JP2012243792A - GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - Google Patents

GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2012243792A
JP2012243792A JP2011109233A JP2011109233A JP2012243792A JP 2012243792 A JP2012243792 A JP 2012243792A JP 2011109233 A JP2011109233 A JP 2011109233A JP 2011109233 A JP2011109233 A JP 2011109233A JP 2012243792 A JP2012243792 A JP 2012243792A
Authority
JP
Japan
Prior art keywords
gan
thin film
gan thin
substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011109233A
Other languages
Japanese (ja)
Inventor
Takeshi Saito
雄 斎藤
Takahisa Yoshida
喬久 吉田
Takashi Kyono
孝史 京野
Masanori Ueno
昌紀 上野
Makoto Kiyama
誠 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011109233A priority Critical patent/JP2012243792A/en
Publication of JP2012243792A publication Critical patent/JP2012243792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance HEMT in which a buffer leakage current and a gate leakage current are suppressed.SOLUTION: A method of manufacturing a GaN thin film bonded substrate includes steps of: implanting hydrogen ions with an average implantation dosage of 1×10cmor more and 3×10cmor less to a plane 10i at a depth 0.1 μm or more and 100 μm or less from a main surface of a GaN bulk crystal 10; bonding a different composition substrate 20 having a chemical composition different from GaN onto the main surface of the GaN bulk crystal 10 to which hydrogen ions are implanted; and forming a structure with a GaN thin film 10a bonded on the different composition substrate 20, the GaN thin film 10a being obtained by separating the GaN bulk crystal 10 at the plane 10i positioned at the hydrogen ion implanted depth by heat treating the GaN bulk crystal 10. A method of manufacturing a GaN-based HEMT includes a step of growing at least one GaN-based semiconductor layer 30 onto the GaN thin film 10a of the GaN thin film bonded substrate 1.

Description

本発明は、GaN系高電子移動度トランジスタに好適なGaN薄膜貼り合わせ基板およびその製造方法、ならびにかかるGaN薄膜貼り合わせ基板を含むGaN系高電子移動度トランジスタおよびその製造方法に関する。   The present invention relates to a GaN thin film bonded substrate suitable for a GaN high electron mobility transistor and a method for manufacturing the same, and a GaN high electron mobility transistor including the GaN thin film bonded substrate and a method for manufacturing the same.

GaN系高電子移動度トランジスタ(以下、GaN系HEMTともいう。)は、SiC基板などを用いて、GaN層、InxGa1-xN層(0<x<1)、AlxGa1-xN層(0<x<1)などのGaN系半導体層をチャネル層に、AlyGa1-yN層(0<x<y<1)などのGaN系半導体層をバリア層に用いたHEMT(高電子移動度トランジスタ)である。かかるGaN系HEMTは、電子濃度、熱伝導率、電子移動度などに優れ、たとえば、AlyGa1-yN層とGaN層との界面に生じたピエゾ電界により高濃度の2次元電子ガスが発生するため、その低抵抗化に有利である。また、バンドギャップの大きいGaN系半導体層を用いることで高い耐圧が得られるため、パワーデバイスなどとして注目されている。 A GaN-based high electron mobility transistor (hereinafter also referred to as a GaN-based HEMT) uses a SiC substrate or the like to form a GaN layer, an In x Ga 1-x N layer (0 <x <1), an Al x Ga 1− the GaN-based semiconductor layer such as the channel layer x N layer (0 <x <1), was used Al y Ga 1-y N layer (0 <x <y <1 ) GaN -based semiconductor layer such as the barrier layer HEMT (High Electron Mobility Transistor). Such a GaN-based HEMT is excellent in electron concentration, thermal conductivity, electron mobility, and the like. For example, a high-concentration two-dimensional electron gas is generated by a piezo electric field generated at the interface between the Al y Ga 1-y N layer and the GaN layer. This is advantageous for reducing the resistance. Further, since a high breakdown voltage can be obtained by using a GaN-based semiconductor layer having a large band gap, it has attracted attention as a power device or the like.

たとえば、信学技法、ED25005−134(2005)(非特許文献1)は、Si基板などのGaNとは化学組成の異なる異組成基板上にGaN層およびAlxGa1-xN層(0<x<1)のヘテロ構造を有するGaN系HEMTを開示する。 For example, a scientific technique, ED 25005-134 (2005) (Non-Patent Document 1), uses a GaN layer and an Al x Ga 1-x N layer (0 < A GaN-based HEMT having a heterostructure of x <1) is disclosed.

また、応用電子物性分科会会誌、第12巻、第1号(非特許文献2)は、転位密度の低い自立GaN基板を用いたGaN系HEMTを開示する。   In addition, Journal of Applied Electronic Physical Properties, Vol. 12, No. 1 (Non-Patent Document 2) discloses a GaN-based HEMT using a self-standing GaN substrate having a low dislocation density.

また、特開2010−177281号公報(特許文献1)は、導電性自立GaNの表面にイオン注入層を形成することによりその表面を高抵抗化することを開示する。   Japanese Patent Laying-Open No. 2010-177281 (Patent Document 1) discloses increasing the resistance of the surface by forming an ion implantation layer on the surface of the conductive free-standing GaN.

特開2010−177281号公報JP 2010-177281 A

信学技法、ED25005−134(2005)IEICE Technical, ED 25005-134 (2005) 応用電子物性分科会会誌、第12巻、第1号Journal of Applied Electronics Properties Subcommittee, Vol. 12, No. 1

しかし、信学技法、ED25005−134(2005)(非特許文献1)に開示されるようなSiC基板などの異組成基板を用いたGaN系HEMTは、SiC基板上に形成されるGaN層およびAlGaN層が、SiC基板との格子定数および熱膨張係数の差により、貫通転位が導入され転位密度が高くなり、また、表面にピット、くぼみ、亀裂などの欠陥が発生するため、ゲートリーク電流が発生するという問題がある。   However, a GaN-based HEMT using a different composition substrate such as a SiC substrate as disclosed in Shingaku Technique, ED 25005-134 (2005) (Non-Patent Document 1), includes a GaN layer and an AlGaN formed on the SiC substrate. Due to the difference in lattice constant and thermal expansion coefficient between the SiC substrate and the SiC substrate, threading dislocations are introduced to increase the dislocation density, and defects such as pits, depressions and cracks occur on the surface, resulting in gate leakage current. There is a problem of doing.

また、応用電子物性分科会会誌、第12巻、第1号(非特許文献2)に開示されるような転位密度が低い自立GaN基板を用いたGaN系HEMTは、自立GaN基板がその基板製作の制約上一般的にn型導電性であり、形成されたHEMT(高電子移動度トランジスタ)は、自立GaN基板にリーク(バッファリーク)電流が流れるため、トランジスタとしての作動をほとんどしないという問題がある。   In addition, a GaN-based HEMT using a self-standing GaN substrate having a low dislocation density as disclosed in Journal of Applied Electronics Physical Properties Subcommittee, Vol. 12, No. 1 (Non-patent Document 2) is manufactured by a self-standing GaN substrate. In general, the HEMT (high electron mobility transistor) formed has n-type conductivity, and a leak (buffer leak) current flows through the free-standing GaN substrate. is there.

また、特開2010−177281号公報(特許文献1)に開示されるように、自立GaN基板と能動層であるGaN系半導体層との間に高抵抗層を介在させても、高周波動作時に導電性の自立GaN基板とゲート電極と間の電気容量に起因して利得が得られないという問題がある。   Further, as disclosed in Japanese Patent Application Laid-Open No. 2010-177281 (Patent Document 1), even when a high-resistance layer is interposed between a self-standing GaN substrate and an active GaN-based semiconductor layer, it is conductive during high-frequency operation. There is a problem that a gain cannot be obtained due to the electric capacity between the self-supporting GaN substrate and the gate electrode.

本発明は、上記の問題を解決して、バッファリーク電流およびゲートリーク電流が抑制された高性能のHEMTを提供することを目的とする。   An object of the present invention is to solve the above problems and provide a high-performance HEMT in which buffer leak current and gate leak current are suppressed.

本発明は、GaN薄膜貼り合わせ基板の製造方法であって、GaNバルク結晶の主表面から0.1μm以上100μm以下の深さの面に、水素イオンを平均注入量が1×1014cm-2以上3×1017cm-2以下で注入する工程と、水素イオンが注入されたGaNバルク結晶の上記主表面に、GaNと化学組成が異なる異組成基板を貼り合わせる工程と、GaNバルク結晶に熱処理することにより、GaNバルク結晶を水素イオンが注入された上記深さの面において分離して、異組成基板上に貼り合わされたGaN薄膜を形成する工程と、を含むGaN薄膜貼り合わせ基板の製造方法である。 The present invention is a method for manufacturing a GaN thin film bonded substrate, wherein an average implantation amount of hydrogen ions is 1 × 10 14 cm −2 into a surface having a depth of 0.1 μm or more and 100 μm or less from the main surface of a GaN bulk crystal. The step of implanting at 3 × 10 17 cm −2 or less, the step of bonding a different composition substrate having a chemical composition different from that of GaN to the main surface of the GaN bulk crystal into which hydrogen ions are implanted, and the heat treatment of the GaN bulk crystal A step of separating the GaN bulk crystal on the surface having the depth into which the hydrogen ions have been implanted, and forming a GaN thin film bonded on the different composition substrate. It is.

また、本発明は、GaN系高電子移動度トランジスタの製造方法であって、上記のGaN薄膜貼り合わせ基板の製造方法により製造されたGaN薄膜貼り合わせ基板のGaN薄膜上に、少なくとも1層のGaN系半導体層を成長させる工程を含むGaN系高電子移動度トランジスタの製造方法である。   The present invention is also a method for manufacturing a GaN-based high electron mobility transistor, wherein at least one GaN layer is formed on the GaN thin film of the GaN thin film bonded substrate manufactured by the above-described GaN thin film bonded substrate manufacturing method. A method for manufacturing a GaN-based high electron mobility transistor including a step of growing a semiconductor layer.

また、本発明は、GaNと化学組成が異なる異組成基板と、異組成基板上に貼り合わされたGaN薄膜と、を含み、GaN薄膜は、その厚さが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下であるGaN薄膜貼り合わせ基板である。 The present invention also includes a different composition substrate having a chemical composition different from that of GaN, and a GaN thin film bonded to the different composition substrate, the GaN thin film having a thickness of 0.1 μm to 100 μm, A GaN thin film bonded substrate having a hydrogen sheet concentration of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less.

本発明にかかるGaN薄膜貼り合わせ基板において、GaN薄膜の転位密度を1×109cm-2以下とすることができる。また、GaN薄膜のキャリア濃度を1×1015cm-3以下とすることができる。また、GaN薄膜のシート抵抗を1×104Ω/□以上とすることができる。 In the GaN thin film bonded substrate according to the present invention, the dislocation density of the GaN thin film can be 1 × 10 9 cm −2 or less. Further, the carrier concentration of the GaN thin film can be set to 1 × 10 15 cm −3 or less. Further, the sheet resistance of the GaN thin film can be set to 1 × 10 4 Ω / □ or more.

また、本発明は、GaNと化学組成が異なる異組成基板と、異組成基板上に貼り合わされたGaN薄膜と、GaN薄膜上に形成された少なくとも1層のGaN系半導体層と、を含み、GaN薄膜は、その厚さが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下であるGaN系高電子移動度トランジスタである。 The present invention also includes a different composition substrate having a chemical composition different from that of GaN, a GaN thin film bonded to the different composition substrate, and at least one GaN-based semiconductor layer formed on the GaN thin film, The thin film is a GaN-based high electron mobility transistor having a thickness of 0.1 μm to 100 μm and a hydrogen sheet concentration of 1 × 10 14 cm −2 to 3 × 10 17 cm −2 .

本発明にかかるGaN系高電子移動度トランジスタにおいて、GaN薄膜の転位密度を1×109cm-2以下とすることができる。また、GaN薄膜のキャリア濃度を1×1015cm-3以下とすることができる。また、GaN薄膜のシート抵抗を1×104Ω/□以上とすることができる。 In the GaN-based high electron mobility transistor according to the present invention, the dislocation density of the GaN thin film can be 1 × 10 9 cm −2 or less. Further, the carrier concentration of the GaN thin film can be set to 1 × 10 15 cm −3 or less. Further, the sheet resistance of the GaN thin film can be set to 1 × 10 4 Ω / □ or more.

本発明によれば、バッファリーク電流およびゲートリーク電流が抑制された高性能のHEMTを提供することができる。   According to the present invention, it is possible to provide a high-performance HEMT in which buffer leakage current and gate leakage current are suppressed.

本発明にかかるGaN薄膜貼り合わせ基板およびGaN系高電子移動度トランジスタの製造方法の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the manufacturing method of the GaN thin film bonded substrate and GaN-type high electron mobility transistor concerning this invention. 本発明にかかるGaN薄膜貼り合わせ基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the GaN thin film bonded substrate concerning this invention. 本発明にかかるGaN系高電子移動度トランジスタの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the GaN-type high electron mobility transistor concerning this invention. 本発明にかかるGaN薄膜貼り合わせ基板およびGaN系高電子移動度トランジスタの製造において、水素イオンの平均注入量とGaN薄膜のシート抵抗との関係を示すグラフである。4 is a graph showing the relationship between the average implantation amount of hydrogen ions and the sheet resistance of a GaN thin film in the production of a GaN thin film bonded substrate and a GaN-based high electron mobility transistor according to the present invention.

[実施形態1]
図1を参照して、本発明の一実施形態であるGaN薄膜貼り合わせ基板の製造方法は、GaNバルク結晶10の主表面から0.1μm以上100μm以下の深さDの面10iに、水素イオンIを平均注入量が1×1014cm-2以上3×1017cm-2以下で注入する工程(図1(A))と、水素イオンが注入されたGaNバルク結晶10の上記主表面に、GaNと化学組成が異なる異組成基板20を貼り合わせる工程(図1(B))と、異組成基板20が貼り合わされたGaNバルク結晶10を熱処理することにより応力を加えることで、GaNバルク結晶10を水素イオンが注入されて脆化した上記深さの面10iにおいて分離して、異組成基板20上に貼り合わされたGaN薄膜10aを形成する工程(図1(C))と、を含む。
[Embodiment 1]
Referring to FIG. 1, in the method for manufacturing a GaN thin film bonded substrate according to an embodiment of the present invention, a hydrogen ion is applied to a surface 10 i having a depth D of 0.1 μm or more and 100 μm or less from a main surface of a GaN bulk crystal 10. A step of implanting I with an average implantation amount of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less (FIG. 1A), and the main surface of the GaN bulk crystal 10 into which hydrogen ions are implanted. The step of bonding the different composition substrate 20 having a chemical composition different from that of GaN (FIG. 1B) and the heat treatment of the GaN bulk crystal 10 to which the different composition substrate 20 is bonded are subjected to heat treatment to thereby apply the GaN bulk crystal. 10 is separated on the surface 10i having the above-mentioned depth embrittled by implantation of hydrogen ions, and a GaN thin film 10a bonded to the different composition substrate 20 is formed (FIG. 1C).

本実施形態のGaN薄膜貼り合わせ基板の製造方法により、GaNと化学組成が異なる異組成基板20と、異組成基板20上に貼り合わされたGaN薄膜10aと、を含み、GaN薄膜10aは、その厚さTDが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下であるGaN薄膜貼り合わせ基板1が効率よく得られる。かかるGaN薄膜貼り合わせ基板1は、バッファリーク電流およびゲートリーク電流が抑制された高性能のGaN系HEMT2の製造に好適に用いられる。 The GaN thin film bonded substrate manufacturing method of the present embodiment includes a different composition substrate 20 having a chemical composition different from that of GaN, and a GaN thin film 10a bonded to the different composition substrate 20, and the GaN thin film 10a has a thickness thereof. The GaN thin film bonded substrate 1 having a thickness T D of 0.1 μm or more and 100 μm or less and a hydrogen sheet concentration of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less can be obtained efficiently. Such a GaN thin film bonded substrate 1 is suitably used for manufacturing a high-performance GaN-based HEMT 2 in which buffer leak current and gate leak current are suppressed.

(水素イオンの注入工程)
まず、図1(A)を参照して、本実施形態のGaN薄膜貼り合わせ基板の製造方法は、GaNバルク結晶10の主表面から0.1μm以上100μm以下の深さDの面10iに、水素イオンIを平均注入量が1×1014cm-2以上3×1017cm-2以下で注入する工程(水素イオンの注入工程)を含む。
(Hydrogen ion implantation process)
First, referring to FIG. 1A, in the method of manufacturing a GaN thin film bonded substrate according to this embodiment, hydrogen is applied to a surface 10i having a depth D of 0.1 μm or more and 100 μm or less from the main surface of the GaN bulk crystal 10. A step of implanting ions I at an average implantation amount of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less (hydrogen ion implantation step).

ここで、GaNバルク結晶10は、特に制限はないが、結晶性の高いGaN薄膜を得る観点から、転位密度は1×109cm-2以下が好ましく、1×107cm-2以下がより好ましい。GaNバルク結晶10の製造方法は、特に制限はないが、結晶性の高いGaNバルク結晶を得る観点から、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法、昇華法などの気相法、フラックス法。高窒素圧溶液法などの液相法などが好ましい。 Here, the GaN bulk crystal 10 is not particularly limited, but from the viewpoint of obtaining a highly crystalline GaN thin film, the dislocation density is preferably 1 × 10 9 cm −2 or less, and more preferably 1 × 10 7 cm −2 or less. preferable. The method for producing the GaN bulk crystal 10 is not particularly limited. From the viewpoint of obtaining a highly crystalline GaN bulk crystal, the HVPE (hydride vapor phase epitaxy) method, the MOCVD (metal organic chemical vapor deposition) method, the MBE (molecular) Line growth) method, gas phase method such as sublimation method, flux method. A liquid phase method such as a high nitrogen pressure solution method is preferred.

水素イオンを注入する深さDは、作製される貼り合わせ基板のGaN薄膜上にGaN系半導体層をエピタキシャル成長させる際の雰囲気温度において熱分解によるGaN薄膜の消失を避けるとともに、作製される貼り合わせ基板における導電性のGaN薄膜を薄くする観点から、GaNバルク結晶10の主表面から0.1μm以上100μm以下が好ましい。   The depth D for implanting hydrogen ions is to avoid disappearance of the GaN thin film due to thermal decomposition at the ambient temperature when the GaN-based semiconductor layer is epitaxially grown on the GaN thin film of the bonded substrate to be manufactured. From the viewpoint of thinning the conductive GaN thin film, a thickness of 0.1 μm or more and 100 μm or less from the main surface of the GaN bulk crystal 10 is preferable.

水素イオンの平均注入量(平均ドーズ量)は、GaN薄膜のシート抵抗を十分に大きくしてHEMT形成後のバッファリーク電流を低減するとともに、GaN薄膜の転位などの欠陥を抑制してHEMT形成後のゲートリーク電流を低減する観点から、1×1014cm-2以上3×1017cm-2以下が好ましい。 The average implantation amount of hydrogen ions (average dose) reduces the buffer leakage current after the HEMT formation by sufficiently increasing the sheet resistance of the GaN thin film, and suppresses defects such as dislocations in the GaN thin film and after the HEMT formation. 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less is preferable from the viewpoint of reducing the gate leakage current.

(異組成基板の貼り合わせ工程)
次に、図1(B)を参照して、本実施形態のGaN薄膜貼り合わせ基板の製造方法は、水素イオンが注入されたGaNバルク結晶10の上記主表面に、GaNと化学組成が異なる異組成基板20を貼り合わせる工程(異組成基板の貼り合わせ工程)を含む。
(Bonding process of different composition substrates)
Next, referring to FIG. 1B, in the method for manufacturing a GaN thin film bonded substrate according to this embodiment, the main surface of the GaN bulk crystal 10 into which hydrogen ions are implanted has a different chemical composition from that of GaN. A step of bonding the composition substrate 20 (a step of bonding different composition substrates) is included.

異組成基板20は、特に制限はないが、HEMTを製造するのに好適な観点から、サファイア基板、Si基板、MgO基板、ZnO基板、ZnS基板、ZnSe基板、石英基板、カーボン基板、ダイヤモンド基板、Ga23基板などが好適に挙げられる。 The heterogeneous substrate 20 is not particularly limited, but from a viewpoint suitable for manufacturing a HEMT, a sapphire substrate, a Si substrate, a MgO substrate, a ZnO substrate, a ZnS substrate, a ZnSe substrate, a quartz substrate, a carbon substrate, a diamond substrate, such as Ga 2 O 3 substrate is preferably exemplified.

異組成基板20の貼り合わせ方法は、特に制限はないが、比較的低温で均一に貼り合わせる観点から、表面活性化法、フュージョンボンディング法などが好ましい。ここで、表面活性化法とは貼り合わせ面をプラズマに曝すことによりその表面を活性化させた後貼り合わせる方法をいい、フュージョンボンディング法とは洗浄した表面(貼り合わせ面)どうしを加圧加熱して貼り合わせる方法をいう。   The bonding method of the different composition substrate 20 is not particularly limited, but from the viewpoint of uniformly bonding at a relatively low temperature, a surface activation method, a fusion bonding method, or the like is preferable. Here, the surface activation method refers to a method in which the surfaces to be bonded are activated by exposing the surfaces to be exposed to plasma, and the bonding method is a method in which the cleaned surfaces (bonding surfaces) are heated under pressure. And the method of pasting together.

(GaN薄膜の形成工程)
次に、図1(C)を参照して、本実施形態のGaN薄膜貼り合わせ基板の製造方法は、GaNバルク結晶10を熱処理することにより、GaNバルク結晶10を水素イオンが注入されて脆化した上記深さの面10iにおいて熱応力を加えることにより分離して、異組成基板20上に貼り合わされたGaN薄膜10aを形成する工程(GaN薄膜の形成工程)を含む。
(Process for forming GaN thin film)
Next, referring to FIG. 1C, in the manufacturing method of the GaN thin film bonded substrate according to the present embodiment, the GaN bulk crystal 10 is heat-treated so that hydrogen ions are implanted into the GaN bulk crystal 10 and become embrittled. The step of forming the GaN thin film 10a bonded to the different composition substrate 20 by separating by applying thermal stress on the surface 10i having the above depth (GaN thin film forming step) is included.

GaNバルク結晶10を熱処理することにより、GaNバルク結晶10を水素イオンが注入された上記深さの面10iが脆化され、かかる面でGaNバルク結晶10が異組成基板20に貼り合わされたGaN薄膜10aと残りのGaNバルク結晶10bとに分離される。また、かかる熱処理により、GaN薄膜10a中のドナー性不純物が注入された水素イオンによってパッシベーションされるため、GaN薄膜10aは高抵抗となる。なお、上記熱処理後にGaN薄膜中に存在する水素原子(注入された水素イオンがドナー性不純物をパッシベーションすることにより水素原子となったもの)は、拡散係数が非常に低いため、GaN薄膜上に成長させるGaN系半導体層に拡散することがほとんどない。   By heat-treating the GaN bulk crystal 10, the GaN bulk crystal 10 is embrittled with the surface 10 i having the above depth into which hydrogen ions have been implanted, and the GaN bulk crystal 10 is bonded to the different composition substrate 20 on the surface. 10a and the remaining GaN bulk crystal 10b. Further, since the heat treatment is passivated by hydrogen ions implanted with donor impurities in the GaN thin film 10a, the GaN thin film 10a has a high resistance. Note that the hydrogen atoms present in the GaN thin film after the heat treatment (the hydrogen atoms that have been implanted to become hydrogen atoms by passivating the donor impurities) grow on the GaN thin film because the diffusion coefficient is very low. It hardly diffuses into the GaN-based semiconductor layer.

GaNバルク結晶の熱処理条件は、GaNバルク結晶10をGaN薄膜10aと残りのGaNバルク結晶10bとに分離することができ、かつ、GaN薄膜10a中のドナー性不純物が注入された水素イオンによってパッシベーションされる条件であればよい。   The heat treatment condition of the GaN bulk crystal is that the GaN bulk crystal 10 can be separated into the GaN thin film 10a and the remaining GaN bulk crystal 10b and is passivated by hydrogen ions implanted with donor impurities in the GaN thin film 10a. Any condition may be used.

上記のGaN薄膜貼り合わせ基板の製造方法により、GaN薄膜貼り合わせ基板1が効率よく得られる。このようにして得られたGaN薄膜貼り合わせ基板1のGaN薄膜10aの厚さTDは、GaNバルク結晶10に注入される水素イオンの深さDとほぼ同じとなるため、0.1μm以上100μm以下となる。ここで、GaN薄膜の厚さTDは、段差計、断面SEM(走査型電子顕微鏡)像などにより測定することができる。また、GaN薄膜10aの水素シート濃度(GaN薄膜の主表面における単位面積当りの水素濃度をいう。以下同じ。)は、GaNバルク結晶10に注入した水素イオンの平均注入量とほぼ同じとなるため、1×1014cm-2以上3×1017cm-2以下となる。ここで、GaN薄膜の水素シート濃度は、SIMS(2次イオン質量分析法)などにより測定することができる。 The GaN thin film bonded substrate 1 can be efficiently obtained by the above method for manufacturing a GaN thin film bonded substrate. The thickness T D of this manner GaN film obtained bonded GaN thin film 10a of the substrate 1, to become substantially equal to the depth D of the hydrogen ions implanted into GaN bulk crystalline body 10, 100 [mu] m or more 0.1μm It becomes as follows. Here, the thickness T D of the GaN thin film, a step meter, can be measured by SEM (Scanning Electron Microscope) image. In addition, the hydrogen sheet concentration of the GaN thin film 10a (referred to as the hydrogen concentration per unit area on the main surface of the GaN thin film; hereinafter the same) is substantially the same as the average implantation amount of hydrogen ions implanted into the GaN bulk crystal 10. 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less. Here, the hydrogen sheet concentration of the GaN thin film can be measured by SIMS (secondary ion mass spectrometry) or the like.

[実施形態2]
図2を参照して、本発明の別の実施形態であるGaN薄膜貼り合わせ基板1は、GaNと化学組成が異なる異組成基板20と、異組成基板20上に貼り合わされたGaN薄膜10aと、を含み、GaN薄膜10aは、その厚さTDが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下である。
[Embodiment 2]
Referring to FIG. 2, a GaN thin film bonded substrate 1 according to another embodiment of the present invention includes a different composition substrate 20 having a chemical composition different from that of GaN, a GaN thin film 10a bonded to the different composition substrate 20, The GaN thin film 10a has a thickness T D of 0.1 μm or more and 100 μm or less, and a hydrogen sheet concentration of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less.

本実施形態のGaN薄膜貼り合わせ基板1は、GaN薄膜10aの厚さTDが0.1μm以上100μm以下であり、GaN薄膜10aの水素シート濃度が1×1014cm-2以上3×1017cm-2以下であることから、GaN薄膜10aの抵抗が高いため、GaN系HEMT2の製造に好適である。 Substrate 1 thin GaN film-joined in this embodiment, the thickness T D of the thin film of GaN 10a is at 0.1μm or 100μm or less, the hydrogen sheet density of GaN film 10a is 1 × 10 14 cm -2 or more 3 × 10 17 Since it is cm −2 or less, the resistance of the GaN thin film 10a is high, which is suitable for manufacturing the GaN-based HEMT2.

本実施形態のGaN薄膜貼り合わせ基板1において、GaN薄膜10aの転位密度は、HEMT形成後のゲートリーク電流を低減する観点から、1×109cm-2以下であることが好ましく、1×107cm-2以下であることがより好ましい。ここで、GaN薄膜10aの転位密度は、薬液処理後のエッチピット観察などにより測定できる。また、GaN薄膜のキャリア濃度は、HEMT形成後のドレイン(バッファ)リーク電流を低減し、また、高周波動作利得を高める(すなわち電流利得カットオフ周波数を高める)観点から、1×1015cm-3以下であることが好ましい。ここで、GaN薄膜10aのキャリア濃度は、ホール測定、非接触渦電流測定などにより測定できる。また、GaN薄膜のシート抵抗は、HEMT形成後のドレイン(バッファ)リーク電流を低減し、また、高周波動作利得を高める(すなわち電流利得カットオフ周波数を高める)観点から、1×104Ω/□以上であることが好ましい。ここで、GaN薄膜10aのシート抵抗は、ホール測定、非接触渦電流測定などにより測定できる。 In the GaN thin film bonded substrate 1 of this embodiment, the dislocation density of the GaN thin film 10a is preferably 1 × 10 9 cm −2 or less from the viewpoint of reducing gate leakage current after HEMT formation. More preferably, it is 7 cm −2 or less. Here, the dislocation density of the GaN thin film 10a can be measured by observing etch pits after chemical treatment. The carrier concentration of the GaN thin film is 1 × 10 15 cm −3 from the viewpoint of reducing drain (buffer) leakage current after HEMT formation and increasing high-frequency operating gain (that is, increasing current gain cutoff frequency). The following is preferable. Here, the carrier concentration of the GaN thin film 10a can be measured by hole measurement, non-contact eddy current measurement, or the like. Further, the sheet resistance of the GaN thin film is 1 × 10 4 Ω / □ from the viewpoint of reducing drain (buffer) leakage current after HEMT formation and increasing high-frequency operating gain (that is, increasing current gain cutoff frequency). The above is preferable. Here, the sheet resistance of the GaN thin film 10a can be measured by hole measurement, non-contact eddy current measurement, or the like.

[実施形態3]
図1(特に、図1(D))を参照して、本発明にかかるさらに別の実施形態であるGaN系HEMT(GaN系高電子移動度トランジスタ)の製造方法は、実施形態1のGaN薄膜貼り合わせ基板の製造方法により製造された実施形態2のGaN薄膜貼り合わせ基板1のGaN薄膜10a上に、少なくとも1層のGaN系半導体層30を成長させる工程(GaN系半導体層の成長工程)を含む。
[Embodiment 3]
Referring to FIG. 1 (particularly, FIG. 1D), a method for manufacturing a GaN-based HEMT (GaN-based high electron mobility transistor) according to still another embodiment of the present invention is the GaN thin film according to the first embodiment. A step of growing at least one GaN-based semiconductor layer 30 (GaN-based semiconductor layer growth step) on the GaN thin film 10a of the GaN thin-film bonded substrate 1 of Embodiment 2 manufactured by the method for manufacturing a bonded substrate. Including.

GaN系半導体層30を成長させる方法は、特に制限はないが、GaN薄膜10a上に結晶性の高いGaN系半導体層30をエピタキシャル成長させる観点から、MOCVD法、HVPE法、MBE法、昇華法などの気相法、フラックス法、高窒素圧溶液法などの液相法などが好ましく挙げられる。   The method for growing the GaN-based semiconductor layer 30 is not particularly limited, but from the viewpoint of epitaxially growing the highly crystalline GaN-based semiconductor layer 30 on the GaN thin film 10a, the MOCVD method, the HVPE method, the MBE method, the sublimation method, etc. Preferable examples include a liquid phase method such as a gas phase method, a flux method, and a high nitrogen pressure solution method.

GaN系半導体層30は、GaN系HEMTの機能を発現させるものであれば特に制限はなく、たとえば、i型GaN層32およびi型Al0.25Ga0.75N層34とすることができる。ここで、i型GaN層32は電子走行層として機能し、i型Al0.25Ga0.75N層34は電子供給層として機能する。 The GaN-based semiconductor layer 30 is not particularly limited as long as it exhibits the function of the GaN-based HEMT. For example, the i-type GaN layer 32 and the i-type Al 0.25 Ga 0.75 N layer 34 can be used. Here, the i-type GaN layer 32 functions as an electron transit layer, and the i-type Al 0.25 Ga 0.75 N layer 34 functions as an electron supply layer.

さらに、図1(E)を参照して、本実施形態のGaN系高電子移動度トランジスタの製造方法は、GaN系半導体層30上に、ソース電極42、ドレイン電極44およびゲート電極46を形成する工程(電極の形成工程)を含むことができる。   Further, referring to FIG. 1E, in the method of manufacturing the GaN-based high electron mobility transistor of this embodiment, the source electrode 42, the drain electrode 44, and the gate electrode 46 are formed on the GaN-based semiconductor layer 30. A process (electrode formation process) can be included.

ソース電極42、ドレイン電極44およびゲート電極46を形成する方法は、これらの電極の形成に適している限り特に制限はなく、フォトリソブラフィ法およびリフトオフ法などが好適に挙げられる。   The method for forming the source electrode 42, the drain electrode 44, and the gate electrode 46 is not particularly limited as long as it is suitable for forming these electrodes, and a photolithographic method, a lift-off method, and the like are preferable.

また、これらの電極は、これらの電極の機能を発現するものであれば特に制限はなく、ソース電極42およびドレイン電極44としてはAl層/Ti層/Au層を合金化させたものなどが、ゲート電極46としてはAu層などが、それぞれ好適に挙げられる。   Further, these electrodes are not particularly limited as long as they exhibit the functions of these electrodes, and as the source electrode 42 and the drain electrode 44, an Al layer / Ti layer / Au layer alloyed, etc. A preferable example of the gate electrode 46 is an Au layer.

上記のGaN系HEMTの製造方法により、GaN系HEMT2が効率よく得られる。このようにして得られたGaN系HEMT2のGaN薄膜10aの厚さTDは、GaN系薄膜貼り合わせ基板のGaN薄膜の厚さTDと同じであり、0.1μm以上100μm以下となる。また、GaN系HEMT2のGaN薄膜10aの水素シート濃度は、GaN系薄膜貼り合わせ基板1のGaN薄膜10aの水素シート濃度と同じであり、1×1014cm-2以上3×1017cm-2以下となる。 The GaN-based HEMT 2 can be efficiently obtained by the above-described GaN-based HEMT manufacturing method. The thickness T D of the thin film of GaN 10a of the thus obtained GaN-based HEMT2 is the same as the thickness T D of the GaN thin film of GaN-based thin-film-joined substrate, and 0.1μm or 100μm or less. Further, the hydrogen sheet concentration of the GaN thin film 10a of the GaN-based HEMT 2 is the same as the hydrogen sheet concentration of the GaN thin film 10a of the GaN-based thin film bonded substrate 1, and is 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2. It becomes as follows.

[実施形態4]
図3を参照して、本発明のさらに別の実施形態であるGaN系HEMT2は、GaNと化学組成が異なる異組成基板20と、異組成基板20上に貼り合わされたGaN薄膜10aと、GaN薄膜10a上に形成された少なくとも1層のGaN系半導体層30と、を含み、GaN薄膜10aは、その厚さが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下である。
[Embodiment 4]
Referring to FIG. 3, a GaN-based HEMT 2 which is still another embodiment of the present invention includes a different composition substrate 20 having a chemical composition different from that of GaN, a GaN thin film 10a bonded to the different composition substrate 20, and a GaN thin film. And the GaN thin film 10a has a thickness of 0.1 μm or more and 100 μm or less, and a hydrogen sheet concentration of 1 × 10 14 cm −2. This is 3 × 10 17 cm −2 or less.

本実施形態のGaN系HEMT2は、GaN薄膜10aの厚さTDが0.1μm以上100μm以下であり、GaN薄膜10aの水素シート濃度が1×1014cm-2以上3×1017cm-2以下であることから、GaN薄膜10aの抵抗が高いため、バッファリークおよびゲートリークが抑制され、高性能が発現する。 GaN system of this embodiment HEMT2, the thickness T D of the thin film of GaN 10a is at 0.1μm or 100μm or less, the hydrogen sheet density of GaN film 10a is 1 × 10 14 cm -2 or more 3 × 10 17 cm -2 Since the resistance of the GaN thin film 10a is high, buffer leak and gate leak are suppressed and high performance is exhibited.

本実施形態のGaN系HEMT2は、たとえば、GaNと化学組成が異なる異組成基板20上に、厚さTDが0.1μm以上100μm以下かつ水素シート濃度が1×1014cm-2以上3×1017cm-2以下のGaN薄膜10aが配置され、GaN薄膜10a上に、少なくとも1層のGaN系半導体層30として、i型GaN層32(電子走行層)およびi型Al0.25Ga0.75N層34(電子供給層)とが順次配置され、i型Al0.25Ga0.75N層34上に、ソース電極42、ドレイン電極44およびゲート電極46がそれぞれ配置されている。 GaN-based HEMT2 of this embodiment, for example, the GaN and chemical composition is different from different composition substrate 20, the thickness T D is 0.1μm or more 100μm or less and the hydrogen sheet concentration of 1 × 10 14 cm -2 or more 3 × A GaN thin film 10a of 10 17 cm −2 or less is disposed, and an i-type GaN layer 32 (electron transit layer) and an i-type Al 0.25 Ga 0.75 N layer are formed on the GaN thin film 10a as at least one GaN-based semiconductor layer 30. 34 (electron supply layer) are sequentially arranged, and a source electrode 42, a drain electrode 44, and a gate electrode 46 are arranged on the i-type Al 0.25 Ga 0.75 N layer 34, respectively.

本実施形態のGaN系HEMT2において、GaN薄膜10aの転位密度は、HEMTのゲートリーク電流を低減する観点から、1×109cm-2以下であることが好ましく、1×107cm-2以下であることがより好ましい。また、GaN薄膜のキャリア濃度は、HEMTのドレイン(バッファ)リーク電流を低減し、また、高周波動作利得を高める(すなわち電流利得カットオフ周波数を高める)観点から、1×1015cm-3以下であることが好ましい。また、GaN薄膜のシート抵抗は、HEMTのドレイン(バッファ)リーク電流を低減し、また、高周波動作利得を高める(すなわち電流利得カットオフ周波数を高める)観点から、1×104Ω/□以上であることが好ましい。ここで、HEMTにおけるGaN薄膜10aの転位密度、キャリア濃度およびシート抵抗は、HEMTを分解してGaN薄膜10aを露出させた後、そのGaN薄膜10aについて上述の測定方法により測定することができる。 In the GaN-based HEMT2 of the present embodiment, the dislocation density of the GaN thin film 10a is preferably 1 × 10 9 cm −2 or less from the viewpoint of reducing the gate leakage current of the HEMT, and is 1 × 10 7 cm −2 or less. It is more preferable that The carrier concentration of the GaN thin film is 1 × 10 15 cm −3 or less from the viewpoint of reducing the drain (buffer) leakage current of the HEMT and increasing the high-frequency operating gain (that is, increasing the current gain cutoff frequency). Preferably there is. Further, the sheet resistance of the GaN thin film is 1 × 10 4 Ω / □ or more from the viewpoint of reducing HEMT drain (buffer) leakage current and increasing the high-frequency operating gain (that is, increasing the current gain cutoff frequency). Preferably there is. Here, the dislocation density, carrier concentration, and sheet resistance of the GaN thin film 10a in the HEMT can be measured by the above-described measurement method for the GaN thin film 10a after the HEMT is decomposed to expose the GaN thin film 10a.

(実施例1)
1.水素イオンの注入
HVPE法により成長させた後、研削および研磨により主表面が鏡面に加工された直径が2インチ(5.08cm)で厚さが10mmのGaNバルク結晶10を準備した。このGaNバルク結晶10について、転位密度は薬液処理後のエッチピット観察により測定したところ1×106cm-2、キャリア濃度はホール測定により測定したところ5×1014cm-3、シート抵抗はホール測定により測定したところ5×104Ω/□であった。
Example 1
1. Hydrogen ion implantation After growth by HVPE, a GaN bulk crystal 10 having a diameter of 2 inches (5.08 cm) and a thickness of 10 mm was prepared by grinding and polishing the main surface into a mirror surface. For this GaN bulk crystal 10, the dislocation density was 1 × 10 6 cm −2 as measured by etch pit observation after chemical treatment, the carrier concentration was 5 × 10 14 cm −3 as measured by hole measurement, and the sheet resistance was hole. It was 5 × 10 4 Ω / □ when measured by measurement.

図1(A)を参照して、上記のGaNバルク結晶10のN原子主表面側から、N原子主表面からの深さDが0.3μmの面に、水素イオンを平均注入量(平均ドーズ量)が1×1014cm-2で注入した。 Referring to FIG. 1A, an average implantation amount (average dose) of hydrogen ions is introduced from the N atom main surface side of GaN bulk crystal 10 to a surface having a depth D of 0.3 μm from the N atom main surface. The amount was injected at 1 × 10 14 cm −2 .

2.異組成基板の貼り合わせ
異組成基板20として、直径が2インチ(5.08cm)で厚さが400μmのサファイア基板を準備した。
2. Bonding of Different Composition Substrates As the different composition substrate 20, a sapphire substrate having a diameter of 2 inches (5.08 cm) and a thickness of 400 μm was prepared.

図1(B)を参照して、水素イオンが注入されたGaNバルク結晶10のN原子主表面を塩素ガスでエッチングして清浄面とした。サファイア基板(異組成基板20)の主表面をアルゴンガスでエッチングして清浄面とした。   Referring to FIG. 1B, the main surface of the N atom of the GaN bulk crystal 10 implanted with hydrogen ions was etched with chlorine gas to obtain a clean surface. The main surface of the sapphire substrate (different composition substrate 20) was etched with argon gas to obtain a clean surface.

水素イオンが注入されたGaNバルク結晶10の清浄化されたN原子主表面と、サファイア基板(異組成基板20)の清浄化された主表面とを、表面活性化法により、貼り合わせた。   The cleaned N atom main surface of the GaN bulk crystal 10 implanted with hydrogen ions and the cleaned main surface of the sapphire substrate (different composition substrate 20) were bonded together by a surface activation method.

3.GaN薄膜の形成
図1(C)を参照して、サファイア基板(異組成基板20)に貼り合わされたGaNバルク結晶10を、窒素雰囲気中で60℃で熱処理することにより、GaNバルク結晶10を水素イオンが注入された上記深さの面において分離して、サファイア基板(異組成基板20)上に貼り合わされたGaN薄膜10aを形成することにより、サファイア基板(異組成基板20)にGaN薄膜10aが貼り合わされたGaN薄膜貼り合わせ基板1を得た。
3. Formation of GaN Thin Film Referring to FIG. 1 (C), GaN bulk crystal 10 bonded to a sapphire substrate (different composition substrate 20) is heat-treated at 60 ° C. in a nitrogen atmosphere, so that GaN bulk crystal 10 is hydrogenated. The GaN thin film 10a is formed on the sapphire substrate (different composition substrate 20) by forming the GaN thin film 10a bonded on the sapphire substrate (different composition substrate 20) by separating on the surface where the ions are implanted. A bonded GaN thin film bonded substrate 1 was obtained.

得られたGaN薄膜貼りあわせ基板1について、GaN薄膜の厚さTDは断面SEM像観察により測定したところ0.3μmであり、GaN薄膜の水素シート濃度はSIMSにより測定したところ5×1015cm-2であり、GaN薄膜の転位密度は薬液処理後のエッチピット観察により測定したところ1×106cm-2、GaN薄膜のキャリア濃度はホール測定により測定したところ5×1014cm-3、GaN薄膜のシート抵抗はホール測定により測定したところ1×105Ω/□であった。このように、GaN薄膜貼り合わせ基板1のGaN薄膜10aの厚さTDは、GaNバルク結晶10に注入される水素イオンの深さDとほぼ同じであった。また、GaN薄膜10aの水素シート濃度は、GaNバルク結晶10に注入した水素イオンの平均注入量とほぼ同じであった。 The obtained thin GaN film-joined substrate 1, the thickness T D of the GaN thin film was 0.3μm was measured by cross-sectional SEM image observation, 5 × 10 15 cm where hydrogen sheet density of GaN films was measured by SIMS is -2, GaN dislocation density of the thin film was measured by etch pit observation after chemical treatments 1 × 10 6 cm -2, the carrier concentration of the GaN thin film is 5 × 10 14 cm -3 was measured by hole measurement, The sheet resistance of the GaN thin film was 1 × 10 5 Ω / □ as measured by Hall measurement. Thus, the thickness T D of the thin GaN film-joined GaN thin film 10a of the substrate 1 was approximately equal to the depth D of the hydrogen ions implanted into GaN bulk crystalline body 10. Further, the hydrogen sheet concentration of the GaN thin film 10a was almost the same as the average amount of hydrogen ions implanted into the GaN bulk crystal 10.

4.GaN系高電子移動度トランジスタの製造
図1(D)を参照して、GaN薄膜貼り合わせ基板1のGaN薄膜10a上に、MOCVD法により、GaN系半導体層30として厚さ3μmのi型GaN層32および厚さ20nmのi型Al0.25Ga0.75N層34を順次成長させた。
4). Fabrication of GaN-based high electron mobility transistor Referring to FIG. 1D, an i-type GaN layer having a thickness of 3 μm is formed as GaN-based semiconductor layer 30 on GaN thin film 10a of GaN thin film bonded substrate 1 by MOCVD. The i-type Al 0.25 Ga 0.75 N layer 34 having a thickness of 32 and a thickness of 20 nm was sequentially grown.

図1(E)を参照して、i型Al0.25Ga0.75N層34上に、フォトリソグラフィ法およびリフトオフ法を用いて、ソース電極42、ドレイン電極44、およびゲート電極46を形成した。ここで、ソース電極42およびドレイン電極44は、いずれも厚さ50nmのTi層、厚さ100nmのAl層および厚さ200nmのAu層を積層し、800℃で30秒間熱処理することにより合金化することにより形成した。ゲート電極46は、厚さ300μmのAu層を、ゲート幅が2μm、ゲート長さが150μmになるように形成した。 Referring to FIG. 1E, a source electrode 42, a drain electrode 44, and a gate electrode 46 were formed on the i-type Al 0.25 Ga 0.75 N layer 34 by using a photolithography method and a lift-off method. Here, the source electrode 42 and the drain electrode 44 are both alloyed by laminating a Ti layer having a thickness of 50 nm, an Al layer having a thickness of 100 nm, and an Au layer having a thickness of 200 nm, and performing heat treatment at 800 ° C. for 30 seconds. Was formed. The gate electrode 46 was formed of an Au layer having a thickness of 300 μm so that the gate width was 2 μm and the gate length was 150 μm.

(実施例2)
GaNバルク結晶10に水素イオンを平均注入量(平均ドーズ量)が1×1015cm-2で注入したこと以外は、実施例1と同様にして、GaN薄膜貼り合わせ基板1を得た。得られたGaN薄膜貼り合わせ基板1は、GaN薄膜の厚さTDが0.3μmであり、GaN薄膜の水素シート濃度が5×1015cm-2であり、GaN薄膜の転位密度が1×106cm-2であり、GaN薄膜のキャリア濃度が5×1014cm-3であり、GaN薄膜のシート抵抗が5×104Ω/□であった。
(Example 2)
A GaN thin film bonded substrate 1 was obtained in the same manner as in Example 1 except that hydrogen ions were implanted into the GaN bulk crystal 10 at an average implantation amount (average dose amount) of 1 × 10 15 cm −2 . The obtained GaN thin film bonded substrate 1 has a GaN thin film thickness T D of 0.3 μm, a GaN thin film hydrogen sheet concentration of 5 × 10 15 cm −2 , and a GaN thin film dislocation density of 1 ×. 10 6 is cm -2, the carrier concentration of the GaN thin film is of 5 × 10 14 cm -3, the sheet resistance of the GaN thin film is 5 × 10 was 4 Ω / □.

(実施例3)
GaNバルク結晶10に水素イオンを平均注入量(平均ドーズ量)が1×1017cm-2で注入したこと以外は、実施例1と同様にして、GaN薄膜貼り合わせ基板1を得た。得られたGaN薄膜貼り合わせ基板1は、GaN薄膜の厚さTDが0.3μmであり、GaN薄膜の水素シート濃度が1×1017cm-2であり、GaN薄膜の転位密度が1×107cm-2であり、GaN薄膜のキャリア濃度が5×1014cm-3以下であり、GaN薄膜のシート抵抗が2×106Ω/□であった。
(Example 3)
A GaN thin film bonded substrate 1 was obtained in the same manner as in Example 1 except that hydrogen ions were implanted into the GaN bulk crystal 10 at an average implantation amount (average dose amount) of 1 × 10 17 cm −2 . The obtained GaN thin film bonded substrate 1 has a GaN thin film thickness T D of 0.3 μm, a GaN thin film hydrogen sheet concentration of 1 × 10 17 cm −2 , and a GaN thin film dislocation density of 1 ×. It was 10 7 cm −2 , the carrier concentration of the GaN thin film was 5 × 10 14 cm −3 or less, and the sheet resistance of the GaN thin film was 2 × 10 6 Ω / □.

(比較例1)
GaNバルク結晶10に水素イオンを平均注入量(平均ドーズ量)が1×1013cm-2で注入したこと以外は、実施例1と同様にして、GaN薄膜貼り合わせ基板1を得た。得られたGaN薄膜貼り合わせ基板1は、GaN薄膜の厚さTDが0.3μmであり、GaN薄膜の水素シート濃度が1×1013cm-2であり、GaN薄膜の転位密度が1×106cm-2であり、GaN薄膜のキャリア濃度が 5×1016cm-3であり、GaN薄膜のシート抵抗が1×102Ω/□であった。
(Comparative Example 1)
A GaN thin film bonded substrate 1 was obtained in the same manner as in Example 1 except that hydrogen ions were implanted into the GaN bulk crystal 10 at an average implantation amount (average dose amount) of 1 × 10 13 cm −2 . The obtained GaN thin film bonded substrate 1 has a GaN thin film thickness T D of 0.3 μm, a GaN thin film hydrogen sheet concentration of 1 × 10 13 cm −2 , and a GaN thin film dislocation density of 1 ×. a 10 6 cm -2, the carrier concentration of the GaN thin film is the 5 × 10 16 cm -3, the sheet resistance of the GaN thin film was 1 × 10 2 Ω / □ is.

上記の実施例1〜3および比較例1について、GaNバルク結晶に注入した水素イオンの平均注入量とGaN薄膜のシート抵抗との関係を図4に示した。図4に示すように、GaNバルク結晶に注入した水素イオンの平均注入量を1×1014cm-2以上3×1017cm-2以下とすることにより、GaN薄膜のシート抵抗が1×104Ω/□以上のGaN薄膜貼り合わせ基板およびGaN系HEMTが得られ、かかるGaN系HEMTが高性能であることがわかった。 FIG. 4 shows the relationship between the average amount of hydrogen ions implanted into the GaN bulk crystal and the sheet resistance of the GaN thin film for Examples 1 to 3 and Comparative Example 1. As shown in FIG. 4, by setting the average implantation amount of hydrogen ions implanted into the GaN bulk crystal to 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less, the sheet resistance of the GaN thin film becomes 1 × 10 6. A GaN thin film bonded substrate of 4 Ω / □ or more and a GaN-based HEMT were obtained, and it was found that the GaN-based HEMT had high performance.

今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 GaN薄膜貼り合わせ基板、2 GaN系HEMT、10,10b GaNバルク結晶、10a GaN薄膜、10i 面、20 異組成基板、30 GaN系半導体層、32 i型GaN層、34 i型Al0.25Ga0.75N層、42 ソース電極、44 ドレイン電極、46 ゲート電極。 1 GaN thin film bonded substrate, 2 GaN-based HEMT, 10,10b GaN bulk crystal, 10a GaN thin film, 10i plane, 20 different composition substrate, 30 GaN-based semiconductor layer, 32 i-type GaN layer, 34 i-type Al 0.25 Ga 0.75 N layer, 42 source electrode, 44 drain electrode, 46 gate electrode.

Claims (10)

GaN薄膜貼り合わせ基板の製造方法であって、
GaNバルク結晶の主表面から0.1μm以上100μm以下の深さの面に、水素イオンを平均注入量が1×1014cm-2以上3×1017cm-2以下で注入する工程と、
前記水素イオンが注入された前記GaNバルク結晶の前記主表面に、GaNと化学組成が異なる異組成基板を貼り合わせる工程と、
前記GaNバルク結晶を熱処理することにより、前記GaNバルク結晶を前記水素イオンが注入された前記深さの面において分離して、前記異組成基板上に貼り合わされたGaN薄膜を形成する工程と、を含むGaN薄膜貼り合わせ基板の製造方法。
A method of manufacturing a GaN thin film bonded substrate,
A step of implanting hydrogen ions at a depth of 0.1 μm or more and 100 μm or less from the main surface of the GaN bulk crystal at an average implantation amount of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less;
A step of bonding a different composition substrate having a chemical composition different from that of GaN to the main surface of the GaN bulk crystal implanted with the hydrogen ions;
Separating the GaN bulk crystal at the depth surface into which the hydrogen ions have been implanted by heat-treating the GaN bulk crystal, and forming a GaN thin film bonded onto the different composition substrate. A method for manufacturing a GaN thin film bonded substrate.
GaN系高電子移動度トランジスタの製造方法であって、
請求項1のGaN薄膜貼り合わせ基板の製造方法により製造された前記GaN薄膜貼り合わせ基板の前記GaN薄膜上に、少なくとも1層のGaN系半導体層を成長させる工程を含むGaN系高電子移動度トランジスタの製造方法。
A method for manufacturing a GaN-based high electron mobility transistor,
A GaN-based high electron mobility transistor comprising a step of growing at least one GaN-based semiconductor layer on the GaN thin film of the GaN thin-film bonded substrate manufactured by the method for manufacturing a GaN thin-film bonded substrate according to claim 1. Manufacturing method.
GaNと化学組成が異なる異組成基板と、前記異組成基板上に貼り合わされたGaN薄膜と、を含み、
前記GaN薄膜は、その厚さが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下であるGaN薄膜貼り合わせ基板。
A different composition substrate having a chemical composition different from that of GaN, and a GaN thin film bonded on the different composition substrate,
The GaN thin film bonded substrate, wherein the GaN thin film has a thickness of 0.1 μm to 100 μm and a hydrogen sheet concentration of 1 × 10 14 cm −2 to 3 × 10 17 cm −2 .
前記GaN薄膜の転位密度が1×109cm-2以下である請求項3に記載のGaN薄膜貼り合わせ基板。 The GaN thin film bonded substrate according to claim 3, wherein the dislocation density of the GaN thin film is 1 x 10 9 cm -2 or less. 前記GaN薄膜のキャリア濃度が1×1015cm-3以下である請求項3または請求項4に記載のGaN薄膜貼り合わせ基板。 5. The GaN thin film bonded substrate according to claim 3, wherein a carrier concentration of the GaN thin film is 1 × 10 15 cm −3 or less. 前記GaN薄膜のシート抵抗が1×104Ω/□以上である請求項3から請求項5のいずれかに記載のGaN薄膜貼り合わせ基板。 The GaN thin film bonded substrate according to claim 3, wherein the sheet resistance of the GaN thin film is 1 × 10 4 Ω / □ or more. GaNと化学組成が異なる異組成基板と、前記異組成基板上に貼り合わされたGaN薄膜と、前記GaN薄膜上に形成された少なくとも1層のGaN系半導体層と、を含み、
前記GaN薄膜は、その厚さが0.1μm以上100μm以下であり、その水素シート濃度が1×1014cm-2以上3×1017cm-2以下であるGaN系高電子移動度トランジスタ。
A different composition substrate having a chemical composition different from that of GaN, a GaN thin film bonded onto the different composition substrate, and at least one GaN-based semiconductor layer formed on the GaN thin film,
The GaN thin film has a thickness of 0.1 μm or more and 100 μm or less and a hydrogen sheet concentration of 1 × 10 14 cm −2 or more and 3 × 10 17 cm −2 or less.
前記GaN薄膜の転位密度が1×109cm-2以下である請求項7に記載のGaN系高電子移動度トランジスタ。 The GaN-based high electron mobility transistor according to claim 7, wherein the dislocation density of the GaN thin film is 1 × 10 9 cm −2 or less. 前記GaN薄膜のキャリア濃度が1×1015cm-3以下である請求項7または請求項8に記載のGaN系高電子移動度トランジスタ。 9. The GaN-based high electron mobility transistor according to claim 7, wherein a carrier concentration of the GaN thin film is 1 × 10 15 cm −3 or less. 前記GaN薄膜のシート抵抗が1×104Ω/□以上である請求項7から請求項9のいずれかに記載のGaN系高電子移動度トランジスタ。 The GaN-based high electron mobility transistor according to claim 7, wherein the GaN thin film has a sheet resistance of 1 × 10 4 Ω / □ or more.
JP2011109233A 2011-05-16 2011-05-16 GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME Pending JP2012243792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109233A JP2012243792A (en) 2011-05-16 2011-05-16 GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109233A JP2012243792A (en) 2011-05-16 2011-05-16 GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME

Publications (1)

Publication Number Publication Date
JP2012243792A true JP2012243792A (en) 2012-12-10

Family

ID=47465214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109233A Pending JP2012243792A (en) 2011-05-16 2011-05-16 GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME

Country Status (1)

Country Link
JP (1) JP2012243792A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157978A (en) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Group iii nitride composite substrate, method for manufacturing the same, and method for manufacturing group iii nitride semiconductor device
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9923063B2 (en) 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
KR20180094433A (en) 2017-02-15 2018-08-23 한양대학교 산학협력단 Methode for manufacturing gallium nitride substrate using the multi ion implantation
TWI667764B (en) * 2018-06-29 2019-08-01 大陸商長江存儲科技有限責任公司 Semiconductor structure and method of forming the same
DE102018213434A1 (en) 2018-05-29 2019-12-05 Industry-University Cooperation Foundation Hanyang University Method of making gallium nitride substrate using multi-ion implantation
JP2021082773A (en) * 2019-11-22 2021-05-27 三菱電機株式会社 Semiconductor device, manufacturing method for semiconductor device, and field effect transistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010766A (en) * 2006-06-30 2008-01-17 Sumitomo Electric Ind Ltd Garium-nitride thin film bonding substrate, its manufacturing method, garium-nitride system semiconductor device, and its manufacturing method
JP2008235740A (en) * 2007-03-23 2008-10-02 Furukawa Electric Co Ltd:The GaN-BASED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF
JP2009519202A (en) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Group III nitride product and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519202A (en) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Group III nitride product and method for producing the same
JP2008010766A (en) * 2006-06-30 2008-01-17 Sumitomo Electric Ind Ltd Garium-nitride thin film bonding substrate, its manufacturing method, garium-nitride system semiconductor device, and its manufacturing method
JP2008235740A (en) * 2007-03-23 2008-10-02 Furukawa Electric Co Ltd:The GaN-BASED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917004B2 (en) 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10600676B2 (en) 2012-10-12 2020-03-24 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US11094537B2 (en) 2012-10-12 2021-08-17 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US10186451B2 (en) 2013-02-08 2019-01-22 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
JP2014157978A (en) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Group iii nitride composite substrate, method for manufacturing the same, and method for manufacturing group iii nitride semiconductor device
US9923063B2 (en) 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
KR20180094433A (en) 2017-02-15 2018-08-23 한양대학교 산학협력단 Methode for manufacturing gallium nitride substrate using the multi ion implantation
DE102018213434A1 (en) 2018-05-29 2019-12-05 Industry-University Cooperation Foundation Hanyang University Method of making gallium nitride substrate using multi-ion implantation
US10510532B1 (en) 2018-05-29 2019-12-17 Industry-University Cooperation Foundation Hanyang University Method for manufacturing gallium nitride substrate using the multi ion implantation
TWI667764B (en) * 2018-06-29 2019-08-01 大陸商長江存儲科技有限責任公司 Semiconductor structure and method of forming the same
JP2021082773A (en) * 2019-11-22 2021-05-27 三菱電機株式会社 Semiconductor device, manufacturing method for semiconductor device, and field effect transistor
JP7382804B2 (en) 2019-11-22 2023-11-17 三菱電機株式会社 Semiconductor device, semiconductor device manufacturing method, and field effect transistor

Similar Documents

Publication Publication Date Title
CN108352306B (en) Epitaxial substrate for semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
US8653561B2 (en) III-nitride semiconductor electronic device, and method of fabricating III-nitride semiconductor electronic device
JP3733420B2 (en) Heterojunction field effect transistor using nitride semiconductor material
JP2012243792A (en) GaN THIN FILM BONDED SUBSTRATE AND METHOD OF MANUFACTURING THE SAME, AND GaN-BASED HIGH ELECTRON MOBILITY TRANSISTOR AND METHOD OF MANUFACTURING THE SAME
JP2009088223A (en) Silicon carbide semiconductor substrate and silicon carbide semiconductor device using the same
US10629720B2 (en) Layered vertical field effect transistor and methods of fabrication
TW200818248A (en) Substrate having thin film of GaN joined thereon and method of fabricating the same, and a GaN-based semiconductor device and method of fabricating the same
US20110121311A1 (en) Method for manufacturing semiconductor substrate, method for manufacturing semiconductor device, semiconductor substrate, and semiconductor device
JP2011023677A (en) Compound semiconductor epitaxial wafer, and method of manufacturing the same
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
JP2018117064A (en) Nitride semiconductor device and method for manufacturing the same
JP7061747B2 (en) Semiconductor substrates, semiconductor devices, and methods for manufacturing semiconductor substrates
JP4276135B2 (en) Nitride semiconductor growth substrate
US11430875B2 (en) Method for manufacturing transistor
JP4822457B2 (en) Manufacturing method of semiconductor device
JP6783063B2 (en) Nitride semiconductor templates and nitride semiconductor laminates
US20130171811A1 (en) Method for manufacturing compound semiconductor
JP4933513B2 (en) Nitride semiconductor growth substrate
CN112530803B (en) Preparation method of GaN-based HEMT device
JP2014022698A (en) Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE
TW202331814A (en) Semiconductor substrate, semiconductor device, method for producing semiconductor substrate, and method for producing semiconductor device
JP2009246307A (en) Semiconductor device and method of manufacturing the same
JP2010056298A (en) Epitaxial substrate for formation of semiconductor element for high frequency, and manufacturing method of epitaxial substrate for formation of semiconductor element for high frequency
JP2012142366A (en) Semiconductor device manufacturing method end support substrate for epitaxial growth
JP2010087376A (en) Manufacturing method of semiconductor device including semiconductor laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020