は、約1℃/秒から約5℃/秒の間の定率温度上昇の割合で加熱される。定率温度上昇の期間中、アンモニアが、約3000sccmから約9000sccmの間の流速で処理チャンバへ流される。
次いで、アンモニアおよび窒素搬送ガスを850℃から約1100℃の間の温度で約5分から15分間流すことにより、サファイア基板に対して熱的洗浄が実行される。アンモニアの流速は、約1SLMと約10SLMの間でよい。
次いで、約625℃から約1150℃の間の温度範囲内で、塩素ガスを200sccmと約1000sccmの間の流速で流し、アンモニアを500sccmと約12,000sccmの間の流速で流すことにより、サファイア基板に対して前処理プロセスが実行される。
次いで、約700℃から約1100℃の間の温度でガリウム含有前駆物質およびアンモニアを流すことにより、HVPEプロセスによってサファイア基板の上にGaN皮膜が形成される。550℃から約1100℃の間の温度に維持された固体ガリウムの上に、塩素ガスを約20sccmから約150sccmの間の流速で流すことにより、ガリウム含有前駆物質が生成される。アンモニアが、処理チャンバへ、約3SLMから約25SLMの間の範囲の流速で流される。GaNは、約0.3マイクロメートル/時間から約150マイクロメートル/時間の間の成長速度を有する。
任意選択で、以前のプロセスステップの1つまたは複数に先行して、約5分から15分間アンモニアおよび窒素搬送ガスを流し、サファイア基板を850℃から約1100℃の間の温度に加熱するかまたは維持することにより、窒化物形成プロセスを実行してよい。アンモニアおよび窒素の流速は、約100sccmから約500sccmの間でよい。
上記の洗浄、前処理、窒化物形成および堆積の間、処理チャンバの圧力は、約70トルから約760トルの間でよい。
本発明の実施形態と関連して上記で説明されたIII族金属前駆物質、金属ハロゲン化物ガス、ハロゲンガス、アンモニアガス、塩素ガス、HClガスなどの活性ガスは、処理中に不活性ガスで薄めてよいことに留意されたい。適切な不活性ガスは、アルゴン、ヘリウム、窒素またはそれらの組合せでよい。
前述のものは本発明の諸実施形態を対象としているが、本発明の他の実施形態およびさらなる実施形態が本発明の基本的範囲から逸脱することなく考案され得て、それらの範囲は、続く特許請求の範囲によって決定される。

Claims (16)

  1. III族金属窒化物皮膜を形成する方法であって、
    1つまたは複数のサファイア基板を前処理温度に加熱することと、
    前記1つまたは複数のサファイア基板の各々の一面を、前記面が前記前処理温度にあるときに、前処理ガス混合物に暴露して前処理された面を形成することであって、前記前処理ガス混合物が、アンモニア(NH)と、III族金属ハロゲン化物ガスと、ハロゲンガスを含むエッチャント含有ガスとを含み、前記1つまたは複数のサファイア基板の前記面を暴露することが、アルミニウムオキシナイトライドまたは窒化アルミニウムを含む前記前処理された面の一領域を形成することをさらに含むことと、
    前記前処理された面の上にIII族金属窒化物層を形成することと
    を含む方法。
  2. 前記III族金属ハロゲン化物ガスを、アルミニウムを含む金属源を、塩素(Cl)を含む第1の処理ガスに暴露することにより形成する、請求項1に記載の方法。
  3. III族金属窒化物皮膜を形成する方法であって、
    1つまたは複数のサファイア基板を前処理温度に加熱することと、
    前記1つまたは複数のサファイア基板の各々の一面を、前記面が前記前処理温度にあるときに、前処理ガス混合物に暴露して前処理された面を形成することであって、前記前処理ガス混合物が、アンモニア(NH)と、ハロゲンガスを含むエッチャント含有ガスとを含み、前記1つまたは複数のサファイア基板の前記面を暴露することが、アルミニウムオキシナイトライドまたは窒化アルミニウムを含む前記前処理された面の一領域を形成することをさらに含むことと、
    前記1つまたは複数のサファイア基板の一面を第1の期間にわたって窒化ガス混合物に暴露することと、
    前記前処理された面の上にIII族金属窒化物層を形成することと
    を含む方法。
  4. 前記ハロゲンガスが塩素(Cl)である請求項1または3に記載の方法。
  5. 前記前処理ガス混合物が、アルミニウムを含む金属源を、塩素(Cl)を含む第1の処理ガスに暴露することにより形成されたIII族金属ハロゲン化物ガスをさらに含む、請求項3に記載の方法。
  6. 前記III族金属窒化物層を形成することが、前記1つまたは複数のサファイア基板を窒素含有前駆物質ガスおよび塩化ガリウム含有ガスに暴露することをさらに含む、請求項1または3に記載の方法。
  7. 前記1つまたは複数のサファイア基板の前記面を前記窒化ガス混合物に暴露することが、前記前処理された面を前記窒化ガス混合物に暴露することを含む、請求項3に記載の方法。
  8. 前記1つまたは複数のサファイア基板の前記面を前記窒化ガス混合物に暴露することを、前記1つまたは複数のサファイア基板の温度を前記前処理温度に加熱する間に実行する、請求項1または3に記載の方法。
  9. 前記III族金属窒化物層を形成することが、前記1つまたは複数のサファイア基板を、窒素含有前駆物質ガス、第1のIII族金属ハロゲン化物ガスおよび第2のIII族金属ハロゲン化物ガスに暴露することをさらに含み、前記第1および第2のIII族金属ハロゲン化物ガスが、それぞれアルミニウム、ガリウムまたはインジウムを含む、請求項3に記載の方法。
  10. 前記窒素含有前駆物質ガスがアンモニアを含み、
    前記III族金属ハロゲン化物ガスが、金属源を、塩素(Cl)を含む第1の処理ガスに暴露することにより形成され、前記金属源が、ガリウム、アルミニウムおよびインジウムから成る群から選択された元素を含む、請求項9に記載の方法。
  11. 前記III族金属窒化物層を形成することが、
    前記1つまたは複数のサファイア基板を、窒素含有前駆物質ガスおよび塩化アルミニウム含有ガスに暴露して、前記前処理面上に窒化アルミニウム含有層を形成することと、
    前記形成された窒化アルミニウム含有層を、窒素含有前駆物質ガスおよび塩化ガリウム含有ガスに暴露して、前記窒化アルミニウム含有層上に窒化ガリウム含有層を形成することと
    をさらに含む、請求項3に記載の方法。
  12. 前記窒化ガス混合物がアンモニアおよび搬送ガスを含む請求項3に記載の方法。
  13. 前記搬送ガスが窒素を含む請求項12に記載の方法。
  14. 前記1つまたは複数のサファイア基板の温度を前記前処理温度に加熱する間に、アンモニア(NH)を含む洗浄ガスを送達することをさらに含む、請求項3に記載の方法。
  15. 前記洗浄ガスが窒素をさらに含む請求項14に記載の方法。
  16. 前記サファイア基板が単結晶サファイア基板である請求項3に記載の方法。
JP2012507453A 2009-04-24 2010-04-23 後続の高温でのiii族堆積用の基板前処理 Withdrawn JP2012525013A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17260609P 2009-04-24 2009-04-24
US61/172,606 2009-04-24
PCT/US2010/032313 WO2010124261A2 (en) 2009-04-24 2010-04-23 Substrate pretreatment for subsequent high temperature group iii depositions

Publications (1)

Publication Number Publication Date
JP2012525013A true JP2012525013A (ja) 2012-10-18

Family

ID=42992517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012507453A Withdrawn JP2012525013A (ja) 2009-04-24 2010-04-23 後続の高温でのiii族堆積用の基板前処理

Country Status (6)

Country Link
US (2) US8138069B2 (ja)
JP (1) JP2012525013A (ja)
KR (1) KR20120003493A (ja)
CN (1) CN102449743A (ja)
TW (1) TW201039379A (ja)
WO (1) WO2010124261A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064811A (ja) * 2010-09-16 2012-03-29 Toshiba Corp 半導体素子の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409895B2 (en) * 2010-12-16 2013-04-02 Applied Materials, Inc. Gallium nitride-based LED fabrication with PVD-formed aluminum nitride buffer layer
US8980002B2 (en) * 2011-05-20 2015-03-17 Applied Materials, Inc. Methods for improved growth of group III nitride semiconductor compounds
US8853086B2 (en) * 2011-05-20 2014-10-07 Applied Materials, Inc. Methods for pretreatment of group III-nitride depositions
US8778783B2 (en) * 2011-05-20 2014-07-15 Applied Materials, Inc. Methods for improved growth of group III nitride buffer layers
US20120318457A1 (en) * 2011-06-17 2012-12-20 Son Nguyen Materials and coatings for a showerhead in a processing system
DE102012103686B4 (de) 2012-04-26 2021-07-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Epitaxiesubstrat, Verfahren zur Herstellung eines Epitaxiesubstrats und optoelektronischer Halbleiterchip mit einem Epitaxiesubstrat
US9577143B1 (en) 2012-06-15 2017-02-21 Ostendo Technologies, Inc. Backflow reactor liner for protection of growth surfaces and for balancing flow in the growth liner
US9023673B1 (en) 2012-06-15 2015-05-05 Ostendo Technologies, Inc. Free HCL used during pretreatment and AlGaN growth to control growth layer orientation and inclusions
US8992684B1 (en) 2012-06-15 2015-03-31 Ostendo Technologies, Inc. Epitaxy reactor internal component geometries for the growth of superior quality group III-nitride materials
US9929310B2 (en) 2013-03-14 2018-03-27 Applied Materials, Inc. Oxygen controlled PVD aluminum nitride buffer for gallium nitride-based optoelectronic and electronic devices
DE102014108352A1 (de) * 2014-06-13 2015-12-17 Forschungszentrum Jülich GmbH Verfahren zum Abscheiden einer Kristallschicht bei niedrigen Temperaturen, insbesondere einer photolumineszierenden IV-IV-Schicht auf einem IV-Substrat, sowie ein eine derartige Schicht aufweisendes optoelektronisches Bauelement
CN108321198B (zh) * 2017-01-17 2021-06-08 株式会社东芝 半导体装置、电源电路、计算机和半导体装置的制造方法

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851A (en) * 1846-11-14 beschermann
US4851295A (en) 1984-03-16 1989-07-25 Genus, Inc. Low resistivity tungsten silicon composite film
US5348911A (en) * 1987-06-30 1994-09-20 Aixtron Gmbh Material-saving process for fabricating mixed crystals
USD329839S (en) * 1990-01-31 1992-09-29 Hohner Automation Societe Anonyme Incremental coder
WO1992022084A1 (en) * 1991-05-21 1992-12-10 Advantage Production Technology, Inc. Organic preclean for improving vapor phase wafer etch uniformity
US5273588A (en) * 1992-06-15 1993-12-28 Materials Research Corporation Semiconductor wafer processing CVD reactor apparatus comprising contoured electrode gas directing means
US5486235A (en) * 1993-08-09 1996-01-23 Applied Materials, Inc. Plasma dry cleaning of semiconductor processing chambers
US5647911A (en) * 1993-12-14 1997-07-15 Sony Corporation Gas diffuser plate assembly and RF electrode
US5679152A (en) * 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
WO1995027570A1 (en) * 1994-04-08 1995-10-19 Ray Mark A Selective plasma deposition
GB9411911D0 (en) * 1994-06-14 1994-08-03 Swan Thomas & Co Ltd Improvements in or relating to chemical vapour deposition
US5715361A (en) * 1995-04-13 1998-02-03 Cvc Products, Inc. Rapid thermal processing high-performance multizone illuminator for wafer backside heating
JPH0945670A (ja) * 1995-07-29 1997-02-14 Hewlett Packard Co <Hp> Iii族−n系結晶の気相エッチング方法および再成長方法
US5667592A (en) * 1996-04-16 1997-09-16 Gasonics International Process chamber sleeve with ring seals for isolating individual process modules in a common cluster
JP3721674B2 (ja) 1996-12-05 2005-11-30 ソニー株式会社 窒化物系iii−v族化合物半導体基板の製造方法
US5855675A (en) * 1997-03-03 1999-01-05 Genus, Inc. Multipurpose processing chamber for chemical vapor deposition processes
US6270569B1 (en) * 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
US5900031A (en) * 1997-07-15 1999-05-04 Niagara Mohawk Power Corporation Electrochemical hydrogen compressor with electrochemical autothermal reformer
EP2200071B1 (en) * 1997-10-30 2012-01-18 Sumitomo Electric Industries, Ltd. GaN single crystal substrate and method of making the same using homoepitaxy
US6464843B1 (en) * 1998-03-31 2002-10-15 Lam Research Corporation Contamination controlling method and apparatus for a plasma processing chamber
US6086673A (en) 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates
TW417315B (en) * 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
JP3788037B2 (ja) 1998-06-18 2006-06-21 住友電気工業株式会社 GaN単結晶基板
JP3788041B2 (ja) 1998-06-30 2006-06-21 住友電気工業株式会社 GaN単結晶基板の製造方法
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
US6190732B1 (en) * 1998-09-03 2001-02-20 Cvc Products, Inc. Method and system for dispensing process gas for fabricating a device on a substrate
US6373114B1 (en) * 1998-10-23 2002-04-16 Micron Technology, Inc. Barrier in gate stack for improved gate dielectric integrity
US6413839B1 (en) * 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
KR100304664B1 (ko) * 1999-02-05 2001-09-26 윤종용 GaN막 제조 방법
US6309465B1 (en) * 1999-02-18 2001-10-30 Aixtron Ag. CVD reactor
US6305314B1 (en) * 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6540838B2 (en) * 2000-11-29 2003-04-01 Genus, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US6179913B1 (en) * 1999-04-16 2001-01-30 Cbl Technologies, Inc. Compound gas injection system and methods
US6290774B1 (en) * 1999-05-07 2001-09-18 Cbl Technology, Inc. Sequential hydride vapor phase epitaxy
JP3384795B2 (ja) * 1999-05-26 2003-03-10 忠弘 大見 プラズマプロセス装置
KR20010029852A (ko) * 1999-06-30 2001-04-16 도다 다다히데 Ⅲ족 질화물계 화합물 반도체 소자 및 그 제조방법
US6206972B1 (en) * 1999-07-08 2001-03-27 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6569765B1 (en) * 1999-08-26 2003-05-27 Cbl Technologies, Inc Hybrid deposition system and methods
US6489241B1 (en) * 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
US6503330B1 (en) * 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6897119B1 (en) * 1999-12-22 2005-05-24 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6551399B1 (en) * 2000-01-10 2003-04-22 Genus Inc. Fully integrated process for MIM capacitors using atomic layer deposition
AU2001242363A1 (en) * 2000-02-04 2001-08-14 Aixtron Ag Device and method for depositing one or more layers onto a substrate
JP4849705B2 (ja) * 2000-03-24 2012-01-11 東京エレクトロン株式会社 プラズマ処理装置、プラズマ生成導入部材及び誘電体
JP4813737B2 (ja) * 2000-04-17 2011-11-09 マットソン テクノロジー インコーポレイテッド 窒化ケイ素フィルムを形成するための超薄オキシニトリドのuv前処理法
US6616870B1 (en) * 2000-08-07 2003-09-09 Shipley Company, L.L.C. Method of producing high aspect ratio domes by vapor deposition
DE10043601A1 (de) * 2000-09-01 2002-03-14 Aixtron Ag Vorrichtung und Verfahren zum Abscheiden insbesondere kristalliner Schichten auf insbesondere kristallinen Substraten
DE10048759A1 (de) * 2000-09-29 2002-04-11 Aixtron Gmbh Verfahren und Vorrichtung zum Abscheiden insbesondere organischer Schichten im Wege der OVPD
DE10056029A1 (de) * 2000-11-11 2002-05-16 Aixtron Ag Verfahren und Vorrichtung zur Temperatursteuerung der Oberflächentemperaturen von Substraten in einem CVD-Reaktor
DE10057134A1 (de) * 2000-11-17 2002-05-23 Aixtron Ag Verfahren zum Abscheiden von insbesondere kristallinen Schichten sowie Vorrichtung zur Durchführung des Verfahrens
US6905547B1 (en) * 2000-12-21 2005-06-14 Genus, Inc. Method and apparatus for flexible atomic layer deposition
JP2002217118A (ja) * 2001-01-22 2002-08-02 Japan Pionics Co Ltd 窒化ガリウム膜半導体の製造装置、排ガス浄化装置、及び製造設備
JP3631724B2 (ja) * 2001-03-27 2005-03-23 日本電気株式会社 Iii族窒化物半導体基板およびその製造方法
US6573164B2 (en) * 2001-03-30 2003-06-03 Technologies And Devices International, Inc. Method of epitaxially growing device structures with sharp layer interfaces utilizing HVPE
DE10118130A1 (de) * 2001-04-11 2002-10-17 Aixtron Ag Vorrichtung oder Verfahren zum Abscheiden von insbesondere kristallinen Schichten auf insbesondere kristallinen Substraten aus der Gasphase
DE10124609B4 (de) * 2001-05-17 2012-12-27 Aixtron Se Verfahren zum Abscheiden aktiver Schichten auf Substraten
US6632725B2 (en) * 2001-06-29 2003-10-14 Centre National De La Recherche Scientifique (Cnrs) Process for producing an epitaxial layer of gallium nitride by the HVPE method
US7780785B2 (en) * 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
EP1459362A2 (de) * 2001-12-21 2004-09-22 Aixtron AG Verfahren zum abscheiden von iii-v-halbleiterschichten auf einem nicht-iii-v-substrat
DE10163394A1 (de) * 2001-12-21 2003-07-03 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden kristalliner Schichten und auf kristallinen Substraten
DE10224762A1 (de) * 2002-06-04 2003-12-18 Delphi Tech Inc Zündspulenmodul
KR100568701B1 (ko) * 2002-06-19 2006-04-07 니폰덴신뎅와 가부시키가이샤 반도체 발광 소자
US6955211B2 (en) * 2002-07-17 2005-10-18 Applied Materials, Inc. Method and apparatus for gas temperature control in a semiconductor processing system
JP4352783B2 (ja) 2002-08-23 2009-10-28 東京エレクトロン株式会社 ガス供給系及び処理システム
US7115896B2 (en) * 2002-12-04 2006-10-03 Emcore Corporation Semiconductor structures for gallium nitride-based devices
US7018940B2 (en) * 2002-12-30 2006-03-28 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
JP4026529B2 (ja) * 2003-04-10 2007-12-26 東京エレクトロン株式会社 シャワーヘッド構造及び処理装置
US7001791B2 (en) * 2003-04-14 2006-02-21 University Of Florida GaN growth on Si using ZnO buffer layer
JP2007525822A (ja) * 2003-05-30 2007-09-06 アヴィザ テクノロジー インコーポレイテッド ガス分配システム
US6906351B2 (en) 2003-08-05 2005-06-14 University Of Florida Research Foundation, Inc. Group III-nitride growth on Si substrate using oxynitride interlayer
JP4232605B2 (ja) * 2003-10-30 2009-03-04 住友電気工業株式会社 窒化物半導体基板の製造方法と窒化物半導体基板
DE102004009130A1 (de) * 2004-02-25 2005-09-15 Aixtron Ag Einlasssystem für einen MOCVD-Reaktor
US7368368B2 (en) * 2004-08-18 2008-05-06 Cree, Inc. Multi-chamber MOCVD growth apparatus for high performance/high throughput
US7682940B2 (en) * 2004-12-01 2010-03-23 Applied Materials, Inc. Use of Cl2 and/or HCl during silicon epitaxial film formation
DE102004058521A1 (de) * 2004-12-04 2006-06-14 Aixtron Ag Verfahren und Vorrichtung zum Abscheiden von dicken Gallium-Nitrit-Schichten auf einem Saphirsubstrat und zugehörigen Substrathalter
KR100578089B1 (ko) 2004-12-22 2006-05-10 주식회사 시스넥스 수소화물기상증착 반응기
KR101145755B1 (ko) * 2005-03-10 2012-05-16 재팬 사이언스 앤드 테크놀로지 에이젼시 평면의 반극성 갈륨 질화물의 성장을 위한 기술
US7195934B2 (en) * 2005-07-11 2007-03-27 Applied Materials, Inc. Method and system for deposition tuning in an epitaxial film growth apparatus
US8946674B2 (en) * 2005-08-31 2015-02-03 University Of Florida Research Foundation, Inc. Group III-nitrides on Si substrates using a nanostructured interlayer
JP4803578B2 (ja) 2005-12-08 2011-10-26 東京エレクトロン株式会社 成膜方法
US7364991B2 (en) * 2006-04-27 2008-04-29 Applied Materials, Inc. Buffer-layer treatment of MOCVD-grown nitride structures
US7585769B2 (en) * 2006-05-05 2009-09-08 Applied Materials, Inc. Parasitic particle suppression in growth of III-V nitride films using MOCVD and HVPE
US20080050889A1 (en) * 2006-08-24 2008-02-28 Applied Materials, Inc. Hotwall reactor and method for reducing particle formation in GaN MOCVD
JP2008066490A (ja) 2006-09-06 2008-03-21 Nippon Emc Ltd 気相成長装置
US7769066B2 (en) 2006-11-15 2010-08-03 Cree, Inc. Laser diode and method for fabricating same
US7582515B2 (en) 2007-01-18 2009-09-01 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
JP2008263023A (ja) 2007-04-11 2008-10-30 Sumitomo Electric Ind Ltd Iii−v族化合物半導体の製造方法、ショットキーバリアダイオード、発光ダイオード、レーザダイオード、およびそれらの製造方法
US20090149008A1 (en) * 2007-10-05 2009-06-11 Applied Materials, Inc. Method for depositing group iii/v compounds
US20090194026A1 (en) * 2008-01-31 2009-08-06 Burrows Brian H Processing system for fabricating compound nitride semiconductor devices
CN101355127B (zh) * 2008-07-08 2010-11-10 南京大学 提高ⅲ族氮化物发光效率的led量子阱结构及其生长方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064811A (ja) * 2010-09-16 2012-03-29 Toshiba Corp 半導体素子の製造方法

Also Published As

Publication number Publication date
US20100273318A1 (en) 2010-10-28
KR20120003493A (ko) 2012-01-10
CN102449743A (zh) 2012-05-09
WO2010124261A3 (en) 2011-02-03
WO2010124261A2 (en) 2010-10-28
WO2010124261A4 (en) 2011-03-24
US20120156863A1 (en) 2012-06-21
TW201039379A (en) 2010-11-01
US8138069B2 (en) 2012-03-20

Similar Documents

Publication Publication Date Title
US8138069B2 (en) Substrate pretreatment for subsequent high temperature group III depositions
US8853086B2 (en) Methods for pretreatment of group III-nitride depositions
US8080466B2 (en) Method for growth of nitrogen face (N-face) polarity compound nitride semiconductor device with integrated processing system
US8778783B2 (en) Methods for improved growth of group III nitride buffer layers
US8110889B2 (en) MOCVD single chamber split process for LED manufacturing
US8183132B2 (en) Methods for fabricating group III nitride structures with a cluster tool
JP2012525718A (ja) HVPEにおいてその場プレ−GaN堆積層を形成する方法
TWI496935B (zh) Mocvd腔室在原位清潔後利用nh3淨化之去汙染
US8980002B2 (en) Methods for improved growth of group III nitride semiconductor compounds
US20110244663A1 (en) Forming a compound-nitride structure that includes a nucleation layer
US20110081771A1 (en) Multichamber split processes for led manufacturing
WO2010129289A2 (en) Decontamination of mocvd chamber using nh3 purge after in-situ cleaning

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702