JP2012242343A - 加速度センサー及び加速度検出装置 - Google Patents

加速度センサー及び加速度検出装置 Download PDF

Info

Publication number
JP2012242343A
JP2012242343A JP2011115477A JP2011115477A JP2012242343A JP 2012242343 A JP2012242343 A JP 2012242343A JP 2011115477 A JP2011115477 A JP 2011115477A JP 2011115477 A JP2011115477 A JP 2011115477A JP 2012242343 A JP2012242343 A JP 2012242343A
Authority
JP
Japan
Prior art keywords
acceleration
acceleration sensor
fixed
substrate piece
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011115477A
Other languages
English (en)
Inventor
Jun Watanabe
潤 渡辺
Kazuyuki Nakasendo
和之 中仙道
Takahiro Kameda
高弘 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011115477A priority Critical patent/JP2012242343A/ja
Priority to US13/476,325 priority patent/US8939027B2/en
Priority to CN2012101628076A priority patent/CN102798732A/zh
Publication of JP2012242343A publication Critical patent/JP2012242343A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Abstract

【課題】加速度検出感度、加速度検出精度が高い加速度センサー及び加速度検出装置の提供。
【解決手段】加速度センサー1は、加速度検出素子10と、加速度検出素子10を支持する第1支持面5a及び第2支持面7aを有した支持基板4と、を備え、加速度検出素子10は、加速度検出部20と、第1被固定部14a及び第2被固定部14cと、加速度検出部20に第1被固定部14a及び第2被固定部14cを夫々連結する第1ないし第4の梁12a〜12dと、を備え、支持基板4は、固定側の第1基板片5と、可動側の第2基板片7と、第1基板片5と第2基板片7とを連結する蝶番部8と、を備え、加速度検出部20は、長手方向が検出軸9方向と直交する方向に沿って延び、且つ短手方向中心部が蝶番部8の短手方向の範囲と重なり、第2基板片7は、蝶番部8の長手方向に沿った長さL1が蝶番部8の短手方向に沿った長さL2よりも長い。
【選択図】図1

Description

本発明は、加速度センサー及び加速度検出装置に関し、特に加速度が加えられたときに生じる力の方向を変換すると共に、この力を増大させるように改善した加速度センサー、及び加速度検出装置に関するものである。
圧電振動素子を使用した加速度センサーは、圧電振動素子に検出軸方向の力が作用すると圧電振動素子の共振周波数が変化し、この共振周波数の変化から加速度センサーに印加される加速度を検出するように構成されている。
特許文献1には、フレーム状の平行四辺形枠の一方の対角に双音叉型圧電振動素子を接合し、他方の対角に圧縮力、または伸長力を加える構成の加速度計及び製造方法が開示されている。
ここで、従来(特許文献1)の加速度計について図を用いて説明する。なお、図6は、従来の加速度計の概略構成を示す模式断面図。図7は、従来の加速度計の中央素子の構成を示す模式図であり、(a)は平面図、(b)は断面図。図8は、従来の加速度計のトランスジューサー素子の構成を示す模式平面図である。
図6に示すように、加速度計は、検知軸(検出軸)119に沿って可動するマス116が屈曲部118によって支持体117に結合されるように構成されている。マス116と支持体117との間に接続された一対の力検知クリスタル121,122は、加えられた力に応じて周波数(共振周波数)が変動する。これらの力検知クリスタル121,122は、周波数発振器123,124で励振され、2つの周波数発振器123,124の信号が、加算回路126に入力され、2つの周波数の差に対応した出力信号を出力する。
加速度計は、水晶(石英結晶)などで形成された5つのディスク状素子が、検知軸119に沿って互いに積層されて構成されている。即ち、加速度計は、図7に示す中央素子127と、中央素子127の両側に配置される図8に示す一対のトランスジューサー素子128と、これらトランスジューサー素子128の両外側の一対の蓋(図示せず)と、を有している。
図7に示すように、中央素子127は、固定部134と、質量を有する可動部(震性マス)133とを備えている。可動部133は、検知軸119(図6参照)に対して垂直に延びた丁番軸137の回りに可動できるように、一対の屈曲部136によって固定部134に取りつけられている。可動部133と固定部134とは、固定部134が取りつけられる載置リング139の内部に配置される。隔離リング141はこの載置リング139の外側に同心状に配置されており、フレキシブルなアーム142が、載置リング139と隔離リング141とを接続している。なお、中央素子127は、これらが一体構造として形成されている。
図8に示すように、トランスジューサー素子128は、載置リング146を有し、この載置リング146の内側には、力検知素子(力検知クリスタル)147と結合プレート148とが配置される。力検知素子147は、4つのリンク152から成る四辺形フレーム149の一方の相対する対角に双音叉型圧電振動素子151を連接し、他方の相対する対角にパッド154,156を備えている。一方のパッド154は、結合プレート148と一体的に形成され、他方のパッド156は、載置リング146と一体的に形成されている。
2つのトランスジューサー素子128の各結合プレート148は、図7の中央素子127の可動部133の両主表面138と接着剤によって結合され、トランスジューサー素子128の載置リング146は、接着剤によって中央素子127の載置リング139に接合される。
図示しない2個の蓋は、その一方の側に窪みを有した円形に形成され、密閉構造となるが、内部にガスを入れ制動プレートとしても機能する。窪みは各トランスジューサー素子128に面しており、蓋の外周部は接着剤によってトランスジューサー素子128の載置リング146に接合されている。
特許第2851566号公報
しかしながら、特許文献1に開示されている加速度計は、1つの中央素子127と、2つのトランスジューサー素子128と、2つの蓋を用いて構成され、部品点数が極めて多いという問題があった。更に、中央素子127及びトランスジューサー素子128は極めて複雑な構造をしており、これらの素子の歩留まりも低いことが想定され、組み立てられた加速度計の調整に多くの工数を要する虞もあり、加速度計のコストも極めて高価になるという問題があった。
また、上記加速度計は、内部に制動用のガスが封入されているので、トランスジューサー素子128の双音叉型圧電振動素子151のQ値が劣化し、励振しづらくなり加速度検出感度が低下するという問題があった。
また、上記加速度計は、可動部133の形状によっては、加速度検出時に可動部133が外部の振動源と共振してしまい、誤検出や、加速度検出精度などの加速度検出特性が低下するという問題があった。
本発明の目的は、構造が単純で加速度検出感度、加速度検出精度が高く、製造コストの低減が可能な加速度センサー(加速度計)、及び加速度検出装置を提供することにある。
本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]本適用例にかかる加速度センサーは、加速度検出素子と、該加速度検出素子を支持する第1支持面及び第2支持面を有した支持基板と、を備え、前記加速度検出素子は、検出軸方向の力に応じた電気信号を生成する加速度検出部と、前記加速度検出部を前記支持基板で支持するために前記第1支持面及び前記第2支持面に夫々固定される第1被固定部及び第2被固定部と、前記加速度検出部に前記第1被固定部及び前記第2被固定部を夫々連結する第1ないし第4の梁と、を備え、前記支持基板は、前記第1被固定部が固定される前記第1支持面を有する固定側の第1基板片と、該第1基板片と並んで配置され、前記第2被固定部が固定される前記第2支持面を有する可動側の第2基板片と、前記第1基板片と前記第2基板片との互いに対向する側面間を連結して前記第2基板片を厚さ方向へ揺動させる蝶番部と、を備え、前記加速度検出部は、長手方向が、前記検出軸方向と直交する方向である前記蝶番部の長手方向に沿い、且つ短手方向中心部が、前記蝶番部の短手方向の範囲と重なるように、前記第1支持面及び前記第2支持面から空隙を有して配置され、前記第1の梁は、前記第1被固定部と前記加速度検出部の長手方向一端部とを連結し、前記第2の梁は、前記第1被固定部と前記加速度検出部の長手方向他端部とを連結し、前記第3の梁は、前記第2被固定部と前記加速度検出部の長手方向一端部とを連結し、前記第4の梁は、前記第2被固定部と前記加速度検出部の長手方向他端部とを連結し、前記支持基板の前記第2基板片は、前記蝶番部の長手方向に沿った長さが、前記蝶番部の短手方向に沿った長さよりも長いことを特徴とする。
これによれば、加速度センサーは、支持基板が固定側の平板状の第1基板片と、可動側の平板状の第2基板片と、両者を連結する蝶番部とを備えている。そして、加速度センサーは、加速度検出素子が、第1ないし第4の梁によって、例えば、略平行四辺形のフレーム部を形成し、その一方の対角に第1被固定部及び第2被固定部を有し、他方の対角に加速度検出部が連結された構成である。
これらのことから、加速度センサーは、支持基板及び加速度検出素子とも、例えば、平板状の圧電基板を用いて、フォトリソグラフィー技術、エッチング技術を適用して寸法精度の良い支持基板及び加速度検出素子を形成することができ、これらを用いて小型で低コストの加速度センサーを量産することが可能になる。
加えて、加速度センサーは、第1ないし第4の梁が形成するフレーム部が加速度印加により生じる力の方向を90度変換すると共に、力を増大するように作用するので、小さい加速度も検出でき(高感度)、検出精度が高い加速度センサーを提供することができる。
また、加速度センサーは、支持基板の第2基板片における蝶番部の長手方向に沿った長さが、蝶番部の短手方向に沿った長さよりも長いことから、上記と寸法関係が逆の構成の支持基板と比較して、第2基板片の共振周波数を高くすることができる。
この結果、加速度センサーは、加速度検出時に第2基板片が外部の振動源と共振し難くなり、誤検出や、加速度検出精度などの加速度検出特性の低下を回避することができる。
[適用例2]上記適用例にかかる加速度センサーにおいて、前記第2基板片の前記第2支持面及び前記第2支持面の反対側の面の少なくとも一方には、質量部が配置されていることが好ましい。
これによれば、加速度センサーは、第2基板片の第2支持面及び第2支持面の反対側の面の少なくとも一方には、質量部が配置されていることから、第2基板片の質量(慣性力)を増大させることができる。
この結果、加速度センサーは、加速度検出時の感度を向上させることができる。
[適用例3]上記適用例にかかる加速度センサーにおいて、前記第1ないし第4の梁は、平面視で、夫々全長に渡って同一幅の帯状をなしていることが好ましい。
これによれば、加速度センサーは、第1ないし第4の梁が、平面視で(第1支持面及び第2支持面と直交する方向から見て)、夫々全長に渡って同一幅の帯状をなしていることから、加速度印加により生じる力の伝達効率がよく、小さい加速度を感度よく検出することが可能となる。
[適用例4]上記適用例にかかる加速度センサーにおいて、前記第1基板片及び前記第2基板片と前記蝶番部とが一体で形成され、且つ前記第1基板片の前記第1支持面と前記第2基板片の前記第2支持面とが同一平面上にあることが好ましい。
これによれば、加速度センサーは、第1基板片及び第2基板片と蝶番部とが一体で形成され、第1基板片の第1支持面と第2基板片の第2支持面とが同一平面上にあることから、第1基板片及び第2基板片と蝶番部とを、フォトリソグラフィー技術及びエッチング技術を用いて、例えば、圧電基板から一体で精度よく形成できる。
この結果、加速度センサーは、検出感度及び検出精度を向上させることができる。
また、加速度センサーは、上記技術を用いれば、第1基板片の第1支持面と第2基板片の第2支持面とを同一平面上にすることは容易であることから、支持基板と加速度検出素子との接着による歪を最小にでき、製造の歩留まり及び加速度検出精度を向上させることができる。
[適用例5]上記適用例にかかる加速度センサーにおいて、平面視で、前記加速度検出部の前記一端部及び前記他端部の短手方向の中心同士を結んだ中心線が、前記蝶番部の一端部及び他端部の短手方向の中心同士を結んだ中心線と重なることが好ましい。
これによれば、加速度センサーは、平面視で、加速度検出部の一端部及び他端部の短手方向の中心同士を結んだ中心線が、蝶番部の一端部及び他端部の短手方向の中心同士を結んだ中心線と重なることから、加速度検出素子の加速度検出感度を最もよくすることができる(換言すれば、同一の加速度が印加された場合における加速度検出部の周波数変化量を最も大きくすることができる)。
なお、この構成は、発明者らの有限要素法を用いたシミュレーションによって得られた知見に基づくものである。
[適用例6]上記適用例にかかる加速度センサーにおいて、前記第1ないし第4の梁は、いずれも直線状であり、前記第1被固定部において前記第1の梁と前記第2の梁とのなす角度、及び前記第2被固定部において前記第3の梁と前記第4の梁とのなす角度は、夫々鈍角であることが好ましい。
これによれば、加速度センサーは、第1被固定部において第1の梁と第2の梁とのなす角度、及び第2被固定部において第3の梁と前記第4の梁とのなす角度が、夫々鈍角であることから、第1の梁と第3の梁とのなす角度、及び第2の梁と第4の梁とのなす角度が鋭角になり、第2基板片に加わる力の方向を90度変換し、且つ力の大きさを増大させることができる。
[適用例7]上記適用例にかかる加速度センサーにおいて、前記第1ないし第4の梁は、いずれも単一または複数の円弧が組み合わされた円弧状であり、前記第1の梁と前記第2の梁、及び前記第3の梁と前記第4の梁とは、夫々半円状または半楕円状に連結されていることが好ましい。
これによれば、加速度センサーは、第1の梁と第2の梁、及び第3の梁と第4の梁とが、夫々半円状または半楕円状に連結されていることから、第2基板片に加わる力の方向を90度変換し、且つ力の大きさを増大させることができる。
[適用例8]上記適用例にかかる加速度センサーにおいて、前記第1被固定部の少なくとも一部は、平面視で前記第1の梁と前記第2の梁との交差部から外側に突出し、前記第2被固定部の少なくとも一部は、平面視で前記第3の梁と第4の梁との交差部から外側に突出した構成を備えていることが好ましい。
これによれば、加速度センサーは、第1被固定部の一部が、第1の梁と第2の梁との交差部から外側に突出し、第2被固定部の一部が、第3の梁と第4の梁との交差部から外側に突出した構成を備えていることから、加速度印加時に第2基板片に加わる力を各梁に均等に伝達することができる。
[適用例9]上記適用例にかかる加速度センサーにおいて、前記加速度検出部は、前記蝶番部の長手方向に沿って延びる少なくとも一以上の振動梁と、該振動梁の両端に接続された一対の基部と、を備えたことが好ましい。
これによれば、加速度センサーは、加速度検出部が蝶番部の長手方向に沿って延びる少なくとも一以上の振動梁と、該振動梁の両端に接続された一対の基部と、を備えたことから、例えば、加わる加速度による第2基板片の変位に応じて振動梁が伸縮し、この際に生じる引張り力、圧縮力による振動梁の振動周波数の変化を加速度に変換するというシンプルな構成が可能となる。
[適用例10]本適用例にかかる加速度検出装置は、適用例1ないし適用例9のいずれか一例に記載の加速度センサーと、前記加速度センサーの加速度検出素子を励振する発振回路と、前記発振回路の出力周波数をカウントするカウンターと、前記カウンターの信号を処理する演算回路を有するICと、を備えたことを特徴とする。
これによれば、加速度検出装置は、上記適用例1ないし適用例9のいずれか一例に記載の加速度センサーを備えたことから、上記適用例1ないし適用例9のいずれか一例に記載された効果(例えば、加速度検出感度の向上)を奏する加速度検出装置を提供することができる。
第1実施形態の加速度センサー1の概略構成を示す模式図であり、(a)は平面図、(b)はA−A線における断面図。 双音叉型圧電振動素子を説明する模式図であり、(a)は振動モードの平面図、(b)は振動腕に形成された励振電極と、ある瞬間に発生する電荷の符号を示す平面図、(c)は振動腕の短手方向に沿った断面図兼励振電極の結線図。 第1ないし第4の梁が形成するフレーム部の作用を説明する模式図。 (a)、(b)、(c)は、加速度センサーの支持基板の蝶番部と、加速度検出素子と、の相互の位置関係を示した要部平面図。 第2実施形態の加速度検出装置の構成を示すブロック図。 従来の加速度計の概略構成を示す模式断面図。 従来の加速度計の中央素子の構成を示す模式図であり、(a)は平面図、(b)はQ−Q線における断面図。 従来の加速度計のトランスジューサー素子の構成を示す模式平面図。
以下、本発明を具体化した実施形態について図面を参照して説明する。
(第1実施形態)
最初に、加速度センサーの一例について説明する。
図1は、第1実施形態の加速度センサー1の概略構成を示す模式図であり、図1(a)は平面図、図1(b)はA−A線における断面図である。なお、各構成要素の寸法比率は実際と異なる。
図1に示すように、加速度センサー1は、加速度検出素子10と、加速度検出素子10を支持する第1支持面5a及び第2支持面7aを有した支持基板4と、を備えている。
加速度検出素子10は、図1(b)に示す検出軸9方向の力に応じた電気信号を生成する加速度検出部20と、加速度検出部20を支持基板4で支持するために、第1支持面5a及び第2支持面7aに夫々固定される第1被固定部14a及び第2被固定部14cと、加速度検出部20に対して第1被固定部14a及び第2被固定部14cを夫々連結する第1ないし第4の梁12a,12b,12c,12dと、を備えている。
図1(b)に示すように、支持基板4は、固定する側の第1基板片5と、可動する側の第2基板片7と、第1基板片5と第2基板片7とを連結する蝶番部8と、を備えている。つまり、支持基板4は、加速度検出素子10の第1被固定部14aが固定される第1支持面5aを有する固定側の第1基板片5と、第1基板片5に並んで配置され、第2被固定部14cが固定される第2支持面7aを備えた可動側の第2基板片7と、第1基板片5と第2基板片7との互いに対向する側面間を連結して第2基板片7を厚さ方向(検出軸9方向)へ揺動させる蝶番部8と、を備えている。
蝶番部8は、第1基板片5及び第2基板片7の厚さより薄く形成され、第2基板片7が蝶番部8から撓むように構成されている。蝶番部8の断面形状は矩形状、台形状、円弧状などであり、第1基板片5及び第2基板片7の厚さ方向の略中央部に形成されている。
第1基板片5及び第2基板片7と蝶番部8とは、一体的に形成され、且つ第1基板片5の第1支持面5aと第2基板片7の第2支持面7aとが同一平面上にある。
第2基板片7は、蝶番部8の長手方向(紙面上下方向)に沿った長さL1が、蝶番部8の短手方向(紙面左右方向、第1基板片5と第2基板片7とを結ぶ方向)に沿った長さL2よりも長くなるように形成されている。
そして、第2基板片7の第2支持面7a及び第2支持面7aの反対側の面7bの少なくとも一方(ここでは両方)には、第2基板片7の自由端(蝶番部8のない側)寄りに一対の略直方体形状をした質量部40が配置されている。
質量部40には、例えば、Cu、Auなどの金属に代表される比較的比重の大きい材料が用いられている。
質量部40は、図示しない接着剤などにより第2基板片7に固定されている。なお、接着剤には、耐衝撃性に優れたシリコーン系接着剤が好ましく、熱応力抑制の観点から、接着箇所は一箇所とし、接着範囲は、所定の接着強度を確保しつつ、より狭い範囲とすることが好ましい。
加速度センサー1は、このように分割された2つの質量部40の代わりに、2つの質量部40が一体となった状態の質量部を用いても構わない。しかしながら、この場合は、接着強度の観点から質量部と第2基板片7との接着箇所を複数個所にすることが好ましい。
したがって、加速度センサー1は、熱応力抑制の観点からみれば、上述のように、分割された2つの質量部40を用いて、それぞれを第2基板片7と一箇所で接着(固定)した方が好ましいこととなる。
加速度検出素子10の第1ないし第4の梁12a〜12dは、フレーム状の平行四辺形、または菱形を構成しており(以下、フレーム部12という)、一方の対角部に第1被固定部14a及び第2被固定部14cが配置され、他方の対角部に第1基台部14b及び第2基台部14dが配置されている。
詳述すると、フレーム部12の第1の梁12aは、第1被固定部14aと第1基台部14bとを連結し、第2の梁12bは、第1被固定部14aと第2基台部14dとを連結している。更に、第3の梁12cは、第2被固定部14cと第1基台部14bとを連結し、第4の梁12dは、第2被固定部14cと第2基台部14dとを連結している。
これにより、加速度検出素子10の第1ないし第4の梁12a〜12dは、フレーム状の平行四辺形を構成していることになる。
加速度検出素子10の第1被固定部14a及び第2被固定部14cは、夫々支持基板4の第1支持面5a及び第2支持面7aに固定され、第2基板片7の揺動を第1ないし第4の梁12a〜12dを介して加速度検出部20に伝達するように構成されている。
第1ないし第4の梁12a〜12dは、いずれも直線状であり、第1被固定部14aにおいて第1の梁12aと第2の梁12bとのなす角度、及び第2被固定部14cにおいて第3の梁12cと第4の梁12dとのなす角度は、夫々鈍角であるように構成されている。
つまり、第1基台部14bにおける第1の梁12aと第3の梁12cとのなす角度θと、第2基台部14dにおける第2の梁12bと第4の梁12dとのなす角度θと、が鋭角であるフレーム部12は、第1被固定部14a及び第2被固定部14cに加わる力の方向を90度変換し、力の大きさを増大して加速度検出部20に加える働きをする。なお、角度θの値により力の増大率は変化する。
また、第1ないし第4の梁12a〜12dは、平面視において(第1支持面5a及び第2支持面7aと直交する方向から見て)、夫々全長に渡って同一幅の細幅帯状をなしている。
加速度検出部20は、フレーム部12の第1基台部14b及び第2基台部14dに、夫々第1支持片26a及び第2支持片26bにより連結され、フレーム部12と一体となり、加速度検出素子10を構成している。
加速度検出部20は、加速度センサー1の検出軸9方向と直交する方向へ延びる細長い構成であり、加速度検出素子10の第1被固定部14a及び第2被固定部14cを、支持基板4の第1支持面5a及び第2支持面7aに接着剤30を用いて固定する際に、加速度検出部20の短手方向中心部が、支持基板4の蝶番部8の短手方向の範囲と重なるように、蝶番部8の長手方向に沿って第1支持面5a及び第2支持面7aから空隙を有して配置されている。
なお、本実施形態では、平面視で、加速度検出部20の一端部及び他端部の短手方向の中心同士を結んだ中心線20cが、蝶番部8の一端部及び他端部の短手方向の中心同士を結んだ中心線8cと重なるように配置されている。
第1被固定部14aの少なくとも一部は、平面視で、第1及び第2の梁12a,12bの交差部よりもフレーム部12の外側に突出し、第2被固定部14cの少なくとも一部は、平面視で、第3及び第4の梁12c,12dの交差部よりもフレーム部12の外側に突出するように構成されている。
加速度検出部20は、例えば図1(a)に示すように、蝶番部8の長手方向に沿って延びる少なくとも一以上の振動梁としての一対の振動腕22a,22bと、振動腕22a,22bの両端に接続された一対の基部24a,24bと、を備えた双音叉型圧電振動素子が用いられている。
そして、加速度検出部20は、長手方向一端部としての基部24aが、第1支持片26a、第1基台部14bを介して第1の梁12aと第3の梁12cとに連結され、長手方向他端部としての基部24bが、第2支持片26b、第2基台部14dを介して第2の梁12bと第4の梁12dとに連結されている。
加速度検出部20が、双音叉型圧電振動素子で構成されている場合について、図2を用いて簡単に説明する。なお、図2は、双音叉型圧電振動素子を説明する模式図であり、図2(a)は振動モードの平面図、図2(b)は振動腕に形成された励振電極と、ある瞬間に発生する電荷の符号を示す平面図、図2(c)は振動腕の短手方向に沿った断面図兼励振電極の結線図である。
双音叉型圧電振動素子20は、図2(a)に示すような一対の基部24a,24b及び基部24a,24b間を連結する一対の振動腕22a,22bを備えた圧電基板からなる応力感応部と、圧電基板の振動領域に形成された励振電極と、を備えている。
図2(a)の破線は、双音叉型圧電振動素子20の振動姿態を示している。双音叉型圧電振動素子20は、一対の振動腕22a,22bの振動モードが、一対の振動腕22a,22bの長手方向に沿った中心軸に対して、互いに対称な振動モードで振動するように励振電極が配置されている。
双音叉型圧電振動素子20として、例えば、圧電基板に水晶基板を用いた双音叉型水晶振動素子は、引張り(伸張)・圧縮応力に対する感度が良好であり、高度計用、或いは深度計用の応力感応素子として使用した場合には、分解能力が優れているために僅かな気圧差から高度差、深度差を知ることができる。
双音叉型水晶振動素子の周波数温度特性は、上に凸の二次曲線であり、その頂点温度は、水晶結晶のX軸(電気軸)回りの回転角度に依存する。一般的には頂点温度が常温(25℃)になるように各パラメーターを設定する。
双音叉型水晶振動素子の一対の振動腕に外力Fを加えたときの共振周波数fFは、式(1)のように表わされる。
F=f0(1−(KL2F)/(2EI))1/2………(1)
ここで、f0は外力がないときの双音叉型水晶振動素子の共振周波数、Kは基本波モードによる定数(=0.0458)、Lは振動腕の長さ、Eは縦弾性定数、Iは断面2次モーメントである。
断面2次モーメントIはI=dw3/12より、式(1)は式(2)のように変形することができる。ここで、dは振動腕の厚さ、wは幅である。
F=f0(1−SFσ)1/2………(2)
但し、応力感度SFと、応力σとはそれぞれ次式で表される。
F=12(K/E)(L/w)2………(3)
σ=F/(2A)………(4)
ここで、Aは振動腕の断面積(=w・d)である。
以上の式から双音叉型水晶振動素子に作用する力Fを圧縮方向のとき負、引張り方向(伸張方向)を正としたとき、力Fと共振周波数fFとの関係は、力Fが圧縮力のときは共振周波数fFが減少し、力Fが引張り力(伸張力)のときは共振周波数fFが増加することになる。また応力感度SFは、振動腕のL/wの2乗に比例することになる。
図1に示した加速度検出部20は、上記の水晶基板を用いた双音叉型水晶振動素子に限らず、引張り・圧縮応力によって周波数が変化する振動素子であればどのような振動素子でもよい。例えば振動体に駆動部を接着した振動素子、シングルビーム振動素子、厚み滑り振動素子、SAW振動素子などを用いることが可能である。
ここで、フレーム部12の動作について、図3の第1ないし第4の梁が形成するフレーム部の作用を説明する模式図を用いて説明する。
第2被固定部14cに−X軸方向(紙面左方向)の力(ベクトル)faが、第1被固定部14aに+X軸方向(紙面右方向)の力(ベクトル)fbが、夫々作用するものとする。
−X軸方向の力faは、ベクトルの平行四辺形の法則により、第3の梁12cの延在方向の力fa2と、第4の梁12dの延在方向の力fa1とに分解され、+X軸方向の力fbは、第1の梁12aの延在方向の力fb2と、第2の梁12bの延在方向の力fb1とに分解される。
第2被固定部14c及び第1被固定部14aに作用するこれらの力fa1,fa2,fb1,fb2は、フレーム部12の第1基台部14bに、第3の梁12cの延在方向の力fa2と第1の梁12aの延在方向の力fb2とが作用し、第2基台部14dに、第4の梁12dの延在方向の力fa1と第2の梁12bの延在方向の力fb1とが作用するのと等価である。
第1基台部14bに働く力fa2とfb2とを、平行四辺形の法則により合成すると力F2となる。同様に、第2基台部14dに働く力fa1とfb1とを合成すると力F1となる。
フレーム部12の第1被固定部14a及び第2被固定部14cに作用する力fa,fbは、第1基台部14b及び第2基台部14dに作用する力F2,F1と等価である。つまり、フレーム部12は、力の方向を90度変換させると共に、力の大きさを増大させる機能を有している。
ここで、加速度センサー1の動作について説明する。
図1に戻って、加速度センサー1に検出軸9方向(Z軸方向)であって、+Z軸方向の加速度αが印加されると、支持基板4の第2基板片7には力F(=m×α、mは第2基板片7の質量+質量部40の質量)が働き、この力F(実線矢印F)により第2基板片7は蝶番部8から−Z軸方向に撓むことになる。
第2基板片7が−Z軸方向に撓むと、図示しない外部部材に固定された第1基板片5に固定されている第1被固定部14aには、+X軸方向の力が作用する。そして、第2基板片7に固定されている第2被固定部14cには、−X軸方向の力が作用する。つまり、第1被固定部14aには、+X軸方向の力f(実線矢印f)が作用し、第2被固定部14cには、−X軸方向の力f(実線矢印f)が作用することになる。
図3で説明したように、フレーム部12の第1被固定部14a及び第2被固定部14cに互いに逆向きで同じ大きさの力fが、X軸方向でフレーム部12の外向きに働くと、第1基台部14b及び第2基台部14dには、Y軸方向で互いにフレーム部12の中心部に向かう力F3,F4が働く。この力F3,F4により、加速度検出部20には圧縮力が加わる。
加速度検出部20が、例えば、双音叉型圧電振動素子の場合には、その周波数が減少する。
一方、加速度センサー1に−Z軸方向の加速度αが印加されると、支持基板4の第2基板片7には力F(破線矢印F)が働き、この力Fにより第2基板片7は蝶番部8から+Z軸方向に撓むことになる。
第2基板片7が+Z軸方向に撓むと、第1基板片5に固定されている第1被固定部14aには、−X軸方向の力が作用する。そして、第2基板片7に固定されている第2被固定部14cには、+X軸方向の力が作用する。つまり、第1被固定部14aには、−X軸方向の力f(破線矢印f)が作用し、第2被固定部14cには、+X軸方向の力f(破線矢印f)が作用することになる。
フレーム部12の第1被固定部14a及び第2被固定部14cに互いに逆向きで同じ大きさの力fが、X軸方向でフレーム部12の内向きに働くと、第1基台部14b及び第2基台部14dには、Y軸方向で互いにフレーム部12の外周部に向かう力F5,F6が働く。この力F5,F6により、加速度検出部20には引張り力が加わる。
加速度検出部20が、例えば、双音叉型圧電振動素子の場合には、その周波数が増加する。
このように、加速度センサー1は、加速度検出部20の周波数の増減により加速度αの方向が検出でき、周波数の変化量から加速度αの大きさが検出できる。
図4(a)、(b)、(c)は、加速度センサーの要部である支持基板の蝶番部と、第1基板片と第2基板片とに固定された加速度検出素子と、の相互の位置関係を示した要部平面図である。
図4(a)では、蝶番部8の中心線8cが、加速度検出素子10の加速度検出部20の中心線20cに対して、紙面左側(第2被固定部14c側)にずれた状態を示している。
図4(b)では、蝶番部8の中心線8cと、加速度検出部20の中心線20cとが重なっている(一致している)状態を示している。
図4(c)では、蝶番部8の中心線8cが、加速度検出部20の中心線20cに対して、紙面右側(第1被固定部14a側)にずれた状態を示している。
本実施形態では、発明者らが図4(a)、(b)、(c)の夫々の状態のセンサー感度(同一の力を加えた場合の周波数変化度、検出感度)を有限要素法を用いてシミュレーションした結果、図4(b)の状態が、フレーム部12の各梁に均等に応力が加わり、且つ蝶番部8の中央部に応力が集中し、センサー感度がもっとも大きいことが判明した。
また、図4(a)、(c)の状態では、フレーム部12の各梁に加わる応力は均等ではなく、且つ蝶番部8にかかる応力も中央部より端の方に分散し、センサー感度も小さくなることが判明した。
これに対し、特許文献1(特許第2851566号公報)の加速度計は、図8に示すように、丁番軸(蝶番の中心線)137と、双音叉型圧電振動素子151の中心線151cとが離れており、本実施形態の加速度センサー1とは、構成が大きく異なっている。
加速度センサー1の組み立ては、加速度検出素子10の第1被固定部14a及び第2被固定部14cに、例えば、残留歪の少ない低融点ガラスなどの接着剤30を塗布し、第1被固定部14a及び第2被固定部14cを、支持基板4の第1支持面5a及び第2支持面7aに、接着固定する。加速度センサー1は、通常、密閉容器に収容され、内部を真空にして用いられる。
支持基板4及び加速度検出素子10の製造方法の一例としては、平板状の圧電基板にフォトリソグラフィー技術、エッチング技術、蒸着技術を適用して製造する方法が挙げられる。圧電基板としては、水晶、タンタル酸リチウム、ニオブ酸リチウム、ランガサイトなどの圧電基板が挙げられる。例えば、水晶基板(水晶ウエハー)を用いる場合には、フォトリソグラフィー技術とエッチング技術については長年の実績があり、精度のよい加速度検出素子10及び支持基板4の製造が容易に行える。
上述したように、加速度センサー1は、支持基板4が固定側の平板状の第1基板片5と、可動側の平板状の第2基板片7と、両者を連結する蝶番部8とを備えている。そして、加速度センサー1は、加速度検出素子10が、第1ないし第4の梁12a〜12dによって略平行四辺形のフレーム部12を形成し、その一方の対角部に第1被固定部14a及び第2被固定部14cを有し、他方の対角部に加速度検出部20が連結された構成である。
これらのことから、加速度センサー1は、支持基板4及び加速度検出素子10とも、例えば、平板状の圧電基板を用いて、フォトリソグラフィー技術、エッチング技術を適用して寸法精度の良い支持基板4及び加速度検出素子10を形成することができ、これらを用いて小型で低コストの加速度センサーを量産することが可能になる。
加えて、加速度センサー1は、第1ないし第4の梁12a〜12dが形成するフレーム部12が加速度印加により生じる力の方向を90度変換すると共に、力を増大するように作用するので、小さい加速度でも検出でき(高感度)、検出精度が高い加速度センサー1を提供することができる。
また、加速度センサー1は、支持基板4の第2基板片7における蝶番部8の長手方向に沿った長さL1が、蝶番部8の短手方向に沿った長さL2よりも長いことから、上記と寸法関係が逆の構成の支持基板4と比較して、第2基板片7の共振周波数を高くすることができる。
この結果、加速度センサー1は、加速度検出時に第2基板片7が外部の振動源と共振し難くなり、誤検出や、加速度検出精度などの加速度検出特性の低下を回避することができる。
また、加速度センサー1は、第2基板片7の第2支持面7a及び第2支持面7aの反対側の面7bには、質量部40が配置されていることから、第2基板片7の質量が増加し、慣性力を増大させることができる。
この結果、加速度センサー1は、加速度検出時の感度を向上させることができる。
また、加速度センサー1は、平面視で、第1ないし第4の梁12a〜12dが、夫々全長に渡って同一幅の帯状をなしていることから、加速度印加により生じる力の伝達効率がよく、小さい加速度を感度よく検出することが可能となる。
また、加速度センサー1は、第1基板片5及び第2基板片7と蝶番部8とが一体で形成され、第1基板片5の第1支持面5aと第2基板片7の第2支持面7aとが同一平面上にあることから、第1基板片5及び第2基板片7と蝶番部8とを、フォトリソグラフィー技術及びエッチング技術を用いて、例えば、圧電基板から一体で精度よく形成できる。
この結果、加速度センサー1は、検出感度及び検出精度を向上させることができる。
また、加速度センサー1は、上記技術を用いれば、第1基板片5の第1支持面5aと第2基板片7の第2支持面7aとを同一平面上にすることが容易であることから、支持基板4と加速度検出素子10との接着による歪を最小にでき、製造の歩留まり及び加速度検出精度を向上させることができる。
また、加速度センサー1は、加速度検出素子10の加速度検出部20の中心線20cが、蝶番部8の中心線8cと重なっていることから、加速度検出素子10の加速度検出感度を最もよくすることができる(換言すれば、同一の加速度が印加された場合における加速度検出部20の周波数変化量を最も大きくすることができる)。
なお、この構成は、発明者らの有限要素法を用いたシミュレーションによって得られた知見に基づくものである。
また、加速度センサー1は、第1ないし第4の梁12a〜12dが、いずれも直線状であり、第1被固定部14aにおいて第1の梁12aと第2の梁12bとのなす角度、及び第2被固定部14cにおいて第3の梁12cと第4の梁12dとのなす角度が、夫々鈍角であることから、第1の梁12aと第3の梁12cとのなす角度θ、及び第2の梁12bと第4の梁12dとのなす角度θが鋭角になり、第2基板片7に加わる力の方向を90度変換し、且つ力の大きさを増大させることができる。
なお、本実施形態では、第1ないし第4の梁12a〜12dで構成されるフレーム部12の形状が、平行四辺形の場合について説明したが、フレーム部12は、この形状に限定されるものではない。
例えば、第1ないし第4の梁12a〜12dは、いずれも単一または複数の円弧が組み合わされた円弧状とし、第1の梁12aと第2の梁12b、及び第3の梁12cと第4の梁12dとは、夫々半円状、半楕円状に形成されていてもよい。
これによれば、加速度センサー1は、第1の梁12aと第2の梁12b、及び第3の梁12cと第4の梁12dとが、夫々半円状または半楕円状に連結されていることから、第2基板片7に加わる力の方向を90度変換し、且つ力の大きさを増大させることができる。
また、加速度センサー1は、第1被固定部14aの少なくとも一部が、第1の梁12aと第2の梁12bとの交差部から外側に突出し、第2被固定部14cの少なくとも一部が、第3の梁12cと第4の梁12dとの交差部から外側に突出した構成を備えていることから、加速度印加時に第2基板片7に加わる力を各梁12a〜12dに均等に伝達することができる。
また、加速度センサー1は、加速度検出部20が蝶番部8の長手方向に沿って延びる振動梁としての一対の振動腕22a,22bと、振動腕22a,22bの両端に接続された一対の基部24a,24bと、を備えたことから、例えば、加わる加速度による第2基板片7の変位に応じて振動腕22a,22bが伸縮し、この際に生じる引張り力、圧縮力による振動腕22a,22bの周波数の変化を加速度に変換するというシンプルな構成が可能となる。
(第2実施形態)
次に、第2実施形態の加速度検出装置の一例について説明する。
図5は第2実施形態の加速度検出装置の構成を示すブロック図である。
図5に示すように、加速度検出装置3は、第1実施形態の加速度センサー1と、加速度センサー1の加速度検出素子10を励振する発振回路51と、発振回路51の出力周波数をカウントするカウンター53と、カウンター53の信号を処理する演算回路55を有するIC50と、表示部56と、を備えている。
上述したように、加速度検出装置3は、第1実施形態の加速度センサー1を備えたことから、第1実施形態に記載された効果(例えば、加速度検出感度や加速度検出精度の向上)を奏する加速度検出装置を提供することができる。
1…加速度センサー、3…加速度検出装置、4…支持基板、5…第1基板片、5a…第1支持面、7…第2基板片、7a…第2支持面、7b…第2支持面の反対側の面、8…蝶番部、8c…中心線、9…検出軸、10…加速度検出素子、12…フレーム部、12a…第1の梁、12b…第2の梁、12c…第3の梁、12d…第4の梁、14a…第1被固定部、14b…第1基台部、14c…第2被固定部、14d…第2基台部、20…加速度検出部(双音叉型圧電振動素子)、20c…中心線、22a,22b…振動梁としての振動腕、24a…長手方向一端部としての基部、24b…長手方向他端部としての基部、26a…第1支持片、26b…第2支持片、30…接着剤、50…IC、51…発振回路、53…カウンター、55…演算回路、56…表示部。

Claims (10)

  1. 加速度検出素子と、該加速度検出素子を支持する第1支持面及び第2支持面を有した支持基板と、を備え、
    前記加速度検出素子は、検出軸方向の力に応じた電気信号を生成する加速度検出部と、前記加速度検出部を前記支持基板で支持するために前記第1支持面及び前記第2支持面に夫々固定される第1被固定部及び第2被固定部と、前記加速度検出部に前記第1被固定部及び前記第2被固定部を夫々連結する第1ないし第4の梁と、を備え、
    前記支持基板は、前記第1被固定部が固定される前記第1支持面を有する固定側の第1基板片と、該第1基板片と並んで配置され、前記第2被固定部が固定される前記第2支持面を有する可動側の第2基板片と、前記第1基板片と前記第2基板片との互いに対向する側面間を連結して前記第2基板片を厚さ方向へ揺動させる蝶番部と、を備え、
    前記加速度検出部は、長手方向が、前記検出軸方向と直交する方向である前記蝶番部の長手方向に沿い、且つ短手方向中心部が、前記蝶番部の短手方向の範囲と重なるように、前記第1支持面及び前記第2支持面から空隙を有して配置され、
    前記第1の梁は、前記第1被固定部と前記加速度検出部の長手方向一端部とを連結し、前記第2の梁は、前記第1被固定部と前記加速度検出部の長手方向他端部とを連結し、前記第3の梁は、前記第2被固定部と前記加速度検出部の長手方向一端部とを連結し、前記第4の梁は、前記第2被固定部と前記加速度検出部の長手方向他端部とを連結し、
    前記支持基板の前記第2基板片は、前記蝶番部の長手方向に沿った長さが、前記蝶番部の短手方向に沿った長さよりも長いことを特徴とする加速度センサー。
  2. 請求項1に記載の加速度センサーにおいて、前記第2基板片の前記第2支持面及び前記第2支持面の反対側の面の少なくとも一方には、質量部が配置されていることを特徴とする加速度センサー。
  3. 請求項1または請求項2に記載の加速度センサーにおいて、前記第1ないし第4の梁は、平面視で、夫々全長に渡って同一幅の帯状をなしていることを特徴とする加速度センサー。
  4. 請求項1ないし請求項3のいずれか一項に記載の加速度センサーにおいて、前記第1基板片及び前記第2基板片と前記蝶番部とが一体で形成され、且つ前記第1基板片の前記第1支持面と前記第2基板片の前記第2支持面とが同一平面上にあることを特徴とする加速度センサー。
  5. 請求項1ないし請求項4のいずれか一項に記載の加速度センサーにおいて、平面視で、前記加速度検出部の前記一端部及び前記他端部の短手方向の中心同士を結んだ中心線が、前記蝶番部の一端部及び他端部の短手方向の中心同士を結んだ中心線と重なることを特徴とする加速度センサー。
  6. 請求項1ないし請求項5のいずれか一項に記載の加速度センサーにおいて、前記第1ないし第4の梁は、いずれも直線状であり、前記第1被固定部において前記第1の梁と前記第2の梁とのなす角度、及び前記第2被固定部において前記第3の梁と前記第4の梁とのなす角度は、夫々鈍角であることを特徴とする加速度センサー。
  7. 請求項1ないし請求項5のいずれか一項に記載の加速度センサーにおいて、前記第1ないし第4の梁は、いずれも単一または複数の円弧が組み合わされた円弧状であり、前記第1の梁と前記第2の梁、及び前記第3の梁と前記第4の梁は、夫々半円状または半楕円状に連結されていることを特徴とする加速度センサー。
  8. 請求項1ないし請求項7のいずれか一項に記載の加速度センサーにおいて、前記第1被固定部の少なくとも一部は、平面視で前記第1の梁と前記第2の梁との交差部から外側に突出し、前記第2被固定部の少なくとも一部は、平面視で前記第3の梁と第4の梁との交差部から外側に突出した構成を備えていることを特徴とする加速度センサー。
  9. 請求項1ないし請求項8のいずれか一項に記載の加速度センサーにおいて、前記加速度検出部は、前記蝶番部の長手方向に沿って延びる少なくとも一以上の振動梁と、該振動梁の両端に接続された一対の基部と、を備えたことを特徴とする加速度センサー。
  10. 請求項1ないし請求項9のいずれか一項に記載の加速度センサーと、
    前記加速度センサーの加速度検出素子を励振する発振回路と、
    前記発振回路の出力周波数をカウントするカウンターと、
    前記カウンターの信号を処理する演算回路を有するICと、
    を備えたことを特徴とする加速度検出装置。
JP2011115477A 2011-05-24 2011-05-24 加速度センサー及び加速度検出装置 Withdrawn JP2012242343A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011115477A JP2012242343A (ja) 2011-05-24 2011-05-24 加速度センサー及び加速度検出装置
US13/476,325 US8939027B2 (en) 2011-05-24 2012-05-21 Acceleration sensor
CN2012101628076A CN102798732A (zh) 2011-05-24 2012-05-23 加速度传感器以及加速度检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115477A JP2012242343A (ja) 2011-05-24 2011-05-24 加速度センサー及び加速度検出装置

Publications (1)

Publication Number Publication Date
JP2012242343A true JP2012242343A (ja) 2012-12-10

Family

ID=47197903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115477A Withdrawn JP2012242343A (ja) 2011-05-24 2011-05-24 加速度センサー及び加速度検出装置

Country Status (3)

Country Link
US (1) US8939027B2 (ja)
JP (1) JP2012242343A (ja)
CN (1) CN102798732A (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375624B2 (ja) * 2010-01-18 2013-12-25 セイコーエプソン株式会社 加速度センサー、及び加速度検出装置
JP2012242343A (ja) * 2011-05-24 2012-12-10 Seiko Epson Corp 加速度センサー及び加速度検出装置
US9470708B2 (en) * 2011-09-30 2016-10-18 Microinfinity, Inc. MEMS resonant accelerometer
FR3051255B1 (fr) * 2016-05-11 2018-05-11 Centre National De La Recherche Scientifique Accelerometre vibrant precontraint
JP7052417B2 (ja) * 2018-02-28 2022-04-12 セイコーエプソン株式会社 センサーデバイス、力検出装置およびロボット
CN108534742A (zh) * 2018-04-24 2018-09-14 浙江大学 水下面形变形实时监测的多节点数据同步采集系统及方法
JP2020101484A (ja) * 2018-12-25 2020-07-02 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
CN110902640B (zh) * 2019-12-11 2022-06-03 合肥工业大学 一种高灵敏度mems谐振式温度传感器芯片
US11474126B2 (en) * 2020-03-05 2022-10-18 Quartz Seismic Sensors, Inc. High precision rotation sensor and method
JP7397782B2 (ja) * 2020-11-05 2023-12-13 株式会社東芝 センサ及び電子装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479385A (en) * 1982-09-23 1984-10-30 The United States Of America As Represented By The Department Of Energy Double resonator cantilever accelerometer
US4628735A (en) * 1984-12-14 1986-12-16 Sundstrand Data Control, Inc. Vibrating beam accelerometer
US4856350A (en) * 1987-10-22 1989-08-15 Hanson Richard A Force sensing device and method
US4970903A (en) * 1987-10-22 1990-11-20 Hanson Richard A Force sensing device
US4766768A (en) * 1987-10-22 1988-08-30 Sundstrand Data Control, Inc. Accelerometer with isolator for common mode inputs
FR2627592B1 (fr) * 1988-02-22 1990-07-27 Sagem Accelerometre pendulaire non asservi a poutre resonante
US4881408A (en) * 1989-02-16 1989-11-21 Sundstrand Data Control, Inc. Low profile accelerometer
US5036715A (en) * 1989-06-30 1991-08-06 Richard Hanson Cantilevered force sensing assembly utilizing one or two resonating force sensing devices
US5379639A (en) * 1992-12-10 1995-01-10 Alliedsignal Inc. Combined force transducer and temperature sensor
EP0693690B1 (en) 1994-06-29 1999-04-28 New Sd, Inc. Accelerometer and method of manufacture
US5955978A (en) 1997-09-08 1999-09-21 Lsi Logic Corporation A/D converter with auto-zeroed latching comparator and method
DE19812773C2 (de) * 1998-03-24 2002-11-14 Conti Temic Microelectronic Mikrosensor mit einer Resonatorstruktur
JP4020578B2 (ja) * 2000-09-29 2007-12-12 株式会社村田製作所 加速度センサ
KR20030097874A (ko) * 2001-05-15 2003-12-31 허니웰 인터내셔널 인코포레이티드 가속도 측정기 스트레인 경감 구조
FR2848298B1 (fr) * 2002-12-10 2005-03-11 Thales Sa Accelerometre a poutre vibrante
US7802475B2 (en) * 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
JP4420038B2 (ja) * 2007-02-15 2010-02-24 エプソントヨコム株式会社 応力感応素子
US7954215B2 (en) 2007-03-19 2011-06-07 Epson Toyocom Corporation Method for manufacturing acceleration sensing unit
FR2937145B1 (fr) * 2008-10-10 2010-09-24 Thales Sa Accelerometre micro-usine
JP2011064651A (ja) * 2009-09-18 2011-03-31 Seiko Epson Corp 加速度検出器
JP2011117944A (ja) * 2009-10-29 2011-06-16 Seiko Epson Corp 加速度センサー
JP5375624B2 (ja) * 2010-01-18 2013-12-25 セイコーエプソン株式会社 加速度センサー、及び加速度検出装置
JP2012242343A (ja) * 2011-05-24 2012-12-10 Seiko Epson Corp 加速度センサー及び加速度検出装置

Also Published As

Publication number Publication date
US8939027B2 (en) 2015-01-27
US20120297877A1 (en) 2012-11-29
CN102798732A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5375624B2 (ja) 加速度センサー、及び加速度検出装置
JP2012242343A (ja) 加速度センサー及び加速度検出装置
JP5305028B2 (ja) 圧力センサー
JP5018227B2 (ja) 力検知ユニット
US20090255338A1 (en) Acceleration sensing device
US20110221312A1 (en) Vibrator element, vibrator, sensor, and electronic apparatus
JP2008286521A (ja) 回転速度検知ユニット、及び回転速度センサ
JP2011169671A (ja) 慣性センサー及び慣性センサー装置
JP2011191091A (ja) 音叉型振動片、振動子およびセンサー装置
JP2010243276A (ja) 相対圧力センサー、相対圧力測定装置及び相対圧力測定方法
JP2011141152A (ja) 加速度センサー、及び加速度計
JP2008197030A (ja) 応力感応素子
JP2011153836A (ja) 加速度センサー、及び加速度計
JP2014050067A (ja) 振動デバイス、電子機器及び移動体
JP5970699B2 (ja) センサーユニット、電子機器
JP2008076075A (ja) 絶対圧センサ
JP5939037B2 (ja) 圧力センサー素子および電子機器
JP2010048643A (ja) 加速度検知ユニット、及び加速度センサ
JP5321812B2 (ja) 物理量センサーおよび物理量測定装置
JP2012122741A (ja) 振動片、振動子、センサーおよび電子機器
JP2013217719A (ja) 圧力センサー及び電子機器
JP5282715B2 (ja) 力検出ユニット及び力検出装置
JP2013011550A (ja) 物理量センサー、物理量検出デバイス
JP2015099154A (ja) 加速度検出器、加速度検出デバイス及び電子機器
JP2012002562A (ja) 振動型力検出センサー素子、振動型力検出センサー、および、振動型力検出センサー装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805