JP2014022698A - Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE - Google Patents

Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE Download PDF

Info

Publication number
JP2014022698A
JP2014022698A JP2012163263A JP2012163263A JP2014022698A JP 2014022698 A JP2014022698 A JP 2014022698A JP 2012163263 A JP2012163263 A JP 2012163263A JP 2012163263 A JP2012163263 A JP 2012163263A JP 2014022698 A JP2014022698 A JP 2014022698A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
crystal substrate
layer
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012163263A
Other languages
Japanese (ja)
Inventor
Tomohiko Shibata
智彦 柴田
Tetsuya Ikuta
哲也 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2012163263A priority Critical patent/JP2014022698A/en
Publication of JP2014022698A publication Critical patent/JP2014022698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epitaxial substrate for an electronic device which reduces pit defects on an epitaxial surface even in an Si substrate having high-concentration boron, and provide a manufacturing method of the epitaxial substrate for the electronic device.SOLUTION: The manufacturing method of the epitaxial substrate comprises the processes of: forming an Si single crystal layer on a principal surface of a low-resistance Si single crystal substrate by an MOCVD method; and forming a buffer and a main laminate by epitaxial growing multiple layers of group III nitride layers on the Si single crystal substrate to form the epitaxial substrate.

Description

本発明は、窒化物半導体、とくに、電子デバイス用エピタキシャル基板に用いるSi基板およびその製造方法に関し、特に、横方向を電流導通方向とするHEMT用エピタキシャル基板およびその製造方法に関する。   The present invention relates to a nitride semiconductor, in particular, an Si substrate used for an electronic device epitaxial substrate and a method for manufacturing the same, and more particularly to an HEMT epitaxial substrate having a lateral direction as a current conduction direction and a method for manufacturing the same.

Si基板上に、AlNなどのバッファ層を介して、GaNなどのIII族窒化物をエピタキシャル成長できることが知られている。このような技術を用いて、近年、III族窒化物を用いた高電子移動度トランジスタ(HEMT: High electron mobility transistor)が実用化されようとしている。   It is known that a group III nitride such as GaN can be epitaxially grown on a Si substrate via a buffer layer such as AlN. In recent years, a high electron mobility transistor (HEMT) using a group III nitride has been put into practical use using such a technique.

特許文献1は、CZ法でのSi基板表面のCOP等のピットが無いことを特徴とするGaN形成用のSi基板を開示している。   Patent Document 1 discloses a Si substrate for forming GaN characterized by no pits such as COP on the surface of the Si substrate by the CZ method.

特許文献2は、比抵抗値が0.01Ω・cm以下である低抵抗Si基板を用いることで、反りを抑制した電子デバイス用エピタキシャル基板を開示している。   Patent Document 2 discloses an epitaxial substrate for electronic devices in which warpage is suppressed by using a low-resistance Si substrate having a specific resistance value of 0.01 Ω · cm or less.

特開2000−351692JP 2000-351692 A 特開2010−153817JP 2010-153817

特許文献1に記載のCZ法による低COP基板は、通常のSi基板にくらべて入手が困難である。また、特許文献2に記載のボロン濃度が1019/cm以上の低抵抗Si基板においては、ピットが大量発生する場合があった。本発明者らは大気暴露に起因してボロンの表面変質が起きるためと考えた。本発明の目的は、高濃度のボロンを有するSi基板であっても、エピ表面のピット欠陥を低減させ、さらに、裏面への不純物拡散抑制も可能なSi基板を提供し、高品質の電子デバイス用エピタキシャル基板を提供することにある。 The low COP substrate by the CZ method described in Patent Document 1 is difficult to obtain compared to a normal Si substrate. In addition, in the low resistance Si substrate described in Patent Document 2 having a boron concentration of 10 19 / cm 3 or more, a large number of pits may be generated. The present inventors considered that the surface alteration of boron occurs due to atmospheric exposure. An object of the present invention is to provide a high-quality electronic device by providing a Si substrate capable of reducing pit defects on the epi surface and suppressing impurity diffusion to the back surface even for a Si substrate having a high concentration of boron. It is to provide an epitaxial substrate for use.

上記目的を達成するため、鋭意研究した結果、高濃度のボロンを有するSi基板上にボロン濃度が小さいSi単結晶層を別途形成することにより、ピットの大量発生リスクを大幅に抑えることができることを見出し、本発明を完成するに至った。
すなわち、B濃度が2×1018/cm以上であるSi単結晶基板と、Si単結晶基板の主面上に形成されたSi単結晶層を有し、Si単結晶層の表面のB濃度がSi単結晶基板のB濃度よりも小さいIII族窒化物半導体成長用Si単結晶基板である。
As a result of diligent research to achieve the above object, it is possible to significantly reduce the risk of pit mass formation by separately forming a Si single crystal layer having a low boron concentration on a Si substrate having a high concentration of boron. The headline and the present invention were completed.
That is, it has a Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more and a Si single crystal layer formed on the main surface of the Si single crystal substrate, and the B concentration on the surface of the Si single crystal layer Is a group III nitride semiconductor growth Si single crystal substrate having a B concentration lower than that of the Si single crystal substrate.

Si単結晶層の表面のB濃度は0.1〜0.7×1018/cmであることが好ましい。 The B concentration on the surface of the Si single crystal layer is preferably 0.1 to 0.7 × 10 18 / cm 3 .

Si単結晶基板の抵抗値は
0.03Ω・cm以下であり、Si単結晶層の抵抗値がSi単結晶基板の抵抗値より大きいことが好ましい。さらに、Si単結晶層の表面の抵抗値が0.05Ω・cmより大きいことがより好ましい。
The resistance value of the Si single crystal substrate is 0.03 Ω · cm or less, and the resistance value of the Si single crystal layer is preferably larger than the resistance value of the Si single crystal substrate. Further, the resistance value of the surface of the Si single crystal layer is more preferably larger than 0.05 Ω · cm.

Si単結晶基板の主面とは反対側の表面にSi酸化物層を有していても良い。   A Si oxide layer may be provided on the surface opposite to the main surface of the Si single crystal substrate.

B濃度が2×1018/cm以上であるSi単結晶基板と、Si単結晶基板の主面上のSi単結晶層を有し、Si単結晶層の表面はBを0.1〜0.7×1018/cm含み、Si単結晶層上に形成した絶縁層としてのバッファと、バッファ上に複数層のIII族窒化物層をエピタキシャル成長させて形成した主積層体とを具え、横方向を電流導通方向とする電子デバイス用エピタキシャル基板である。 It has a Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more, and a Si single crystal layer on the main surface of the Si single crystal substrate. .7 × 10 18 / cm 3 , comprising a buffer as an insulating layer formed on the Si single crystal layer, and a main laminate formed by epitaxially growing a plurality of Group III nitride layers on the buffer. It is the epitaxial substrate for electronic devices which makes a direction a current conduction direction.

Si単結晶基板の主面とは反対側の表面にSi酸化物層を有する電子デバイス用エピタキシャル基板であってもよい。 The epitaxial substrate for electronic devices which has a Si oxide layer in the surface on the opposite side to the main surface of Si single crystal substrate may be sufficient.

上記目的を達成するための本発明の製造方法は、すなわち、B濃度が2×1018/cm以上であるSi単結晶基板の主面上に気相成長によりB濃度がSi単結晶基板より少ないSi単結晶層を形成する工程を有する窒化物半導体成長用Si単結晶基板の製造方法である。 The manufacturing method of the present invention for achieving the above object is that the B concentration is higher than that of the Si single crystal substrate by vapor phase growth on the main surface of the Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more. This is a method for producing a Si single crystal substrate for growing a nitride semiconductor, which includes a step of forming a few Si single crystal layers.

Si単結晶層の表面のB濃度が0.1〜0.7×1018/cmであることが好ましい。 The B concentration on the surface of the Si single crystal layer is preferably 0.1 to 0.7 × 10 18 / cm 3 .

Si単結晶基板の抵抗値は
0.03Ω・cm以下であり、Si単結晶層の抵抗値が前記Si単結晶基板の抵抗値より大きいことが好ましい。さらには、Si単結晶層の表面の抵抗値が0.05Ω・cmより大きいことがより好ましい。
The resistance value of the Si single crystal substrate is 0.03 Ω · cm or less, and the resistance value of the Si single crystal layer is preferably larger than the resistance value of the Si single crystal substrate. Further, the resistance value of the surface of the Si single crystal layer is more preferably larger than 0.05 Ω · cm.

Si単結晶基板の主面とは反対側の表面にSi酸化物層を有していても良い。   A Si oxide layer may be provided on the surface opposite to the main surface of the Si single crystal substrate.

B濃度が2×1018/cm以上であるSi単結晶基板の主面上に気相成長により表面のB濃度が0.1〜0.7×1018/cmであるSi単結晶層を形成する工程と、
該Si単結晶層上に形成した絶縁層としてのバッファと、該バッファ上に複数層のIII族窒化物層をエピタキシャル成長させて形成した主積層体とを具え、横方向を電流導通方向とする電子デバイス用エピタキシャル基板の製造方法である。
A Si single crystal layer having a B concentration of 0.1 to 0.7 × 10 18 / cm 3 on the main surface of the Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more by vapor phase growth. Forming a step;
Electrons having a buffer as an insulating layer formed on the Si single crystal layer and a main laminate formed by epitaxially growing a plurality of Group III nitride layers on the buffer, with the horizontal direction being a current conduction direction It is a manufacturing method of the epitaxial substrate for devices.

B濃度が2×1018/cm以上であるSi単結晶基板の両面を酸化して酸化膜を形成する工程と、一方の面の酸化膜を保持して他方の面の酸化膜を除去する工程と、酸化膜を除去した面上に気相成長により表面のB濃度が0.1〜0.7×1018/cmであるSi単結晶層を形成する工程と、
該Si単結晶層上に形成した絶縁層としてのバッファと、該バッファ上に複数層のIII族窒化物層をエピタキシャル成長させて形成した主積層体とを具え、横方向を電流導通方向とする電子デバイス用エピタキシャル基板の製造方法である。
A step of oxidizing both surfaces of the Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more to form an oxide film, and holding the oxide film on one surface and removing the oxide film on the other surface Forming a Si single crystal layer having a surface B concentration of 0.1 to 0.7 × 10 18 / cm 3 by vapor phase growth on the surface from which the oxide film has been removed;
Electrons having a buffer as an insulating layer formed on the Si single crystal layer and a main laminate formed by epitaxially growing a plurality of Group III nitride layers on the buffer, with the horizontal direction being a current conduction direction It is a manufacturing method of the epitaxial substrate for devices.

本発明の窒化物半導体成長用Si単結晶基板および電子デバイス用エピタキシャル基板は、2×1018/cm以上のB濃度を有するSi単結晶基板の上に、より少ないB濃度を有するSi単結晶層を具えることにより、Si単結晶表面の局所的なBの改質を抑制できると共に、その上に形成されるIII族窒化物半導体層へのBの拡散が抑制され、ピットの発生を抑制することができる。 The Si single crystal substrate for growing a nitride semiconductor and the epitaxial substrate for an electronic device according to the present invention have a Si single crystal having a lower B concentration on a Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more. By providing a layer, local modification of B on the surface of the Si single crystal can be suppressed, and diffusion of B into the group III nitride semiconductor layer formed thereon can be suppressed, thereby suppressing generation of pits. can do.

また、本発明の窒化物半導体成長用Si単結晶基板の製造方法によれば、
B濃度が2×1018/cm以上であるSi単結晶基板の上に、Bをより少なく含むSi単結晶層を、気相成長法(CVD法、MBE法など)を用いて形成することにより、
上記のようにIII族窒化物半導体層とSi単結晶との界面のBの改質を抑制できると共に、その上に形成されるIII族窒化物半導体層へのBの拡散が抑制され、ピットの発生を抑制することができる基板を提供することができる。
Further, according to the method for manufacturing a nitride single crystal growth Si substrate of the present invention,
A Si single crystal layer containing less B is formed on a Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more by using a vapor phase growth method (CVD method, MBE method, etc.). By
As described above, the modification of B at the interface between the group III nitride semiconductor layer and the Si single crystal can be suppressed, and the diffusion of B to the group III nitride semiconductor layer formed thereon can be suppressed. A substrate capable of suppressing the generation can be provided.

図1は、一般的な電界効果トランジスタを示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a general field effect transistor. 図2は、本発明に従う電子デバイス用エピタキシャル基板の模式的断面図である。FIG. 2 is a schematic cross-sectional view of an epitaxial substrate for an electronic device according to the present invention.

次に、本発明の電子デバイス用エピタキシャル基板の実施形態について図面を参照しながら説明する。図2は、本発明に従う電子デバイス用エピタキシャル基板の断面構造を模式的に示したものである。なお、図2は、説明の便宜上、厚さ方向を誇張して描いたものである。   Next, an embodiment of the epitaxial substrate for electronic devices of the present invention will be described with reference to the drawings. FIG. 2 schematically shows a cross-sectional structure of an epitaxial substrate for an electronic device according to the present invention. Note that FIG. 2 shows the thickness direction exaggerated for convenience of explanation.

図2に示すように、本発明の電子デバイス用エピタキシャル基板1は、横方向を電流導通方向とする電子デバイス用エピタキシャル基板1であって、B濃度が2×1018/cm以上であるSi単結晶基板2と、このSi単結晶基板2の主面2b上に形成したSi単結晶層4とからなる窒化物半導体成長用Si単結晶基板を有し、このSi単結晶層4上に複数層のIII族窒化物層をエピタキシャル成長させて形成した、初期成長層6および超格子積層体7からなる絶縁層としてのバッファと、バッファ上の主積層体5とを具え、Si単結晶層4のB濃度はSi基板に比べ小さく、かかる構成を有することにより、HEMTのピット密度を小さく抑制できるものである。さらに、Si単結晶基板2の裏面2a上に形成した不純物拡散抑制層を具える構成も、好ましい構成である。 As shown in FIG. 2, the electronic device epitaxial substrate 1 of the present invention is an electronic device epitaxial substrate 1 in which the lateral direction is a current conduction direction, and a B concentration is 2 × 10 18 / cm 3 or more. There is a Si single crystal substrate for growing a nitride semiconductor comprising a single crystal substrate 2 and a Si single crystal layer 4 formed on the main surface 2b of the Si single crystal substrate 2. A plurality of Si single crystal substrates 4 are formed on the Si single crystal layer 4. And a buffer as an insulating layer formed by epitaxially growing a group III nitride layer, which is an initial growth layer 6 and a superlattice laminate 7, and a main laminate 5 on the buffer. The B concentration is smaller than that of the Si substrate, and by having such a configuration, the pit density of the HEMT can be suppressed to be small. Furthermore, a configuration including an impurity diffusion suppression layer formed on the back surface 2a of the Si single crystal substrate 2 is also a preferable configuration.

ここで、「横方向を電流導通方向とする」とは、図1で示したように、ソース電極24からドレイン電極25へ、主に積層体の幅方向に電流が流れることを意味し、例えば半導体を一対の電極で挟んだ構造のように、主に縦方向すなわち積層体の厚さ方向に電流が流れるものとは異なることを意味する。   Here, “the lateral direction is the current conduction direction” means that a current flows from the source electrode 24 to the drain electrode 25 mainly in the width direction of the stacked body as shown in FIG. This means that the current flows mainly in the longitudinal direction, that is, in the thickness direction of the stacked body, as in a structure in which a semiconductor is sandwiched between a pair of electrodes.

Si単結晶基板2の面方位は特に指定されず、(111),(100),(110)面等を使用することができるが、III族窒化物の(0001)面を表面平坦性よく成長させるためには、(111)面を使用することが望ましい。また、伝導型はp型であり、電気伝導性の高い低抵抗基板である。   The plane orientation of the Si single crystal substrate 2 is not particularly specified, and (111), (100), (110) planes, etc. can be used, but the (0001) plane of group III nitride is grown with good surface flatness. For this purpose, it is desirable to use the (111) plane. Further, the conductivity type is p-type, and it is a low-resistance substrate with high electrical conductivity.

基板のオフ角度については、0.2°以下であることが望ましい。通常Si単結晶基板上にSi単結晶層を成長させる場合、Si単結晶層の表面に発生する表面欠陥であるヘイズを抑制するために、オフ角度を0.5℃以上とするのが通常である。しかし、本発明を検討する中で、オフ角度を0.2°より大きくすると、III族窒化物層にピットが多く発生すること、前記ヘイズはIII族窒化物層の表面には悪影響を与えないことが確認された結果としてIII族窒化物層成長用のより好ましい形態として想到された条件である。   The off angle of the substrate is preferably 0.2 ° or less. Usually, when a Si single crystal layer is grown on a Si single crystal substrate, the off angle is usually 0.5 ° C. or more in order to suppress haze, which is a surface defect generated on the surface of the Si single crystal layer. is there. However, when examining the present invention, when the off-angle is larger than 0.2 °, many pits are generated in the group III nitride layer, and the haze does not adversely affect the surface of the group III nitride layer. As a result, it has been conceived as a more preferable mode for growing a group III nitride layer.

Si単結晶基板2は、B濃度が2×1018/cm以上(比抵抗が0.03Ω・cm以下)である。より好ましくは3×1018/cm以上(比抵抗が0.02Ω・cm以下)、さらに好ましくは9×1018/cm以上(比抵抗が0.01Ω・cm以下)である。B濃度が大きいことにより、比抵抗が小さくなると共に、特開2010−153817に記載のように、基板の硬度が向上し、基板の反りに対する耐性が増すことになる。 The Si single crystal substrate 2 has a B concentration of 2 × 10 18 / cm 3 or more (specific resistance is 0.03 Ω · cm or less). More preferably, it is 3 × 10 18 / cm 3 or more (specific resistance is 0.02 Ω · cm or less), and further preferably 9 × 10 18 / cm 3 or more (specific resistance is 0.01 Ω · cm or less). When the B concentration is large, the specific resistance is reduced, and as described in JP 2010-153817 A, the hardness of the substrate is improved and the resistance to warpage of the substrate is increased.

Si単結晶層4は、表面のB濃度がSi単結晶基板より小さく、好ましくは2×1018/cm未満である。なお、本発明のSi単結晶層4のB濃度の値は、Si基板の主面と対向するIII族窒化物を成長させる予定面である表面の値とする。Si単結晶層4のSi基板の主面側においてはSi基板からのB拡散の影響があるためである。Si単結晶層4はMOCVD法を用いて製造することができ、その厚さは例えば1〜3μmである。Si単結晶層4の表面のB濃度は0.1〜0.7×1018/cmであることがより好ましい。2×1018/cm未満とすることで、大気中に放置した場合でも、Bの酸化が原因と考えられるIII族窒化物半導体層でのピットの大量発生が起きる恐れがなくなり、さらに、0.7×1018/cm以下とすることで、ピット密度を1/cm2以下に抑制することができる。なお、0.1×1018/cm未満とした場合には、その上に形成するIII族窒化物半導体層との間のミスフィット転位が発生しやすくなるため好ましくない。
なお、ここでいうピットは、電子供給層5bの表面における開口面積が0.25μm以上のものをいう。
The Si single crystal layer 4 has a surface B concentration lower than that of the Si single crystal substrate, preferably less than 2 × 10 18 / cm 3 . Note that the value of the B concentration of the Si single crystal layer 4 of the present invention is the value of the surface that is the surface on which the group III nitride facing the main surface of the Si substrate is to be grown. This is because the Si single crystal layer 4 has an influence of B diffusion from the Si substrate on the main surface side of the Si substrate. The Si single crystal layer 4 can be manufactured using the MOCVD method, and the thickness thereof is, for example, 1 to 3 μm. The B concentration on the surface of the Si single crystal layer 4 is more preferably 0.1 to 0.7 × 10 18 / cm 3 . By setting it to less than 2 × 10 18 / cm 3 , there is no possibility that a large amount of pits are generated in the group III nitride semiconductor layer considered to be caused by oxidation of B even when left in the atmosphere. By setting it to 0.7 × 10 18 / cm 3 or less, the pit density can be suppressed to 1 / cm 2 or less. In addition, when it is less than 0.1 × 10 18 / cm 3, misfit dislocation between the group III nitride semiconductor layer formed thereon is likely to occur, which is not preferable.
Here, the pits herein mean those having an opening area of 0.25 μm 2 or more on the surface of the electron supply layer 5b.

Si単結晶層4は、表面の抵抗値が0.05Ω・cmより大きいことが好ましい。0.05Ω・cmより大きいことにより、その上に形成するIII族窒化物半導体層のピット密度を1/cm以下に抑制することができる。Si単結晶層4の厚さとしては1〜3μmが好ましい。 The Si single crystal layer 4 preferably has a surface resistance value larger than 0.05 Ω · cm. By being larger than 0.05 Ω · cm, the pit density of the group III nitride semiconductor layer formed thereon can be suppressed to 1 / cm 2 or less. The thickness of the Si single crystal layer 4 is preferably 1 to 3 μm.

Si単結晶層4と主積層体5との間に形成されるバッファは、超格子構造または傾斜組成構造を有するのが好ましい。超格子構造とは、図2に示すように、第1層7aと第2層7bを周期的に含むように積層することを意味する。第1層7aと第2層7b以外の層(たとえば組成遷移層)を含むことは可能である。また、傾斜組成構造とは、特定のIII族元素含有量を膜厚方向に傾斜させることを意味する。   The buffer formed between the Si single crystal layer 4 and the main laminate 5 preferably has a superlattice structure or a graded composition structure. As shown in FIG. 2, the superlattice structure means that the first layer 7a and the second layer 7b are periodically stacked so as to include them. It is possible to include a layer (for example, a composition transition layer) other than the first layer 7a and the second layer 7b. Further, the gradient composition structure means that a specific group III element content is inclined in the film thickness direction.

また、バッファは、図2に示すように、Si単結晶層4と接する初期成長層6および初期成長層6上の超格子積層構造からなる超格子積層体7を有するのが好ましい。初期成長層6は例えばAlN材料からなることができ、初期成長層6をAlNで形成することにより、Si単結晶基板2との反応を抑制し、縦方向耐圧の向上を可能とする。   Further, as shown in FIG. 2, the buffer preferably has an initial growth layer 6 in contact with the Si single crystal layer 4 and a superlattice laminate 7 having a superlattice laminate structure on the initial growth layer 6. The initial growth layer 6 can be made of, for example, an AlN material. By forming the initial growth layer 6 with AlN, the reaction with the Si single crystal substrate 2 is suppressed, and the vertical breakdown voltage can be improved.

Si単結晶基板2の裏面2a上に形成する不純物拡散抑制層としては、例えばSiの酸化物、窒化物または炭化物等が挙げられ、その厚さは0.1μm〜10μmであるのが好ましい。   Examples of the impurity diffusion suppression layer formed on the back surface 2a of the Si single crystal substrate 2 include Si oxide, nitride, and carbide, and the thickness is preferably 0.1 μm to 10 μm.

電子デバイス用エピタキシャル基板1は、HEMTに用いるのが好ましい。図2に示すエピタキシャル基板1の主積層体5は、Ba1Alb1Gac1Ind1N(0≦a1≦1, 0≦b1≦1, 0≦c1≦1, 0≦d1≦1, a1+b1+c1+d1=1)材料からなるチャネル層5aおよびチャネル層5aよりバンド
ギャップの大きいBa2Alb2Gac2Ind2N(0≦a2≦1, 0≦b2≦1, 0≦c2≦1, 0≦d2≦1, a2+b2+c2+d2=1)材料からなる電子供給層5bを有することができる。この際、両層とも単一もしくは複数の組成から構成することができる。特に、合金散乱をさけ、電流導通部分の比抵抗を下げるためには、チャネル層5aの少なくとも電子供給層5bと接する部分はGaN材料とすることが好ましい。
The epitaxial substrate 1 for electronic devices is preferably used for HEMT. The main laminated body 5 of the epitaxial substrate 1 shown in FIG. 2 has B a1 Al b1 Ga c1 In d1 N (0 ≦ a1 ≦ 1, 0 ≦ b1 ≦ 1, 0 ≦ c1 ≦ 1, 0 ≦ d1 ≦ 1, a1 + b1 + c1 + d1 = 1) channel layer 5a made of a material and B a2 Al b2 Ga c2 In d2 N (0 ≦ a2 ≦ 1, 0 ≦ b2 ≦ 1, 0 ≦ c2 ≦ 1 having a larger band gap than the channel layer 5a , 0 ≦ d2 ≦ 1, a2 + b2 + c2 + d2 = 1) The electron supply layer 5b made of a material can be provided. At this time, both layers can be composed of a single composition or a plurality of compositions. In particular, in order to avoid alloy scattering and to lower the specific resistance of the current conducting portion, it is preferable that at least a portion of the channel layer 5a in contact with the electron supply layer 5b is made of a GaN material.

次に、本発明の電子デバイス用エピタキシャル基板の製造方法の実施形態について図面を参照しながら説明する。   Next, an embodiment of a method for producing an epitaxial substrate for an electronic device according to the present invention will be described with reference to the drawings.

図2に示すように、Si単結晶基板2の主面2b上に、Si単結晶層4を形成した窒化物半導体成長用Si単結晶基板を得る工程と、このSi単結晶層4上に、複数層のIII族窒化物層をエピタキシャル成長させて初期成長層6および超格子積層体7からなる絶縁層としてのバッファと、バッファ上の主積層体5を形成してエピタキシャル基板を作製する工程とを具えることを特徴とし、かかる工程を有することにより、HEMTのピット密度を小さく抑制できるエピタキシャル基板を製造できる。さらに、あらかじめSi単結晶基板2の裏面2a上に不純物拡散抑制層3を形成する工程を有する場合も、好ましい工程である。   As shown in FIG. 2, a step of obtaining a Si single crystal substrate for growing a nitride semiconductor having a Si single crystal layer 4 formed on the main surface 2b of the Si single crystal substrate 2; A step of epitaxially growing a plurality of group III nitride layers to form an epitaxial substrate by forming a buffer as an insulating layer composed of an initial growth layer 6 and a superlattice laminate 7, and forming a main laminate 5 on the buffer; By providing such a process, an epitaxial substrate that can suppress the HEMT pit density can be manufactured. Furthermore, it is a preferable process to have a step of forming the impurity diffusion suppression layer 3 on the back surface 2a of the Si single crystal substrate 2 in advance.

また、主積層体5を形成する工程の後、不純物拡散抑制層3およびSi単結晶基板2の少なくとも一部を除去する工程と、主積層体5上に電極を形成する工程とをさらに具えることができる。   Further, after the step of forming the main laminate 5, a step of removing at least a part of the impurity diffusion suppression layer 3 and the Si single crystal substrate 2 and a step of forming an electrode on the main laminate 5 are further provided. be able to.

不純物拡散抑制層3は、公知の方法、例えば裏面2aに貼り付ける、裏面2a上にCVD法、スパッタ法等により蒸着させる、熱酸化により形成するといった方法により形成することができる。不純物拡散抑制層3がSi酸化物の場合は、より好ましくは、高抵抗で、かつ緻密でエッチング耐性の高い層を形成することができる熱酸化によって形成されるのが好ましい。基板の全面に不純物拡散抑制層3を形成した後に、主面上の不純物拡散抑制層3を除去する工程を有しても良い。   The impurity diffusion suppression layer 3 can be formed by a known method, for example, a method of attaching to the back surface 2a, depositing the back surface 2a by a CVD method, a sputtering method, or the like, or forming by thermal oxidation. When the impurity diffusion suppression layer 3 is a Si oxide, it is more preferable that the impurity diffusion suppression layer 3 is formed by thermal oxidation that can form a high-resistance, dense, and etching-resistant layer. After the impurity diffusion suppression layer 3 is formed on the entire surface of the substrate, a step of removing the impurity diffusion suppression layer 3 on the main surface may be included.

主面2b側に形成される層は、化学気相成長法を用いてエピタキシャル成長させることにより形成されるのが好ましい。成長方法としてはMOCVD法を用い、Si単結晶の成長にはシランガスを用い、III族窒化物半導体の成長にはIII族原料としては、TMA(トリメチルアルミニウム)・TMG(トリメチルガリウム)等、V族原料としてはアンモニア等を用い、キャリアガスとして、水素および窒素ガス等を用いることができる。Bなどの不純物の濃度は、SIMSを用いて測定することができる。   The layer formed on the main surface 2b side is preferably formed by epitaxial growth using a chemical vapor deposition method. The growth method is MOCVD, silane gas is used for the growth of the Si single crystal, and the Group III material is used for the growth of the Group III nitride semiconductor, such as TMA (trimethylaluminum), TMG (trimethylgallium), etc. Ammonia or the like can be used as a raw material, and hydrogen, nitrogen gas, or the like can be used as a carrier gas. The concentration of impurities such as B can be measured using SIMS.

なお、図1および図2は、代表的な実施形態の例を示したものであって、本発明はこれらの実施形態に限定されるものではない。たとえば、各層の間に本発明の効果に悪影響を与えない程度の中間層を挿入したり、他の超格子層を挿入したり、組成に傾斜をつけたりすることも可能である。   1 and 2 show examples of typical embodiments, and the present invention is not limited to these embodiments. For example, an intermediate layer that does not adversely affect the effects of the present invention can be inserted between the layers, another superlattice layer can be inserted, or the composition can be graded.

(実施例1)
図2に示すように (111)面(オフ角度0.08°)6インチSi単結晶基板2(厚さ:600μm、比抵抗:0.015Ω・cm、B濃度:4×1018/cm)の表面2b(主面)上に、シランガスを用いてMOCVD法(成長温度1150℃)によりSi単結晶層4(厚さ:2μm、比抵抗:0.015Ω・cm、Si単結晶層4表面のB濃度:0.5×1018/cm)を形成した。その後、初期成長層6(AlN材料、厚さ:100nm)および超格子積層体7(AlN(厚さ:4nm)とAl0.15Ga0.85N(厚さ:25nm)のペアを合計75層)を成長させてバッファ4を形成し、この超格子積層体7上にチャネル層5a(GaN材料、厚さ:0.75μm)および電子供給層5b(Al0.15Ga0.85N材料、厚さ:40nm)をエピタキシャル成長させてHEMT構造の主積層体5を形成し、試料を得た。
表面欠陥観察装置(CS−20)を用いて電子供給層5b表面のピット密度を測定したところ、ウエハ上の測定点10箇所のピット密度は0.5〜1.0/cmであり、ウエハ1枚あたりの平均は0.8/cmであった。
Example 1
As shown in FIG. 2, a (111) plane (off angle 0.08 °) 6 inch Si single crystal substrate 2 (thickness: 600 μm, specific resistance: 0.015 Ω · cm, B concentration: 4 × 10 18 / cm 3 ) On the surface 2b (main surface), a Si single crystal layer 4 (thickness: 2 μm, specific resistance: 0.015 Ω · cm, B on the surface of the Si single crystal layer 4 is formed by MOCVD (growth temperature 1150 ° C.) using silane gas. Concentration: 0.5 × 10 18 / cm 3 ) was formed. Thereafter, a total of 75 pairs of the initial growth layer 6 (AlN material, thickness: 100 nm) and the superlattice laminate 7 (AlN (thickness: 4 nm) and Al 0.15 Ga 0.85 N (thickness: 25 nm) are combined. The layer 4 is grown to form the buffer 4, and the channel layer 5 a (GaN material, thickness: 0.75 μm) and the electron supply layer 5 b (Al 0.15 Ga 0.85 N material, thickness: on the superlattice laminate 7: 40 nm) is epitaxially grown to form a main laminate 5 having a HEMT structure, and a sample is obtained.
When the pit density on the surface of the electron supply layer 5b was measured using a surface defect observation apparatus (CS-20), the pit density at 10 measurement points on the wafer was 0.5 to 1.0 / cm 2. The average per sheet was 0.8 / cm 2 .

(実施例2)
Si単結晶基板2として比抵抗が0.008Ω・cm、B濃度が1×1019/cmの基板を使用した以外は、実施例1と同様の構造を同条件にて形成し、試料を得た。
電子供給層5b表面のピット密度を測定したところ、ウエハ上の測定点10箇所のピット密度は0.5〜1.0/cmであり、ウエハ1枚あたりの平均は0.8/cmであった。
(Example 2)
A structure similar to that of Example 1 was formed under the same conditions except that a substrate having a specific resistance of 0.008 Ω · cm and a B concentration of 1 × 10 19 / cm 3 was used as the Si single crystal substrate 2. Obtained.
When the pit density on the surface of the electron supply layer 5b was measured, the pit density at 10 measurement points on the wafer was 0.5 to 1.0 / cm 2 , and the average per wafer was 0.8 / cm 2. Met.

(比較例1)
Si単結晶層4を形成しなかった以外は、実施例1と同様の構造を同条件にて形成し、試料を得た。
電子供給層5b表面のピット密度を測定したところ、ウエハ上の測定点10箇所のピット密度は2.0〜5.0/cmであり、ウエハ1枚あたりの平均は3.0/cmであった。
(Comparative Example 1)
A sample was obtained by forming the same structure as in Example 1 under the same conditions except that the Si single crystal layer 4 was not formed.
When the pit density on the surface of the electron supply layer 5b was measured, the pit density at 10 measurement points on the wafer was 2.0 to 5.0 / cm 2 , and the average per wafer was 3.0 / cm 2. Met.

(比較例2)
Si単結晶層4を形成しなかった以外は、実施例2と同様の構造を同条件にて形成し、試料を得た。
電子供給層5b表面のピット密度を測定したところ、ウエハ上の測定点10箇所のピット密度は2.0〜100/cmであり、ウエハに局所的なピットの大量発生が生じていた。
(Comparative Example 2)
A sample was obtained by forming the same structure as in Example 2 under the same conditions except that the Si single crystal layer 4 was not formed.
When the pit density on the surface of the electron supply layer 5b was measured, the pit density at 10 measurement points on the wafer was 2.0 to 100 / cm 2 , and a large number of local pits were generated on the wafer.

(実施例3)
実施例1のSi単結晶基板2を、熱酸化することにより基板の両面にSi酸化物層を形成後、主面と反対側の裏面2aにレジストを塗布し、BHF溶液により主面2bのSi酸化物層を除去した。その後、アセトンを用いてレジストを除去することにより、裏面2aにSi酸化物層3(厚さ:0.3μm)を有するSi基板を形成した。その後、主面2b上に、シランガスを用いたMOCVD法により実施例1と同様のSi単結晶層を形成した。
その後、実施例1と同様にして主面上のHEMT構造の主積層体5を形成し、試料を得た。
表面欠陥観察装置(CS-20)を用いて電子供給層5b表面のピット密度を測定したところ、ピット密度はウエハ1枚(測定点10箇所)あたりの平均で0.9/cmであった。
(Example 3)
The Si single crystal substrate 2 of Example 1 is thermally oxidized to form Si oxide layers on both surfaces of the substrate, and then a resist is applied to the back surface 2a opposite to the main surface, and the Si surface of the main surface 2b is coated with a BHF solution. The oxide layer was removed. Thereafter, the resist was removed using acetone to form a Si substrate having a Si oxide layer 3 (thickness: 0.3 μm) on the back surface 2a. Thereafter, a Si single crystal layer similar to that in Example 1 was formed on the main surface 2b by MOCVD using silane gas.
Then, the main laminated body 5 of the HEMT structure on a main surface was formed like Example 1, and the sample was obtained.
When the pit density on the surface of the electron supply layer 5b was measured using a surface defect observation apparatus (CS-20), the pit density was 0.9 / cm 2 on average per one wafer (10 measurement points). .

本発明によれば、B濃度が高いSi単結晶基板を用いても、ピットの発生を抑制することができる電子デバイス用エピタキシャル基板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses Si single crystal substrate with high B density | concentration, the epitaxial substrate for electronic devices which can suppress generation | occurrence | production of a pit can be provided.

また、本発明の電子デバイス用エピタキシャル基板の製造方法によれば、B濃度が高いSi単結晶基板であっても、ピット密度が小さい電子デバイス用エピタキシャル基板を製造することができる。   Further, according to the method for manufacturing an epitaxial substrate for electronic devices of the present invention, an epitaxial substrate for electronic devices having a low pit density can be manufactured even with a Si single crystal substrate having a high B concentration.

1 電子デバイス用エピタキシャル基板
2 Si単結晶基板
2a 裏面
2b 主面
3 不純物拡散抑制層
4 Si単結晶層
5 主積層体
5a チャネル層
5b 電子供給層
6 初期成長層
7 超格子積層体
7a 第1層
7b 第2層
DESCRIPTION OF SYMBOLS 1 Epitaxial substrate for electronic devices 2 Si single crystal substrate 2a Back surface 2b Main surface 3 Impurity diffusion suppression layer 4 Si single crystal layer 5 Main laminate 5a Channel layer 5b Electron supply layer 6 Initial growth layer 7 Superlattice laminate 7a First layer 7b 2nd layer

Claims (14)

B濃度が2×1018/cm以上であるSi単結晶基板と、前記Si単結晶基板の主面上に形成されたSi単結晶層を有し、前記Si単結晶層の表面のB濃度がSi単結晶基板のB濃度よりも小さいIII族窒化物半導体成長用Si単結晶基板。 A Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more, and a Si single crystal layer formed on a main surface of the Si single crystal substrate, wherein the B concentration on the surface of the Si single crystal layer A Si single crystal substrate for growing a group III nitride semiconductor having a B concentration lower than that of the Si single crystal substrate. 前記Si単結晶層の表面のB濃度が0.1〜0.7×1018/cmである請求項1に記載のIII族窒化物半導体成長用Si単結晶基板。 2. The Si single crystal substrate for group III nitride semiconductor growth according to claim 1, wherein the B concentration of the surface of the Si single crystal layer is 0.1 to 0.7 × 10 18 / cm 3 . 抵抗値が
0.03Ωcm以下であるSi単結晶基板と、前記Si単結晶基板の主面上に形成されたSi単結晶層を有し、前記Si単結晶層の抵抗値が前記Si単結晶基板の抵抗値より大きいIII族窒化物半導体成長用Si単結晶基板。
A Si single crystal substrate having a resistance value of 0.03 Ωcm or less, and a Si single crystal layer formed on a main surface of the Si single crystal substrate, wherein the Si single crystal layer has a resistance value of the Si single crystal substrate Si single crystal substrate for group III nitride semiconductor growth larger than resistance value of.
前記Si単結晶層の表面の抵抗値が0.05Ωcmより大きい請求項3に記載のIII族窒化物半導体成長用Si単結晶基板。 The Si single crystal substrate for group III nitride semiconductor growth according to claim 3, wherein a resistance value of a surface of the Si single crystal layer is larger than 0.05 Ωcm. 前記Si単結晶基板の主面とは反対側の裏面に不純物拡散抑制層を有する請求項1または3に記載のIII族窒化物半導体成長用Si単結晶基板   4. The Si single crystal substrate for group III nitride semiconductor growth according to claim 1, further comprising an impurity diffusion suppression layer on a back surface opposite to the main surface of the Si single crystal substrate. B濃度が2×1018/cm以上であるSi単結晶基板と、前記Si単結晶基板の主面上のSi単結晶層を有し、前記Si単結晶層の表面はB濃度が0.1〜0.7×1018/cmであり、前記Si単結晶層上に形成した複数層のIII族窒化物層をエピタキシャル成長させて形成した、絶縁層としてのバッファおよび前記バッファ上の主積層体とを具え、横方向を電流導通方向とする電子デバイス用エピタキシャル基板。 A Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more and a Si single crystal layer on a main surface of the Si single crystal substrate, and the surface of the Si single crystal layer has a B concentration of 0.1. 1 to 0.7 × 10 18 / cm 3 , a buffer as an insulating layer formed by epitaxially growing a plurality of group III nitride layers formed on the Si single crystal layer, and a main stack on the buffer An epitaxial substrate for an electronic device comprising a body and having a lateral direction as a current conduction direction. 前記Si単結晶基板の主面とは反対側の裏面に不純物拡散抑制層を有する請求項6に記載の電子デバイス用エピタキシャル基板。 The epitaxial substrate for electronic devices of Claim 6 which has an impurity diffusion suppression layer in the back surface on the opposite side to the main surface of the said Si single crystal substrate. B濃度が2×1018/cm以上であるSi単結晶基板の主面上に、気相成長によりB濃度がSi単結晶基板より少ないSi単結晶層を形成する工程を有する窒化物半導体成長用Si単結晶基板の製造方法。 Nitride semiconductor growth including a step of forming a Si single crystal layer having a B concentration lower than that of the Si single crystal substrate by vapor phase growth on the main surface of the Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more. Method for manufacturing Si single crystal substrate. 前記Si単結晶層の表面のB濃度が0.1〜0.7×1018/cmである請求項8に記載の窒化物半導体成長用Si単結晶基板の製造方法。 The method for producing a Si single crystal substrate for growing a nitride semiconductor according to claim 8, wherein the B concentration of the surface of the Si single crystal layer is 0.1 to 0.7 × 10 18 / cm 3 . 抵抗値が
0.03Ωcm以下であるSi単結晶基板の主面上に、気相成長により抵抗値が前記Si単結晶基板の抵抗値より大きいSi単結晶層を形成する工程を有する窒化物半導体成長用Si単結晶基板の製造方法。
Nitride semiconductor growth having a step of forming a Si single crystal layer having a resistance value larger than the resistance value of the Si single crystal substrate by vapor phase growth on the main surface of the Si single crystal substrate having a resistance value of 0.03 Ωcm or less Method for manufacturing Si single crystal substrate.
前記Si単結晶層の表面の抵抗値が0.05Ωcmより大きい請求項10に記載の窒化物半導体成長用Si単結晶基板の製造方法。 The method for producing a Si single crystal substrate for growing a nitride semiconductor according to claim 10, wherein a resistance value of a surface of the Si single crystal layer is larger than 0.05 Ωcm. 前記Si単結晶層の成長前に、前記Si単結晶基板の主面とは反対側の裏面に不純物拡散抑制層を形成する工程を有する請求項8または10に記載の窒化物半導体成長用Si単結晶基板の製造方法。 11. The Si single crystal for nitride semiconductor growth according to claim 8, further comprising a step of forming an impurity diffusion suppression layer on a back surface opposite to the main surface of the Si single crystal substrate before the growth of the Si single crystal layer. A method for producing a crystal substrate. B濃度が2×1018/cm以上であるSi単結晶基板の主面上に気相成長により表面のB濃度が0.1〜0.7×1018/cmであるSi単結晶層を形成する工程と、
前記Si単結晶層上に複数層のIII族窒化物層をエピタキシャル成長させて形成した、絶縁層としてのバッファと、前記バッファ上に主積層体とを具え、横方向を電流導通方向とする電子デバイス用エピタキシャル基板の製造方法。
A Si single crystal layer having a B concentration of 0.1 to 0.7 × 10 18 / cm 3 on the main surface of the Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more by vapor phase growth. Forming a step;
An electronic device comprising a buffer as an insulating layer formed by epitaxially growing a plurality of group III nitride layers on the Si single crystal layer, and a main laminate on the buffer, wherein the lateral direction is a current conduction direction Of manufacturing an epitaxial substrate for use.
B濃度が2×1018/cm以上であるSi単結晶基板の両面を熱酸化して酸化膜を形成する工程と、裏面の酸化膜を保持して裏面とは反対側の主面の酸化膜を除去する工程と、酸化膜を除去した主面上に気相成長により表面のB濃度が0.1〜0.7×1018/cmであるSi単結晶層を形成する工程と、
前記Si単結晶層上に複数層のIII族窒化物層をエピタキシャル成長させて形成した、絶縁層としてのバッファと、前記バッファ上の主積層体とを具え、横方向を電流導通方向とする電子デバイス用エピタキシャル基板の製造方法。
A step of thermally oxidizing both surfaces of a Si single crystal substrate having a B concentration of 2 × 10 18 / cm 3 or more to form an oxide film, and an oxidation of the main surface opposite to the back surface while holding the back surface oxide film A step of removing the film, a step of forming a Si single crystal layer having a surface B concentration of 0.1 to 0.7 × 10 18 / cm 3 by vapor phase growth on the main surface from which the oxide film has been removed,
An electronic device comprising a buffer as an insulating layer formed by epitaxially growing a plurality of group III nitride layers on the Si single crystal layer, and a main laminate on the buffer, the lateral direction being a current conduction direction Of manufacturing an epitaxial substrate for use.
JP2012163263A 2012-07-24 2012-07-24 Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE Pending JP2014022698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012163263A JP2014022698A (en) 2012-07-24 2012-07-24 Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012163263A JP2014022698A (en) 2012-07-24 2012-07-24 Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE

Publications (1)

Publication Number Publication Date
JP2014022698A true JP2014022698A (en) 2014-02-03

Family

ID=50197221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163263A Pending JP2014022698A (en) 2012-07-24 2012-07-24 Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE

Country Status (1)

Country Link
JP (1) JP2014022698A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236093A (en) * 2013-05-31 2014-12-15 サンケン電気株式会社 Silicon-based substrate, semiconductor device and method for manufacturing semiconductor device
JP2015002329A (en) * 2013-06-18 2015-01-05 シャープ株式会社 Epitaxial wafer, method for manufacturing the same, and nitride semiconductor device
WO2016088348A1 (en) * 2014-12-04 2016-06-09 Dowaエレクトロニクス株式会社 Iii nitride semiconductor epitaxial substrate and method for manufacturing the same
WO2019151441A1 (en) * 2018-02-01 2019-08-08 住友化学株式会社 Semiconductor wafer and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140506A (en) * 1997-07-18 1999-02-12 Shin Etsu Handotai Co Ltd Manufacture of epitaxial wafer
JP2010153817A (en) * 2008-11-27 2010-07-08 Dowa Electronics Materials Co Ltd Epitaxial substrate for electronic device and method of manufacturing the same
JP2011023664A (en) * 2009-07-17 2011-02-03 Dowa Electronics Materials Co Ltd Epitaxial substrate for electronic device using transverse direction as direction of current conduction and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140506A (en) * 1997-07-18 1999-02-12 Shin Etsu Handotai Co Ltd Manufacture of epitaxial wafer
JP2010153817A (en) * 2008-11-27 2010-07-08 Dowa Electronics Materials Co Ltd Epitaxial substrate for electronic device and method of manufacturing the same
JP2011023664A (en) * 2009-07-17 2011-02-03 Dowa Electronics Materials Co Ltd Epitaxial substrate for electronic device using transverse direction as direction of current conduction and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236093A (en) * 2013-05-31 2014-12-15 サンケン電気株式会社 Silicon-based substrate, semiconductor device and method for manufacturing semiconductor device
JP2015002329A (en) * 2013-06-18 2015-01-05 シャープ株式会社 Epitaxial wafer, method for manufacturing the same, and nitride semiconductor device
WO2016088348A1 (en) * 2014-12-04 2016-06-09 Dowaエレクトロニクス株式会社 Iii nitride semiconductor epitaxial substrate and method for manufacturing the same
JP2016111138A (en) * 2014-12-04 2016-06-20 Dowaエレクトロニクス株式会社 Group iii nitride semiconductor epitaxial substrate and manufacturing method of the same
WO2019151441A1 (en) * 2018-02-01 2019-08-08 住友化学株式会社 Semiconductor wafer and method for producing same

Similar Documents

Publication Publication Date Title
US8426893B2 (en) Epitaxial substrate for electronic device and method of producing the same
JP5627649B2 (en) Method for manufacturing nitride semiconductor crystal layer
US10388517B2 (en) Epitaxial substrate for electronic device and method of producing the same
JP5818853B2 (en) Vertical nitride semiconductor device using n-type aluminum nitride single crystal substrate
WO2010131573A1 (en) Insulating gate type bipolar transistor
TWI712075B (en) Compound semiconductor substrate
CN103066103B (en) The substrate breakdown voltage of the group III-nitride on silicon substrate is improved one's methods
WO2009084238A1 (en) Semiconductor substrate, method for manufacturing semiconductor substrate, and electronic device
KR101321660B1 (en) Epitaxial substrate for electronic device using transverse direction as direction of current conduction and manufacturing method therefor
US8946863B2 (en) Epitaxial substrate for electronic device comprising a high resistance single crystal substrate on a low resistance single crystal substrate, and method of manufacturing
WO2009084242A1 (en) Semiconductor substrate and method for manufacturing semiconductor substrate
JP2011243644A (en) Group iii nitride semiconductor electronic device, and method of manufacturing group iii nitride semiconductor electronic device
CN116314278B (en) High electron mobility transistor epitaxial structure, preparation method and HEMT device
JP4276135B2 (en) Nitride semiconductor growth substrate
JP2013239474A (en) Epitaxial substrate, semiconductor device, and method of manufacturing semiconductor device
JP2014022698A (en) Si SUBSTRATE FOR NITRIDE SEMICONDUCTOR GROWTH, EPITAXIAL SUBSTRATE FOR ELECTRONIC DEVICE USING THE SAME AND MANUFACTURING METHODS OF THOSE
JP4888537B2 (en) Group III nitride semiconductor laminated wafer and group III nitride semiconductor device
JP5378128B2 (en) Epitaxial substrate for electronic device and epitaxial substrate for group III nitride electronic device
JPWO2011077797A1 (en) Silicon carbide substrate
JP2014241387A (en) Substrate, method of manufacturing the same, and electronic equipment
JP4933513B2 (en) Nitride semiconductor growth substrate
JP2015103665A (en) Nitride semiconductor epitaxial wafer and nitride semiconductor
JP2012064977A (en) Group iii nitride semiconductor stacked wafer and group iii nitride semiconductor device
JP6108609B2 (en) Nitride semiconductor substrate
JP4972879B2 (en) Field effect transistor, semiconductor device, and epitaxial substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108