JP2012231108A - 窒化物半導体素子及びその製造方法 - Google Patents

窒化物半導体素子及びその製造方法 Download PDF

Info

Publication number
JP2012231108A
JP2012231108A JP2011190753A JP2011190753A JP2012231108A JP 2012231108 A JP2012231108 A JP 2012231108A JP 2011190753 A JP2011190753 A JP 2011190753A JP 2011190753 A JP2011190753 A JP 2011190753A JP 2012231108 A JP2012231108 A JP 2012231108A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
layer
nitride
electrode
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011190753A
Other languages
English (en)
Inventor
Wu-Chol John
ジョン・ウ・チョル
Ki-Yol Park
パク・キ・ヨル
Yon-Hwan Park
パク・ヨン・ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Publication of JP2012231108A publication Critical patent/JP2012231108A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】半導体素子、例えばFETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフまたはエンハンスメントモード動作する半導体素子及び製造方法を提供する。
【解決手段】基板10上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層30と、該窒化物半導体層30にオミック接合されたドレイン電極50と、該ドレイン電極50と離間して配設され、該窒化物半導体層30にショットキー接合されたソース電極60と、該ドレイン電極50と該ソース電極60との間の窒化物半導体層30上及び該ソース電極60の少なくとも一部上にかけて形成された誘電層40と、該ドレイン電極50と離間して誘電層40上に配設され、一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されたゲート電極70とを含む。
【選択図】図1

Description

本発明は、窒化物半導体素子及びその製造方法に関し、詳しくは、ノーマリ−オフ動作する窒化物半導体素子及びその製造方法に関する。
グリーンエネルギー政策などによる電力消費の節減への関心が増加している。このため、電力変換効率の向上は必須な要素となる。電力変換において、パワースイッチング素子の効率が全体電力変換の効率を左右する。
現在、通常利用される電力素子は、シリコンを用いるパワーMOSFETやIGBTが大部分であるが、シリコンの材料的な限界によって素子の効率向上に限界が生ずるようになる。これを解決するために、窒化ガリウム(Gallium nitride:GaN)のような窒化物半導体を用いるトランジスタを製作して、変換効率を高めるような特許が出願されている。
しかし、GaNを用いる、例えば、高電子移動度トランジスタ(HEMT)構造は、ゲート電圧が0V(ノーマル状態)の時、ドレイン電極とソース電極との間の抵抗が低くて電流が流れるようになるオン状態になる。これによって、電流及び電力の消耗が発生し、これをオフ状態にするためには、ゲート電極に陰電圧(例えば、−5V)を加えなければならないという短所がある(ノーマリ−オン(normally−on)構造)。
このようなノーマリ−オン構造の短所を解決するために、図8及び図9のような特許出願が従来に示されている。図8及び図9は、従来の高電子移動度HEMT構造を示す。
図8は、アメリカ公開特許US2007−0295993号の図面を示す。 図8では、AlGaN層でゲート(G)の下部領域と、ゲート(G)とドレイン(D)との間のゲート電極(G)に近い領域にイオンを打ち込み、AlGaN層133成長で形成されたチャネルの濃度を調節している。図8では、イオンインプラ(ion implantation)を用いて、ゲート(G)下部のチャネル領域131のキャリア濃度を調節してノーマリ−オフ(normally−off)動作を具現した。
図9は、アメリカ登録特許US7038253号の図面であって、第1及び第2の電子共与層133a、133b間に形成されたチャネル層131上を絶縁層140で塗布し、絶縁層140上にゲート電極(G)を形成し、ゲート電極(G)下部で2DEGチャネル135が形成されないようにしている。図9では、ゲート(G)下部をリセス(recess)工程を用いてエッチングし、ノーマルオフ動作を具現した。
韓国特許第10−2005−0010004号公報 米国特許第6690042号公報
前述のようなノーマリ−オン構造の問題を解決すると共にノーマリ−オフ動作する半導体素子を具現する必要がある。
本発明は上記の問題点に鑑みて成されたものであって、その目的は、半導体素子、例えばFETのソース領域にショットキー(Schottky)電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフ(Normally−off;N−off)またはエンハンスメントモード(Enhancement Mode)動作する半導体素子及び製造方法を提供することにある。
上記目的を解決するために、本発明の好適な実施形態によれば、基板上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層と、該窒化物半導体層にオミック接合されたドレイン電極と、該ドレイン電極と離間して配設され、該窒化物半導体層にショットキー接合されたソース電極と、ドレイン電極とソース電極との間の窒化物半導体層上及び該ソース電極の少なくとも一部上にかけて形成された誘電層と、ドレイン電極と離間して誘電層上に配設され、一部が誘電層を挟んでソース電極のドレイン方向のエッジ部分上に形成されたゲート電極と、を含む窒化物半導体素子が提供される。
また、上記目的を解決するために、本発明の他の好適な実施形態によれば、窒化物半導体層は、基板上に配設され、窒化ガリウム系列の材料を含む第1の窒化物層と、該第1の窒化物層上に異種接合され、該第1の窒化物層より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む第2の窒化物層と、を含む。
望ましくは、第1の窒化物層は、窒化ガリウム(GaN)を含み、第2の窒化物層は、アルミニウム窒化ガリウム(AlGaN)、インジウム窒化ガリウム(InGaN)、インジウムアルミニウム窒化ガリウム(InAlGaN)のうちのいずれか一つを含む。
また、本発明によれば、ドレイン電極とソース電極との間に配設された誘電層領域は垂直または傾斜段差を有し、ドレイン電極方向の部分がソース電極方向の部分より高く形成される。
また、本発明によれば、ゲート電極は、延設されたフィールドプレートを備える。このフィールドプレートは、ドレイン電極と離間して高く形成されたドレイン電極方向の誘電層部分の一部を覆うように形成される。
また、本発明による窒化物半導体素子は、基板と窒化物半導体層との間にバッファ層をさらに含む。
また、上記目的を解決するために、本発明の他の好適な実施形態によれば、基板上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層と、該窒化物半導体層にオミック接合されたドレイン電極と、該ドレイン電極と離間して配設され、該窒化物半導体層にショットキー接合されたソース電極と、ドレイン電極とソース電極との間の窒化物半導体層上及び該ソース電極の少なくとも一部上にかけて形成された誘電層と、該誘電層を挟んでソース電極のドレイン方向のエッジ部分上に形成された第1の領域、及びドレイン電極とソース電極との間の誘電層上にドレイン電極と離間して配設された第2の領域を含むゲート電極と、を含む窒化物半導体素子が提供される。
本発明によれば、前記窒化物半導体層は、基板上に配設され、窒化ガリウム系列の材料を含む第1の窒化物層と、該第1の窒化物層上に異種接合され、該第1の窒化物層より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む第2の窒化物層と、を含む。
また、本発明によれば、前記ゲート電極は、前記第1の領域と前記第2の領域とが分離され、該第2の領域はフローティングゲートを形成する。
本発明による窒化物半導体素子は、基板と窒化物半導体層との間にバッファ層をさらに含む。
また、本発明によれば、前記基板は、シリコン(Si)、シリコンカーバイド(SiC)及びサファイア(Al)のうちの少なくともいずれか一つを用いた基板である。
また、本発明によれば、前記誘電層は、SiN、SiO及びAlのうちの少なくともいずれか一つを含む。
また、本発明によれば、前記窒化物半導体素子は、パワートランジスタ素子である。
また、上記目的を解決するために、本発明のさらに他の好適な実施形態によれば、基板上に内部に2次元電子ガス(2DEG)チャネルを生成する窒化物半導体層を形成するステップと、該窒化物半導体層にオミック接合されるドレイン電極と、該窒化物半導体層にドレイン電極と離間してショットキー接合されるソース電極を形成するステップと、ドレイン電極とソース電極との間の窒化物半導体層上及び該ソース電極の少なくとも一部上にかけて誘電層を形成するステップと、ドレイン電極と離間して誘電層上にゲート電極を形成し、ゲート電極の一部をソース電極のドレイン方向のエッジ部分上の誘電層上に形成するステップと、を含む窒化物半導体素子の製造方法が提供される。
また、本発明の製造方法によれば、前記窒化物半導体層を形成するステップは、基板上に窒化ガリウム系列の材料を含む第1の窒化物層をエピタキシャル成長させて形成するステップと、該第1の窒化物層をシード層として該第1の窒化物層より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む第2の窒化物層をエピタキシャル成長させて形成するステップと、を含む。
また、本発明の製造方法によれば、前記誘電層を形成するステップにおいて、ドレイン電極とソース電極との間の窒化物半導体層上及び該ソース電極の少なくとも一部上にかけて誘電層を塗布した後、少なくともドレイン電極を露出させるステップと、ドレイン電極とソース電極との間に形成された誘電層の領域でドレイン電極方向の部分がソース電極方向の部分より高く垂直または傾斜に段差を形成するステップとを備える。
また、望ましくは、前記窒化物半導体層を形成するステップにおいて、ゲート電極を誘電層上に形成し、ゲート電極で延在すると共にドレイン電極と離間してフィールドプレートを形成し、フィールドプレートは、ソース電極方向の部分より高く段差が形成されたドレイン電極方向の部分の一部を覆うように形成する。
また、上記目的を解決するために、本発明のさらに他の好適な実施形態によれば、基板上に内部に2次元電子ガス(2DEG)チャネルを生成する窒化物半導体層を形成するステップと、該窒化物半導体層にオミック接合されるドレイン電極と、該窒化物半導体層にドレイン電極と離間してショットキー接合されるソース電極を形成するステップと、ドレイン電極とソース電極との間の窒化物半導体層上及び該ソース電極の少なくとも一部上にかけて誘電層を形成するステップと、誘電層を挟んでソース電極のドレイン方向のエッジ部分上に形成された第1の領域、及びドレイン電極とソース電極との間の誘電層上にドレイン電極と離間して配設された第2の領域を含むゲート電極を形成するステップと、を含む窒化物半導体素子の製造方法が提供される。
また、本発明の製造方法によれば、前記ゲート電極を形成するステップにおいて、第1の領域と第2の領域とを分離してゲート電極を形成し、第2の領域は、ドレイン電極とソース電極との間の誘電層上にフローティングゲートとして形成する。
また、本発明による窒化物半導体素子の製造方法は、前記窒化物半導体層を形成するステップにおいて、基板上に窒化物半導体層を形成する前に、該基板上にバッファ層を形成するステップをさらに含む。
本発明によれば、半導体素子、例えばFETのソース領域にショットキー電極を形成し、ゲート電極をソース電極の一部領域と窒化物半導体領域の一部に形成することによって、ノーマリ−オフまたはエンハンスメントモード動作する半導体素子を得ることができる。
また、本発明によれば、既存GaNノーマリ−オフ素子に比べて高耐圧動作が可能で、製造工程が簡単で素子の製作が容易となる。すなわち、従来のノーマリ−オフHEMTのイオン注入、200〜300オングストロング厚さのAlGaN層のエッチングなどの高難易工程が必要ではなく、その製作が容易となる。
また、本発明によれば、ソース電極のショットキー障壁によってリーク電流を防止する構造によって、既存ノーマリ−オフHEMTに比べてリーク電流が低く耐圧が高くなるという効果が奏する。
また、本発明によれば、ゲート構造がソース電極のエッジ部分上部及びドレイン電極とソース電極との間の誘電層上に形成されており、電界が分散して耐圧を高めるフィールドプレートの役割も共に果たすことができる。
また、本発明によれば、ソース電極とゲート電極との間の距離が短く、トランスコンダクタンス(transconductance)が高くなるという長所がある。
本発明の一実施形態による窒化物半導体素子の概略的な断面図である。 図1の窒化物半導体素子の製造方法を概略的に示す断面図である。 図1の窒化物半導体素子の製造方法を概略的に示す断面図である。 図1の窒化物半導体素子の製造方法を概略的に示す断面図である。 図1の窒化物半導体素子の製造方法を概略的に示す断面図である。 本発明の他の実施形態による窒化物半導体素子の概略的な断面図である。 本発明のさらに他の実施形態による窒化物半導体素子の概略的な断面図である。 本発明のさらに他の実施形態による窒化物半導体素子の概略的な断面図である。 本発明の他の実施形態による窒化物半導体素子の製造方法を示す断面図である。 本発明の他の実施形態による窒化物半導体素子の製造方法を示す断面図である。 本発明の他の実施形態による窒化物半導体素子の製造方法を示す断面図である。 本発明の他の実施形態による窒化物半導体素子の製造方法を示す断面図である。 本発明の他の実施形態による窒化物半導体素子の概略的な断面図である。 従来の高電子移動度HEMT構造を示す断面図である。 従来の高電子移動度HEMT構造を示す断面図である。
以下、本発明の好適な実施の形態は図面を参考にして詳細に説明する。次に示される各実施の形態は当業者にとって本発明の思想が十分に伝達されることができるようにするために例として挙げられるものである。従って、本発明は以下示している各実施の形態に限定されることなく他の形態で具体化されることができる。そして、図面において、装置の大きさ及び厚さなどは便宜上誇張して表現されることができる。明細書全体に渡って同一の参照符号は同一の構成要素を示している。
本明細書で使われた用語は、実施形態を説明するためのものであって、本発明を制限しようとするものではない。本明細書において、単数形は文句で特別に言及しない限り複数形も含む。明細書で使われる「含む」とは、言及された構成要素、ステップ、動作及び/又は素子は、一つ以上の他の構成要素、ステップ、動作及び/又は素子の存在または追加を排除しないことに理解されたい。
図1は、本発明の一実施形態による窒化物半導体素子の概略的な断面図である。図2a〜図2dは各々、図1の窒化物半導体素子の製造方法を概略的に示す断面図である。図3は、本発明の他の実施形態による窒化物半導体素子の概略的な断面図である。図4は、本発明のさらに他の実施形態による窒化物半導体素子の概略的な断面図である。図5は、本発明のさらに他の実施形態による窒化物半導体素子の概略的な断面図である。図6a〜図6dは各々、本発明の他の実施形態による窒化物半導体素子の製造方法を示す断面図である。図7は、本発明の他の実施形態による窒化物半導体素子の概略的な断面図である。
まず、図1、図3、図4、図5及び図7を参照して、本発明の一実施形態による窒化物半導体素子を詳記する。
図1、図3、図4、図5及び図7に示すように、本発明の一実施形態による窒化物半導体素子は、基板10上に配設された窒化物半導体層30、ドレイン電極50、ソース電極60、誘電層40及びゲート電極70を含む。
図1、図4、図5及び図7に示すように、本実施形態において、窒化物半導体層30は、基板10上に配設される。基板10は、一般に絶縁基板を用いて、絶縁性及び高抵抗性を有する基板を用いてもよい。
本発明の他の実施形態によれば、図1、図3、図4、図5及び図7に示すように、基板10は、シリコン(Si)、シリコンカーバイド(SiC)及びサファイヤ(Al)のうちの少なくともいずれか一つを用いて製造されることができ、または公知の他の基板材料を用いて製造されることができる。
窒化物半導体層30は、基板10上に直接形成されてもよい。望ましくは、窒化物半導体層30は、単結晶薄膜をエピタキシャル成長させて形成する。窒化物半導体層30を形成するためのエピタキシャル成長工程では、液相成長法(LPE:Liquid Phase Epitaxy)、化学気相蒸着法(CVD:Chemical Vapor Deposition)、分子ビーム成長法(MBE:Molecular Beam Epitaxy)、有機金属気相蒸着法(MOCVD:Metalorganic CVD)などが挙げられる。
また、図3を参照して、本発明の他の実施形態によれば、基板10と窒化物半導体層30との間にバッファ層20を設け、窒化物半導体層30をバッファ層20上に形成する。バッファ層20は、基板10と窒化物半導体層30との格子不整合(lattice mismatch)による問題点を解決するために提供される。バッファ層20は、一つの層だけではなく、窒化ガリウム(GaN)、アルミニウム窒化ガリウム(AlGaN)、窒化アルミニウム(AlN)、インジウム窒化ガリウム(InGaN)またはインジウムアルミニウム窒化ガリウム(InAlGaN)などを含む複数の層で形成されることができる。また、バッファ層20は、窒化ガリウム以外の他の3−5族化合物半導体によって形成することもできる。例えば、基板10がサファイヤ基板10の場合窒化ガリウムを含む窒化物半導体層30との格子定数及び熱膨脹係数の差によって誤整合(mismatch)になることを阻むために、バッファ層20の成長は重要である。
図1、図3、図4、図5及び図7を参照して、窒化物半導体層30の内部には、2次元電子ガス(2DEG)チャネル35が形成される。窒化物半導体素子のゲート電極70にバイアス電圧を印加すると、窒化物半導体層30内部の2DEGチャネル35を通じて電子が移動し、電流がドレイン電極50とソース電極60との間に流れるようになる。窒化物半導体層30を成す窒化物としては、窒化ガリウム(GaN)、アルミニウム窒化ガリウム(AlGaN)、インジウム窒化ガリウム(InGaN)、インジウムアルミニウム窒化ガリウム(InAlGaN)などが挙げられる。
本発明の実施形態によれば、窒化物半導体層30は、異種接合された窒化ガリウム系列の半導体層30であって、異種接合された界面でエネルギバンドギャップの差によって2次元電子ガスチャネル35が形成される。異種接合される窒化ガリウム系列の半導体層30で異種接合間の格子定数差が小さいほど、バンドギャップとの極性の差が減るようになり、これにより2DEGチャネル35の形成が抑制される。異種接合の時、エネルギバンドギャップの不連続性によって広いバンドギャップを有する材料から小さなバンドギャップを有する材料への自由電子が移動するようになる。このような電子は、異種接合界面に蓄積されて2DEGチャネル35を形成し、ドレイン電極50とソース電極60との間で電流が流れるようにする。
図1、図3、図4、図5及び図7に示すように、窒化物半導体層30は、第1の窒化物層31及び第2の窒化物層33を含む。第1の窒化物層31は、基板10上に配設され、窒化ガリウム系列の材料を含む。第2の窒化物層33は、第1の窒化物層31上に異種接合され、該第1の窒化物層31より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む。この時、第2の窒化物層33は、第1の窒化物層31内に形成される2DEGチャネル35へ電子を供給する役割をする。一例として、電子を供与する第2の窒化物層33は、第1の窒化物層31より薄い厚さで形成されることが望ましい。
望ましくは、本発明の他の実施形態によれば、第1の窒化物層31は、窒化ガリウム(GaN)を含み、第2の窒化物層33は、アルミニウム窒化ガリウム(AlGaN)、インジウム窒化ガリウム(InGaN)及びインジウムアルミニウム窒化ガリウム(InAlGaN)のうちのいずれか一つを含む。望ましくは、一実施形態によれば、第1の窒化物層31は、窒化ガリウム(GaN)を含み、第2の窒化物層33は、アルミニウム窒化ガリウム(AlGaN)を含む。
続いて、図1、図3、図4、図5及び図7を参照して、本発明の実施形態の構成がより詳しく説明する。
図1、図3、図4、図5及び図7に示すように、本実施形態による窒化物半導体素子のドレイン電極50及びソース電極60が窒化物半導体層30に形成される。ドレイン電極50は、窒化物半導体層30にオミック接合50aになっている。
ソース電極60は、ドレイン電極50と離間して配設され、窒化物半導体層30にショットキー接合60aされる。ショットキーソース電極60によって、逆方向に駆動される時、ソース電極60のショットキー接合領域60aで生成される空乏領域によって2次元電子ガス(2DEG)による電流の流れを安定して遮断する。これによって、逆方向電流の流れを遮断することができ、ノーマリ−オフ状態を具現することができるようになる。より詳しくは、逆方向バイアス電圧が印加された場合、ソース電極60のショットキー接合領域60aで生成される空乏領域が2DEGチャネル35領域まで拡張され、2DEGチャネル35を遮断し、逆方向降伏電圧を増加させるようになる。特に、逆方向バイアス電圧の印加時、ソース電極60のドレイン側のコーナー寄りのショットキー接合領域60aで空乏領域が大きく拡張される。一方、順方向バイアス電圧をかけると、ソース電極60のショットキー接合領域60aで生成される空乏領域が小くなり、2DEGチャネル35を通じてドレイン電極50とソース電極60との間に電流が流れるようになる。
続いて、図1、図3、図4、図5及び図7に示すように、本発明の一実施形態による窒化物半導体素子の誘電層40は、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて形成される。
図4を参照して、本発明の他の実施形態について説明する。図4を参照して、ドレイン電極50とソース電極60との間に配設された誘電層40の領域は、垂直または傾斜(図示せず)の段差を有する。このような垂直または傾斜の段差によって、ドレイン電極50方向の誘電層40の部分がソース電極60方向の部分より高く形成される。
望ましくは、本発明の他の実施形態によれば、図1、図3、図4、図5及び図7に示すように、誘電層40は、酸化膜からなることができ、また、SiN、SiO、Alのうちの少なくともいずれか一つを含むことができる。
続いて、図1、図3、図4、図5及び図7に示すように、本実施形態による窒化物半導体素子のゲート電極70は、ドレイン電極50と離間して誘電層40上に配設される。また、図1、図3、図4、図5及び図7に示すように、ゲート電極70の一部が誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成される。望ましくは、ゲート電極70は、誘電層40上にショットキー接合70aされる。ゲート電極70に順方向バイアス電圧が印加されると、ソース電極60のドレイン側のコーナー寄りのショットキー接合領域60aで形成される空乏領域が小さくなり、2DEGチャネル35を通じてドレイン電極50とソース電極60との間に電流が流れるようになる。
図1、図3、図4及び図5に示すように、ゲート構造がソース電極60のエッジ部分上部及びドレイン電極50とソース電極60との間の誘電層40上に亘っており、電界の分散する効果があり、ゲート構造自体が耐圧を高めるフィールドプレートの役割を果たすようになる。
図5を参照して、本発明の他の実施形態について説明する。図5に示すように、窒化物半導体素子のゲート電極70は、延設されたフィールドプレート75を備える。ゲート電極70における延在されたフィールドプレート75は、ドレイン電極50と離間している。また、該延在されたフィールドプレート75は、図4に示すように、ドレイン電極50とソース電極60との間に配設された誘電層40領域の中で垂直または傾斜(図示せず)段差によって高く形成されたドレイン電極50方向の誘電層40部分の一部を覆うように形成される。該延在されたフィールドプレート75は、ショットキー接合されるゲート電極70のドレイン側の縁部に集中される電界を分散させるという効果が奏する。
また、図1及び図7を参照して、本発明の他の実施形態について説明する。
図1及び図7に示すように、本発明の一実施形態による窒化物半導体素子は、基板10上に配設された窒化物半導体層30、ドレイン電極50、ソース電極60、誘電層40及びゲート電極70を含む。窒化物半導体層30、ドレイン電極50、ソース電極60及び誘電層40については、前述のようである。
本実施形態において、ゲート電極70は、第1の領域71、71’及び第2の領域73、73’を備える。第1の領域71、71’は、誘電層40を挟んでソース電極60のドレイン方向のエッジ部分上に形成されている。第2の領域73、73’は、ドレイン電極50とソース電極60との間の誘電層40上にドレイン電極50と離間して配設される。第1の領域と第2の領域とは、図1に示すように、一体に形成されてもよく、図7に示すように分離されてもよい。
図7に示すように、本発明の他の実施形態によれば、ゲート電極70の第1の領域71’及び第2の領域73’は分離されている。この時、第2の領域73’は、フローティングゲートを形成する。第2の領域73’がフローティングゲート役割を行うため、第2の領域73’によって電界が分散するという効果が奏する。望ましくは、第2の領域73’は、ソース電極60に近く配設される。
図7に示されていないが、本発明の他の実施形態によれば、図3に示すように、基板10と窒化物半導体層30との間にバッファ層20を設け、窒化物半導体層30をバッファ層20上に形成することができる。
図1、図3、図4、図5及び図7に示す本発明の実施形態によって、ゲート電極70に0Vの電圧印加時、ドレイン電極50とソース電極60との間に2DEGチャネル35を通じる電流の流れがソース電極60領域のショットキー障壁によって遮られる。そして、ゲート電極70に閾値(threshold)電圧以上を駆動した時、ソース電極60のドレイン方向のエッジ領域にキャリア(電子)濃度が高くなってトンネリング(tunneling)現象によって電流が流れるようになる。この時、ゲートの閾値電圧は、誘電層40の厚さなどによって決まる。これによって、既存のノーマリ−オフHEMT構造に比べて製作が容易で、リーク電流が少なく、高い耐圧特性を現わすようになる
本発明の他の実施形態によれば、前述の実施形態による窒化物半導体素子は、パワートランジスタ素子である。本発明の一実施形態によるパワートランジスタは、水平型HEMT構造を備える。
次に、本発明の他の実施形態による窒化物半導体製造方法を図面を参照して説明する。本発明による窒化物半導体製造方法を説明するに当たって、図2a〜図2d、図6a〜図6dの他に、前述の実施形態による窒化物半導体素子及び図1、図3、図4、図5及び図7を参照する。
図2a〜図2dは、本発明の一実施形態による窒化物半導体の製造方法を示す。
望ましくは、一実施形態によれば、本発明の窒化物半導体素子の製造方法によって製造される素子は、パワートランジスタである。
まず、図2aを参照して、基板10上に、内部に2次元電子ガス(2DEG)チャネル35を生成する窒化物半導体層30を形成する。望ましくは、基板10は、シリコン(Si)、シリコンカーバイド(SiC)、サファイヤ(Al)のうちの少なくともいずれか一つを用いて製造されることができる。窒化物半導体層30を成す窒化物としては、窒化ガリウム(GaN)、アルミニウム窒化ガリウム(AlGaN)、インジウム窒化ガリウム(InGaN)またはインジウムアルミニウム窒化ガリウム(InAlGaN)などが挙げられる。
望ましくは、窒化物半導体層30は、窒化物単結晶薄膜をエピタキシャル成長させて形成する。望ましくは、エピタキシャル成長の時、選択的に成長させて過成長されないように調節する。仮に、過成長された場合には、エッチバック(etch back)工程やCMP(Chemical Mechanical Polishing)工程を用いて平坦化する過程を追加してもよい。
本発明の他の実施形態による窒化物半導体の製造方法によれば、図2aに示された第1の窒化物層31及び第2の窒化物層33は、エピタキシャル成長工程(Epitaxial Growth Precess)によって形成される。まず、第1の窒化物層31は、基板10上に窒化ガリウム系列単結晶薄膜をエピタキシャル成長させて形成する。望ましくは、本発明の他の実施形態によれば、第1の窒化物層31は、窒化ガリウム(GaN)をエピタキシャル成長させて形成する。続いて、第2の窒化物層33は、第1の窒化物層31をシード層として第1の窒化物層31より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む窒化物層をエピタキシャル成長させて形成する。望ましくは、本発明の他の実施形態によれば、第2の窒化物層33は、アルミニウム窒化ガリウム(AlGaN)、インジウム窒化ガリウム(InGaN)、インジウムアルミニウム窒化ガリウム(InAlGaN)のうちのいずれか一つを含む窒化ガリウム系列単結晶をエピタキシャル成長させて形成する。望ましくは、第2の窒化物層33は、アルミニウム窒化ガリウム(AlGaN)をエピタキシャル成長させて形成する。一例として、電子を供与する第2の窒化物層33は、第1窒化物層31より薄い厚さで形成されることが望ましい。
第1及び第2の窒化物層33を形成するためのエピタキシャル成長工程としては、液相成長法(LPE:Liquid Phase Epitaxy)、化学気相蒸着法(CVD:Chemical Vapor Deposition)、分子ビーム成長法(MBE:Molecular Beam Epitaxy)、有機金属気相蒸着法(MOCVD:Metalorganic CVD)などが挙げられる。
次に、図2bを参照して、窒化物半導体層30にドレイン電極50とソース電極60とを形成する。図2bにおいて、ドレイン電極50は、窒化物半導体層30にオミック接合50aされるように形成する。該オミック接合を完成するために熱処理を行ってもよい。窒化膜半導体層30上に金(Au)、ニッケル(Ni)、白金(Pt)、チタニウム(Ti)、アルミニウム(Al)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、コバルト(Co)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、銅(Cu)及び亜鉛(Zn)のうちの少なくともいずれか一つの金属、金属シリサイド及びこれらの合金を用いてドレイン金属電極を形成する。ドレイン電極50は、多層構造で形成されることができる。
ソース電極60は、ドレイン電極50と離間して窒化物半導体層30にショットキー接合60aされるように形成する。ショットキー接合60aされるソース電極60は、窒化膜半導体層30とショットキー接合することができる材料、例えば、アルミニウム(Al)、モリブデン(Mo)、金(Au)、ニッケル(Ni)、白金(Pt)、チタニウム(Ti)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、コバルト(Co)、タングステン(W)、タンタル(Ta)、銅(Cu)及び亜鉛(Zn)のうちの少なくともいずれか一つの金属、金属シリサイド及びこれらの合金を用いて金属電極を形成することができる。ソース電極60は、多層構造で形成されることができる。ソース電極60で金属と半導体接合を有するショットキー接合60aを用いて、ドレイン電極50とソース電極60との間に2DEGチャネル35を通じる逆方向の電流を遮断することができる。
本発明の一実施形態によるドレイン電極50及びソース電極60の形成過程について説明する。基板10上にエピタキシャル成長形成された窒化物半導体層30上に電極を形成するための金属層を、電子ビーム蒸着器などによって蒸着形成し、該金属層上にフォトレジストパターンを形成する。続いて、該フォトレジストパターンをエッチングマスクとして金属層をエッチングし、フォトレジストパターンを取り除いて金属電極50、60を形成する。
図2cに示すように、本発明の一実施形態において、ドレイン電極50及びソース電極60を形成した後、ドレイン電極50とソース電極60との間の窒化物半導体層30上に誘電層40を形成する。この時、誘電層40は、少なくともソース電極60の一部上に、望ましくは、ドレイン電極50方向のソース電極60の一部上にかけて形成される。望ましくは、誘電層40は、酸化膜からなることができ、またSiN、SiO及びAlのうちの少なくともいずれか一つを含むことができる。
本発明の他の実施形態による誘電層40の形成工程を図6a〜図6cを参照して説明する。図6aに示すように、窒化物半導体層30、ドレイン電極50及びソース電極60上に誘電層40を塗布する。望ましくは、ドレイン電極50とソース電極60との間の窒化物半導体層30上及びソース電極60の少なくとも一部上にかけて誘電層40を塗布する。
続いて、図6bを参照して、誘電層40塗布後に1ステップで少なくともドレイン電極50を露出させる。ドレイン電極50露出は、例えばエッチングや研摩を通じて露出させる。
そして、図6cに示すように、2ステップにおいてドレイン電極50とソース電極60との間の誘電層40領域でドレイン電極50方の部分がソース電極60方向の部分より高く垂直または傾斜(図示せず)段差が形成されるようにする。ドレイン電極50方向の部分に誘電層40を付加的に蒸着するか、またはソース電極60方向の部分の誘電層40を一部エッチングして段差を形成する。
図2dに示すように、本発明の一実施形態において、図2cの誘電層40を形成した後に、ドレイン電極50と離間して誘電層40上にゲート電極70を形成する。この時、図2dに示すように、ゲート電極70の一部がソース電極60のドレイン方向のエッジ部分上の誘電層40上に形成されるようにする。ゲート電極70は、アルミニウム(Al)、モリブデン(Mo)、金(Au)、ニッケル(Ni)、白金(Pt)、チタニウム(Ti)、パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh)、コバルト(Co)、タングステン(W)、タンタル(Ta)、銅(Cu)及び亜鉛(Zn)のうちの少なくともいずれか一つの金属、金属シリサイド及びこれらの合金を用いて金属電極を形成することができる。ゲート電極70は、ドレイン電極50または/及びソース電極60と異なる金属を用いてもよく、多層構造で形成されてもよい。望ましくは、ゲート電極70は、誘電層40上にショットキー接合70aされる。
本発明の一実施形態によるゲート電極70の形成過程について説明する、誘電層40上に電極を形成するための金属層を電子ビーム蒸着器などによって蒸着形成し、ゲート電極70の一部がソース電極60のドレイン方向のエッジ部分上の誘電層40上に形成されるように、金属層上にフォトレジストパターンを形成する。続いて、該フォトレジストパターンをエッチングマスクとして金属層をエッチングする。エッチング後にフォトレジストパターンを取り除いて金属電極を形成する。
また、本発明の他の実施形態による窒化物半導体素子の製造方法において、図6dを参照して、ゲート電極70を誘電層40上に形成する工程について説明する。図6dに示すように、フィールドプレート75がゲート電極70から延在すると共にドレイ電極と離間して形成される。この時、フィールドプレート75は、ソース電極60方向の部分より高く段差をおいて形成されたドレイン電極50方向の部分の一部を覆うように形成する。一例として、フィールドプレート75の形成過程は、ゲート電極70の形成時、ゲート電極70と一体で形成することができ、またはゲート電極70の形成後にゲート電極70と同一または異なる金属層を形成し、フォトレジストパターン及びエッチング工程によって形成されることもできる。フィールドプレート75は、ショットキー接合されるゲート電極70のドレイン側の縁部に集中される電界を分散させるという効果が奏する。
また、図2d及び図7に示すように、本発明のさらに他の実施形態によれば、ゲート電極70は、第1の領域71、71’及び第2の領域73、73’を備える。ゲート電極70の第1の領域71、71’は、ソース電極60のドレイン方向のエッジ部分上で誘電層40を挟んで、第2の領域73、73’は、ドレイン電極50とソース電極60との間の誘電層40上にドレイン電極50と離間して配設されるようにゲート電極70を形成する。第1の領域と第2の領域とは、図2dに示すように一体に形成されてもよく、または図7に示すように分離されてもよい。
図7に示すように、本発明のさらに他の実施形態によれば、ゲート電極70を形成するステップにおいて、第1の領域71’及び第2の領域73’を分離してゲート電極70を形成し、第2の領域73’は、ドレイン電極50とソース電極60との間の誘電層40上にフローティングゲートとして形成する。
本発明のさらに他の実施形態による窒化物半導体の製造方法では、図3に示すように、図2aの基板10上に窒化物半導体層30を形成する前に、基板10上にバッファ層20を形成するステップをさらに含む。該バッファ層20は、基板10と窒化物半導体層30との格子不整合による問題点を解決するために提供される。バッファ層20は、一つの層だけではなく、窒化ガリウム(GaN)、アルミニウム窒化ガリウム(AlGaN)、窒化アルミニウム(AlN)、インジウム窒化ガリウム(InGaN)またはインジウムアルミニウム窒化ガリウム(InAlGaN)などを含む複数の層で形成されることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、前記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10 基板
20 バッファ層
30 窒化物半導体層
31 第1の窒化物層
33 第2の窒化物層
35 2DEGチャネル
40 誘電層
50 ドレイン電極
60 ソース電極
70 ゲート電極
75 フィールドプレート

Claims (19)

  1. 基板上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層と、
    前記窒化物半導体層にオミック接合されたドレイン電極と、
    前記ドレイン電極と離間して配設され、前記窒化物半導体層にショットキー接合されたソース電極と、
    前記ドレイン電極と前記ソース電極との間の前記窒化物半導体層上及び前記ソース電極の少なくとも一部上にかけて形成された誘電層と、
    前記ドレイン電極と離間して前記誘電層上に配設され、一部が前記誘電層を挟んで前記ソース電極のドレイン方向のエッジ部分上に形成されたゲート電極
    とを含む窒化物半導体素子。
  2. 前記窒化物半導体層は、
    前記基板上に配設され、窒化ガリウム系列の材料を含む第1の窒化物層と、
    前記第1の窒化物層上に異種接合され、前記第1の窒化物層より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む第2の窒化物層
    とを含むことを特徴とする請求項1に記載の窒化物半導体素子。
  3. 前記第1の窒化物層は、窒化ガリウム(GaN)を含み、
    前記第2の窒化物層は、アルミニウム窒化ガリウム(AlGaN)、インジウム窒化ガリウム(InGaN)、インジウムアルミニウム窒化ガリウム(InAlGaN)のうちのいずれか一つを含むことを特徴とする請求項2に記載の窒化物半導体素子。
  4. 前記ドレイン電極と前記ソース電極との間に配設された前記誘電層領域は、垂直または傾斜段差を有し、前記ドレイン電極方向の部分が前記ソース電極方向の部分より高く形成されたことを特徴とする請求項1に記載の窒化物半導体素子。
  5. 前記ゲート電極は、延設されたフィールドプレートを備え、該フィールドプレートは、前記ドレイン電極と離間して前記高く形成されたドレイン電極方向の誘電層部分の一部を覆うように形成されたことを特徴とする請求項4に記載の窒化物半導体素子。
  6. 前記窒化物半導体素子は、前記基板と前記窒化物半導体層との間にバッファ層を、さらに含むことを特徴とする請求項1に記載の窒化物半導体素子。
  7. 基板上に配設され、内部に2次元電子ガス(2DEG)チャネルを形成する窒化物半導体層と、
    前記窒化物半導体層にオミック接合されたドレイン電極と、
    前記ドレイン電極と離間して配設され、前記窒化物半導体層にショットキー接合されたソース電極と、
    前記ドレイン電極と前記ソース電極との間の前記窒化物半導体層上及び前記ソース電極の少なくとも一部上にかけて形成された誘電層と、
    前記誘電層を挟んで前記ソース電極のドレイン方向のエッジ部分上に形成された第1の領域、及び前記ドレイン電極と前記ソース電極との間の前記誘電層上に前記ドレイン電極と離間して配設された第2の領域を含むゲート電極
    とを含む窒化物半導体素子。
  8. 前記窒化物半導体層は、
    前記基板上に配設され、窒化ガリウム系列の材料を含む第1の窒化物層と、
    前記第1の窒化物層上に異種接合され、前記第1の窒化物層より広いエネルギバンドギャップを有する異種の窒化ガリウム系列の材料を含む第2の窒化物層
    とを含むことを特徴とする請求項7に記載の窒化物半導体素子。
  9. 前記ゲート電極は、前記第1の領域と前記第2の領域とが分離され、
    前記第2の領域は、フローティングゲートを形成することを特徴とする請求項7に記載の窒化物半導体素子。
  10. 前記窒化物半導体素子は、前記基板と前記窒化物半導体層との間にバッファ層を、さらに含むことを特徴とする請求項7に記載の窒化物半導体素子。
  11. 前記基板は、シリコン(Si)、シリコンカーバイド(SiC)、サファイヤ(Al)のうちの少なくともいずれか一つを用いることを特徴とする請求項1乃至10のうちのいずれか一つに記載の窒化物半導体素子。
  12. 前記誘電層は、SiN、SiO、Alのうちの少なくともいずれか一つを含むことを特徴とする請求項1乃至10のうちのいずれか一つに記載の窒化物半導体素子。
  13. 前記窒化物半導体素子は、パワートランジスタ素子であることを特徴とする請求項1乃至10のうちのいずれか一つに記載の窒化物半導体素子。
  14. 基板上に、内部に2次元電子ガス(2DEG)チャネルを生成する窒化物半導体層を形成するステップと、
    前記窒化物半導体層にオミック接合されるドレイン電極と、前記窒化物半導体層に前記ドレイン電極と離間してショットキー接合されるソース電極とを形成するステップと、
    前記ドレイン電極と前記ソース電極との間の前記窒化物半導体層上及び前記ソース電極の少なくとも一部上にかけて誘電層を形成するステップと、
    前記ドレイン電極と離間して前記誘電層上にゲート電極を形成し、前記ゲート電極の一部を前記ソース電極のドレイン方向のエッジ部分上の前記誘電層上に形成するステップ
    とを含む窒化物半導体素子の製造方法。
  15. 前記誘電層を形成するステップは、
    前記ドレイン電極と前記ソース電極との間の前記窒化物半導体層上及び前記ソース電極の少なくとも一部上にかけて誘電層を塗布した後、少なくとも前記ドレイン電極を露出させるステップと、
    前記ドレイン電極と前記ソース電極との間に形成された前記誘電層の領域で前記ドレイン電極方向の部分が前記ソース電極方向の部分より高く垂直または傾斜に段差を形成するステップ
    とを備えることを特徴とする請求項14に記載の窒化物半導体素子の製造方法。
  16. 前記ゲート電極を形成するステップにおいて、
    前記ゲート電極を前記誘電層上に形成し、前記ゲート電極で延在すると共に前記ドレイ電極と離間してフィールドプレートを形成し、前記フィールドプレートは、前記ソース電極方向の部分より高く段差を形成された前記ドレイン電極方向の部分の一部を覆うように形成することを特徴とする請求項15に記載の窒化物半導体素子の製造方法。
  17. 基板上に、内部に2次元電子ガス(2DEG)チャネルを生成する窒化物半導体層を形成するステップと、
    前記窒化物半導体層にオミック接合されるドレイン電極と、前記窒化物半導体層に前記ドレイン電極と離間してショットキー接合されるソース電極とを形成するステップと、
    前記ドレイン電極と前記ソース電極との間の前記窒化物半導体層上及び前記ソース電極の少なくとも一部上にかけて誘電層を形成するステップと、
    前記ソース電極のドレイン方向のエッジ部分上で前記誘電層を挟んで形成された第1の領域、及び前記ドレイン電極と前記ソース電極との間の前記誘電層上に前記ドレイン電極と離間して配設された第2の領域とを含むゲート電極を形成するステップ
    とを含む窒化物半導体素子の製造方法。
  18. 前記ゲート電極を形成するステップにおいて、前記第1の領域と前記第2の領域とを分離して前記ゲート電極を形成し、前記第2の領域は、前記ドレイン電極と前記ソース電極との間の前記誘電層上にフローティングゲートとして形成することを特徴とする請求項17に記載の窒化物半導体素子の製造方法。
  19. 前記窒化物半導体層を形成するステップにて、前記基板上に前記窒化物半導体層を形成する前に、前記基板上にバッファ層を形成するステップをさらに含むことを特徴とする請求項14乃至18のうちのいずれか一つに記載の窒化物半導体素子の製造方法。
JP2011190753A 2011-04-25 2011-09-01 窒化物半導体素子及びその製造方法 Pending JP2012231108A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110038611A KR20120120825A (ko) 2011-04-25 2011-04-25 질화물 반도체 소자 및 그 제조방법
KR10-2011-0038611 2011-04-25

Publications (1)

Publication Number Publication Date
JP2012231108A true JP2012231108A (ja) 2012-11-22

Family

ID=47020600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011190753A Pending JP2012231108A (ja) 2011-04-25 2011-09-01 窒化物半導体素子及びその製造方法

Country Status (3)

Country Link
US (1) US8896026B2 (ja)
JP (1) JP2012231108A (ja)
KR (1) KR20120120825A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835834A (zh) * 2014-02-06 2015-08-12 株式会社丰田中央研究所 半导体器件
US9461122B2 (en) 2014-03-19 2016-10-04 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method for the same
US10026804B2 (en) 2014-03-19 2018-07-17 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130066396A (ko) 2011-12-12 2013-06-20 삼성전기주식회사 질화물 반도체 소자 및 그 제조 방법
JP2014175339A (ja) * 2013-03-06 2014-09-22 Sony Corp 半導体素子および電子機器
CN107154426A (zh) * 2016-03-03 2017-09-12 北京大学 一种提高硅基GaN HEMT关态击穿电压的器件结构及实现方法
US10332840B2 (en) 2017-03-21 2019-06-25 Macronix International Co., Ltd. Semiconductor device with physically unclonable function (PUF) and apparatus including the same
KR102424875B1 (ko) * 2017-07-03 2022-07-26 삼성전자주식회사 반도체 소자
CN109727853A (zh) * 2017-10-31 2019-05-07 中国工程物理研究院电子工程研究所 一种高迁移率晶体管的制备方法
US10811527B2 (en) 2018-09-06 2020-10-20 Semiconductor Components Industries, Llc Electronic device including high electron mobility transistors
CN114207840B (zh) * 2021-11-09 2024-01-09 英诺赛科(苏州)科技有限公司 氮化物基半导体装置及其制造方法
CN115863401B (zh) * 2023-03-01 2023-08-11 中芯越州集成电路制造(绍兴)有限公司 常闭型晶体管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027571A (ja) * 1988-06-27 1990-01-11 Nissan Motor Co Ltd 半導体装置
JP2007180143A (ja) * 2005-12-27 2007-07-12 Toshiba Corp 窒化物半導体素子
JP2008306058A (ja) * 2007-06-08 2008-12-18 Sanken Electric Co Ltd 半導体装置
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690042B2 (en) 2000-09-27 2004-02-10 Sensor Electronic Technology, Inc. Metal oxide semiconductor heterostructure field effect transistor
KR20050010004A (ko) 2002-05-16 2005-01-26 스피나커 세미컨덕터, 인크. 쇼트키 배리어 cmos 디바이스 및 방법
KR20120120826A (ko) * 2011-04-25 2012-11-02 삼성전기주식회사 질화물 반도체 소자 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027571A (ja) * 1988-06-27 1990-01-11 Nissan Motor Co Ltd 半導体装置
JP2007180143A (ja) * 2005-12-27 2007-07-12 Toshiba Corp 窒化物半導体素子
JP2008306058A (ja) * 2007-06-08 2008-12-18 Sanken Electric Co Ltd 半導体装置
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835834A (zh) * 2014-02-06 2015-08-12 株式会社丰田中央研究所 半导体器件
JP2015149382A (ja) * 2014-02-06 2015-08-20 株式会社豊田中央研究所 半導体装置
US9337267B2 (en) 2014-02-06 2016-05-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device
US9461122B2 (en) 2014-03-19 2016-10-04 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method for the same
US10026804B2 (en) 2014-03-19 2018-07-17 Kabushiki Kaisha Toshiba Semiconductor device
US10714566B2 (en) 2014-03-19 2020-07-14 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
KR20120120825A (ko) 2012-11-02
US20120267642A1 (en) 2012-10-25
US8896026B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
JP5955519B2 (ja) 窒化物半導体素子及びその製造方法
JP2012231107A (ja) 窒化物半導体素子及びその製造方法
JP2012231108A (ja) 窒化物半導体素子及びその製造方法
US8716754B2 (en) Nitride semiconductor device
JP2012231106A (ja) 窒化物半導体素子及びその製造方法
US8860087B2 (en) Nitride semiconductor device and manufacturing method thereof
TWI431770B (zh) 半導體裝置及製造其之方法
US20130009165A1 (en) Nitride semiconductor device, method for manufacturing the same and nitride semiconductor power device
JP2012231128A (ja) 窒化物半導体素子及びその製造方法
KR101008272B1 (ko) 노멀 오프 특성을 갖는 질화물계 고전자 이동도 트랜지스터및 그 제조방법
JP5526470B2 (ja) 窒化物系化合物半導体装置
WO2021189182A1 (zh) 半导体装置及其制造方法
WO2013161478A1 (ja) 窒化物系半導体素子
US9559197B2 (en) Hetero-junction semiconductor device and method of manufacturing a hetero-junction semiconductor device
JP4875660B2 (ja) Iii−v族窒化物半導体装置
JP4327114B2 (ja) 窒化物半導体装置
US20240222423A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
JP2008022029A (ja) GaN系半導体装置及びIII−V族窒化物半導体装置
JP2009060065A (ja) 窒化物半導体装置
CN118235253A (zh) 氮化物基半导体器件及其制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621