JP2012210875A - 船舶用自動操舵装置 - Google Patents

船舶用自動操舵装置 Download PDF

Info

Publication number
JP2012210875A
JP2012210875A JP2011077977A JP2011077977A JP2012210875A JP 2012210875 A JP2012210875 A JP 2012210875A JP 2011077977 A JP2011077977 A JP 2011077977A JP 2011077977 A JP2011077977 A JP 2011077977A JP 2012210875 A JP2012210875 A JP 2012210875A
Authority
JP
Japan
Prior art keywords
estimator
hull
value
model
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011077977A
Other languages
English (en)
Other versions
JP5682009B2 (ja
Inventor
Fuyuki Hane
冬希 羽根
Shunei Oyamada
俊英 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP2011077977A priority Critical patent/JP5682009B2/ja
Publication of JP2012210875A publication Critical patent/JP2012210875A/ja
Application granted granted Critical
Publication of JP5682009B2 publication Critical patent/JP5682009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

【課題】パラメータの不確かさの存在下で閉ループの安定性を図ることができる船舶用自動操舵装置を提供する。
【解決手段】制御対象18からの検出方位から外乱を除去した推定値を出力する推定器24と、推定器からの推定値と設定方位から得られる値に対してフィードバックゲインを乗じて命令舵角を出力する状態フィードバック制御器22とを有するフィードバック制御器12を備え、命令舵角に応じて舵角を経て船体に作用させる操舵機及び船体を含む制御対象18と共に閉ループを構成する。フィードバックループの特性多項式と、船体モデルと波浪モデルと舵角オフセットモデルとを推定する多項式からなる推定器24の特性多項式からなる閉ループの特性多項式により、推定器の船体モデルの固有角周波数ωeを設定する。
【選択図】図2

Description

本発明は、推定器を有する船舶用自動操舵装置に関し、特にパラメータの不確かさの存在下で閉ループの安定性を図ることができる船舶用自動操舵装置に関する。
船舶用自動操舵装置は、一定の設定方位に、ジャイロコンパスから検出される船首方位を追従させるために舵を制御する装置であり、保針と変針との機能を持つ。
その保針制御系は、大きな慣性力の船体を小さな制御力の操舵機によって制御し、かつ検出方位に含まれる外乱の大きさが方位と同等かそれ以上になる特徴をもつため、受動的な制御を実現するフィードバック制御器で制御される。図2に示したように、フィードバック制御器12は、小さな比例ゲインを基にしたPD制御を行う状態フィードバック制御器22と、状態推定と外乱除去とを行う推定器24から構成される。閉ループ安定性と外乱除去性への影響及び設計自由度は、実用上状態フィードバック制御器22よりも推定器24の方が大きい。
制御対象18の船体モデルは、載荷の変化によるノミナル値のパラメータ不確かさを持ち、そのためノミナル値のモデルベースで構成する推定器24は載荷の変化によって推定値に誤差を生じる。このため、推定値の状態フィードバックによる閉ループ安定性は、推定誤差によって劣化し、船体を蛇行航行させる(ヨーイング)おそれがある。
本発明者らは、かかる問題を解決するために、特許文献1において、船体パラメータのノミナル値のパラメータ不確かさを積極的に考慮に入れて、該パラメータ不確かさを起因とする推定誤差を小さくすることができるようにした船舶用自動操舵装置及びその推定器の設計方法を提案している。
ここでは、推定器の特性多項式として、
Figure 2012210875

と置き、λe2は、波浪モデルが仮に無いとしたときの船体モデルの状態量を推定するための特性多項式であり、ζe、ωeがそれぞれ船体モデルの状態量を推定するための減衰係数、固有周波数としたときに、ωeを操舵系周波数ωfのρ(>1)倍(以下、ρ:推定係数)に設定し、ζeを1/√2に設定するようにして推定器を設計することにより、閉ループ安定性を低下させる要因となる推定角速度のパラメータ不確かさによる推定誤差を低減させることができる、ことを見出した。
さらに、特許文献1では、船体モデルと2つの外乱モデル(波浪モデル、舵角オフセットモデル)とからなる制御対象に対して、推定誤差が船体モデルのみのときの推定誤差と等価になるように推定器の固有周波数を外乱モデル特性から修正することを、提案している。これによれば、推定器の制御対象は船体モデルのみとなり、外乱モデルを無視することができるようになる。
また、特許文献2では、推定係数ρ=ωe/ωfを、操舵ループの代表根に着目し、代表根の減衰係数とパラメータ不確かさとの関係から制御ゲインを設計している。即ち、ここでは推定器がない閉ループ系において、フィードバックゲインの設定、操舵系の特性およびパラメータ不確かさの影響を調べ、推定器がある閉ループ系において、特性多項式の導出、代表根の移動、代表根の減衰係数を調べて数値計算を実施した結果、パラメータ不確かさの影響を見積もることによって、推定器と操舵系との固有周波数を関係づける推定係数ρを設定している。
特許第4603832号公報 特開2007−118828号公報
しかしながら、従来においては、パラメータ不確かさおよび外乱モデルの影響を間接的、近似的に扱うために、閉ループ安定性に多少の変動を持つという問題がある。即ち、推定ループにおいて閉ループ安定性を劣化させる場合があるが、従来の設計による装置では、推定ループにおけるパラメータ不確かさの影響を直接扱っていない。
また、船体モデルはパラメータ不確かさを複数もつために、特許文献2で採用したパラメータ不確かさ以外が船種、海象、載貨などにより無視できない状況を生じる場合があり、用いたパラメータ不確かさによる影響が減衰係数に間接的に作用するために局所的な安定性しか確保することができない場合がある、という問題がある。
本発明はかかる課題に鑑みなされたもので、外乱モデルを含んだ推定器と操舵系の閉ループにおいて、パラメータ不確かさに起因する推定誤差を低減することができる推定ゲインを設定した推定器を有する船舶用自動操舵装置を提供することをその目的とする。
また、本発明の更なる目的は、推定ループの根を不安定にさせるパラメータ不確かさを特定し、それを用いて制御ゲインを設定した推定器を有する船舶用自動操舵装置を提供することをその目的とする。
前述した目的を達成するために、請求項1記載の発明は、設定方位ψに検出方位を追従させるべく制御対象を制御する船舶用自動操舵装置であって、制御対象からの検出方位から外乱を除去した推定値を出力する推定器と、推定器からの推定値と設定方位から得られる値に対してフィードバックゲインを乗じて命令舵角を出力する状態フィードバック制御器とを有するフィードバック制御器を備え、命令舵角に応じて舵角を経て船体に作用させる操舵機及び船体を含む制御対象と共に閉ループを構成する船舶用自動操舵装置において、
前記推定器の特性多項式は、船体モデルと波浪モデルと舵角オフセットモデルとを推定する多項式からなるものとし、それぞれ以下で表し、
Figure 2012210875
前記閉ループの特性多項式は、フィードバックループの特性多項式と、推定器の特性多項式から以下で表し、
Figure 2012210875
船体パラメータのパラメータ不確かさΔを加味したときの特性多項式Dc Δを、以下で表したときに、
Figure 2012210875
パラメータ不確かさΔが第1仕様値(Δspec)のときに、Dc Δ(s)の特性根から得られる減衰係数のうちの最も小さい減衰係数ζをζe として、そのζe が第2仕様値(ζspec)の値を満足するωe/ωf(=ρ)を求め、推定器の船体モデルの固有角周波数ωeを設定することを特徴とする。
請求項2記載の発明は、請求項1記載の船舶用自動操舵装置において、前記推定器を船体モデルのみとしたときの前記閉ループの特性多項式Dc4 Δを、
Figure 2012210875
としたときに、Dc4 Δ(s)の特性根のうちの最も小さい減衰係数ζをζe2 とし、ζe2 が第2仕様値(ζspec)の値を満足するωe2/ωf(=ρ2)を求め、このρ2を用いた初期値とした数値解法によって前記ωe/ωf(=ρ)を求めることを特徴とする。
請求項3記載の発明は、請求項2記載の船舶用自動操舵装置において、前記初期値は、
Figure 2012210875
で表されることを特徴とする。
請求項4記載の発明は、請求項1ないし3のいずれか1項に記載の船舶用自動操舵装置において、前記パラメータ不確かさΔは、船体パラメータの旋回力ゲインKsnと時定数Tsnの比の不確かさであることを特徴とする。
請求項5記載の発明は、請求項4記載の船舶用自動操舵装置において、前記特性多項式Dc Δは、
Figure 2012210875
で表され、ここで、
w(s)は、波浪モデルの特性多項式であり、減衰係数ζwnと固有角周波数ωwnとで、
Figure 2012210875
と表され、B(s)は、
Figure 2012210875
で表されることを特徴とする。
本発明によれば、外乱モデルとしての波浪モデル及び舵角オフセットモデルを含んだ推定器を含む閉ループの特性多項式に基づき、特性多項式に船体パラメータのパラメータ不確かさΔを加味したときの特性多項式Dc Δからパラメータ不確かさΔが第1仕様値(Δspec)のときに、Dc Δ(s)の特性根から得られる減衰係数のうちの最も小さい減衰係数ζをζe として、そのζe が第2仕様値(ζspec)の値を満足するωe/ωf(=ρ)を求め、推定器の船体モデルの固有角周波数ωeを設定することから、閉ループ安定性を増加させることができる。
また、前記パラメータ不確かさΔを、船体パラメータの旋回力ゲインKsnと時定数Tsnの比の不確かさとすることで、閉ループ安定性に及ぼす影響の高いパラメータ不確かさに起因する推定根の不安定性を排除し、従来のものより信頼性を向上させることができる。
外乱モデルを含まない推定器の推定根から出発して、外乱モデルを含んだ推定器の推定根の予測値を求めて、特性多項式Dc Δの特性根を求めることで、求解を高い収束性で短時間に行うことができるようになる。
本発明による船舶用自動操舵装置及び制御対象の全体構成を表すブロック図である。 船体モデルのブロック図である。ただし、舵感度時定数Ts3n項を省く。 閉ループ制御系を表すブロック図である。 2次推定器のブロック図である。 3次推定器のブロック図である。 4次推定器のブロック図である。 5次推定器のブロック図である。 開ループ伝達関数による閉ループを表すブロック図である。 c4(s)の根軌跡を表すs平面である。 4次特性多項式の数値解から求めたρ2に対するζf2 *、ωf2 * ζe2 *、ωe2 *とこれらの変化率の特性を表すグラフである。 仕様値付近での正規化したρ2に対するζe2 *、ωe2 *とこれらの変化率の特性を表すグラフである。 図6の結果から導いたρ2、ζe2 *、ωe2 *の正規化した場合の特性を表すグラフである。 本発明による求解法を表すフローチャートである。 ρを求める原理を表す図である。 3次推定器の推定根の特性を表す数値結果である。 4次推定器の推定根の特性を表す数値結果である。 4次推定器の推定根の特性を表す数値結果である。 5次推定器の推定根の特性を表す数値結果である。 5次推定器の推定根の特性を表す数値結果である。
以下、図面を用いて本発明の実施の形態を説明する。
1.1 保針系の構成
本発明で対象とする船舶用自動操舵装置10の保針モードは、図1に示すように操舵機14及び船体16を含む制御対象18を設定方位ψRに船首方位ψを追従させるため、フィードバック制御器12で偏差
Figure 2012210875
から演算された舵角指令δcによって制御する。δcは操舵機14の舵角δを経て船体に作用する。船体はパラメータ不確かさをもち外乱が印加する。操舵機14は舵角および舵速度の振幅制限をもつが、保針時のδcおよび
Figure 2012210875
の振幅が制限以下と見なせるので操舵機を省略する(δ=δc)。なお設定方位ψRは保針時一定になるため、簡単化のためψR=0とする。
1.2 制御対象とパラメータ不確かさ
図1に示した制御対象18は、操舵機14を除き、船体モデルと外乱モデルとから構成される。
1.2.1 船体モデル
船体モデルは、図1Aに示される野本の線形モデル
Figure 2012210875
を用いる。ここで、sはラプラス演算子を、ψは船首方位を、rを旋回角速度を、Ksn,Tsn,は操縦性指数(船体パラメータ)でそれぞれ旋回力ゲイン、時定数のノミナル値(添え字s:船体、n:ノミナル値)を示す。尚、(1)式の代わりに
Figure 2012210875
を用いることもできるが、舵感度時定数Ts3n<Tsnであるため、以下、簡略化のために舵感度時定数Ts3nを0とする。
上式を状態空間表現で表すと
Figure 2012210875
になる。ここで
Figure 2012210875
(T:転置),rは旋回角速度(図1A参照)を
Figure 2012210875
Figure 2012210875
Δa、Δbはそれぞれパラメータ不確かさで、実際値とノミナル値との差異によって
Figure 2012210875
に定める。
1.2.2 外乱モデル
外乱モデルは、図2に示すように、舵角オフセットモデルと波浪モデルとからなる。舵角オフセットモデルは風などに誘起された方位軸回りに作用するモーメントを舵角換算したものとする。波浪モデルは白色ノイズが入力した狭帯域フィルタの出力を方位換算したものとする。
波浪モデルを状態空間表現で表すと
Figure 2012210875
Figure 2012210875
になる。ここでδoは一定値とした舵角オフセット成分を、xw = [ξ,ψw ]T ,ξ:変数,ψw は平均値ゼロの有色の波浪成分を、νは白色ノイズN(0,1)を
Figure 2012210875
wn,ζwn,ωwn はそれぞれ波浪モデルのゲイン、減衰係数と中心周波数とを示す。波浪モデルはパラメータ不確かさを含まないとする。
1.3 閉ループ制御系
1.3.1 フィードバック制御器
フィードバック制御器12は、図2に示すように状態フィードバック制御器22と推定器(オブザーバ)24とからなる。閉ループ制御系は制御対象18とフィードバック制御器12とから構成し
Figure 2012210875
になる。ここで
Figure 2012210875
(^:推定値)を示し、
Figure 2012210875
はフィードバックゲインを(f1:比例ゲイン、f2:微分ゲイン、1:舵角オフセットに対応),
Figure 2012210875
は推定ゲインを
Figure 2012210875
を示し、Oはゼロ行列を示す。推定器出力は
Figure 2012210875
になる。
1.3.2 閉ループ特性行列
閉ループ特性行列は、推定誤差を
Figure 2012210875
を用いて上式より
Figure 2012210875
Figure 2012210875
になる。ここでAcは特性行列を示す。船体モデルに状態フィードバックを行ったループをフィードバックループ(Ac(1,1)、2次系)と呼び,制御対象に推定ゲインのフィードバックを行ったループを推定ループ(Ac(2,2)、5次系)と呼ぶ。上式より要素Ac(1,1)のフィードバックループによる固有値と、要素Ac(2,2)の推定ループによる固有値は、ΔAs,ΔBsの影響を受ける。
1.4 ノミナル値による特性多項式
フィードバックループ、推定ループおよび波浪モデルのノミナル値の特性多項式を
Figure 2012210875
Figure 2012210875
Figure 2012210875
とする。また、(15)式は、
Figure 2012210875
Figure 2012210875
Figure 2012210875
とする。ここでdet:行列式、s:ラプラス演算子、I:適当な単位行列、Df:フィードバックループの特性多項式(添え字f)、Dest:推定ループの特性多項式、Dw:波浪モデルの特性多項式(添え字w)、De、ew、Deo:それぞれ船体モデル(添え字e)、波浪モデル(添え字ew)と舵角オフセットモデル(添え字eo)とに対応する特性多項式、ζ、ω:2次系のそれぞれ減衰係数、固有周波数を示す。
1.5 状態フィードバックゲイン
状態フィードバック制御器22において、ノミナル値によるフィードバックループの状態フィードバックゲインを定める。状態フィードバックは図2に示すように、PD制御を用いており、
Figure 2012210875
とおき、設計パラメータにf1とζfとを選ぶと、f2とωfとはそれぞれ
Figure 2012210875
Figure 2012210875
として得られる。
1.6 推定ゲイン
2次の推定ゲインは、図3Aに示される外乱無しの船体モデルのみで設計される2次推定器におけるk1(=k11)、k2(=k21)である。
3次の推定ゲインは、図3Bに示される舵角オフセットモデルを含めて設計される3次推定器におけるk1(=k13)、k2(=k23)、k5(=k53)である。
4次の推定ゲインは、図3Cに示される波浪モデルを含めて設計される4次推定器におけるk1(=k14)、k2(=k24)、k3(=k34)、k4(=k44)である。
5次の推定ゲインは、図3Dに示される波浪モデルと共に舵角オフセットモデルを含めて設計される5次推定器におけるk1(=k15)、k2(=k25)、k3(=k35)、k4(=k45)、k5(=k55)である。
5次推定器の特性多項式は、
Figure 2012210875
になる。一方、設計する特性多項式は、(15)式を展開して
Figure 2012210875
になる。
よって、推定ゲインは上記2つの多項式の係数から次式より求まる。
Figure 2012210875
ここで
Figure 2012210875
を示す。
以降の設計に利用する推定ゲインを以下に示す。
Figure 2012210875
Figure 2012210875
Figure 2012210875
また、舵感度時定数Ts3nを考慮した場合には、以下となる。
Figure 2012210875
Figure 2012210875
Figure 2012210875
e(s)のパラメータはフィードバックループのωfを基準に、
Figure 2012210875
と定める。ここでρ>1を推定係数と呼ぶ。ρを閉ループ安定性に基づいて以降で設計する。
1.7 設計パラメータと制御パラメータ
特性多項式の設計パラメータと制御パラメータを、以下表1にまとめる。
Figure 2012210875
上記表より、De(s)の減衰係数ζeと推定係数ρを与えれば、制御系が構成されることになる。尚、上記表から微分ゲインf2>0、ζf=1/√2と定めるため、(23)式からωfsn>1/√2になる。船体パラメータのノミナル値Ksn、Tsnは、船体の旋回の度に同定器によって同定され、更新される。波浪モデルの減衰係数ζwnと固有角周波数ωwnも周波数同定器によって同定される。
2 設計
前章で検討したように、設計は、推定器の減衰係数ζeと推定係数ρに帰着する。まず、特性根で推定根を不安定にさせるパラメータ不確かさを特定し、仕様を定める。次いで、減衰係数ζeを推定ループ単体から推定誤差が低減する適正値を設定する。そして閉ループからρに対する仕様付近の推定根の特性を明らかにし、解の予測値を設定し、ρの求解算法を推定根特性及び予測値から算出する。
2.1 パラメータ不確かさ
2.1.1 特性多項式の導出
(12)式の特性行列の行列式である特性多項式は、ノミナル値による特性多項式とパラメータ不確かさによる多項式との和に整理される。特性多項式を因数分解すると特性根が得られる。すなわち
Figure 2012210875
になる。推定器の次数i(i=0、2、3、4、5)に対応した次数ciの特性多項式は次式になる。
Figure 2012210875
Figure 2012210875
Figure 2012210875
Figure 2012210875
Figure 2012210875
ここで、
Figure 2012210875
を示す(i:次数)。
2.1.2 パラメータ不確かさの影響
パラメータ不確かさが閉ループ制御系に及ぼす影響を検討する。特性多項式Dc(s)において、パラメータ不確かさΔa,Δbを開ループゲインと見なせば、根軌跡手法が適用でき、閉ループ安定性を検討できる。開ループ伝達関数GH(s)を(31)式より
Figure 2012210875
に定めると、閉ループ特性は図4に示すものと等価になる。根軌跡手法を用いて、推定器の次数と漸近線の本数(上式で分母の極数から分子のゼロ点数を差し引いた数)との関係を表2にまとめる。
Figure 2012210875
表2より2次から5次までの推定器の漸近線の本数と形状は同じであり、推定器に起因する閉ループ特性は、2次推定器を用いたDc4(s)を基本とすることができることが分かるから、推定器による閉ループ特性を把握するためには、Dc4(s)を調べればよい。
パラメータ不確かさΔa,Δb毎に対するDc4(s)の根軌跡をそれぞれ図5(a)及び(b)に示す。同図で×は極を、○はゼロ点を示す。この導出の条件として、ωfsn =1.58(Tsn =62.5、Ksn =0.04、f1=1)とする。
図5から次のことが分かる。
・Δa>0の場合はフィードバックループが不安定傾向になり、推定ループは間接的に影響する。よって、ζfの調整によって直接改善することができる。
・Δb>0の場合は推定ループが不安定傾向になり、推定根が直接影響し、フィードバックループは間接的に影響する。
従って、推定係数ρの設定はΔbを利用することがよいことが分かる。
2.1.3 設計仕様
推定係数ρが満足すべき仕様は、実際の制御対象の不確定要素、非線形性などを考慮して定める。
具体的には、パラメータ不確かさの仕様Δspecは、Δbと対応するものとして、ある値(第1仕様値)に定める。そのため、パラメータ不確かさΔbの無次元量を導入する。
Figure 2012210875
ここで、(・)’は無次元量を意味する。
そして、例えば、パラメータ不確かさの仕様Δspecは、パラメータ不確かさΔbがKsn/Tsnの2倍に相当するものとして、
Figure 2012210875
に定める。
また、閉ループ安定性の仕様ζspecは、特性根の中で最小の減衰係数に対応させて、ある値(第2仕様値)に決める。この値としては、例えば、0.4とすることができる。即ち、
Figure 2012210875
Figure 2012210875
である。ここで上付き文字(*) はパラメータ不確かさを含んだ場合を意味する。仕様ζspec=0.4はステップ応答のオーバシュート25%に相当する量で、負の実軸に対して偏角cos−1(0.4)=66.4[deg]になる(図5(b)参照)。
2.2 減数係数ζe
外乱モデルを含まない2次推定器の減衰係数ζeはパラメータ不確かさに起因した推定誤差を低減させる値に選ぶ。
船体モデルに対する推定ループは、(9)式及び図3Aを参照すると、
Figure 2012210875
Figure 2012210875
になる。(43)式から次式を得る。
Figure 2012210875
上式及びそれを微分した式と実際値Ks、Tsの船体モデル((1)式参照)
Figure 2012210875
とを(44)式に代入すると、次式になる。
Figure 2012210875
ここで、Δe2、Δe1はパラメータ不確かさを表す。
上式から伝達関数は、
Figure 2012210875
Figure 2012210875
になる。ここで、De(s)は、(17)式と等価である。
また、(48)式を(45)式に代入すると、rの伝達関数は次式となる。
Figure 2012210875
伝達関数Gψ ψ^2(s)、Gψ r^2(s)は、Δe2、Δe1によって共に推定誤差を生じるが、閉ループ安定性により強く関与するGψ r^2(s)を用いて減衰係数ζeを定める。
2.2.1 Δe1に関して
(50)式と(28)式とより、Δe1に関連する項を抽出すると、
Figure 2012210875
となる。Δe1を微小として、ζe * e1をΔe1に関する級数で近似すると、
Figure 2012210875
となる。これより、ζe * e1がΔe1による誤差を受けないようにするため、g(ζe)=0を解くと、次式を得る。
Figure 2012210875
2.2.2 Δe2に関して
同様に、(50)式と(28)式とより、Δe2に関連する項を抽出すると、
Figure 2012210875
となる。Δe2を微小として、ζe * e2をΔe2に関する級数で近似すると、
Figure 2012210875
となる。これより、ζe * e2がΔe2による誤差を受けないようにするための条件は、
Figure 2012210875
となる。
2.2.3 減数係数ζeの決定
上記(53)式、(56)式に近い値を減数係数ζeの値として決定することが好ましい。具体的には、ωesnが1より十分大きいものと仮定すると、(53)式から減数係数ζeは、
Figure 2012210875
と定めることができ、この値は(56)式からも、さほど離れない値であると期待できる。
2.3 推定係数ρ
推定係数ρは、(31)式のパラメータ不確かさ項に依存する。まずは、船体パラメータに対応する(33)式に基づいて、ρ2及び2次推定根の特性を把握する。そして、(34)〜(36)式のパラメータ不確かさ項の係数を、(33)式のそれと比較することで、外乱モデルに起因するρ(i=3,4,5)及び3〜5次推定根の特性を把握する。
手順としては、
・4次特性根とその2次推定根とを2次推定係数ρ2及びΔspecに関して解析し、ρ2と2次推定根との予測値を数値解法を利用して求める。
・5〜7次の特性多項式は、4次の特性多項式に基づいて解析し、5〜7次の特性根における推定係数と推定根との予測値をρ2と2次推定根とから求める。
2.3.1 2次推定器
(31)式の4次特性多項式は、
Figure 2012210875
になる。ここで、D*(s)は、パラメータ不確かさを含んだ多項式で、
Figure 2012210875
を示す。(37)式、(23)式及び(27)式より、
Figure 2012210875
を示す。
パラメータ不確かさは、(39)式、(22)式を用いて、
Figure 2012210875
になり、Δb2(s)はf1が相殺され、f1の影響を受けないことが分かる。
次に、以降の3次推定器の5次特性多項式の解析の準備として、2次推定根の特性について検討することにする。2次推定根は、図5(b)よりΔbの増加に伴って不安定側に移動し、その減衰係数ζe2 *は4次特性根の中で最小になる。その特性を把握するために、ωfsn =1.58(Tsn =62.5、Ksn =0.04、f1=1)において、Δb’を1,2(仕様値),3のそれぞれの場合に対して、ρ2を1〜10まで増加させたときの数値解を求めて、ζf2 *、ωf2 * ζe2 *、ωe2 *をそれぞれ求めると、図6に示すものとなる。この図6から、ρ2の増加に対応して、以下の傾向が把握される。
・ζe2 *は増加し、ζe=1/√2に漸近し、ωe2 *は単調増加する。
・ζf2 *、ωf2 *は徐々に変化しなくなり、一定値に近づく。
・Δb’が大きくなるに従って、ζe2 *、ωe2 *の線形範囲が拡大する。
よって、
Figure 2012210875
を満足するρspec=ρ2は存在し(図6の例では、ρ2=4.58)、そのときωspec=ωe2 *とおく。
図7は、仕様付近の2次推定根の特性を示す。Δb’/Δspec=1.0,1.1,1.2,1.3のそれぞれの場合の、ρ2’=ρ2/ρspecを1〜1.4まで変化させたときの数値解を用いる。図7から以下のことが把握される。
・Δb’/Δspecが大きくなるほど、線形性は向上する。
・ζe2 *,ωe2 *はそれぞれのdζe2 */dρ,dωe2 */dρがほぼ一定と扱え、ζspec付近でほぼ直線近似が成り立つ。
Figure 2012210875
Figure 2012210875
図8は図7の結果から導いたρ2およびζe2 *,ωe2 *の正規化した特性を示す。横軸にΔb /Δspecを、縦軸にζe2 *’=ζe2 */ζspec、ρ2’=ρ2/ρspec、ωe2 *’=ωe2 */ωspecの無次元値を用いる。図8から以下のことが把握される。
・ζe2 *’はΔb’ /Δspecにほぼ反比例する。このことから、ζe2 *’の予測値を
Figure 2012210875
と近似することができる。ここで、~:予測値を表す。
近似誤差(=(予測値)÷(計算値)−1)はΔb /Δspec=1.3で約2%になる。
・ρ2 、ωe2 *’はほぼ同値でΔb /Δspecにほぼ比例する。
図8の読取から、仕様値に対するパラメータ不確かさであるΔb’ /Δspec、に対応するρ2 、ωe2 *’の予測値を次式で近似することができる。
Figure 2012210875
ここで近似誤差はΔb /Δspec=1.3のときρ~2 が約0.8%、ω~e2 *’が約1.8%になる。
このように、Δbの増加によるζe2 *の劣化、ωe2 *の変化およびρ2の増加は、Δb’/Δspecによる予測値から把握できることが分かる。
2.3.2 3次推定器
3次推定器は2次推定器に、舵角オフセット成分δoの推定を加えたもので、5次特性多項式は、(34)式から、
Figure 2012210875
になる。ここで、B3(s)は、(28)式より、
Figure 2012210875
を示す。
2次推定器との対比を行って、2次推定器からの変化の特性を把握することによって、3次推定器の解析を行う。まず、(65)式のパラメータ不確かさの多項式を、
Figure 2012210875
の因数分解した形に置き換える。ここで、ζf = ζe を用いて
Figure 2012210875
を示す。2次推定器で用いた具体的数値とρ2=4.58、ρo=0.1から4azz/bz 2=0.305となり、4azz/bz 2は小さいことが推定される。よって、
Figure 2012210875
なる近似を用いると(√(1+ε)≒1+ε/2 (0<|ε|<1)))、Z(s)の根として次式を得る(z2<z1とする)。
Figure 2012210875
Figure 2012210875
(68)式において分母は1に近いため、z1≒ωeoであり、しかも、Deo3 (s)の特性根−ωeo3 *は極−ωeoからゼロ点z1の間にあるので、Deo3 *(s)≒Deo(s)と近似することができる。これより(65)式は次式になる。
Figure 2012210875
Figure 2012210875
(71)式を見ると、Dc43 Δb(s)は2次推定器の(58)式のDc4 Δb(s)と同じ形になっていることが分かる。そこで、両者のΔbの係数を比較するために、(59)式のs1 係数b12、s0 係数b02と(71)式のs1 係数az、s0 係数az2とをそれぞれ比較すると、
Figure 2012210875
Figure 2012210875
になる。(72)式及び(73)式の比がそれぞれ1より大きいことから、パラメータ不確かさΔbの係数は、3次推定器の5次特性多項式の方が、2次推定器の4次特性多項式に比べ、大きくなることが分かり、2次推定器におけるパラメータ不確かさΔbが等価的に大きくなったものとみなすことができる。そのため3次推定係数ρ3は、ρ2に対してパラメータ不確かさΔbの等価的増加分を修正する必要がある。Δbの係数比を具体的な数値を代入して計算すると(ρo=0.1)
Figure 2012210875
になる。上式から大きい値のs1 係数を選ぶこととすると、2次推定器の4次特性多項式においてパラメータ不確かさがaz /b12倍増加したことと等価になる。よって、前節の2次推定器の特性から(64)式を用いて、ρ’3の予測値を換算すると
Figure 2012210875
と定めることができる。これよりρ3、ωe3 *の予測値を次式に定めることができる。
Figure 2012210875
2.3.3 4次推定器
4次推定器は2次推定器に波浪成分ψwの推定を加えたもので、6次特性多項式は(35)式から、
Figure 2012210875
になる。ここで、(29)式より
Figure 2012210875
である。
3次推定器での手法と同様に、2次推定器との対比を行って、4次推定器の解析を行う。そのため、B4の係数b14と、B2の係数b12との比較をすると、(79)式から
Figure 2012210875
となる。詳細は省略するが、f1snωe2 2/b12>1であるため、上記式は、kwに関して右下がりの直線となる。
波浪パラメータの中心角周波数比を
Figure 2012210875
と定め、ζwn=0.1として数値計算すると
Figure 2012210875
を得る。最悪ケースのb14 /b12=1.121は(74)式のaz /b12=1.137とほぼ同等であるが、rw≫1でb14はb12に収束する。
(78)式でDw(s)とDew(s)とは次の条件のとき
Figure 2012210875
に近似できるので、2次推定器の特性と等価になり、4次推定係数ρ4≒ρ2,ωe4 *≒ωe2 *になる。上記の近似ができない場合、ρ4は減衰係数差(ζe−ζwn)に比例し、周波数比rwに反比例する傾向を持つとし、その予測値を次式に定める。
Figure 2012210875
2.3.4 5次推定器
5次推定器は2次推定器に舵角オフセット成分δo、波浪成分ψwの推定を加えたもので、3次及び4次の推定根特性を踏襲するものとし、7次特性多項式は(36)式から、次式となる。
Figure 2012210875
上式の予測値を3次、4次の推定根特性から次式に定める。
Figure 2012210875
2.4 波浪パラメータ条件
c7 Δb(s)において、仕様を満たすがωe5 = ρ5ωf>ωwn になった場合、波浪パラメータ条件(表1)に反する。そのときζwne に変更して再度ρ5 を求める。ノッチフィルター効果(外乱除去比ζwnew)を失うが、ρ5 が小さくなるのでωe5 * を下げローパスフィルタ効果を得ることができる。すなわち(85)式で
Figure 2012210875
になり、Dc5 Δb(s)の3次推定器の特性に変更される。
2.5 まとめ
2.4節の結果をまとめると、
・推定根のζe2 *, ωe2 * はζspec付近で、ρ2 にほぼ比例する。
・外乱モデルを含むρ5とωe5 * との予測値は、外乱モデルを含まないρ2とωe2 * によって求められる。
7次特性根からρ5 を計算するとき、ρ5 とζe5 *, ωe5 * との初期値が適切であると求解が確実になる。
以下、その求解算法について説明する。
3.求解算法
推定係数ρを求める算法を示す。求められたρはパラメータ不確かさを印加した閉ループ系において、仕様Δspec, ζspecを満足する。算法は確実な求解法、簡単な処理と少ない計算量とのため、前章で導き出した性質を用いて、3つの段階により構築する。
3.1 メインフロー
次の流れを採用する(図9)
(1)(58)式でζe2 *=ζspec になるρ2,ωe2 * を求める(S10)。
(2)(85)式でζe5 *=ζspec になるρ5,ωe5 * を求めるために、(86)式の予測値を初期値に設定する(S20)。またωe5>ωwn のとき(S30でyes)、ζwn=ζe にして(S40)、(2)を繰り返す。
(3)求めたρ5をρ(=ωe/ωf)として制御系を構成する(S50)。
3.2 ステップ2 サブフロー1
ρ(ρ2、ρ5)はその性質を利用して2段階で求める(図10参照)。
(1)ζspec を挟む範囲のρを求める:ζe * はρに対して単調増加になる性質を利用する。初期値は
Figure 2012210875
とおく。ステップ3に初期値を送るとζe *,ωe * が戻される。反復ループ(添え字i:回数)で
Figure 2012210875
を更新する。上記にてeζi=ζei *−ζspec,eζi>0のときブレークし、下限値と上限値とを設定する(図10参照)。
(2)次に、ζe *=ζspec となるρを求める。ζe * はζspec 付近でρにほぼ直線近似になる性質を利用する。反復ループ(添え字i:回数)で
Figure 2012210875
を更新する。上記にて|eζi|<ε(ε:微小項)のときブレークする。|eζi|≧εのときに、範囲を次式に置き換えて反複ループを実行する(図10参照)。
Figure 2012210875
3.3 ステップ3
初期値を用いて次の処理を行い、ζe *とωe *とを取り出す。
(1)4次式は代数解法によって、最小の減衰係数に対応する2次式の係数を求める。
(2)7次式は任意の数値解法によって求める。具体的には、ベアストウ法 と組立除法とによって、2次式の係数を求め、残りの5次式を因数分解する場合は ニュートン−ラプソン法(初期値ωeo)と代数解法とを用いる。
なお、上記の解法は公知のため説明を省く。
4.計算結果
本発明を数値計算によって検証する。船体パラメータおよび制御パラメータを表3にまとめる。ただし設計パラメータについては表1を参照されたい。また、仕様は(40)、(42)式に従っている。
Figure 2012210875
4.1 2次推定器
表3から以下のことが分かる。
・ρ2の変化は微分ゲインf2 のそれより小さいが、ωfsn に関係する。ρ2 は仕様から判断すると実用範囲の値である。
4.2 3次推定器
図11を参照すると
・az /b12:ωfsn =1 の場合は他の場合より15〜30%大きくなるが、ωfsn >1 の場合はほぼ近い値を示す。
・(−az2)/b02 :近似値はaz /b12 の90%弱になり、ρo が大きくなると近似誤差が増加する。
・誤差ρ3~’,誤差ωe3~’:ρo≦0.2とすれば、両者とも5%以内の誤差に収まる。
よって、3次推定器を2次推定器に近似し予測値を求める方法は妥当であり、予測値ρ3~’,ωe3~*’ は有効であると言える。
4.3 4次推定器
図12(ωfsn =1.58を利用)を参照すると
・b14 /b12 、kw:共にrw =1で1に近く、rw =10でほぼ1に収斂する。
・ζe4 *’,ωe4 *’:B4(s)のみの場合(波浪成分Dew(s),Dw(s)を省く)は波浪成分を含む場合より変化量が小さい。
図13より、ρ4 の予測値はζwn =0.1かつrw が低減で誤差を生じるが、それ以外では誤差は小さいと見なせる。ωe4 の予測値は一定のため、低い領域で誤差を生じる。
これに対して、波浪成分による影響が支配的になり、予測値ρ4 ,ωe4 は実用精度をもつ。
4.4 5次推定器
・図14は図13にρo を追加した場合で、ほぼ同様の傾向を示し、オフセットは予測値とほぼ等価である。
・図15はζwn=0.1,ωfsn を変化させた場合で、ωfsn =1のrw の低減で急増する。
予測値ρ5 ,ωe5 はrw の低減で波浪成分誤差をもつが、波浪パラメータ条件(破線より右側部分が条件を満足する領域)から予測値として実用精度をもつことが分かる。
4.5 計算時間の比較
本発明の求解算法の計算時間を標準算法と比較する。標準算法は既知の推定係数ρsol(
w) から探索範囲[ρlow,ρhigh]=ρsol (rw)[1/cp,cp]を与えて(Matlab のfminbnd を利用)、(12)式の特性行列から特性根を求め、最小の減衰係数を取り出し、それが仕様と一致する推定係数を求める。計算結果を表4にまとめる。条件:図14,ζwn=0.1である。
Figure 2012210875
本発明の計算時間は0.582,0.581,0.585[s],平均0.583[s] になり、標準算法の計算時間に比べ、1桁程度速いことが確認できた。
5.まとめ
推定器を含んだ保針ループに対して、推定根に影響を与えるパラメータ不確かさを特定し、仕様を定め、推定根特性を仕様付近で把握することで、ρの予測値を求めた。外乱モデルなしの2次推定根特性を基に外乱モデルありの推定根特性を解析した。求解算法は数値解と推定根特性とを利用し予測値を初期値に採用した。
数値計算によって、推定根特性と予測値との妥当性を確認し、求解算法の有効性を標準算法の計算時間と比べ確認した。
10 自動操舵装置
12 フィードバック制御器
14 操舵機
16 船体
18 制御対象
22 状態フィードバック制御器
24 推定器

Claims (5)

  1. 設定方位ψに検出方位を追従させるべく制御対象を制御する船舶用自動操舵装置であって、制御対象からの検出方位から外乱を除去した推定値を出力する推定器と、推定器からの推定値と設定方位から得られる値に対してフィードバックゲインを乗じて命令舵角を出力する状態フィードバック制御器とを有するフィードバック制御器を備え、命令舵角に応じて舵角を経て船体に作用させる操舵機及び船体を含む制御対象と共に閉ループを構成する船舶用自動操舵装置において、
    前記推定器の特性多項式は、船体モデルと波浪モデルと舵角オフセットモデルとを推定する多項式からなるものとし、それぞれ以下で表し、
    Figure 2012210875
    前記閉ループの特性多項式は、フィードバックループの特性多項式と、推定器の特性多項式から以下で表し、
    Figure 2012210875
    船体パラメータのパラメータ不確かさΔを加味したときの特性多項式Dc Δを、以下で表したときに、
    Figure 2012210875
    パラメータ不確かさΔが第1仕様値(Δspec)のときに、Dc Δ(s)の特性根から得られる減衰係数のうちの最も小さい減衰係数ζをζe として、そのζe が第2仕様値(ζspec)の値を満足するωe/ωf(=ρ)を求め、推定器の船体モデルの固有角周波数ωeを設定することを特徴とする船舶用自動操舵装置。
  2. 前記推定器を船体モデルのみとしたときの前記閉ループの特性多項式Dc4 Δを、
    Figure 2012210875
    としたときに、Dc4 Δ(s)の特性根のうちの最も小さい減衰係数ζをζe2 とし、ζe2 が第2仕様値(ζspec)の値を満足するωe2/ωf(=ρ2)を求め、このρ2を用いた初期値とした数値解法によって前記ωe/ωf(=ρ)を求めることを特徴とする請求項1記載の船舶用自動操舵装置。
  3. 前記初期値は、
    Figure 2012210875
    で表されることを特徴とする請求項2記載の船舶用自動操舵装置。
  4. 前記パラメータ不確かさΔは、船体パラメータの旋回力ゲインKsnと時定数Tsnの比の不確かさであることを特徴とする請求項1ないし3のいずれか1項に記載の船舶用自動操舵装置。
  5. 前記特性多項式Dc Δは、
    Figure 2012210875
    で表され、ここで、
    w(s)は、波浪モデルの特性多項式であり、減衰係数ζwnと固有角周波数ωwnとで、
    Figure 2012210875
    と表され、B(s)は、
    Figure 2012210875
    で表されることを特徴とする請求項4記載の船舶用自動操舵装置。
JP2011077977A 2011-03-31 2011-03-31 船舶用自動操舵装置 Active JP5682009B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077977A JP5682009B2 (ja) 2011-03-31 2011-03-31 船舶用自動操舵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077977A JP5682009B2 (ja) 2011-03-31 2011-03-31 船舶用自動操舵装置

Publications (2)

Publication Number Publication Date
JP2012210875A true JP2012210875A (ja) 2012-11-01
JP5682009B2 JP5682009B2 (ja) 2015-03-11

Family

ID=47265242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077977A Active JP5682009B2 (ja) 2011-03-31 2011-03-31 船舶用自動操舵装置

Country Status (1)

Country Link
JP (1) JP5682009B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596202C1 (ru) * 2015-04-16 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный морской университет имени адмирала Ф.Ф. Ушакова" Способ управления программными движениями судна по траектории
RU2703338C1 (ru) * 2018-11-26 2019-10-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Государственный морской университет имени адмирала Ф.Ф. Ушакова" Способ отслеживания запланированного маршрута морского подвижного объекта
CN112033336A (zh) * 2020-07-29 2020-12-04 北京工业大学 双轴式圆弧型大尺寸渐开线样板测量不确定度分析方法
RU2752725C1 (ru) * 2020-11-12 2021-07-30 Акционерное общество "Ситроникс КТ" Система прогнозирования безопасного расхождения судов
RU2782325C1 (ru) * 2022-04-28 2022-10-25 Санкт-Петербургский государственный электротехнический университет ЛЭТИ им. В.И. Ульянова (Ленина) Устройство аварийного торможения судна

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070050113A1 (en) * 2005-08-31 2007-03-01 Burkholder Jason O Adaptive dead-zone compensation for steering systems
JP2007118828A (ja) * 2005-10-28 2007-05-17 Tokimec Inc 船舶用自動操舵装置及びその設計方法
JP2008137545A (ja) * 2006-12-04 2008-06-19 Tokimec Inc 船舶用自動操舵装置
JP4603832B2 (ja) * 2004-08-03 2010-12-22 東京計器株式会社 船舶用自動操舵装置及び船舶用自動操舵装置用推定器の設計方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603832B2 (ja) * 2004-08-03 2010-12-22 東京計器株式会社 船舶用自動操舵装置及び船舶用自動操舵装置用推定器の設計方法
US20070050113A1 (en) * 2005-08-31 2007-03-01 Burkholder Jason O Adaptive dead-zone compensation for steering systems
JP2007118828A (ja) * 2005-10-28 2007-05-17 Tokimec Inc 船舶用自動操舵装置及びその設計方法
JP2008137545A (ja) * 2006-12-04 2008-06-19 Tokimec Inc 船舶用自動操舵装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2596202C1 (ru) * 2015-04-16 2016-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Государственный морской университет имени адмирала Ф.Ф. Ушакова" Способ управления программными движениями судна по траектории
RU2703338C1 (ru) * 2018-11-26 2019-10-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Государственный морской университет имени адмирала Ф.Ф. Ушакова" Способ отслеживания запланированного маршрута морского подвижного объекта
CN112033336A (zh) * 2020-07-29 2020-12-04 北京工业大学 双轴式圆弧型大尺寸渐开线样板测量不确定度分析方法
CN112033336B (zh) * 2020-07-29 2022-02-15 北京工业大学 双轴式圆弧型大尺寸渐开线样板测量不确定度分析方法
RU2752725C1 (ru) * 2020-11-12 2021-07-30 Акционерное общество "Ситроникс КТ" Система прогнозирования безопасного расхождения судов
RU2782325C1 (ru) * 2022-04-28 2022-10-25 Санкт-Петербургский государственный электротехнический университет ЛЭТИ им. В.И. Ульянова (Ленина) Устройство аварийного торможения судна

Also Published As

Publication number Publication date
JP5682009B2 (ja) 2015-03-11

Similar Documents

Publication Publication Date Title
CN106487297B (zh) 一种基于无迹卡尔曼滤波算法的pmsm参数辨识方法
JP5682009B2 (ja) 船舶用自動操舵装置
CN109977613B (zh) 一种可预先设定调整时间的自适应滑模末制导律设计方法
US11226599B2 (en) Machine learning system, control device, and machine learning method for optimizing filter coefficients
JP5052165B2 (ja) 船舶用自動操舵装置
CN109062060A (zh) 一种基于加速度计和ccd融合的快反镜稳定方法
US11669055B2 (en) Vibration suppression device, method and computer-readable medium using estimated vibration torque
CN113238567B (zh) 一种基于扩展状态观测器的底栖式auv弱抖振积分滑模点镇定控制方法
KR102605907B1 (ko) 우주선을 위한 적응형 슬라이딩 모드 자세 제어 방법 및 장치
JP5042905B2 (ja) 船舶用自動操舵装置
KR102430383B1 (ko) 피드백 제어 방법, 및 피드백 제어 장치
JP7066062B2 (ja) 方位角推定装置、ジャイロシステム、方位角推定方法及びプログラム
KR102093744B1 (ko) 항공기 세로축 안정성 및 비행성 충족을 위한 파라미터 최적화 방법
CN113960998B (zh) 一种无人艇模糊预测控制系统及方法
JP4897450B2 (ja) 船舶用自動操舵装置
EP3250886B1 (en) Gyroscope loop filter
CN116700107A (zh) 一种控制器参数确定方法、装置、设备及可读存储介质
JP4820621B2 (ja) 船舶用自動操舵装置及びその設計方法
CN108646568B (zh) 一种基于改进的扰动观测器的倾斜镜振动抑制方法
CN114726275B (zh) 一种应用于含摩擦随动系统的自适应滑模控制方法
CN103954289A (zh) 一种光学成像卫星敏捷机动姿态确定方法
CN110209197B (zh) 一种飞行器控制系统设计方法
Zhang et al. Adaptive mismatch compensation for rate integrating vibratory gyroscopes with improved convergence rate
JP6632497B2 (ja) 船舶用自動操舵装置
JP4603832B2 (ja) 船舶用自動操舵装置及び船舶用自動操舵装置用推定器の設計方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5682009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250