WO2013150750A1 - 原子炉圧力容器の貫通部保護構造及び原子炉 - Google Patents

原子炉圧力容器の貫通部保護構造及び原子炉 Download PDF

Info

Publication number
WO2013150750A1
WO2013150750A1 PCT/JP2013/002123 JP2013002123W WO2013150750A1 WO 2013150750 A1 WO2013150750 A1 WO 2013150750A1 JP 2013002123 W JP2013002123 W JP 2013002123W WO 2013150750 A1 WO2013150750 A1 WO 2013150750A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
reactor pressure
weld
reactor
penetration
Prior art date
Application number
PCT/JP2013/002123
Other languages
English (en)
French (fr)
Inventor
一義 青木
鵜飼 勝
敦史 森
悠右 川嶋
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2013150750A1 publication Critical patent/WO2013150750A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/032Joints between tubes and vessel walls, e.g. taking into account thermal stresses
    • G21C13/036Joints between tubes and vessel walls, e.g. taking into account thermal stresses the tube passing through the vessel wall, i.e. continuing on both sides of the wall
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/10Means for preventing contamination in the event of leakage, e.g. double wall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • Embodiments of the present invention relate to a protective structure for protecting a penetration portion of a reactor pressure vessel in a water-cooled nuclear reactor, and a nuclear reactor including the protective structure.
  • a boiling water reactor which is a water-cooled nuclear reactor has a core 2 installed in a reactor pressure vessel 1 as shown in FIG. Further, as shown in FIG. 10, a through hole 4 is formed in the lower mirror 3 of the reactor pressure vessel 1.
  • the through hole 4 is provided with a vertically long cylindrical control rod drive mechanism housing (hereinafter referred to as a CRD housing) 6 as a through portion.
  • a control rod drive mechanism (not shown) is inserted and accommodated in the CRD housing 6 from below.
  • the metal pipe 5 connected to the reactor pressure vessel 1 is put on the outer peripheral surface of the CRD housing 6.
  • the metal pipe 5 is welded partially to the CRD housing 6 in the circumferential direction to form a welded portion 5a.
  • the emergency core cooling device does not operate and the water injection device for other cores 2 cannot be used.
  • the core 2 is exposed due to a decrease in the reactor water level, and sufficient cooling is not performed, and the fuel rod temperature in the core 2 rises due to decay heat that continues to occur after the reactor shuts down. It is conceivable that the core melts.
  • a high-temperature core melt is generated and melts down to the lower part of the reactor pressure vessel 1. Further, the core melt passes through the lower mirror 3 of the reactor pressure vessel 1 and falls onto the floor in the reactor containment vessel (not shown). The core melt heats the concrete placed on the floor of the reactor containment vessel. When the contact surface is in a high temperature state, it reacts with the concrete to generate a large amount of non-condensable gases such as carbon dioxide and hydrogen, and melts and erodes the concrete.
  • the non-condensable gas generated in this way increases the pressure in the containment vessel and may damage the containment vessel, and may damage the containment vessel boundary due to concrete erosion. There is.
  • a typical example of this means is a technique called IVR (In-Vessel Retention).
  • IVR In-Vessel Retention
  • the reactor pressure vessel 1 is externally flooded with cooling water, and heat transferred from the core melt is removed by boiling water transfer of cooling water.
  • the steam generated at this time is cooled and condensed in the reactor containment vessel 1, and the condensed water is returned around the reactor pressure vessel 1.
  • the core melt melted down in the lower mirror 3 of the reactor pressure vessel 1 and the reactor pressure vessel 1 are cooled, and damage to the reactor pressure vessel 1 and the accompanying core melt in the reactor containment vessel Prevent outflow to
  • a problem when the core melt is held in the reactor pressure vessel 1 is to protect the CRD housing 6 existing in the lower mirror 3 of the reactor pressure vessel 1.
  • the reactor pressure vessel 1 is cooled from the outside in a state where the core melt is held in the reactor pressure vessel 1, the inside of the reactor pressure vessel 1 is melted and eroded by the high-temperature core melt.
  • the CRD housing 6 inserted through the through hole 4 may drop due to melting of the welded portion 5a of the through hole 4. Is done.
  • the welded portion 5a when the welded portion 5a is provided at a position protruding into the reactor pressure vessel 1 as shown in FIG. 10, the welded portion 5a is easily melted and the CRD housing 6 is likely to fall. When the CRD housing 6 falls, a damaged hole having a large diameter is generated in the reactor pressure vessel 1. Therefore, the core melt flows out of the reactor pressure vessel 1 from the damaged hole.
  • Patent Document 1 prevents damage to the reactor pressure vessel in the portion that contacts the metal layer.
  • the metal layer is mainly made of stainless steel, it is formed on an oxide layer mainly made of uranium oxide. For this reason, the penetration part of the reactor pressure vessel bottom cannot be protected.
  • An object of the embodiment of the present invention is to provide a reactor pressure vessel penetration protection structure capable of reliably protecting a reactor pressure vessel penetration against a high-temperature core melt.
  • the reactor pressure vessel penetration structure includes a through-hole that penetrates a through-hole formed in a reactor pressure vessel with a vertical axis.
  • the weld contacts the weld through which the penetration is fixed to the reactor pressure vessel by welding, and the core melt generated when the core of the reactor pressure vessel is melted over the weld.
  • a metal cover that covers the weld protection part.
  • a nuclear reactor according to an embodiment of the present invention includes a nuclear reactor pressure vessel installed with an axis as a vertical direction, and a reactor core installed in the nuclear reactor pressure vessel.
  • a nuclear reactor pressure vessel installed with an axis as a vertical direction
  • a reactor core installed in the nuclear reactor pressure vessel.
  • the penetration portion of the reactor pressure vessel can be reliably protected against the high temperature core melt.
  • FIG. 10 is an enlarged vertical sectional view showing a part A of FIG. 9.
  • FIG. 1 is an enlarged vertical sectional view showing a first embodiment of a reactor pressure vessel penetration protection structure.
  • FIG. 10 the same or corresponding parts as those in the prior art shown in FIG. 10 will be described using the same reference numerals.
  • a through-hole 4 is formed in the lower mirror 3 of the reactor pressure vessel 1 whose axis is the vertical direction.
  • the through hole 4 is provided with a CRD housing 6 as a penetrating portion.
  • a control rod drive mechanism (not shown) is inserted and accommodated in the CRD housing 6 from below.
  • the metal pipe 5 connected to the reactor pressure vessel 1 is put on the outer peripheral surface of the CRD housing 6.
  • the metal pipe 5 is welded partially to the CRD housing 6 in the circumferential direction to form a welded portion 5a. Thereby, the CRD housing 6 is held by the lower mirror 3.
  • the metal pipe 5 and the welded part 5a are covered with a welding protection part 7.
  • the welding protection part 7 is formed in a cylindrical shape so that the entire metal pipe 5 and the welding part 5a are covered.
  • the welding protection part 7 is formed so as to be split into two along the axial direction.
  • a material having a higher melting point and lower thermal conductivity than the material of the reactor pressure vessel 1 is suitable.
  • examples of such a material include silicon carbide and zirconium oxide.
  • the metal protection 8 is put on the welding protection part 7.
  • the metal cover 8 is formed so as to be split into two along the axial direction, like the welding protection portion 7.
  • the metal cover 8 is fixed by welding its lower end to the lower mirror 3 of the reactor pressure vessel 1. Thereby, a welded portion 8 a is formed at the lower end portion of the metal cover 8.
  • the material of the metal cover 8 the same metal material as the inner surface of the reactor pressure vessel 1 is suitable, and stainless steel is used.
  • the following method can be considered as an example of the method of installing the welding protection part 7 and the metal cover 8 in the existing plant.
  • the upper cover, steam dryer, and steam separator (not shown) of the reactor pressure vessel 1 are removed.
  • the fuel, control rod, and control rod guide tube are removed.
  • the welding protection part 7 and the metal cover 8 are suspended from the hole provided in the core support plate that supports the core 2 and installed in the weld part of the lower mirror 3 located below the core support plate.
  • the metal cover 8 is fixed by welding to the inner surface of the lower mirror 3 of the reactor pressure vessel 1.
  • the core melt contacts the metal cover 8. Since the core melt is a high temperature of at least 2000 ° C. or more, the metal cover 8 that is in direct contact melts, but the weld protection portion 7 is made of a material having a low thermal conductivity and a high melting point. It takes a long time.
  • the reactor pressure vessel 1 is poured into the reactor pressure vessel 1 or the reactor pressure vessel 1 is submerged to cool the reactor pressure vessel 1 so that the wall of the reactor pressure vessel 1 does not melt, Since the welding protection part 7 has a lower thermal conductivity and a higher melting point than the pressure vessel 1, it does not melt completely. This prevents the core melt from coming into direct contact with the weld 5a.
  • the welding protection part 7 is covered with the metal cover 8 fixed to the reactor pressure vessel 1, the welding protection part 7 is not directly subjected to vibration due to the flow of water during normal operation of the reactor. Can prevent damage.
  • the weld protection part 7 is put on the weld part 5a to prevent the weld part 5a from coming into contact with the core melt of the reactor pressure vessel 1, and the weld protection part 7 is made of metal. Since the cover 8 is covered, it is possible to prevent the CRD housing 6 from falling through the through hole 4 of the reactor pressure vessel 1 in advance.
  • FIG. 2 is an enlarged vertical sectional view showing a second embodiment of the penetration pressure protecting structure for the reactor pressure vessel.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and different configurations and operations will be described.
  • the CRD housing 6 as a through portion has a large diameter portion 9 in which the diameter of the portion located above the through hole 4 is larger than that of the through hole 4. That is, the CRD housing 6 is formed with a large diameter portion 9 larger in diameter than the through hole 4 in the upper portion of the welded portion 5a.
  • the weld portion 5a is formed by heat conduction from the core melt via the weld protection portion 7. Even when melted or when the strength of the welded portion 5a is reduced, the large diameter portion 9 larger than the diameter of the through hole 4 is caught on the opening end of the through hole 4, and the CRD housing 6 does not fall.
  • the large diameter part 9 larger in diameter than the through hole 4 is formed in the CRD housing 6 in the upper part of the welded part 5a, the soundness of the welded part 5a is impaired.
  • the large-diameter portion 9 of the CRD housing 6 that passes through the through hole 4 is caught in the through hole 4 to prevent the CRD housing 6 from falling through the through hole 4 of the lower mirror 3 of the reactor pressure vessel 1 in advance. It becomes possible.
  • FIG. 3 is an enlarged vertical sectional view showing a modification of the second embodiment of FIG.
  • a flange-shaped large protrusion that protrudes in the outer diameter direction is located above the welded portion 5 a of the CRD housing 6 that passes through the through-hole 4 and to which the welded protective portion 7 is attached.
  • a diameter portion 13 is formed.
  • the flange-like large-diameter portion 13 has a value larger than the diameter of the through hole 4 as in the second embodiment.
  • the flange-shaped large-diameter portion 13 at the position where the welding protection portion 7 of the CRD housing 6 is attached, the welded portion 5a is transmitted by heat conduction from the core melt to the CRD housing 6. Even when the metal melts or the strength of the welded portion 5a decreases, the flange-shaped large-diameter portion 13 having a diameter larger than the diameter of the through-hole 4 is caught by the open end of the through-hole 4, and the CRD housing 6 falls. None will happen.
  • the flange-shaped large-diameter portion 13 is provided at a position where the weld-protecting portion 7 of the CRD housing 6 is attached, so that the upper surface of the flange-shaped large-diameter portion 13 is covered with the welding protective portion 7. Therefore, it is possible to prevent the flange-shaped large-diameter portion 13 from being melted by heat conduction that travels from the core melt through the CRD housing 6.
  • the flange portion large diameter portion 13 that protrudes in the outer direction of the CRD housing 6 and has a larger diameter than the through hole 4 in the upper portion of the weld portion 5a is formed.
  • the flange-shaped large-diameter portion 13 of the CRD housing 6 that passes through the through hole 4 is caught by the through hole 4, so that the CRD that passes through the through hole 4 of the lower mirror 3 of the reactor pressure vessel 1. It becomes possible to prevent the housing 6 from dropping.
  • FIG. 4 is an enlarged vertical sectional view showing a third embodiment of the penetration pressure protecting structure for the reactor pressure vessel.
  • the welding protection part 10 is formed from a plurality of blocks made of silicon carbide. These blocks are stacked in a cylindrical shape.
  • gap is formed between the several blocks in the welding protection part 10, and it also becomes possible to absorb the thermal expansion accompanying a temperature rise by this space
  • the through hole of the lower mirror 3 of the reactor pressure vessel 1 is prevented by preventing the contact between the core melt and the welded portion 5a using the weld protection portion 10 composed of a plurality of blocks. It is possible to prevent the CRD housing 6 from passing through 4 from falling.
  • the welding protection part 10 was comprised from several blocks, you may comprise not only this but a several ring pile up or several grains. Even if comprised in this way, the effect similar to the above is acquired.
  • FIG. 5 is an enlarged vertical sectional view showing a modification of the third embodiment of FIG.
  • the weld protection part 12 is made of fibrous silicon carbide, and the whole is formed in a cylindrical shape.
  • the through hole 4 of the lower mirror 3 of the reactor pressure vessel 1 is formed by preventing the contact between the core melt and the weld 5a using the fibrous weld protector 12. It is possible to prevent the falling of the CRD housing 6 that passes through.
  • fibrous silicon carbide is used for the weld protection part 12, but in addition to this, fibrous zirconium oxide may be used.
  • FIG. 6 is an enlarged vertical sectional view showing a fourth embodiment of the penetration pressure protecting structure for a reactor pressure vessel.
  • seal welds 11 are provided between the metal cover 8 and the reactor pressure vessel 1 and between the metal cover 8 and the CRD housing 6, respectively. Thereby, in this embodiment, it is set as the watertight structure which the welding protection part 7 does not contact the water in the reactor pressure vessel 1 at the time of normal operation.
  • the metal cover 8 has a watertight structure, and the welding protection portion 7 does not come into contact with the water in the reactor pressure vessel 1 during normal operation. That is, the weld protection part 7 prevents the core melt from coming into direct contact with the weld part 5a.
  • the metal cover 8 since the metal cover 8 has a watertight structure, a material that easily reacts with water in the reactor pressure vessel 1 can be used as the material of the welding protection portion 7.
  • FIG. 7 is an enlarged vertical sectional view showing a fifth embodiment of the penetration pressure protecting structure for a reactor pressure vessel.
  • the entire welding protection portion 7 is completely covered with a metal cover 8.
  • the welding protection part 7 does not contact the water in the reactor pressure vessel 1 during normal operation. It has a watertight structure.
  • the entire weld protector 7 is covered with the metal cover 8 to form a watertight structure, so that the material easily reacts with water in the reactor pressure vessel 1 as the material of the weld protector 7. Can be used.
  • FIG. 8 is an enlarged vertical sectional view showing a sixth embodiment of the penetration pressure protecting structure for the reactor pressure vessel.
  • the metal cover 8 is fastened with a ring 14 made of a shape memory alloy whose shape changes depending on a temperature of 200 ° C. or higher during normal operation, and the lower mirror of the reactor pressure vessel 1. 3 is fixed to the structure.
  • the fastening by the shape memory alloy ring 14 may have a metal cover 8 having a fitting structure, and the shape memory alloy ring 14 may be used for the fitting structure portion.
  • the metal cover 8 is fastened by the shape memory alloy ring 14, thereby eliminating the need for welding between the metal cover 8 and the lower mirror 3 of the reactor pressure vessel 1. Is possible.
  • each said embodiment is applicable also to the existing nuclear reactor as well as a new nuclear reactor.
  • the present invention can also be applied to a water-cooled nuclear reactor such as a pressurized water reactor other than this nuclear reactor.
  • the penetrating portion is applied to the CRD housing 6 .
  • the present invention is not limited to this and can be applied to various instrumentation pipes such as an in-core monitor housing.
  • the present invention is applied to the case where the metal pipe 5 and the CRD housing 6 are welded and the CRD housing 6 is fixed to the lower mirror 3 of the reactor pressure vessel 1.
  • the present invention can also be applied to a case where it is directly fixed to the lower mirror 3.
  • first to fourth embodiments can be combined.
  • first to third embodiments can be combined with the fifth embodiment.
  • sixth embodiment can be combined with the first to fifth embodiments.

Abstract

原子炉圧力容器の貫通部保護構造は、軸を鉛直方向とした原子炉圧力容器の下鏡(3)に形成された貫通孔(4)を貫通する貫通部(6)と、貫通部(6)を溶接により下鏡(3)に固定する溶接部(5a)と、溶接部(5a)に被せられて原子炉圧力容器に設置された炉心が溶融したときに生成される炉心溶融物に対して溶接部(5a)を保護する溶接保護部(7)と、溶接保護部(7)に被せられる金属製カバー(8)と、を備えている。これにより、高温の炉心溶融物に対して原子炉圧力容器の貫通部を確実に保護することが可能になる。

Description

原子炉圧力容器の貫通部保護構造及び原子炉
 本発明の実施形態は、水冷却型原子炉における原子炉圧力容器の貫通部を保護するための保護構造、及びその保護構造を備えた原子炉に関する。
 水冷却型原子炉である沸騰水型原子炉は、図9に示すように原子炉圧力容器1内に炉心2が設置されている。また、図10に示すように原子炉圧力容器1の下鏡3には、貫通孔4が形成されている。この貫通孔4には、貫通部としての縦長な筒状の制御棒駆動機構ハウジング(以下、CRDハウジングという。)6が貫通して設けられている。このCRDハウジング6内には、その下方から図示しない制御棒駆動機構が挿入されて収容されている。
 CRDハウジング6は、その外周面に原子炉圧力容器1に接続された金属パイプ5が被せられている。この金属パイプ5は、CRDハウジング6に周方向に対して部分的に溶接することで溶接部5aが形成されている。
 沸騰水型原子炉では、原子炉圧力容器1内への給水の停止や、原子炉圧力容器1に接続された配管の破断により冷却水の供給が喪失すると、原子炉水位が低下し炉心2が露出して炉心2の冷却が不十分になる可能性がある。このような場合を想定して、水位低下の信号により自動的に原子炉は非常停止され、非常用炉心冷却装置により冷却材を注入することで、炉心2を冠水させて冷却し、炉心溶融事故を未然に防止するように構成されている。
 しかしながら、極めて低い確率ではあるが、上記非常用炉心冷却装置が作動せず、かつその他の炉心2への注水装置も利用することができない事態も想定される。このような場合には、原子炉水位の低下により炉心2は露出し、十分な冷却が行われなくなり、原子炉停止後も発生し続ける崩壊熱によって炉心2の燃料棒温度が上昇し、最終的には炉心溶融に至ることが考えられる。
 このような事態に至った場合は、高温の炉心溶融物が生成され、原子炉圧力容器1の下部に溶け落ちる。さらに、炉心溶融物が原子炉圧力容器1の下鏡3を貫通して、図示しない原子炉格納容器内の床上に落下するに至る。上記炉心溶融物は、原子炉格納容器の床に打設されたコンクリートを加熱する。そして、その接触面が高温状態になると、コンクリートと反応し、二酸化炭素、水素等の非凝縮性ガスを大量に発生させるとともに、コンクリートを溶融させて浸食する。
 このようにして発生した非凝縮性ガスは、原子炉格納容器内の圧力を高め、その原子炉格納容器を破損させる可能性があり、またコンクリートの浸食により原子炉格納容器バウンダリを破損させる可能性がある。
 また、仮に炉心が溶融しても、原子炉圧力容器1内に炉心溶融物を保持することができれば、上記のような炉心溶融物とコンクリートとの反応等を考慮する必要がなくなる。そのため、炉心溶融物を原子炉圧力容器1内に保持する手段と、炉心溶融物を冷却する手段が提案されている。
 この手段の代表的なものがIVR(In-Vessel Retention;原子炉容器内溶融保持)と呼ばれる技術である。この技術は、原子炉圧力容器1を冷却水で外部冠水させ、炉心溶融物から伝わる熱を冷却水の沸騰熱伝達で除熱する。このとき発生した蒸気を原子炉格納容器1内で冷却して凝縮させ、その凝縮水を原子炉圧力容器1周りに戻す。これにより、原子炉圧力容器1の下鏡3に溶け落ちた炉心溶融物及び原子炉圧力容器1を冷却して、原子炉圧力容器1の破損と、それに伴う炉心溶融物の原子炉格納容器内への流出を防ぐ。
 このIVRを成立させるためには、炉心溶融物から原子炉圧力容器1に伝わる熱によって原子炉圧力容器1が破損することを防ぐ必要がある。このため、従来では、原子炉圧力容器1内面の炉心溶融物から伝わる熱が集中する位置に耐熱材を張り、原子炉圧力容器1に伝わる熱を制限することで、原子炉圧力容器1の溶融及び破損を防止する技術がある(例えば、特許文献1参照)。また、従来では、原子炉圧力容器1内に溶融炉心を受け止める構造物を設置し、原子炉圧力容器下部の構造物を保護する技術がある(例えば、特許文献2参照)。
特表2000-502808号公報 米国特許第6195405号明細書
 ところで、原子炉圧力容器1内で炉心溶融物を保持しようとする場合に問題となるのは、原子炉圧力容器1の下鏡3に存在するCRDハウジング6を保護することである。炉心溶融物が原子炉圧力容器1内で保持された状態において、原子炉圧力容器1が外部から冷却されている場合、原子炉圧力容器1の内側が高温の炉心溶融物によって溶融して浸食される。
 このとき、冷却により原子炉圧力容器1の壁面の健全性が維持されていても、貫通孔4の溶接部5aが溶融することにより、貫通孔4を挿通するCRDハウジング6が落下することが懸念される。
 特に、図10に示すような原子炉圧力容器1内に突き出した位置に溶接部5aが設けられている場合、その溶接部5aが溶融しやすく、CRDハウジング6が落下する可能性が大きい。そのCRDハウジング6が落下した場合には、原子炉圧力容器1に口径の大きい破損孔が生じることになる。そのため、炉心溶融物は、その破損孔から原子炉圧力容器1の外部に流出してしまうことになる。
 また、上記特許文献1に記載された技術は、金属層に接触する部分の原子炉圧力容器の破損を防ぐものである。しかし、上記金属層は、主にステンレス鋼から成るため、主に酸化ウランから成る酸化物層の上に形成される。このため、原子炉圧力容器底部の貫通部を保護することはできない。
 上記特許文献2に記載された技術では、炉心溶融物を受け止める構造であり、原子炉圧力容器を貫通する構造物を保持するとされているものの、上面が炉心溶融物と直接接触するため、原子炉圧力容器を貫通する構造物を保持する部分が溶融破損する可能性がある。また、溶融炉心を受け止める構造が大型であるため、既設の原子炉に適用することは困難である。
 本発明の実施形態は、高温の炉心溶融物に対して原子炉圧力容器の貫通部を確実に保護することの可能な原子炉圧力容器の貫通部保護構造を提供することを目的とする。
 上記目的を達成するために、本発明の実施形態に係る原子炉圧力容器の貫通部の保護構造は、軸を鉛直方向とした原子炉圧力容器に形成された貫通孔を貫通する貫通部と、前記貫通部を溶接により前記原子炉圧力容器に固定する溶接部と、前記溶接部に被せられて前記原子炉圧力容器の炉心が溶融したときに生成される炉心溶融物に前記溶接部が接触するのを阻止する溶接保護部と、前記溶接保護部に被せられる金属製カバーと、を備えることを特徴とする。
 本発明の実施形態に係る原子炉は、軸を鉛直方向として設置された原子炉圧力容器と、前記原子炉圧力容器内に設置された炉心と、を備える原子炉において、前記原子炉圧力容器の下鏡に形成された貫通孔を貫通する貫通部と、前記貫通部を溶接により前記下鏡に固定する溶接部と、前記溶接部に被せられて前記原子炉圧力容器の炉心が溶融したときに生成される炉心溶融物に前記溶接部が接触するのを阻止する溶接保護部と、前記溶接保護部に被せられる金属製カバーと、を備えることを特徴とする。
 本発明の実施形態によれば、高温の炉心溶融物に対して原子炉圧力容器の貫通部を確実に保護することができる。
原子炉圧力容器の貫通部保護構造の第1実施形態を示す拡大立断面図である。 原子炉圧力容器の貫通部保護構造の第2実施形態を示す拡大立断面図である。 図2の第2実施形態の変形例を示す拡大立断面図である。 原子炉圧力容器の貫通部保護構造の第3実施形態を示す拡大立断面図である。 図4の第3実施形態の変形例を示す拡大立断面図である。 原子炉圧力容器の貫通部保護構造の第4実施形態を示す拡大立断面図である。 原子炉圧力容器の貫通部保護構造の第5実施形態を示す拡大立断面図である。 原子炉圧力容器の貫通部保護構造の第6実施形態を示す拡大立断面図である。 一般の沸騰水型原子炉の原子炉圧力容器を示す立断面図である。 図9のA部を示す拡大立断面図である。
 以下に、原子炉圧力容器の貫通部保護構造の実施形態について、図面を参照して説明する。なお、以下の各実施形態では、水冷却型原子炉として沸騰水型原子炉に適用した例について説明するので、図9と同一符号を用いて説明する。また、以下の各実施形態では、貫通部としてCRDハウジング6に適用した場合について説明する。
 (第1実施形態)
 図1は原子炉圧力容器の貫通部保護構造の第1実施形態を示す拡大立断面図である。なお、以下の各実施形態では、図10に示す従来技術と同一又は対応する部分には、同一の符号を用いて説明する。
 図1に示すように、軸を鉛直方向とした原子炉圧力容器1の下鏡3には、貫通孔4が形成されている。この貫通孔4には、貫通部としてのCRDハウジング6が貫通して設けられている。このCRDハウジング6内には、その下方から図示しない制御棒駆動機構が挿入されて収容されている。
 CRDハウジング6は、その外周面に原子炉圧力容器1に接続された金属パイプ5が被せられている。この金属パイプ5は、CRDハウジング6に周方向に対して部分的に溶接することで溶接部5aが形成されている。これにより、CRDハウジング6は、下鏡3に保持される。
 金属パイプ5及び溶接部5aには、溶接保護部7が被せられている。この溶接保護部7は、金属パイプ5及び溶接部5aの全体が被さるような円筒状に形成されている。溶接保護部7は、軸方向に沿って2つに分割可能に形成されている。
 溶接保護部7は、原子炉圧力容器1の材料よりも融点が高く、熱伝導率が低い材料が適している。このような材料としては、例えば炭化ケイ素、酸化ジルコニウム等が挙げられる。
 溶接保護部7には、金属製カバー8が被せられている。この金属製カバー8は、溶接保護部7と同様に、軸方向に沿って2つに分割可能に形成されている。金属製カバー8は、その下端部を原子炉圧力容器1の下鏡3に溶接することで、固定されている。これにより、金属製カバー8の下端部には、溶接部8aが形成される。金属製カバー8の材料は、原子炉圧力容器1内面と同じ金属材料が適しており、ステンレス鋼が用いられる。
 ところで、溶接保護部7及び金属製カバー8を既設プラントに設置する方法の一例として以下のような方法が考えられる。
 まず、原子炉圧力容器1内の温度が十分低下した状態で、原子炉圧力容器1の図示しない上蓋及び蒸気乾燥器、気水分離器を取り外す。次に、燃料、制御棒、制御棒案内管を取り外す。この状態で炉心2を支持する炉心支持板に設けられた孔から溶接保護部7及び金属製カバー8を吊り下げ、炉心支持板の下方に位置する下鏡3の溶接部に設置する。そして、金属製カバー8を原子炉圧力容器1の下鏡3内面に溶接することにより固定する。
 次に、本実施形態の作用を説明する。
 炉心2が溶融し、この炉心溶融物が原子炉圧力容器1の下鏡3に落下した場合、上記炉心溶融物は、金属製カバー8に接触する。炉心溶融物は、少なくとも2000℃以上の高温であるため、直接接触する金属製カバー8は溶融するものの、溶接保護部7は、低熱伝導率、高融点の材料からなるため、溶融に至るまでの時間が長くかかる。
 この時、原子炉圧力容器1の内部に注水したり、原子炉圧力容器1を水没させたりして、原子炉圧力容器1の壁面が溶融しないだけの冷却が行われた場合には、原子炉圧力容器1よりも溶接保護部7の方が、熱伝導率が低く、融点が高いため、完全に溶融することはない。このため、炉心溶融物が溶接部5aに直接接触するのを阻止する。
 また、溶接保護部7が原子炉圧力容器1に固定された金属製カバー8に被せられているため、溶接保護部7は原子炉の通常運転時の水の流れによる振動を直接受けることがなく、破損を防止することができる。
 このように本実施形態によれば、溶接保護部7が溶接部5aに被せられて原子炉圧力容器1の炉心溶融物に溶接部5aが接触するのを阻止し、溶接保護部7に金属製カバー8が被せられているため、原子炉圧力容器1の貫通孔4を通るCRDハウジング6の落下を未然に防止することが可能となる。
 (第2実施形態)
 図2は原子炉圧力容器の貫通部保護構造の第2実施形態を示す拡大立断面図である。なお、以下の各実施形態では、前記第1実施形態と同一の部分には、同一の符号を付して異なる構成及び作用を説明する。
 図2に示すように、貫通部としてのCRDハウジング6は、貫通孔4の上方に位置する部分の径を貫通孔4より大きくした大径部9が形成されている。すなわち、CRDハウジング6は、溶接部5aの上方部分に貫通孔4より大径の大径部9が形成されている。
 したがって、本実施形態では、溶接部5aの上方部分に貫通孔4より大径の大径部9を形成したことにより、炉心溶融物から溶接保護部7を介した熱伝導により、溶接部5aが溶融した場合や、溶接部5aの強度が低下した場合でも、貫通孔4の径よりも大径の大径部9が貫通孔4の開口端に引っ掛かり、CRDハウジング6が落下することがなくなる。
 このように本実施形態によれば、溶接部5aの上方部分のCRDハウジング6に貫通孔4より大径の大径部9を形成したことにより、溶接部5aの健全性が損なわれたときに、貫通孔4を通るCRDハウジング6の大径部9が貫通孔4に引っ掛かることにより、原子炉圧力容器1の下鏡3の貫通孔4を通るCRDハウジング6の落下を未然に防止することが可能となる。
 (第2実施形態の変形例)
 図3は図2の第2実施形態の変形例を示す拡大立断面図である。
 図3に示すように、本変形例では、貫通孔4を通るCRDハウジング6の溶接部5aより上方であって、溶接保護部7が取り付けられる位置に、外径方向に突出するフランジ状の大径部13が形成されている。このフランジ状の大径部13は、前記第2実施形態と同様に径が貫通孔4の径よりも大きい値である。
 したがって、本変形例では、CRDハウジング6の溶接保護部7が取り付けられる位置に、フランジ状の大径部13を設けたことにより、炉心溶融物からCRDハウジング6を伝わる熱伝導により、溶接部5aが溶融した場合や、溶接部5aの強度が低下した場合でも、貫通孔4の径よりも大径のフランジ状の大径部13が貫通孔4の開口端に引っ掛かり、CRDハウジング6が落下することがなくなる。
 また、本変形例では、CRDハウジング6の溶接保護部7が取り付けられる位置に、フランジ状の大径部13を設けたことにより、フランジ状の大径部13の上面に溶接保護部7が被せられるため、炉心溶融物からCRDハウジング6を伝わる熱伝導によりフランジ状の大径部13が溶融するのを未然に防止することができる。
 このように本変形例によれば、溶接部5aの上方部分においてCRDハウジング6の外形方向に突出し、貫通孔4より大径のフランジ状の大径部13を形成したことにより、溶接部5aの健全性が損なわれたときに、貫通孔4を通るCRDハウジング6のフランジ状の大径部13が貫通孔4に引っ掛かることにより、原子炉圧力容器1の下鏡3の貫通孔4を通るCRDハウジング6の落下を未然に防止することが可能となる。
 (第3実施形態)
 図4は原子炉圧力容器の貫通部保護構造の第3実施形態を示す拡大立断面図である。
 図4に示すように、本実施形態では、溶接保護部10が炭化ケイ素からなる複数のブロックから形成されている。これらのブロックは、円筒状に積み重ねられている。
 したがって、本実施形態では、高温の炉心溶融物に接触した際の急速な温度上昇に伴う熱衝撃で、溶接保護部10が割れて、炉心溶融物が溶接部5aに接触することが懸念されるものの、複数のブロックからなる溶接保護部10を用いたことにより、一度の熱衝撃で全ての溶接保護部10が割れることを防ぐことができる。
 また、本実施形態では、溶接保護部10における複数のブロック間に空隙が形成され、この空隙により、温度上昇に伴う熱膨張を吸収することも可能となる。このため、炉心溶融物が溶接部5aに直接接触するのを阻止する。
 このように本実施形態によれば、複数のブロックからなる溶接保護部10を用いて炉心溶融物と溶接部5aとの接触を阻止することにより、原子炉圧力容器1の下鏡3の貫通孔4を通るCRDハウジング6の落下を未然に防止することが可能となる。
 なお、本実施形態では、溶接保護部10を複数のブロックから構成したが、これに限らず例えば複数のリングを積み重ねるか、あるいは複数の粒から構成してもよい。このように構成しても上記と同様の効果が得られる。
 (第3実施形態の変形例)
 図5は図4の第3実施形態の変形例を示す拡大立断面図である。
 図5に示すように、本変形例は、溶接保護部12が繊維状の炭化ケイ素からなり、全体が円筒状に形成されている。
 したがって、本変形例では、高温の炉心溶融物に接触した際の急速な温度上昇に伴う熱衝撃で、溶接保護部12が割れて、炉心溶融物が溶接部5aに接触することが懸念されるものの、繊維状の溶接保護部12を用いたことにより、熱衝撃及び熱膨張で溶接保護部12が割れるのを防ぐことができる。このため、炉心溶融物が溶接部5aに直接接触するのを阻止する。
 このように本変形例によれば、繊維状の溶接保護部12を用いて炉心溶融物と溶接部5aとの接触を阻止することにより、原子炉圧力容器1の下鏡3の貫通孔4を通るCRDハウジング6の落下を未然に防止することが可能となる。
 なお、本変形例では、溶接保護部12に繊維状の炭化ケイ素を用いたが、これ以外に繊維状の酸化ジルコニウムを用いるようにしてもよい。
 (第4実施形態)
 図6は原子炉圧力容器の貫通部保護構造の第4実施形態を示す拡大立断面図である。
 図6に示すように、本実施形態では、金属製カバー8と原子炉圧力容器1との間、及び金属製カバー8とCRDハウジング6との間にそれぞれシール溶接部11を設けている。これにより、本実施形態では、通常運転時に溶接保護部7が原子炉圧力容器1内の水に接触しない水密構造としている。
 したがって、本実施形態では、金属製カバー8が水密構造となり、通常運転時に溶接保護部7が原子炉圧力容器1内の水と接触しなくなる。すなわち、溶接保護部7は、炉心溶融物が溶接部5aに直接接触するのを阻止する。
 このように本実施形態によれば、金属製カバー8を水密構造としたことにより、溶接保護部7の材料として原子炉圧力容器1内の水と反応しやすい物質を用いることが可能となる。
 (第5実施形態)
 図7は原子炉圧力容器の貫通部保護構造の第5実施形態を示す拡大立断面図である。
 図7に示すように、本実施形態では、溶接保護部7全体が金属製カバー8に完全に覆われた構造になっている。これにより、本実施形態では、原子炉圧力容器1と金属製カバー8との間にシール溶接部を設けなくても、通常運転時に溶接保護部7が原子炉圧力容器1内の水に接触しない水密構造としている。
 このように本実施形態によれば、溶接保護部7全体を金属製カバー8で覆って水密構造としたことにより、溶接保護部7の材料として原子炉圧力容器1内の水と反応しやすい物質を用いることが可能となる。
 (第6実施形態)
 図8は原子炉圧力容器の貫通部保護構造の第6実施形態を示す拡大立断面図である。
 図8に示すように、本実施形態では、金属製カバー8を通常運転時の200℃以上の温度により形状が変化する形状記憶合金製のリング14で締結し、原子炉圧力容器1の下鏡3に固定する構造になっている。この形状記憶合金製のリング14による締結は、金属製カバー8をはめあい構造とし、そのはめあい構造部に形状記憶合金のリング14を用いるようにしてもよい。
 このように本実施形態によれば、金属製カバー8を形状記憶合金製のリング14で締結したことにより、金属製カバー8と原子炉圧力容器1の下鏡3との溶接を不要とすることが可能となる。
 なお、上記各実施形態は、新設の原子炉は勿論のこと、既設の原子炉についても適用可能である。
 以上のように各実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 上記各実施形態では、沸騰水型原子炉に適用した場合について説明したが、この原子炉以外に例えば加圧水型原子炉等の水冷却型原子炉でも適用可能である。
 また、上記各実施形態では、貫通部としてCRDハウジング6に適用した場合について説明したが、これに限らず例えばインコアモニタハウジング等の各種計装配管にも適用することができる。
 さらに、上記各実施形態では、金属パイプ5とCRDハウジング6を溶接してCRDハウジング6を原子炉圧力容器1の下鏡3に固着した場合に適用したが、CRDハウジング6を原子炉圧力容器1の下鏡3に直接固着した場合についても適用可能である。
 また、上記各実施形態の特徴を組み合わせた構成にすることも可能である。例えば、前記第1~第4実施形態をそれぞれ組み合わせることができる。前記第1~第3実施形態に第5実施形態をそれぞれ組み合わせることができる。前記第1~第5実施形態に第6実施形態をそれぞれ組み合わせることができる。
1…原子炉圧力容器
2…炉心
3…下鏡
4…貫通孔
5…金属パイプ
5a…溶接部
6…CRDハウジング(貫通部)
7…溶接保護部
8…金属製カバー
8a…溶接部
9…大径部
10…溶接保護部
11…シール溶接部
12…溶接保護部
13…フランジ状の大径部
14…形状記憶合金製のリング

Claims (8)

  1.  軸を鉛直方向とした原子炉圧力容器の底部に形成された貫通孔を貫通する貫通部と、
     前記貫通部を溶接により前記原子炉圧力容器に固定する溶接部と、
     前記溶接部に被せられて前記原子炉圧力容器に設置された炉心が溶融したときに生成される炉心溶融物に前記溶接部が接触するのを阻止する溶接保護部と、
     前記溶接保護部に被せられる金属製カバーと、
     を備えることを特徴とする原子炉圧力容器の貫通部保護構造。
  2.  前記貫通部は、前記溶接部の上方に位置する部分の径を前記貫通孔より大きくした大径部を有することを特徴とする請求項1に記載の原子炉圧力容器の貫通部保護構造。
  3.  前記大径部は、前記貫通部の外径方向に突出するフランジ状に形成されたことを特徴とする請求項2に記載の原子炉圧力容器の貫通部保護構造。
  4.  前記溶接保護部は、ブロック状、粒状、リング状及び繊維状のいずれかに形成され、これらが多数設けられていることを特徴とする請求項1に記載の原子炉圧力容器の貫通部保護構造。
  5.  前記金属製カバーと前記下鏡との間、前記金属製カバーと前記貫通部との間をそれぞれシールするシール部を設けたことを特徴とする請求項1に記載の原子炉圧力容器の貫通部保護構造。
  6.  前記溶接保護部全体を前記金属製カバーで覆って水密構造としたことを特徴とする請求項1に記載の原子炉圧力容器の貫通部保護構造。
  7.  前記金属製カバーは、形状記憶合金製のリングで前記原子炉圧力容器に固定したことを特徴とする請求項1に記載の原子炉圧力容器の貫通部保護構造。
  8.  軸を鉛直方向として設置された原子炉圧力容器と、
     前記原子炉圧力容器内に設置された炉心と、を備える原子炉において、
     軸を鉛直方向とした原子炉圧力容器の底部に形成された貫通孔を貫通する貫通部と、
     前記貫通部を溶接により前記原子炉圧力容器に固定する溶接部と、
     前記溶接部に被せられて前記原子炉圧力容器に設置された炉心が溶融したときに生成される炉心溶融物に前記溶接部が接触するのを阻止する溶接保護部と、
     前記溶接保護部に被せられる金属製カバーと、
     を備えることを特徴とする原子炉。
PCT/JP2013/002123 2012-04-03 2013-03-28 原子炉圧力容器の貫通部保護構造及び原子炉 WO2013150750A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-084564 2012-04-03
JP2012084564 2012-04-03

Publications (1)

Publication Number Publication Date
WO2013150750A1 true WO2013150750A1 (ja) 2013-10-10

Family

ID=49300253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002123 WO2013150750A1 (ja) 2012-04-03 2013-03-28 原子炉圧力容器の貫通部保護構造及び原子炉

Country Status (2)

Country Link
JP (1) JPWO2013150750A1 (ja)
WO (1) WO2013150750A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184134A (ja) * 2014-03-24 2015-10-22 株式会社東芝 原子炉炉底部の保護装置
JP2016003908A (ja) * 2014-06-16 2016-01-12 株式会社東芝 原子炉圧力容器の炉底部保護構造物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682696U (ja) * 1979-11-30 1981-07-03
JPS6147587A (ja) * 1984-08-15 1986-03-08 株式会社日立製作所 原子炉容器のハウジング部リ−ク対策補修装置
JPS6148790A (ja) * 1984-08-16 1986-03-10 株式会社日立製作所 ハウジング部のリ−ク対策処理装置
JPS62206493A (ja) * 1986-03-07 1987-09-10 株式会社東芝 原子炉圧力容器におけるスタブチユ−ブの溶接方法
JPS62263871A (ja) * 1986-05-09 1987-11-16 Babcock Hitachi Kk 容器鏡部における管取付構造
JPH02221895A (ja) * 1989-02-22 1990-09-04 Toshiba Corp 制御棒駆動ハウジングと原子炉圧力容器の接合構造
WO2012005239A1 (ja) 2010-07-05 2012-01-12 東芝ライテック株式会社 口金付ランプ、ソケット装置および照明器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046489A (ja) * 1983-08-24 1985-03-13 株式会社日立製作所 原子炉圧力容器
JPS6147588A (ja) * 1984-08-15 1986-03-08 株式会社日立製作所 原子炉容器のハウジング部リ−ク対策補修装置
US4826217A (en) * 1986-03-31 1989-05-02 Combustion Engineering, Inc. Apparatus and method for sealing a tube joint
JPH02173217A (ja) * 1988-12-26 1990-07-04 Ishikawajima Harima Heavy Ind Co Ltd 容器下鏡部貫通配管の固定方法
JP2635829B2 (ja) * 1991-01-16 1997-07-30 株式会社東芝 原子炉格納容器内支持構造体
JPH06186376A (ja) * 1992-12-17 1994-07-08 Toshiba Corp 構造材の欠陥補修方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5682696U (ja) * 1979-11-30 1981-07-03
JPS6147587A (ja) * 1984-08-15 1986-03-08 株式会社日立製作所 原子炉容器のハウジング部リ−ク対策補修装置
JPS6148790A (ja) * 1984-08-16 1986-03-10 株式会社日立製作所 ハウジング部のリ−ク対策処理装置
JPS62206493A (ja) * 1986-03-07 1987-09-10 株式会社東芝 原子炉圧力容器におけるスタブチユ−ブの溶接方法
JPS62263871A (ja) * 1986-05-09 1987-11-16 Babcock Hitachi Kk 容器鏡部における管取付構造
JPH02221895A (ja) * 1989-02-22 1990-09-04 Toshiba Corp 制御棒駆動ハウジングと原子炉圧力容器の接合構造
WO2012005239A1 (ja) 2010-07-05 2012-01-12 東芝ライテック株式会社 口金付ランプ、ソケット装置および照明器具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184134A (ja) * 2014-03-24 2015-10-22 株式会社東芝 原子炉炉底部の保護装置
JP2016003908A (ja) * 2014-06-16 2016-01-12 株式会社東芝 原子炉圧力容器の炉底部保護構造物

Also Published As

Publication number Publication date
JPWO2013150750A1 (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
JP6776241B2 (ja) 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
JP4987681B2 (ja) 原子炉格納容器及び漏水検知床
JP6676053B2 (ja) 加圧水型原子炉の溶融炉心を冷却して閉じ込めるシステム
JP5306257B2 (ja) 炉心溶融物冷却装置および原子炉格納容器
US20130170598A1 (en) Nuclear reactor containment vessel
JP4828963B2 (ja) 炉心溶融物冷却装置、原子炉格納容器および炉心溶融物冷却装置の設置方法
JP2011163829A (ja) 炉心溶融物冷却構造
EP3067895A1 (en) Primary containment vessel
JP5582858B2 (ja) 炉心溶融物保持構造体
WO2013150750A1 (ja) 原子炉圧力容器の貫通部保護構造及び原子炉
JP2008241657A (ja) 原子炉格納容器
JP2000504119A (ja) 原子炉容器用間隙構造物
JP2010271261A (ja) 炉心溶融物保持装置および格納容器
JP2017219464A (ja) コアキャッチャーおよびそれを用いた沸騰水型原子力プラント
JP6448224B2 (ja) 原子炉圧力容器の炉底部保護構造物
KR20150069421A (ko) 원자로 냉각재 상실 사고시 증기 폭발 및 수소 폭발 저감을 위한 시스템
KR20140060768A (ko) 원자로 지지구조
JP2015125006A (ja) コアキャッチャ
JP2016197051A (ja) 炉心溶融物保持装置
JP2017187370A (ja) 原子炉格納容器および溶融炉心受装置
JP2016075630A (ja) 原子炉圧力容器およびその溶接部保護装置の取付方法
JP6605385B2 (ja) 原子炉のコアキャッチャ
US20240055143A1 (en) System for confining and cooling melt from the core of a nuclear reactor
JP2011169744A (ja) 炉心溶融物保持装置および格納容器
JP6825987B2 (ja) 溶融炉心保持冷却装置及び原子炉格納容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772627

Country of ref document: EP

Kind code of ref document: A1