JP2012247216A - 炉心溶融物保持装置 - Google Patents

炉心溶融物保持装置 Download PDF

Info

Publication number
JP2012247216A
JP2012247216A JP2011117115A JP2011117115A JP2012247216A JP 2012247216 A JP2012247216 A JP 2012247216A JP 2011117115 A JP2011117115 A JP 2011117115A JP 2011117115 A JP2011117115 A JP 2011117115A JP 2012247216 A JP2012247216 A JP 2012247216A
Authority
JP
Japan
Prior art keywords
core melt
melt holding
holding device
coolant
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011117115A
Other languages
English (en)
Inventor
Tomohisa Kurita
智久 栗田
Mika Tawara
美香 田原
Mitsuo Komuro
三男 小室
Noriyuki Katagiri
紀行 片桐
Masashi Tanabe
雅士 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011117115A priority Critical patent/JP2012247216A/ja
Priority to US13/470,723 priority patent/US9378854B2/en
Priority to EP12168135.7A priority patent/EP2528062B1/en
Priority to TW101118520A priority patent/TWI485717B/zh
Publication of JP2012247216A publication Critical patent/JP2012247216A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/016Core catchers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】設置コストを増加させることなく炉心溶融物保持構造物の設置容易化を図った炉心溶融物保持装置等を提供する。
【解決手段】炉心溶融物保持装置10Aは、炉心溶融物4を受け止めて保持する保持面と、自己の周囲を満たす冷却材1を内部に導入した冷却材との熱交換によって装置全体を冷却する冷却手段とを具備し、少なくとも一組の平行な面を有し、前記平行な面の一つである第1の面を底面として配置した際に、側面21に貫通孔22が設けられた多面体であって、この多面体を前記側方に隣接させて配置した際に貫通孔22を介して前記多面体同士が連通するように構成された炉心溶融物保持構造体20A,20Bを、複数個配置することによって構成される。
【選択図】 図1

Description

本発明は、炉心溶融物保持装置に関する。
水冷却型原子炉では、原子炉圧力容器内への給水の停止や、原子炉圧力容器に接続された配管の破断により冷却水が喪失すると、原子炉水位が低下し炉心が露出して冷却が不十分になる可能性があるが、このような場合を想定して、水位低下の信号により自動的に原子炉は非常停止され、非常用炉心冷却装置(ECCS)による冷却材の注入によって炉心を冠水させて冷却し、炉心溶融事故を未然に防ぐようになっている。
しかしながら、極めて低い確率ではあるが、上記非常用炉心冷却装置が作動せず、かつ、その他の炉心への注水装置も利用できない事態も想定され得る。このような場合、原子炉水位の低下により炉心は露出し、十分な冷却が行われなくなり、原子炉停止後も発生し続ける崩壊熱によって燃料棒温度が上昇し、最終的には炉心溶融に至り得る。
このような事態に至った場合、高温の炉心溶融物が原子炉圧力容器下部に溶け落ち、さらに原子炉圧力容器下鏡を溶融貫通して、格納容器内の床上に落下するに至る。炉心溶融物は格納容器床に張られたコンクリートを加熱し、接触面が高温状態になるとコンクリートと反応し、二酸化炭素、水素等の非凝縮性ガスを大量に発生させるとともにコンクリートを溶融浸食する。発生した非凝縮性ガスは格納容器内の圧力を高め、原子炉格納容器を破損させる可能性があり、また、コンクリートの溶融浸食により格納容器バウンダリを破損させたり格納容器構造強度を低下させたりする可能性がある。結果的に、炉心溶融物とコンクリートの反応が継続すると格納容器破損に至り、格納容器内の放射性物質が外部環境へ放出させる恐れがある。
この炉心溶融物とコンクリートの反応を抑制するためには、炉心溶融物底部のコンクリートとの接触面の温度を浸食温度以下(一般的なコンクリートで1500K以下)に冷却するか、炉心溶融物とコンクリートが直接接触しないようにする必要がある。そのため、炉心溶融物が落下した場合に備えて、例えば、後述する特許文献1乃至4に記載されるように、様々な対策が提案されている。
特許第3510670号公報 特許第3150451号公報 特開2007−225356号公報 特許第3424932号公報
溶融炉心の保持対策の必要性は、国内外で高まっており、新規に建設する原子炉ではもちろんのこと既設の原子炉についても同様である。特に既設の原子炉では、アクシデントマネジメントにより安全性を担保しており、既設の原子炉についても、炉心溶融物保持構造物を設置する等のハードウエアによるシビアアクシデント対策を施すことが望まれている。
しかしながら、溶融炉心の保持対策として、上記特許文献等に記載される従来技術を適用して炉心溶融物保持装置等の溶融炉心を保持するための構造物(以下、「炉心溶融物保持構造物」と称する。)を製作(設置)することは、炉心溶融物保持構造物の設置を前提として製作されていない既設の原子炉はもちろんのこと、新設する原子炉であっても、必ずしも容易ではないという課題がある。
従来技術を適用して炉心溶融物保持構造物を新設の原子炉に設置する場合、溶融炉心の保持と保持するための構造物を熱的に保護するために耐熱材を敷き詰め、この耐熱材への熱的浸食を押さえるために冷却水を供給する冷却手段を設けている必要があるため、冷却流路となる配管等を設置した上で耐熱材を敷き詰めなくてはならず、また、設置スペースとして冷却流路分の高さも必要となる等の設置上の制約があるため、炉心溶融物保持構造物の設置は必ずしも容易ではない。
また、従来技術を適用して炉心溶融物保持構造物を既設の原子炉に設置する場合、炉心溶融物保持構造物の設置を前提として製作されていない既設の原子炉では設置する空間を有していない、または、空間的な余裕があるものの設置方法の制約があり、新設の原子炉に設置する場合よりも制約が多く、炉心溶融物保持構造物の設置は必ずしも容易ではない。
一方、炉心溶融物保持構造物を新設の原子炉に設置を少しでも容易にするために、耐熱材の下部に冷却手段を設置しない炉心溶融物保持構造物を設置することも考えられるが、この場合には、高温の炉心溶融物による熱的浸食に耐え得る高い耐熱性を有する高価な耐熱材を使用する必要があり、炉心溶融物保持構造物のコストが高くなってしまうという問題がある。
本発明は、上記課題を考慮してなされたものであり、設置コストを増加させることなく炉心溶融物保持構造物の設置容易化を図った炉心溶融物保持装置を提供することを目的とする。
本発明の実施形態に係る炉心溶融物保持装置は、上述した課題を解決するため、炉心溶融物を受け止めて保持する保持面と、自己の周囲を満たす冷却材を内部に導入し、導入した冷却材との熱交換によって前記保持面を含む装置全体を冷却する冷却手段とを具備する炉心溶融物保持装置であり、前記保持面および前記冷却手段は、少なくとも一組の平行な面を有し、前記平行な面の一つである第1の面を底面として配置した際に、側方に位置する面に貫通孔が設けられた多面体であって、この多面体を前記側方に隣接させて配置した際に前記貫通孔を介して前記多面体同士が連通するように構成された炉心溶融物保持構造体を、複数個配置することによって構成されることを特徴とする。
本発明によれば、従来よりも設置コストを増加させることなく、炉心溶融物保持構造物の設置を容易にすることができる。
本発明の第1の実施形態に係る炉心溶融物保持装置の概略的な構成を示す断面図。 本発明の実施形態に係る炉心溶融物保持構造体の一例である第1の炉心溶融物保持構造体の構成を示す斜視図。 本発明の実施形態に係る炉心溶融物保持構造体の一例である第2の炉心溶融物保持構造体の構成を示す斜視図。 本発明の第2の実施形態に係る炉心溶融物保持装置の一部を拡大して概略的に示した部分断面図。 本発明の第3の実施形態に係る炉心溶融物保持装置の一部を拡大して概略的に示した部分断面図。 本発明の第4の実施形態に係る炉心溶融物保持装置の構成を示した説明図であり、(A)は断面図、(B)は底面図。 本発明の第5および第6の実施形態に係る炉心溶融物保持装置の概略的に示した部分断面図。 本発明の第5の実施形態に係る炉心溶融物保持装置の一部を概略的に示した部分斜視図。 本発明の第6の実施形態に係る炉心溶融物保持装置の一部を概略的に示した部分斜視図。
以下、本発明の実施形態に係る炉心溶融物保持構造体、炉心溶融物保持装置および炉心溶融物保持装置製造方法について、添付の図面を参照して説明する。
[第1の実施形態]
図1は本発明の第1の実施形態に係る炉心溶融物保持装置の一例である第1の炉心溶融物保持装置10Aの概略を示す断面図、図2は本発明の実施形態に係る炉心溶融物保持構造体の一例である第1の炉心溶融物保持構造体20Aの構成を示す斜視図、図3は本発明の実施形態に係る炉心溶融物保持構造体の一例である第2の炉心溶融物保持構造体20Bの構成を示す斜視図である。なお、図1に示される実線矢印は冷却材1の動きを、破線矢印は蒸気の動きを示している。
第1の炉心溶融物保持装置10Aは、炉心溶融物保持構造体20(第1の炉心溶融物保持構造体20Aまたは第2の炉心溶融物保持構造体20B)を、複数個配置することによって構成される炉心溶融物保持構造物であり、個々の炉心溶融物保持構造体20に設けられた貫通孔22,25から予め蓄えられた水等の冷却材1を内部に導入することによって、装置全体を冷却可能に構成される。すなわち、第1の炉心溶融物保持装置10Aは、炉心溶融物(コリウム)4が接する上面での熱交換のみならず、当該上面が吸収した熱を他の面(側面および底面)へ放熱可能に構成される。
第1の炉心溶融物保持装置10Aは、例えば、ペデスタル側壁2とペデスタル床3とに囲まれた領域等の原子力圧力容器(図を省略)の下部であって、冷却材1を蓄えることができる閉じられた領域内に設置される。また、上面の端部(外周側)には、炉心溶融物4を受けるために立ち上げられたライザー部5が設けられる。ライザー部5は、例えば、断面がL字状に形成された耐熱材で構成される。
ライザー部5を構成する耐熱材は、落下した炉心溶融物4が冷却材1によって冷却された第1の炉心溶融物保持装置10Aの表面と接触する際の温度として想定される約950−1000℃よりも高い融点をもつ材料であれば、単体金属、セラミックまたは合金等の材料の種類を問わず自由に選択できる。但し、炉心溶融物4による熱損傷をより軽減する観点からすれば、ライザー部5を構成する耐熱材は、より高い融点を有する材料である方が良い。
ライザー部5を構成する耐熱材は、好ましくは冷却材1中に落下した直後の初期段階の炉心溶融物4の温度(平均で約950−1000℃)に対して、例えば、20%等の所定の安全率を見込んだ温度(この場合は約1200℃)以上の融点を有する材料であり、より好ましくは冷却材1によって冷却される前の炉心溶融物4の温度(平均で約2200℃)よりも高温の融点を有する材料であり、さらに好ましくは冷却材1によって冷却される前の炉心溶融物4の温度(平均で約2200℃)に対して、例えば、20%等の所定の安全率を見込んだ温度(この場合は約2640℃)以上の融点を有する材料である。
ライザー部5を構成する耐熱材の一例としては、例えば、金(Au)、銀(Ag)、銅(Cu)、モリブデン(Mo)、タングステン(W)、グラファイト(C)、クロム(Cr)、ベリリウム(Be)、アルミニウム(Al)、チタン(Ti)および鉄(Fe)等の単体金属材料、アルミナ(Al)、ジルコニア(ZrO)、マグネシア(MgO)、窒化ケイ素(Si)、窒化アルミニウム(AlN)、炭化珪素(SiC)および窒化ホウ素(BN)等のセラミック材料、並びに、銅合金およびアルミ合金等の合金材料等がある。
このように構成される第1の炉心溶融物保持装置10Aでは、まず、炉心溶融物4が落下する前から冷却材1で満たしておくことによって、装置全体を冷却しておき、炉心溶融物4をライザー部5で囲まれた内側(内周側)で保持する。このとき、炉心溶融物4を保持する上面は炉心溶融物4から吸熱するとともに、側面および底面へ放熱(伝熱)して炉心溶融物4を冷却する。冷却材1は外周側から内部へ取り込まれる一方(図1に示される実線矢印)、吸熱して気化した蒸気は外部へ排気される(図1に示される破線矢印)。
第1の炉心溶融物保持構造体20Aは、例えば、図2に示されるように、直方体の構造体であり、各側面21に貫通孔22が設けられる。この貫通孔22は、第1の炉心溶融物保持構造体20Aを複数配置した際に、冷却材1を内部に導入可能な流路(空洞)となり、第1の炉心溶融物保持構造体20Aを複数配置して第1の炉心溶融物保持装置10Aを構成した際、第1の炉心溶融物保持装置10Aを冷却する冷却手段となる。
また、第1の炉心溶融物保持構造体20Aは、被冷却(除熱)物である炉心溶融物4の熱を上面23で吸熱し、上面23の熱を他の面(各側面21と底面)に伝えて、他の面から放熱することで炉心溶融物4を冷却(除熱)するため、熱伝導性はなるべく高い方が好ましい。さらに、最上段に配置される第1の炉心溶融物保持構造体20Aの上面は、原則、炉心溶融物4と直接触れるため(後述する図4に示される保護部28を設ける場合は例外となる)、耐熱性もなるべく高い方が好ましい。
上記事情を考慮すると、第1の炉心溶融物保持構造体20Aの構成材料は、熱伝導が高い材料であることが第1の条件であり、続いて、耐熱性が高いことが第2の条件として要求される。
ここで、第1の条件を満たす熱伝導が高い材料とは、例えば、金(Au)、銀(Ag)、銅(Cu)、モリブデン(Mo)、タングステン(W)、グラファイト(C)、ベリリウム(Be)、アルミニウム(Al)、窒化アルミニウム(AlN)、炭化珪素(SiC)、銅合金およびアルミ合金等の材料であり、一つの目安であるが、0℃における熱伝導率が鉄(約83.5[W/m・K])と同程度以上の熱伝導率を有する材料から選択される。
また、第2の条件としては、後述する図4に示されるような保護部28が存在しない場合を想定すれば、少なくともライザー部5を構成する耐熱材と同程度の耐熱性を有することが必要である。従って、第1の炉心溶融物保持構造体20Aの構成材料は(保護部28が存在しない場合)、少なくとも融点が約950−1000℃以上となる材料から選択される。
このように、第1の炉心溶融物保持構造体20Aは、高い熱伝導性を有するので、上面23で受けた炉心溶融物4からの熱を側面21および下面へ効率的に伝えることができる。また、炉心溶融物4が接する上面23の温度が上昇しにくいので、上面23における熱破損の発生を低減することができる。換言すれば、第1の炉心溶融物保持構造体20Aは、単体でも炉心溶融物4の保持および冷却が可能に構成されている。
また、第1の炉心溶融物保持構造体20Aを複数配列することによって、貫通孔22を介して隣接する第1の炉心溶融物保持構造体20Aが連通し、冷却材1を内部に導入可能な流路(空洞)が形成されるので、個々の第1の炉心溶融物保持構造体20Aで、上面23の熱を側面21および下面へ効率的に伝えることができるので、第1の炉心溶融物保持構造体20Aを、第1の炉心溶融物保持装置10A等の一つの炉心溶融物保持装置として構成することができる。
第2の炉心溶融物保持構造体20Bは、第1の炉心溶融物保持構造体20Aに対して、貫通孔22の代わりに、貫通孔である冷却材導入孔25および蒸気排出孔26を設けた点で相違するが、その他の点は実質的に相違しない。第2の炉心溶融物保持構造体20Bは、例えば、図3に示されるように、直方体の構造体であり、貫通孔である冷却材導入孔25と、冷却材1が気化することによって発生する蒸気を排出(排気)する蒸気排出孔26とが側面21に設けられる。
また、第2の炉心溶融物保持構造体20Bは、例えば、図3に示されるように、直方体の構造体であり、貫通孔である冷却材導入孔25と、冷却材1が気化することによって発生する蒸気を排出(排気)する蒸気排出孔26とが側面21に設けられる。
冷却材導入孔25は、例えば、対向する二つの側面21等のように四つの側面21のうち少なくとも二以上の側面21であって、側面21を運用時における高さ方向(図3における上下方向)で略二分した際に底面(図3における下面)となる側の領域(以下、「下側領域」と称する。)内に設けられる。また、冷却材導入孔25は、第2の炉心溶融物保持構造体20Bを複数配列した際に冷却材導入孔25を介して隣接する第2の炉心溶融物保持構造体20Bを連通するように設けられており、冷却材導入孔25が冷却材1を内部に導入可能な流路(空洞)となる。
冷却材導入孔25は、第2の炉心溶融物保持構造体20Bの熱伝導性を高める観点から、側面21の面積をなるべく大きくしたい要求があるため、冷却材1が流動可能な最低限の大きさとすることが好ましい。
蒸気排出孔26は、蒸気が上側に集まる点を考慮し、側面21を運用時における高さ方向で略二分した際に上面23となる側の領域(以下、「上側領域」と称する。)内に設けられる。また、蒸気を外部へ排出できるように、少なくとも、第2の炉心溶融物保持構造体20Bを複数配列した際に隣接する第2の炉心溶融物保持構造体20Bを互いに連通するように設けられる。
蒸気排出孔26は、例えば、図3に示されるように、全側面21にそれぞれ設けられる。また、蒸気排出孔26は、外部へ排出可能な蒸気量が多い方が好ましいため、同じ大きさであれば、二つの側面21に設けるよりも三つまたは四つとなるべく多くの側面21に設ける方が好ましい。また、一つの側面21に対する蒸気排出孔26の大きさはなるべく大きい方が好ましい。
このように、第2の炉心溶融物保持構造体20Bは、第1の炉心溶融物保持構造体20Aと同様の機能を有するが、第1の炉心溶融物保持構造体20Aに対して、より隣接する炉心溶融物保持構造体20A,20Bへの熱伝導効果が高く、冷却能力が高くなる。
上述した第1の炉心溶融物保持構造体20Aおよび第2の炉心溶融物保持構造体20Bの何れかを複数個配列して構成した第1の炉心溶融物保持装置10Aによれば、炉心溶融物保持構造体20A,20Bを配置することによって第1の炉心溶融物保持装置10Aを設置することができるので、既存の原子炉等のように、設置可能な空間が限定的である場合であっても、炉心溶融物保持構造体20A,20Bを配置する個数や配列を調整することで、大きさを調整することができる。
すなわち、設置する空間の大きさに制約があるか否かを問わず、炉心溶融物保持構造体20A,20Bを配置するという同じ設置(製作)方法によって、第1の炉心溶融物保持装置10Aを設置することができるので、設置コストを増加させることなく炉心溶融物保持構造物の設置を容易化することができる。
また、第1の炉心溶融物保持装置10Aを構成する炉心溶融物保持構造体20A,20Bは、炉心溶融物保持構造体20A,20Bの上面23で炉心溶融物4を保持することができる一方、貫通孔22,25を通して内部の空洞に冷却材1を供給することができるので、冷却材1との沸騰伝熱によって、保持した炉心溶融物4を効果的に除熱することができる。
さらに、第1の炉心溶融物保持装置10Aを構成する炉心溶融物保持構造体20A,20Bは、例えば銅等の高い熱伝導性を有する材料で構成されるので、その熱伝導性から上面23が温度上昇しにくく、熱破損の発生を低減することができる。
さらにまた、第2の炉心溶融物保持構造体20Bを用いて第1の炉心溶融物保持装置10Aを構成すれば、第1の炉心溶融物保持構造体20Aを用いて第1の炉心溶融物保持装置10Aを構成した場合と比較して、側面21の下側領域の開口面積が少なくなるので、冷却材1との接触面積が増えるので、側面21における除熱効果と、下側(底面側)への熱伝導を増大することができ、冷却能力を向上させることができる。
なお、炉心溶融物保持構造体20A,20Bは、必ずしも直方体である必要はなく、少なくとも、炉心溶融物4を保持可能な面を上面に有するように複数個を配列可能であって、側方に貫通孔22,25,26を設けられる多面体であれば、いかなる多面体であっても良い。例えば、正十二面体、六角柱等であっても良い。
また、炉心溶融物保持構造体20A,20Bの配置方法は、上方から見た場合の形状が必ずしも略円となるように配置することを要しない。多角形となるように配置しても良い。
[第2の実施形態]
図4は本発明の第2の実施形態に係る炉心溶融物保持装置の一例である第2の炉心溶融物保持装置10Bの一部を拡大して概略的に示した部分断面図である。
第2の炉心溶融物保持装置10Bは、第1の炉心溶融物保持装置10Aに対して、炉心溶融物4を保持する面、すなわち、ライザー部5に囲まれた内側(内周側)であって、炉心溶融物保持構造体20(20A,20B)の上面23の上に、炉心溶融物保持構造体20を保護するとともに炉心溶融物保持構造体20と炉心溶融物保持構造体20との隙間に炉心溶融物4が入り込むのを防止する保護部28をさらに設けて構成される。
保護部28は、高温(冷却前で平均約2200℃)の炉心溶融物4から炉心溶融物保持構造体20を保護するとともに炉心溶融物保持構造体20と炉心溶融物保持構造体20との隙間に炉心溶融物4が入り込むのを防止する役割を担う構成要素である。そのため、保護部28は、少なくともライザー部5を構成する耐熱材や炉心溶融物保持構造体20A,20Bと同程度以上の耐熱性が必要となる。
保護部28は、例えば、ライザー部5を構成する耐熱材と同様の単体金属材料、セラミック材料および合金材料等から選択できるが、冷却材1による冷却前の炉心溶融物4の温度にも耐えられる耐熱性を持たせるのであれば、ジルコニア(ZrO)、アルミナ(Al)、モリブデン(Mo)、タングステン(W)およびグラファイト(C)等が好ましい。
第2の炉心溶融物保持装置10Bによれば、第1の炉心溶融物保持装置10Aと同様の効果を奏するのに加え、炉心溶融物保持構造体20の上から保護部28で覆うことによって、炉心溶融物4と炉心溶融物保持構造体20との間にバウンダリ(境界)を形成することができるので、炉心溶融物4による炉心溶融物保持構造体20の直接浸食(熱損傷)を防止することができる。また、保護部28で覆うことによって、炉心溶融物保持構造体20と炉心溶融物保持構造体20との隙間に炉心溶融物4が入り込むのを防止することができる。
[第3の実施形態]
図5は本発明の第3の実施形態に係る炉心溶融物保持装置の一例である第3の炉心溶融物保持装置10Cの概略を拡大して示した部分断面図である。なお、図5に示される実線矢印は冷却材1の動きを、破線矢印は蒸気の動きを示している。
第3の炉心溶融物保持装置10Cは、第1の炉心溶融物保持装置10Aに対して、炉心溶融物保持構造体20(20A,20B)の内部に冷却材1を導入する冷却材導入手段と外部へ蒸気を排出する蒸気排出手段とを兼ね備えた冷却材導入・蒸気排出手段としての二重管30をさらに設けて構成される点で相違するが、その他の点については実質的に相違しない。そこで、第3の実施形態の説明では、第1の炉心溶融物保持装置10Aと同じ構成要素には同じ符号を付して説明を省略する。
第3の炉心溶融物保持装置10Cは、炉心溶融物保持構造体20(第1の炉心溶融物保持構造体20Aまたは第2の炉心溶融物保持構造体20B)を、複数個配置することによって構成され、第3の炉心溶融物保持装置10Cを構成する少なくとも一つ以上の炉心溶融物保持構造体20には、外部から冷却材1を内部に導入するとともに内部で発生した蒸気を外部へ排出する二重管30が設けられる。
二重管30は、外部から冷却材1を内部に導入する冷却材導入手段としての外側管31と、内部で発生した蒸気を外部へ排出する蒸気排出手段としての内側管32とを備える。外側管31の上端は、冷却材1の中に位置し、その上端は炉心溶融物4等の上方からの落下物侵入防止の観点から側方に曲げられている。一方、内側管32の上端は冷却材1の液面の上方に位置し、その上端は上方からの落下物侵入防止および二重管30の保護の観点から保護体33が設けられる。
保護体33は、上方からの落下物侵入防止および二重管30の保護の機能を有する限りその形状は任意である。例えば、図5に示される保護体33では、上方からの落下物が保護体33の上に留まりにくい、すなわち、周囲へ落下しやすい形状とするため、二重菅30の中心付近を周辺よりも高くした略錐体状に形成される。
このように、二重管30は、外部から冷却材1を内部に導入する系統である外側管31と、内部で発生した蒸気を外部へ排出する系統である内側管32とを分離しつつ、一体的に構成することで、冷却材1の供給および蒸気の排出を効率良く行うことができ、かつ、省スペース化を図ることができる。
また、冷却材導入・蒸気排出手段としての二重管30は、蒸気を外部へ排出する蒸気排出手段(内側管32)を、冷却材1を内部に導入する冷却材導入手段(外側管31)の内側(内周側)に設けることで、冷却材導入手段が流動する冷却材1によって蒸気排出手段を冷却することができ、高熱によって蒸気排出手段が破損するのを防止することができる。
第3の炉心溶融物保持装置10Cによれば、第1の炉心溶融物保持装置10Aと同様の効果を奏するのに加え、例えば二重管30等の冷却材導入手段および蒸気排出手段をさらに具備するので、例えば外側管31等の冷却材導入手段からも内部へ冷却材1が導入され、かつ、例えば内側管32等の蒸気排出手段からも内部の蒸気が外部へ排出されるので、冷却材導入手段および蒸気排出手段を具備しない第1の炉心溶融物保持装置10A等よりも、効率良く炉心溶融物4を冷却することができる。
また、第3の炉心溶融物保持装置10Cによれば、冷却材導入手段および蒸気排出手段として、外部から冷却材1を内部に導入する系統と内部で発生した蒸気を外部へ排出する系統とを分離しつつ、一体的に構成した二重管30等の冷却材導入・蒸気排出手段を具備することによって、冷却材1の供給および蒸気の排出を効率良く行うことができ、かつ、省スペース化を図ることができる。
さらに、冷却材導入・蒸気排出手段としての二重管30を構成する際、蒸気を外部へ排出する蒸気排出手段としての内側管32を内径側に、冷却材1を内部に導入する冷却材導入手段としての外側管31を外径側に設けることで、冷却材導入手段が流動する冷却材1によって蒸気排出手段を冷却するので、蒸気排出手段が熱破損するのを防止することができる。
なお、二重管30は、上方からの落下物による破損防止等の観点から、外側管31の上端が側方に曲げられていたり、内側管32の上端に保護体33を設けたりする構成であるが、その危険性がほとんどない等の事情があれば、必ずしも上記のように構成する必要はない。
例えば、冷却材導入手段および蒸気排出手段としての二重管30を、制御棒駆動機構(CRD)の直下に設ける場合には、CRDには落下防止対策が施されているため、原子炉圧力容器下部に堆積した高温の炉心溶融物4が計測管などから格納容器下部へジェット噴出したとしても、噴出した炉心溶融物4が冷却材導入手段および蒸気排出手段としての二重管30に降りかかることはないと考えられる。
[第4の実施形態]
図6は、本発明の第4の実施形態に係る炉心溶融物保持装置の一例である第4の炉心溶融物保持装置10Dの概略を示す説明図であり、図6(A)は第4の炉心溶融物保持装置10Dの断面図、図6(B)は第4の炉心溶融物保持装置10Dの底面図である。
第4の炉心溶融物保持装置10Dは、第1の炉心溶融物保持装置10Aに対して、冷却材1を導入する導入配管37をさらに設けて構成される点で相違するが、その他の点については実質的に相違しない。そこで、第4の実施形態の説明では、第1の炉心溶融物保持装置10Aと同じ構成要素には同じ符号を付して説明を省略する。
第4の炉心溶融物保持装置10Dは、第1の炉心溶融物保持装置10Aと同様に、炉心溶融物保持構造体20(第1の炉心溶融物保持構造体20Aまたは第2の炉心溶融物保持構造体20B)を、複数個配置することによって構成される。また、第4の炉心溶融物保持装置10Dは、図6(図6(A)および(B))に示されるように、例えば、4箇所等の冷却材1を内部に導入する導入配管37を具備する。
導入配管37を設ける位置および数量については、任意であるが、炉心溶融物保持構造体20を複数個並べて構成する第4の炉心溶融物保持装置10D等では、外周側から貫通孔22,25を介して内部に流入するため、径が大きくなる(径方向の個数が多くなる)程、中心付近の領域(以下、「中心領域」と称する。)には冷却材1が流入しにくくなると考えられるため、中心領域に導入配管37を接続することが好ましい。
ここで、中心領域とは、第4の炉心溶融物保持装置10Dを上方から見た場合に現れる形状(図6では略円)の外縁(周端)からの距離よりも、当該形状の中心からの距離の方が近くなる位置関係にある領域である。
例えば、図6に示される第4の炉心溶融物保持装置10Dであれば、軸方向と直交する方向の断面に現れる略円の直径に対して、約半分の直径を有する同心円に相当する領域である。図6に示される第4の炉心溶融物保持装置10Dでは、図6(B)に示されるように、四つの導入配管37が中心領域内に設けられる。
なお、導入配管37から供給される冷却材1は、原子炉格納容器外部から供給するものでも良いが、原子炉格納容器内で集められたドレン(水)でも良い。また、第4の炉心溶融物保持装置10Dに設けられた導入配管37のうち、一部は原子炉格納容器外部から冷却材1を供給し、残りは原子炉格納容器内で集められたドレンを冷却材1として供給するようにしても良い。
第4の炉心溶融物保持装置10Dによれば、第1の炉心溶融物保持装置10Aと同様の効果を奏するのに加え、さらに第4の炉心溶融物保持装置10Dの上部に蓄えられる冷却材1とは別の冷却材1を導入配管37から内部に導入することができるので、導入配管37を具備しない第1の炉心溶融物保持装置10A等よりも、効率良く炉心溶融物4を冷却することができる。
また、第4の炉心溶融物保持装置10Dは、導入配管37を中心領域に配置することによって、導入配管37を具備しない第1の炉心溶融物保持装置10A等よりも、温度の偏りが少なくなり、バランス良く炉心溶融物4を冷却することができる。さらに、原子炉格納容器内部で集められたドレン(水)を利用すれば、原子炉格納容器外部から冷却材1を別途供給する必要がなくなる。
[第5の実施形態]
図7は、本発明の第5の実施形態に係る炉心溶融物保持装置の一例である第5の炉心溶融物保持装置10Eおよび第6の実施形態に係る炉心溶融物保持装置の一例である第6の炉心溶融物保持装置10Fの概略を示す部分断面図である。なお、図7に示される実線矢印は冷却材1の動きを、破線矢印は蒸気の動きを示している。また、図7に示されるX軸、Y軸およびZ軸は、後述する図8,9に示されるX軸、Y軸およびZ軸に対応している。
第5の炉心溶融物保持装置10Eは、第1の炉心溶融物保持装置10Aに対して、ライザー部5の代わりに、炉心溶融物保持構造体20(20A,20B)を配列して構成されるライザー部38を設ける点で相違するが、その他の点については実質的に相違しない。そこで、第5の実施形態の説明では、第1の炉心溶融物保持装置10Aと同じ構成要素には同じ符号を付して説明を省略する。
第5の炉心溶融物保持装置10Eは、第1の炉心溶融物保持装置10Aと同様に、炉心溶融物保持構造体20(第1の炉心溶融物保持構造体20Aまたは第2の炉心溶融物保持構造体20B)を、複数個配置し、さらに、最も外周側に位置する一列を他列よりも高く配置することによって構成される。
最外周に配置された炉心溶融物保持構造体20は、第5の炉心溶融物保持装置10Eのライザー部38となり、その高さ(配置する段数)は、炉心溶融物4より高く、かつ、冷却材1によって形成される水位よりも低くなるように設定される。
ライザー部38は、炉心溶融物保持構造体20の貫通孔22,25等によって、内部に冷却流路が形成されるので、第1の炉心溶融物保持装置10A等に設けられるライザー部5と同様の役割を果たすだけでなく、冷却材1による冷却機能も有する。
図8は、本発明の第5の実施形態に係る炉心溶融物保持装置の一例である第5の炉心溶融物保持装置10Eの一部(周方向1/4)を概略的に示した部分斜視図である。
第5の炉心溶融物保持装置10Eは、例えば、第1の炉心溶融物保持構造体20A等の側面21が開口した炉心溶融物保持構造体20を複数個配置して構成され、ライザー部38については、同じく側面21が開口した炉心溶融物保持構造体20を、90度方向を変えて配置することによって構成される。
側面21が開口した炉心溶融物保持構造体20を90度方向を変えて配置した場合、ライザー部38を構成する炉心溶融物保持構造体20のうち、貫通孔22,25,26が、内周側、すなわち、炉心溶融物4を保持する側を向いて開口する炉心溶融物保持構造体20が幾つか発生してしまう。そこで、第5の炉心溶融物保持装置10Eでは、貫通孔22,25,26から炉心溶融物4がライザー部38を構成する炉心溶融物保持構造体20の内部に侵入するのを防止するため、貫通孔22,25,26を塞ぐためのみの炉心溶融物保持構造体20を配置する。
図8に示される第5の炉心溶融物保持装置10Eにおいて、貫通孔22,25,26を塞ぐためのみに配置された炉心溶融物保持構造体20を説明すれば、例えば、ライザー部38を構成する炉心溶融物保持構造体20のうち、原点(各座標軸の交点)から数えてX軸方向の2列目、Y軸方向の3列目に位置する四個の炉心溶融物保持構造体20は、隣接するX軸方向の2列目、Y軸方向の4列目に位置する四個の炉心溶融物保持構造体20のY軸方向に開口する貫通孔22,25,26を塞ぐためのみに配置されたものである。
第5の炉心溶融物保持装置10Eによれば、第1の炉心溶融物保持装置10Aと同様の効果を奏するのに加え、ライザー部38を炉心溶融物保持構造体20で構成することができるので、炉心溶融物保持構造体20のみで炉心溶融物保持装置の全てを構成することができ、コスト削減に寄与することができる。また、ライザー部38は冷却機能を有するので、温度上昇によるライザー部38の破損を防ぐことができる。
なお、第5の炉心溶融物保持装置10Eは、必ずしも同一の炉心溶融物保持構造体、すなわち、第1の炉心溶融物保持構造体20Aのみまたは第2の炉心溶融物保持構造体20Bのみを用いて構成するする必要はなく、例えば、ライザー部38を第1の炉心溶融物保持構造体20Aで構成し、残りを第2の炉心溶融物保持構造体20Bで構成する等のように両炉心溶融物保持構造体20A,20Bを混在させて構成しても良い。
[第6の実施形態]
図9は、本発明の第6の実施形態に係る炉心溶融物保持装置の一例である第6の炉心溶融物保持装置10Fの一部を概略的に示した部分斜視図である。
第6の炉心溶融物保持装置10Fは、第5の炉心溶融物保持装置10Eに対して、ライザー部38を構成する炉心溶融物保持構造体20を、対向する一方向にのみ貫通孔が設けられた炉心溶融物保持構造体40A,40Bとする点で相違するが、その他の点については実質的に相違しない。そこで、第6の実施形態の説明では、第5の炉心溶融物保持装置10Eと同じ構成要素には同じ符号を付して説明を省略する。
第6の炉心溶融物保持装置10Fは、第5の炉心溶融物保持装置10Eと同様に、炉心溶融物保持構造体20(第1の炉心溶融物保持構造体20Aまたは第2の炉心溶融物保持構造体20B)を、複数個配置し、ライザー部38を具備する炉心溶融物保持装置10Eを構成する。ライザー部38の高さ(配置する段数)は、炉心溶融物4より高く、かつ、冷却材1によって形成される水位よりも低くなるように設定される。
第6の炉心溶融物保持装置10Fでは、第5の炉心溶融物保持装置10Eに存在する貫通孔22,25,26を塞ぐためのみの炉心溶融物保持構造体20を不要化する観点から、対向する一組の面のみに貫通孔を設けた炉心溶融物保持構造体40Aと四つの側面のうち、三つの側面に貫通孔を設けて貫通孔が形成される面がコの字状となる炉心溶融物保持構造体40Bとを用意する。
第6の炉心溶融物保持装置10Fでは、これらの炉心溶融物保持構造体40A,40Bと炉心溶融物保持構造体20とを適宜組み合わせてライザー部38を構成することによって、無駄な炉心溶融物保持構造体20を配置することなく、内周側、すなわち、炉心溶融物4を保持する側を向いて開口する貫通孔22,25,26が存在しないようにライザー部38を構成することができる。
また、第6の炉心溶融物保持装置10Fのライザー部38のうち、炉心溶融物保持構造体20,40Bを配置して構成した部分(例えば、図9において、原点から数えてX軸方向の2列目に位置するY軸方向に3個、Z軸方向に4個配置された計12個の炉心溶融物保持構造体20,40B)では、隣接する炉心溶融物保持構造体20,40B同士を連通させることができるので、第6の炉心溶融物保持装置10Fのライザー部38の冷却能力を第5の炉心溶融物保持装置10Eのライザー部38の冷却能力よりもさらに向上させることができる。
第6の炉心溶融物保持装置10Fによれば、第5の炉心溶融物保持装置10Eと同様の効果を奏するのに加え、第5の炉心溶融物保持装置10Eのライザー部38を形成する際に貫通孔22を塞ぐためのみに必要となる無駄な炉心溶融物保持構造体20を配置する必要がなくなるので、第6の炉心溶融物保持装置10Fを構成するのに必要な炉心溶融物保持構造体20,40A,40Bの個数を減らすことができる。
また、第6の炉心溶融物保持装置10Fによれば、第5の炉心溶融物保持装置10Eのライザー部38のように、Z軸方向に隣接する炉心溶融物保持構造体20間のみならず、X軸またはY軸方向に隣接する炉心溶融物保持構造体20,40B間においても相互に連通するライザー部38を構成することができるので、第5の炉心溶融物保持装置10Eのライザー部38よりも高い冷却能力を有するライザー部38を構成することができる。すなわち、第5の炉心溶融物保持装置10Eのライザー部38よりも熱破損しにくいライザー部38を具備する第6の炉心溶融物保持装置10Fを構成することができる。
なお、図9に示される第6の炉心溶融物保持装置10Fでは、ライザー部38を炉心溶融物保持構造体20,40A,40Bを組み合わせて形成した例を示したが、炉心溶融物保持構造体40Aのみで形成しても良い。
以上、本発明の実施形態に係る炉心溶融物保持構造体、炉心溶融物保持装置および炉心溶融物保持装置製造方法によれば、設置する空間の大きさに制約があるか否かを問わず、炉心溶融物保持構造体を配置するという同じ設置(製作)方法によって、炉心溶融物保持装置を設置することができるので、従来よりも設置コストを増加させることなく、炉心溶融物保持構造物の設置を容易にすることができる。
また、本発明の実施形態に係る炉心溶融物保持構造体、炉心溶融物保持装置および炉心溶融物保持装置製造方法によれば、敷き詰められた最上段の炉心溶融物保持構造体の上面で炉心溶融物4を保持することができる一方、貫通孔を通して内部の空洞に冷却材1を供給することができるので、冷却材1との沸騰伝熱によって、保持した炉心溶融物4を効果的に除熱することができる。
さらに、本発明の実施形態に係る炉心溶融物保持構造体および炉心溶融物保持装置は、高い熱伝導性を有する材料で構成されるので、その熱伝導性から上面の温度が上昇しにくく、熱破損の発生を低減することができる。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行なうことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 冷却材
2 ペデスタル側壁
3 ペデスタル床
4 炉心溶融物(コリウム)
5 ライザー部
10(10A〜10F) 炉心溶融物保持装置
20(20A,20B) 炉心溶融物保持構造体
21 側面
22 貫通孔
23 上面
25 冷却材導入孔
26 蒸気排出孔
28 保護部
30 二重管
31 外側管(冷却材導入手段)
32 内側管(蒸気排出手段)
33 保護体
37 導入配管
38 ライザー部
40A,40B 炉心溶融物保持構造体

Claims (10)

  1. 炉心溶融物を受け止めて保持する保持面と、自己の周囲を満たす冷却材を内部に導入し、導入した冷却材との熱交換によって前記保持面を含む装置全体を冷却する冷却手段とを具備する炉心溶融物保持装置であり、
    前記保持面および前記冷却手段は、少なくとも一組の平行な面を有し、前記平行な面の一つである第1の面を底面として配置した際に、側方に位置する面に貫通孔が設けられた多面体であって、この多面体を前記側方に隣接させて配置した際に前記貫通孔を介して前記多面体同士が連通するように構成された炉心溶融物保持構造体を、複数個配置することによって構成されることを特徴とする炉心溶融物保持装置。
  2. 前記炉心溶融物保持構造体を配置する床面側に、自己の周囲を満たす冷却材とは別の冷却材を供給する冷却材供給手段をさらに設けたことを特徴とする請求項1記載の炉心溶融物保持装置。
  3. 前記冷却材供給手段の設置場所は、炉心溶融物保持装置を上方から見た場合に現れる形状の外縁からの距離よりも、前記形状の中心からの距離が近い位置であることを特徴とする請求項記2載の炉心溶融物保持装置。
  4. 前記保持面の外縁において上方に突出し、前記保持面上の炉心溶融物を側方から保持するライザー部を、さらに具備し、
    前記ライザー部は、前記炉心溶融物保持構造体を少なくとも1段以上積み上げて配置することによって構成されることを特徴とする請求項1乃至3の何れか1項に記載の炉心溶融物保持装置。
  5. 前記炉心溶融物保持構造体は、直方体であって、
    前記ライザー部は、4つの連続する面に貫通孔が設けられた前記直方体、対向する一組の面のみに貫通孔が設けられた第1の直方体、および、3つの連続する面に貫通孔が設けられた第2の直方体の少なくとも何れかを用いて構成されることを特徴とする請求項4記載の炉心溶融物保持装置。
  6. 複数個配置される前記炉心溶融物保持構造体のうち、最上段に位置する炉心溶融物保持構造体の内部に前記冷却材を導入する第2の冷却材導入手段と、
    前記最上段に位置する炉心溶融物保持構造体の内部から蒸気を外部へ排出する蒸気排出手段と、をさらに具備することを特徴とする請求項1乃至5記載の何れか1項に記載の炉心溶融物保持装置。
  7. 径の異なる同心円の二つの管で構成される二重管によって、前記第2の冷却材導入手段および前記蒸気排出手段を、一体的に構成したことを特徴とする請求項6記載の炉心溶融物保持装置。
  8. 前記二重管の内径管を前記蒸気排出手段とし、前記二重管の外径管を前記第2の冷却材導入手段することを特徴とする請求項7記載の炉心溶融物保持装置。
  9. 前記第2の冷却材導入手段と前記蒸気排出手段とは、制御棒駆動機構の直下に設置されることを特徴とする請求項6乃至8記載の何れか1項に記載の炉心溶融物保持装置。
  10. 最上段に配置された炉心溶融物保持構造体の上面の上に、さらに、前記最上段に配置された炉心溶融物保持構造体の上面全体を一体的に被覆可能な保護部をさらに設けたことを特徴とする請求項1乃至9の何れか1項に記載の炉心溶融物保持装置。
JP2011117115A 2011-05-25 2011-05-25 炉心溶融物保持装置 Pending JP2012247216A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011117115A JP2012247216A (ja) 2011-05-25 2011-05-25 炉心溶融物保持装置
US13/470,723 US9378854B2 (en) 2011-05-25 2012-05-14 Core catcher
EP12168135.7A EP2528062B1 (en) 2011-05-25 2012-05-15 Core catcher
TW101118520A TWI485717B (zh) 2011-05-25 2012-05-24 爐芯捕集器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117115A JP2012247216A (ja) 2011-05-25 2011-05-25 炉心溶融物保持装置

Publications (1)

Publication Number Publication Date
JP2012247216A true JP2012247216A (ja) 2012-12-13

Family

ID=46172673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117115A Pending JP2012247216A (ja) 2011-05-25 2011-05-25 炉心溶融物保持装置

Country Status (4)

Country Link
US (1) US9378854B2 (ja)
EP (1) EP2528062B1 (ja)
JP (1) JP2012247216A (ja)
TW (1) TWI485717B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156178A1 (ja) * 2014-04-11 2015-10-15 日立Geニュークリア・エナジー株式会社 床材ユニット
JP2016011902A (ja) * 2014-06-30 2016-01-21 株式会社東芝 原子炉格納容器底部保護装置および原子炉格納設備
JP2016197034A (ja) * 2015-04-02 2016-11-24 株式会社東芝 炉心溶融物保持装置および原子炉施設
JP2017058313A (ja) * 2015-09-18 2017-03-23 株式会社東芝 コアキャッチャー及びこれを備えた原子炉格納容器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2548659C1 (ru) * 2014-01-24 2015-04-20 Открытое акционерное общество "Боровичский комбинат огнеупоров" Шихта и защитный оксидный материал для устройства локализации расплава активной зоны ядерного реактора
US9911514B2 (en) * 2014-06-09 2018-03-06 Bwxt Mpower, Inc. Nuclear reactor cavity floor passive heat removal system
KR101606872B1 (ko) 2014-07-04 2016-03-28 주식회사 아리텍 노심 용융물 냉각용 다공성 냉각블록 및 이를 구비하는 노심 용융물 냉각장치 및 이들을 이용한 노심 용융물 냉각방법
US11309096B1 (en) 2018-07-25 2022-04-19 National Technology & Engineering Solutions Of Sandia, Llc Injectable sacrificial material systems and methods to contain molten corium in nuclear accidents
KR102216695B1 (ko) * 2018-09-03 2021-02-18 한국원자력연구원 노심 용융물 냉각 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222177A (ja) * 1992-11-25 1994-08-12 General Electric Co <Ge> コリウム防護用アセンブリ
JPH09500207A (ja) * 1993-07-02 1997-01-07 シーメンス アクチエンゲゼルシヤフト 炉心溶融物の捕集及び冷却装置
JPH11503234A (ja) * 1995-04-05 1999-03-23 シーメンス アクチエンゲゼルシヤフト 原子炉圧力容器からの炉心溶融物の捕捉装置
JP2007225356A (ja) * 2006-02-22 2007-09-06 Toshiba Corp コアキャッチャーおよびその製造方法、並びに、原子炉格納容器およびその改造方法
JP2009052951A (ja) * 2007-08-24 2009-03-12 Toshiba Corp 炉心溶融物冷却装置および原子炉格納容器
JP2010261726A (ja) * 2009-04-30 2010-11-18 Toshiba Corp 炉心溶融物保持装置および原子力プラント

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3453176A (en) * 1965-04-13 1969-07-01 Asea Ab Means for condensing steam liberated within a closed space
US4464333A (en) * 1982-03-05 1984-08-07 Combustion Engineering, Inc. Molten core retention and solidification apparatus
USH91H (en) 1983-03-04 1986-07-01 The United States Of America As Represented By The United States Department Of Energy Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
JP3150451B2 (ja) 1992-10-20 2001-03-26 株式会社日立製作所 原子炉設備
US5347556A (en) 1993-07-01 1994-09-13 General Electric Company Corium shield
DE59406052D1 (de) 1993-11-23 1998-06-25 Siemens Ag Vorrichtung zum rückhalten einer kernschmelze innerhalb des ausbreitungsraums einer kernreaktoranlage
WO1998025273A1 (de) 1996-12-05 1998-06-11 Siemens Aktiengesellschaft Behälter zur aufnahme und ausbreitung von kernschmelze sowie kernkraftanlage mit einem solchen behälter
JPH11133176A (ja) * 1997-08-29 1999-05-21 Toshiba Corp 燃料集合体
WO2007099698A1 (ja) * 2006-02-22 2007-09-07 Kabushiki Kaisha Toshiba コアキャッチャーおよびその製造方法、並びに、原子炉格納容器およびその改造方法
JP4987681B2 (ja) * 2007-12-12 2012-07-25 株式会社東芝 原子炉格納容器及び漏水検知床
JP2010266286A (ja) * 2009-05-13 2010-11-25 Mitsubishi Heavy Ind Ltd 溶融物の冷却促進装置及び原子炉格納容器
JP2011174897A (ja) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd 溶融物冷却構造、これを備えた原子炉格納容器およびこれを備えた原子力プラント

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222177A (ja) * 1992-11-25 1994-08-12 General Electric Co <Ge> コリウム防護用アセンブリ
JPH09500207A (ja) * 1993-07-02 1997-01-07 シーメンス アクチエンゲゼルシヤフト 炉心溶融物の捕集及び冷却装置
JPH11503234A (ja) * 1995-04-05 1999-03-23 シーメンス アクチエンゲゼルシヤフト 原子炉圧力容器からの炉心溶融物の捕捉装置
JP2007225356A (ja) * 2006-02-22 2007-09-06 Toshiba Corp コアキャッチャーおよびその製造方法、並びに、原子炉格納容器およびその改造方法
JP2009052951A (ja) * 2007-08-24 2009-03-12 Toshiba Corp 炉心溶融物冷却装置および原子炉格納容器
JP2010261726A (ja) * 2009-04-30 2010-11-18 Toshiba Corp 炉心溶融物保持装置および原子力プラント

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156178A1 (ja) * 2014-04-11 2015-10-15 日立Geニュークリア・エナジー株式会社 床材ユニット
JP2015203590A (ja) * 2014-04-11 2015-11-16 日立Geニュークリア・エナジー株式会社 床材ユニット
JP2016011902A (ja) * 2014-06-30 2016-01-21 株式会社東芝 原子炉格納容器底部保護装置および原子炉格納設備
JP2016197034A (ja) * 2015-04-02 2016-11-24 株式会社東芝 炉心溶融物保持装置および原子炉施設
JP2017058313A (ja) * 2015-09-18 2017-03-23 株式会社東芝 コアキャッチャー及びこれを備えた原子炉格納容器

Also Published As

Publication number Publication date
EP2528062A2 (en) 2012-11-28
EP2528062B1 (en) 2017-01-11
US20120300893A1 (en) 2012-11-29
TW201310465A (zh) 2013-03-01
EP2528062A3 (en) 2015-01-21
TWI485717B (zh) 2015-05-21
US9378854B2 (en) 2016-06-28

Similar Documents

Publication Publication Date Title
JP2012247216A (ja) 炉心溶融物保持装置
EP3010024B1 (en) Tubular body and method for manufacturing tubular body
JP5306257B2 (ja) 炉心溶融物冷却装置および原子炉格納容器
JP2001166081A (ja) ヒートパイプによる炉心キャッチャの冷却
JP2014081212A (ja) 炉心溶融物保持装置および原子炉格納容器
JP6313248B2 (ja) 原子炉格納容器
JP5582858B2 (ja) 炉心溶融物保持構造体
JP2011163829A (ja) 炉心溶融物冷却構造
JP2009257918A (ja) 炉心溶融物冷却装置
JP2008241657A (ja) 原子炉格納容器
JP2012093282A (ja) 炉心溶融物の保持装置
JP2013104711A (ja) 液体金属冷却原子炉
JP2007232529A (ja) 炉心溶融物冷却装置、原子炉格納容器および炉心溶融物冷却装置の設置方法
JP2014137237A (ja) 溶融炉心保持装置及びそれを備えた原子炉格納容器
JP2010271261A (ja) 炉心溶融物保持装置および格納容器
JP6204823B2 (ja) コアキャッチャ
JP6320271B2 (ja) 炉心溶融物保持装置及び原子力施設
JP6435095B2 (ja) 炉心溶融物保持装置およびこれを備える原子炉
JP2010038571A (ja) 炉心溶融物冷却装置および炉心溶融物冷却方法
KR20140018584A (ko) 히트파이프와 중성자 흡수물질을 결합한 하이브리드 제어봉 및, 이를 이용한 원자로 잔열 제거시스템
JP2011169771A (ja) 高速増殖炉の炉心構造
WO2013150750A1 (ja) 原子炉圧力容器の貫通部保護構造及び原子炉
JP6608759B2 (ja) 燃料デブリ保持装置
JP2012251894A (ja) 炉心溶融物保持装置
US20080212732A1 (en) Tub-Type Meltdown Retaining Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407