JP4897450B2 - 船舶用自動操舵装置 - Google Patents

船舶用自動操舵装置 Download PDF

Info

Publication number
JP4897450B2
JP4897450B2 JP2006327320A JP2006327320A JP4897450B2 JP 4897450 B2 JP4897450 B2 JP 4897450B2 JP 2006327320 A JP2006327320 A JP 2006327320A JP 2006327320 A JP2006327320 A JP 2006327320A JP 4897450 B2 JP4897450 B2 JP 4897450B2
Authority
JP
Japan
Prior art keywords
hull
parameter
identification
unit
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006327320A
Other languages
English (en)
Other versions
JP2008137545A (ja
Inventor
冬希 羽根
俊英 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP2006327320A priority Critical patent/JP4897450B2/ja
Publication of JP2008137545A publication Critical patent/JP2008137545A/ja
Application granted granted Critical
Publication of JP4897450B2 publication Critical patent/JP4897450B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Feedback Control In General (AREA)

Description

本発明は、船体モデルにおける船体パラメータを同定する同定機能を有し、同定した船体パラメータを用いて船体の変針制御を行なう船舶用自動操舵装置に関する。
船舶用自動操舵装置は、設定針路にジャイロコンパスからの方位を追従させるために舵を制御する装置であり、その制御系は、設定針路と船首方位との入力から偏差と旋回角速度とを求め制御ゲインを乗じて制御量である命令舵角を操舵機に出力する。操舵機は舵を動かして、船体に旋回角速度を誘起させて方位を変化させる。
図1を参照して自動操舵装置を含む全体のシステムを説明すると、12は自動操舵装置、14は操舵機、16は船体であり、自動操舵装置12は、さらに、軌道演算部22、減算器24、フィードフォワード制御器26、フィードバック制御器28、加算器30、同定演算部32を備えている。
軌道演算部22は設定針路ψを入力し、設定針路ψから軌道計画に基づいた参照針路ψを演算するものである。減算器24にて参照針路ψと船体16の船首方位ψとの偏差eがとられ、フィードバック制御器28に入力され制御ゲインが乗じられる。フィードフォワード制御器26及びフィードバック制御器28の出力が加算器30で加算されて、命令舵角δCとなる。
同定演算部32は、船体パラメータを同定するもので、同定された船体パラメータは、軌道演算部22、フィードフォワード制御器26及びフィードバック制御部28へと入力されて、各演算及び制御に用いられる。
例えば、貨物船やタンカーなどの船舶は荷物の積み下ろしにより喫水が変化する。そのため、船体特性が変化し積み下ろし前の制御ゲインを用いると、操舵系の閉ループ安定性が低下しヨーイングを生じる場合がある。この状況を回避するために船体パラメータを同定し、制御ゲインを設定する方法が非特許文献1で提案されている。
本出願人による特許文献1では、バッチ処理による同定算法を行なう船舶用自動操舵装置を提案する。図10は、その同定演算部32のブロック図であり、自動操舵装置12と同じ、減算器24−1、フィードフォワード制御部26−1、フィードバック制御部28−1及び加算器30−1を備えると共に、制御対象モデル34、減算器36及びパラメータ調節部38を備える。この同定演算部32へ供給される入力データとしては、軌道演算部22からの参照針路ψ、また、同様に供給される出力データとしては、減算器24からの偏差eとなっており、これらは、一旦メモリに記憶され、同定演算部32でバッチ処理で行なわれる。
同定演算部32では、減算器36において、減算器24−1にて得られるモデル偏差eと、偏差eとの差である同定誤差が得られる。パラメータ調節部38では、基本的に、同定誤差が最小となるような船体パラメータ同定値を求め、それを、制御対象モデル34の他、軌道演算部22、フィードフォワード制御器26及びフィードバック制御部28へと供給する。
以上の制御対象モデル34は、船体をラプラス演算子sを用いた伝達関数K/(Ts+1)によって表される1次モデルによって近似されており、同定する船体パラメータは、旋回力指数K、及び時定数である追従安定性指数Tとなっている。パラメータ調節部38では、パラメータ毎に、同定誤差の平均と分散を求め、分散の最小値を見つけ、また平均が0となる場合を見つけることにより、船体パラメータK、Tを同定している。
本出願人は、この特許文献1をさらに改良したものとして、特願2005−148600にて、同定する船体パラメータをさらに増加させて変針時のオーバシュートを抑えることができる船舶用自動操舵装置を提案している。
これらの特許文献1または特願2005−148600記載による船体パラメータの同定は、それまでの船体パラメータの同定のように(例えば、非特許文献2、非特許文献3)舵を交番に何回か繰り返す必要のあるものと異なり、1回の変針で船体パラメータを決定することができる、という利点を有している。従って、通常の運行時の操舵でも船体パラメータを同定でき、操船者が特別に意識することなく船体パラメータを同定して自動設定することも可能になる、という利点を有している。
大津、長谷川、IX. オートパイロットの評価と展望、第3回操縦性シンホジウムテキスト、日本造船学会試験水槽委員会、p.243/279(1981) 第2回操縦性シンポジウム、日本造船学会試験水槽委員会、p.14/16(1970年11月) 第3回操縦性シンポジウム、日本造船学会試験水槽委員会、p.266/269(1981年12月) 特開2001−18893号公報
特願2005−148600記載の同定演算部を用いて変針毎に同定した船体パラメータを用いて、フィードフォワード制御器26、フィードバック制御器28により出力された命令舵角δCにより変針制御をさせた場合の実船試験結果の一例を図11に示す。同定演算部は、図11中の変針C1〜C4において、それぞれその船首方位ψと命令舵角δCを用いて船体パラメータを同定して、各変針で同定された船体パラメータを演算された毎に更新しており、更新された船体パラメータは次の変針制御に利用されている。
同図によれば、変針C1における同定演算結果を用いた次の変針C2の船首方位ψは、設定針路ψよりもオーバシュートを生じ、変針C2における同定演算結果を用いた次の変針C3の船首方位ψは、設定針路ψよりもアンダーダンプを生じていることが分かる。
このように従来の同定演算では、変針毎に同定される船体パラメータを更新していくことができる反面、変針方向が前回と異なる場合に、逆にパラメータ不確かさを制御系に与えてしまうという問題があることが判明した。
本発明は、かかる課題に鑑みなされたもので、その目的は、パラメータ不確かさを制御系に与えることなく、船体パラメータの同定の精度をより向上させることができる船舶用自動操舵装置を提供することである。
かかる目的を達成するために、本発明の請求項1に記載の発明は、設定針路と船首方位に基づいて船体パラメータを用いて命令舵角を出力する船舶用自動操舵装置において、
船体パラメータを同定して出力する同定演算部を備え、該同定演算部は、
船舶用自動操舵装置で得られる所定の入力データと出力データとが供給されてそれぞれのデータを蓄積する記憶部と、
船体パラメータで表される船体モデルを含み、蓄積された入力データからモデル出力データを出力する同定モデルと、
該同定モデルからのモデル出力データと前記出力データとの比較結果から船体パラメータを調節するパラメータ調節部と、
前記パラメータ調節部で調節された船体パラメータを記憶するパラメータ記憶部と、を備えており、
前記パラメータ調節部は、各変針に対して、その変針時における複数の前記入力データと複数の前記出力データに基づき船体パラメータの調節を行っており、前記パラメータ記憶部は、前記各変針の変針方向に応じて前記調節された船体パラメータを分別して記憶すると共に、前記設定針路が変化したときに、その変針方向に対応して記憶している船体パラメータを同定した船体パラメータとして出力することを特徴とする。
請求項2記載の発明は、請求項1記載の前記船体モデルの伝達関数が、
Figure 0004897450
で表されることを特徴とする。
請求項3記載の発明は、請求項1または2記載の前記入力データとして命令舵角、前記出力データとして船首方位とすることを特徴とする。
請求項4記載の発明は、請求項1ないし3のいずれか1項に記載の前記パラメータ記憶部が、右舷変針に対して調節された船体パラメータを記憶するCW方向パラメータ記憶部と、左舷変針に対して調節された船体パラメータを記憶するCCW方向パラメータ記憶部と、変針方向に応じて前記パラメータ調節部で調節された船体パラメータを前記CW方向パラメータ記憶部と前記CCW方向パラメータ記憶部のいずれかに選択して格納する第1切替部と、前記設定針路が変化したときの変針方向に応じて前記CW方向パラメータ記憶部に記憶された船体パラメータと前記CCW方向パラメータ記憶部に記憶された船体パラメータのいずれかを選択して同定した船体パラメータとして出力する第2切替部と、を備えることを特徴とする。
請求項5記載の発明は、請求項4記載の前記パラメータ調節部が、
モデル出力データと出力データの差の関数となるスカラ値である評価関数を最小化する同定パラメータ値を同定パラメータに決定する第1判別部と、
前記第1判別部で決定した同定パラメータ値のうちの船体パラメータに対応する同定パラメータ値を用いた船体モデルの入力データに対するモデル出力データを算出し、同様に、前記第1切替部で選択される前記CW方向パラメータ記憶部と前記CCW方向パラメータ記憶部のいずれかに記憶された船体パラメータであるノミナル値を用いた船体モデルの入力データに対するモデル出力データを算出し、同定パラメータ値を用いたモデル出力データから求めた評価関数と、ノミナル値を用いたモデル出力データから求めた評価関数とをそれぞれ求めて、どちらの評価関数が小さいかまたは大きくないかを判定し、評価関数が小さいまたは大きくない方に用いた同定パラメータ値またはノミナル値に船体パラメータを調節する第2判別部と、を備えることを特徴とする。
前記パラメータ調節部は、モデル出力データと出力データとの差の関数となるスカラ値である評価関数を最小化する同定パラメータ値を同定パラメータに決定し、その中で対応する同定パラメータに船体パラメータを調節することとすることができ、また、同定パラメータを多変数とする評価関数の極小解を求め、該極小解となる同定パラメータ値を同定パラメータとするものとすることができ、SQPのアルゴリズムにより評価関数を最小化する同定パラメータを求めることとすることができる。
図11のようなオーバシュートやアンダーダンプを引き起こす要因は、船体特性の変針方向依存性にあると考えられる。船体の胴体は、船首方向の軸に関して対称であるが、船の推進装置、船尾形状、舵のオフセット、潮流、載荷状態によって、非対称な要因が発生し、変針方向によって異なる特性を生じさせることになると考えられる。
本発明によれば、各変針の変針方向に応じて調節された船体パラメータを分別して記憶すると共に、設定針路が変化したときに、その変針方向に対応して記憶した船体パラメータを同定した船体パラメータとして出力することにより、変針方向に応じて別々の船体パラメータを用いて変針制御を行うことができるようになり、これによって、変針方向依存性に起因するオーバシュート、アンダーダンプを解消することができ、良好な応答を実現することができる。
また、変針方向に応じて船体パラメータを分別しているため、これらを比較することによって、船体状態の診断に利用することも可能になる。例えば、その変針方向に応じた船体パラメータの差異が所定値よりも大きい場合に、船が非対称であることを示す警報表示を行うようにすることも可能である。
請求項2記載の発明によれば、船体モデルとして1次モデルではなく、分子に時定数T3を加えたモデルとすることにより、変針時におけるオーバシュート、アンダーダンプの発生をより確実に防ぐことができるようになる。
請求項3記載の発明によれば、入力データとして命令舵角、出力データとして船首方位とすることにより、同定するべきパラメータ数が多くなったとしても、開ループであるので同定のための演算を簡素化することができる。また、手動操船においても適用できるので、手動操船及び自動操船のいずれの操舵モードにおいても同一の構成で同定処理を行なうことができるようになる。
請求項4記載の発明によれば、CW方向パラメータ記憶部、CCW方向パラメータ記憶部を備え、さらに、これらを切り替えて格納する第1切替部、及びこれらを切り替えて出力する第2切替部を備えることにより、船体パラメータを変針方向に応じて分別することができる。
請求項5記載の発明によれば、ある同定で得られた同定パラメータ値と、現在の船体パラメータ値であるCW方向パラメータ記憶部とCCW方向パラメータ記憶部のいずれかに記憶された船体パラメータのノミナル値のいずれがより適した値であるかを第2判別部が判別することができる。即ち、第2判別部が、それぞれの値を用いた船体モデルの入力データに対するモデル出力データを算出して、それぞれのモデル出力データから評価関数を作成し、これらの2つの評価関数のうちでより評価関数を小さくさせる同定パラメータ値またはノミナル値を船体パラメータに採用するようにしているので、仮に、良好な同定が行なえなかった場合には、その同定パラメータ値を採用しないようにして、船体パラメータを常に良好な値に維持することができる。
以下、図面を用いて本発明の実施の形態を説明する。
図1は、本発明の船舶用自動操舵装置を含む全体のシステムを表すブロック図である。図において、12は自動操舵装置、14は操舵機、16は船体である。操舵機14及び船体16を合わせたものが制御対象となる船体プラント18である。自動操舵装置12は、さらに、軌道演算部22、減算器24、フィードフォワード制御器26、フィードバック制御器28、加算器30、同定演算部32を備えている。背景技術にて既に説明した部分については、説明を省略する。
フィードフォワード制御器26は、参照針路からフィードフォワード舵角を演算するものであり、自動操舵系において開ループ系を構成しており、この開ループ系は、変針時、船首方位を直ちに参照針路に一致させるように作動する。具体的には、フィードフォワード制御器26の伝達関数は、制御対象である後述の船体モデルの伝達関数P(s)(後述(2)式参照)の逆特性を有するように設定することができる。
また、フィードバック制御器28は、自動操舵系において閉ループ系を構成しており、船首方位ψと参照針路ψとの偏差eに対してフィードバック舵角を演算するものである。変針系は、基本的には軌道演算部22からの参照針路ψと、フィードフォワード制御器26によるフィードフォワード制御の作動により、船首方位を参照針路に遅れなく追従させるものであり、このときに、参照針路と船首方位との間に偏差誤差eが生じた場合に、閉ループ系が偏差誤差eを減らすように動作する。フィードバック制御器28は参照針路ψ、船体16の船首方位ψ及びフィードバック制御器28の出力から推定方位、推定角速度を求める推定器を含むことができる。
図2は、同定演算部32の構成を表すブロック図である。同定演算部32には、実プロセスから制御対象の入出力データが時系列データとして供給され、これらの入力データ及び出力データを蓄積する入力データ記憶部40、出力データ記憶部42を備える。入力データ記憶部40及び出力データ記憶部42は、リングバッファ型メモリとすることができる。さらに、同定演算部32は、同定開始決定部39、データ抽出部43、同定モデル44、減算器46、パラメータ調節部48及びパラメータ記憶部58を備える。また、パラメータ記憶部58は、第1切替部60、CW方向パラメータ記憶部62、CCW方向パラメータ記憶部64及び第2切替部66を備える。同定演算の原理について以下説明する。
1.同定モデル
同定モデル44は、船体モデル、外乱モデル及び船体運動の初期値とから構成され、命令舵角δCを入力しモデル出力データであるモデル船首方位ψを出力する。以下、船体モデル、外乱モデル及び船体運動についてそれぞれ説明する。
1.1 船体モデル
この実施形態において、船体モデルは、操舵機と船体とを一体化したものとし、操舵機の時定数(船体の時定数に比較して十分に小さい)やオンオフ制御の非線形性などの不確定特性を時定数の大きい船体特性に吸収させて、舵速度や許容舵角などの確定要素を残存させる。そして、船体モデルとしては、以下の式を採用することとする(図3参照)。
Figure 0004897450
ここで、Pは船体モデルの伝達関数、ψ(s)は船首方位、K、T、T3sは、同定するべき船体パラメータで、それぞれ旋回力ゲイン[1/s/deg]、二つの時定数[s]をそれぞれ示し、T>T3sである。また、(・)は船体値を意味する。
任意には、(2)式の代わりに、
Figure 0004897450
の1次モデルとして簡易にすることも可能である。但し、変針時のオーバシュートをより確実に防ぐ観点からすると(2)式とすることが好ましい。
さらに任意には、次の伝達関数を採用することも可能である。
Figure 0004897450
しかしながら、T》T2sとすることができるので、(2)式とすることで十分である。
1.2 外乱モデル
外乱モデルは、船体、風との相対速度ベクトルVによって発生する船体の方位軸まわりのモーメントを舵角オフセットに換算した関数δoffset=f(ベクトルV)で定める。相対速度ベクトルの絶対値の時間変化が微小とすれば、相対速度ベクトルは方位の関数ベクトルV=g(ψ)として扱える。このことから舵角オフセットを、
Figure 0004897450
と近似する。ここで、δoffsetは外乱モデルの舵角成分を、
Figure 0004897450
は変針前または保針時の舵角オフセットを、cδは変針後の舵角オフセット係数を示す。(3)式の関係を図4に示す。ψは方位変化なので変針前は零であるので、(3)式の第1項のδは、変針前の舵角オフセットとして設定する。(3)式の第2項のcδψは変針後の方位変化に関係する舵角オフセット変化に対応する項となる。この第2項をψに比例する項とすることによって、手動操船及び自動操船のいずれの場合においても、同様のモデルを用いることができる、という利点を持つ。
1.3 船体運動
船体運動の初期値は(2)式より直接取得できる方位と取得できない旋回角速度とがある。角速度の初期値応答は、
Figure 0004897450
になり、方位変化は、
Figure 0004897450
になり、方位定常値は(1−T3S/TS)rである。角速度初期値を考慮しないと、方位変化が同定誤差の原因になるが、角速度初期値は直接取得することはできないから、角速度初期値を同定パラメータとして同定モデルに含ませることにより、同定誤差を防止するとよい。
任意で船体モデルとして(2”)式を採用する場合には、角加速度の初期値を同定パラメータとして同定モデルに含ませることもでき、より正確に船体運動の初期値を組み込むことができるようになる。但し、実用的には、角速度初期値のみとすることで十分である。
1.4 同定モデル
以上の(2)式の船体モデル、舵角オフセット及び角速度初期値から図5に示す同定モデルを構成する。舵角オフセットに関しては、命令舵角に追加される。尚、δ/sとするのは、一定値の入力とするためである。
同定モデルの伝達関数は、
Figure 0004897450
になる。ここで、添字(・)は、モデル値を意味する。よって、同定モデルは3次系となり、同定パラメータはx1m、x2m、x3m、δ0m、cδm、r0mの6個となる。
2. 入力データと出力データ
同定演算を手動操船と自動操船の両方において、それぞれの変針応答から行う。
2.1 手動操船
手動操船においては、図6に示すように、操船者による命令舵角δcを同定演算部32の入力データとし、船首方位ψを同定演算部32の出力データとする。
簡単のため船体モデルのみを考慮すると、同定誤差γは、制御対象の船首方位とモデル船首方位との差となり、(1)式及び(2)式を用いて
Figure 0004897450
になる。
上式よりP−P=0、即ちγ=0となるパラメータ条件を求めると、x1m=x、x2m=x、x3m=x、T3m=T3Sを得る。
2.2 自動操船
自動操船では、同定演算部32に供給する入力データ及び出力データの収集方式として、図10で示した特許文献1における同定演算部のように、参照針路ψを入力データとし、偏差eを出力データとする閉ループで同定する間接方式と、命令舵角δを入力データとし、船首方位ψを出力データとする開ループで同定する直接方式とが考えられる。間接方式では、ψからeまでの伝達関数の次数+同定モデルの次数になり、加えて、フィードバック制御器に含まれる推定器の初期値も考慮すると、次数が高次になり計算量も増加し、処理も煩雑になるのに対して、直接方式では同定系の次数が同定モデルの次数であり、且つ手動操船の場合と構成が同じになるために、構成が共通化・簡素化できる、という利点がある。よって、以下説明では、直接方式で行い、命令舵角δを入力データとし、船首方位ψを出力データとする。
3. 評価関数及び同定範囲
3.1 評価関数
パラメータ調節部48には、上述のごとく図2に示すように、命令舵角δを入力データとし、船首方位ψを出力データとして蓄積されたデータに対して、同定モデル44のモデル出力データと、実プロセスの出力データとの差異となる、減算器46による同定誤差γが順次入力される。パラメータ調節部48では、同定誤差γをスカラー量に変換した評価関数Jを求め、該評価関数Jを最小にするパラメータを調節する。評価関数Jとして、同定誤差γの二乗和とし、
Figure 0004897450
と定義することができる。ここでnは同定の時間範囲内にある同定データ数を表す。勿論、二乗和とする他に、同定誤差の絶対値の和とすることもでき、または適宜重み付け係数をかけることもでき、任意の評価関数を採用することができる。
モデルの出力はパラメータに依存するので、評価関数Jは非線形関数となる。よって、パラメータ調節部48では、多変数関数である評価関数Jを最小化するモデルのパラメータを求める。かかる演算は、公知の任意の手段、例えば、SQP(逐次型二次計画法sequential quadratic programming algorithm)のアルゴリズムを用いて行うことができ、評価関数の極小解を求め、該極小解となる同定パラメータ値を同定パラメータとする。
3.2 同定の時間範囲
1回の同定演算に用いるデータ抽出の時間範囲は、図7に示すように、変針前静定時間と変針中と変針後静定時間とからなる。
同定開始決定部39で開始を決定する、同定を開始するための条件として、次の条件を設定することができる。
(1) 船速が設定上限値と設定下限値の範囲内にあること
(2) 方位変化が設定最大値と設定最小値の範囲内にあること
(3) 舵角が、変針前にその振幅が設定振幅最大値(例えば3度)を超えず、変針時の舵角が設定振幅最小値(例えば4度)を超えていること。
(4) 変針前後の静定時間がそれぞれの設定値を満足していること(例えば、変針前60秒、変針後180秒)
変針前静定時間は、δ0mとr0mとの捕捉のために設定するものであり、これらを適正に同定するのに必要な適当な時間とすることができる。
一方、変針後静定時間は船体パラメータ誤差に影響するので、手動操船時において、同定データ数が一定で船体パラメータ誤差が小さくなるような静定時間を設定する必要があり、3T程度を選ぶとよい。実際には、手動操船の場合、変針中の時間範囲が不確定であることが多いので、変針開始前の所定時間と変針開始後の所定時間(上記3Tを目安に設定される)の合計を同定の時間範囲とするとよい。
3.3 自動操船時の同定の時間範囲
自動操船時についても、同定開始決定部39で開始を決定する、同定を開始するための条件を手動操船時と同様に設定することができ、また、同定の時間範囲は、変針前静定時間、変針中及び変針後静定時間とからなる。変針前は手動操船と同様に設定することができる。変針中は変針のための命令舵角入力時であり、入力の大きさと時間とにより変針量が決まる。
変針後静定時間は、手動操船時と異なり閉ループ特性をもつので、閉ループの代表根である操舵系の固有周期の1倍程度を確保すれば、その応答特性を把握できると考えられる。
3.4 船体特性の変針方向依存性
船体の胴体は、船首方向の軸に関して対称である。船の推進装置はプロペラが一般的であるが、一軸のものは扇流により胴体の左右流体に差を生じさせる。胴体まわりの流れの不釣合いは、船尾形状、舵のオフセット、潮流などからも生じる。海上は常に強い一様な風が吹いているため、船の上部構造が受ける風による力が方位軸まわりのモーメントになり、変針方向によって影響度合いが異なる。さらには、載荷状態に対応して船体全体のバランスを適切に調整(トリミング)したかどうかによって、変針方向によって異なる特性を生じさせることになると考えられる。
この変針方向依存性に対しては、変針方向が時計回りCW(即ち、右舷(starboard))であるときと反時計回りCCW(即ち、左舷(port))であるときとで、行った同定処理を識別し、パラメータ調節部48で調節された船体パラメータを変針方向に応じて分別して記憶し、且つ変針制御はその変針方向に応じて記憶した船体パラメータを使用して制御を行うことにより、対応する。
3.5 同定演算部32での処理
同定演算部32は以上の原理に従って構成され、まず、入力データである命令舵角δ、及び出力データである船首方位ψが時系列的に順次、入力データ記憶部40及び出力データ記憶部42に格納される。
同定開始決定部39には、手動操船か自動操船かを示す操舵モード信号、船速、命令舵角δC、軌道演算部22からの設定針路ψSの変化量である変針量ΔψS及び設定針路ψSの変針量から求められる変針方向CW、CCWが入力されて、前述の同定を開始するための条件に合致するかどうかを判定し、同定開始条件を満足すると判定した場合には、データ抽出部43を起動する。
データ抽出部43において操舵モードに応じて、前述のような同定の時間範囲に対応するデータがそれぞれ入力データ記憶部40及び出力データ記憶部42から抽出される。
抽出された入力データは、同定モデル44において演算されて、モデル船首方位ψが出力されて、減算器46で実際の船首方位ψとの差である同定誤差γが求められ、該同定誤差γがパラメータ調節部48で評価されパラメータの調節がなされる。パラメータ調節部48は、同定モデル44で用いる同定パラメータを変化させて同定誤差γから(4)式で表される評価関数を求め、該評価関数を最小とする同定パラメータを決定する。
パラメータ調節部48の詳細構成ブロック図を図8に示す。パラメータ調節部48は、安定船領域同定探索部50、不安定船領域同定探索部52、第1判別部54及び第2判別部56を備える。
安定船とは、x>0、x>0及びx>0を満足する船であり、不安定船とは、x<0、x>0及びx<0を満足する船であり、いずれかの条件を満足する船しか存在し得ない。評価関数を最小とする同定パラメータが必ず安定船か不安定船のいずれかとなるように、それぞれ安定船領域同定探索部50、不安定船領域同定探索部52は、それぞれの満足するべき条件の範囲内で同定パラメータの探索を行なうべく、同定モデル44の同定パラメータの範囲を変化させる。
安定船領域同定探索部50及び不安定船領域同定探索部52のそれぞれで決定された最小の評価関数J、Jは、第1判別部54において、いずれの評価関数が小さいかが判定される。
Figure 0004897450
そして、より小さい評価関数を導き出す同定パラメータが決定される。
次に、第2判別部56では、第1判別部54で決定された同定パラメータのうちの船体パラメータに対応する同定パラメータ値と、現在のノミナルの船体パラメータでありパラメータ記憶部58に記憶されているノミナル値との比較を行なう。
ここで、パラメータ記憶部58について説明する。
パラメータ記憶部58の第1切替部60は、同定開始決定部39が同定開始を決定したときの同定開始決定部39からの変針方向CW,CCWのデータに応じて、パラメータ調節部48の第2判別部56との間でやり取りを行うデータを切り替えるものである。つまり、変針方向がCWである場合には、CW方向パラメータ記憶部62に記憶されているノミナル値を第2判別部56における比較処理に供し、また、第2判別部56での比較結果によっては、第1判別部54で決定された同定パラメータをCW方向パラメータ記憶部62に記憶する。変針方向がCCWである場合には、CCW方向パラメータ記憶部64に記憶されているノミナル値を第2判別部56における比較処理に供し、また、第2判別部56での比較結果によっては、第1判別部54で決定された同定パラメータをCCW方向パラメータ記憶部64に記憶する。
第2判別部56では、第1切替部60によって変針方向に応じて供給された船体パラメータのノミナル値と、第1判別部54で決定された船体パラメータとの比較を船体モデルを用いて行なう。第1判別部54で決定された船体パラメータの同定パラメータ値をx1m、x2m、x3mとし、ノミナル値をx1n、x2n、x3nとすると、それぞれの値を採用した船体モデルを用いて、それぞれ入力データである命令舵角に対するモデル船首方位を求め、評価関数J、Jを求める。即ち、
Figure 0004897450
そして、いずれの評価関数J、Jが小さいかが判定される。
Figure 0004897450
の方が小さい場合には、第1判別部54で決定された同定パラメータを出力して、第1切替部60によって変針方向に応じて選択されるCW方向パラメータ記憶部62またはCCW方向パラメータ記憶部64のいずれかに記憶されているノミナル値を更新する。一方、Jの方が小さい場合には、パラメータ記憶部58のCW方向パラメータ記憶部62またはCCW方向パラメータ記憶部64の更新は行なわず、現在のノミナル値をそのまま出力する。
こうして、評価関数を用いて得られた同定パラメータ値が現在のノミナル値よりも悪いと考えられる場合には、その同定パラメータ値を採用しないようにして、船体パラメータを常に良好な値に維持することができる。
尚、パラメータ調節部48の処理は、以上の処理の他に、特許文献1に示される処理を行うことも可能である。
パラメータ記憶部58の第2切替部66は、設定針路ψSが入力されたときに軌道演算部22から得られる設定針路ψSの変針量から求められる変針方向CW,CCWのデータに応じて、変針制御部となるフィードフォワード制御部26とフィードバック制御部28へと出力する船体パラメータを切り替えるものである。つまり、変針方向がCWである場合には、CW方向パラメータ記憶部62に記憶されているノミナル値をフィードフォワード制御部26とフィードバック制御部28における変針制御に供し、変針方向がCCWである場合には、CCW方向パラメータ記憶部64に記憶されているノミナル値をフィードフォワード制御部26とフィードバック制御部28における変針制御に供する。
このように変針方向に応じて切り替えることで、CW変針時には、前回のCW変針時における同定によって得られた船体特性を用いて変針制御を行い、CCW変針時には、前回のCCW変針時における同定によって得られる船体特性を用いて変針制御を行うことになるので、船体特性の変針方向依存性による問題を回避することができるようになる。
これら変針方向に応じて船体パラメータを分別するために、航行初期には、CW方向とCCW方向の変針をそれぞれ行って船体パラメータを同定する必要があるが、このようなCW方向及びCCW方向の変針を変針量を等しくして行うと初期針路に戻るため、実用上の不便さはない。
4.検証結果
以上の同定モデルによる同定の効果をシミュレーションによって検証すると、図9に示すようになる。同図は、継続して実行される変針と各変針における同定演算に基づく変針制御の一部分を示している。同定演算は、各変針C1、C2、C3後に実行され、変針方向ごとに格納され更新されて、次の変針には、更新された同じ変針方向の船体パラメータを用いて変針制御されている。この図から、変針方向が交互に変わっても、図11に示すようなオーバシュートやアンダーダンプが生じずに良好な応答が得られることが分かる。
本発明の船舶用自動操舵装置を含む全体のシステムを表すブロック図である。 図1の同定演算部の構成を表すブロック図である。 制御対象の構成を表すブロック図である。 外乱モデルの舵角オフセットと船首方位との変針前と変針後の関係を表すグラフである。 同定モデルの構成を表すブロック図である。 手動操船における同定演算部の構成を表すブロック図である。 手動操船における同定の時間範囲と命令舵角、船首方位、速度との関係を表す図である。 パラメータ調節部の詳細構成ブロック図である。 シミュレーションによる検証結果を表す図である。 従来の同定演算部のブロック図である。 従来の同定演算部を用いて変針毎に同定した船体パラメータを用い、変針制御をさせた場合の実船試験結果の一例である。
符号の説明
12 自動操舵装置
32 同定演算部
40 入力データ記憶部
42 出力データ記憶部
44 同定モデル
48 パラメータ調節部
54 第1判別部
56 第2判別部
58 パラメータ記憶部
60 第1切替部
62 CW方向パラメータ記憶部
64 CCW方向パラメータ記憶部
66 第2切替部

Claims (5)

  1. 設定針路と船首方位に基づいて船体パラメータを用いて命令舵角を出力する船舶用自動操舵装置において、
    船体パラメータを同定して出力する同定演算部を備え、該同定演算部は、
    船舶用自動操舵装置で得られる所定の入力データと出力データとが供給されてそれぞれのデータを蓄積する記憶部と、
    船体パラメータで表される船体モデルを含み、蓄積された入力データからモデル出力データを出力する同定モデルと、
    該同定モデルからのモデル出力データと前記出力データとの比較結果から船体パラメータを調節するパラメータ調節部と、
    前記パラメータ調節部で調節された船体パラメータを記憶するパラメータ記憶部と、を備えており、
    前記パラメータ調節部は、各変針に対して、その変針時における複数の前記入力データと複数の前記出力データに基づき船体パラメータの調節を行っており、前記パラメータ記憶部は、前記各変針の変針方向に応じて前記調節された船体パラメータを分別して記憶すると共に、前記設定針路が変化したときに、その変針方向に対応して記憶している船体パラメータを同定した船体パラメータとして出力することを特徴とする船舶用自動操舵装置。
  2. 前記船体モデルの伝達関数は、
    Figure 0004897450
    で表されることを特徴とする請求項1記載の船舶用自動操舵装置。
  3. 前記入力データとして命令舵角、前記出力データとして船首方位とすることを特徴とする請求項1または2記載の船舶用自動操舵装置。
  4. 前記パラメータ記憶部は、右舷変針に対して調節された船体パラメータを記憶するCW方向パラメータ記憶部と、左舷変針に対して調節された船体パラメータを記憶するCCW方向パラメータ記憶部と、変針方向に応じて前記パラメータ調節部で調節された船体パラメータを前記CW方向パラメータ記憶部と前記CCW方向パラメータ記憶部のいずれかに選択して格納する第1切替部と、前記設定針路が変化したときの変針方向に応じて前記CW方向パラメータ記憶部に記憶された船体パラメータと前記CCW方向パラメータ記憶部に記憶された船体パラメータのいずれかを選択して同定した船体パラメータとして出力する第2切替部と、を備えることを特徴とする請求項1ないし3のいずれか1項に記載の船舶用自動操舵装置。
  5. 前記パラメータ調節部は、
    モデル出力データと出力データの差の関数となるスカラ値である評価関数を最小化する同定パラメータ値を同定パラメータに決定する第1判別部と、
    前記第1判別部で決定した同定パラメータ値のうちの船体パラメータに対応する同定パラメータ値を用いた船体モデルの入力データに対するモデル出力データを算出し、同様に、前記第1切替部で選択される前記CW方向パラメータ記憶部と前記CCW方向パラメータ記憶部のいずれかに記憶された船体パラメータであるノミナル値を用いた船体モデルの入力データに対するモデル出力データを算出し、同定パラメータ値を用いたモデル出力データから求めた評価関数と、ノミナル値を用いたモデル出力データから求めた評価関数とをそれぞれ求めて、どちらの評価関数が小さいかまたは大きくないかを判定し、評価関数が小さいまたは大きくない方に用いた同定パラメータ値またはノミナル値に船体パラメータを調節する第2判別部と、を備えることを特徴とする請求項4に記載の船舶用自動操舵装置。
JP2006327320A 2006-12-04 2006-12-04 船舶用自動操舵装置 Active JP4897450B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327320A JP4897450B2 (ja) 2006-12-04 2006-12-04 船舶用自動操舵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327320A JP4897450B2 (ja) 2006-12-04 2006-12-04 船舶用自動操舵装置

Publications (2)

Publication Number Publication Date
JP2008137545A JP2008137545A (ja) 2008-06-19
JP4897450B2 true JP4897450B2 (ja) 2012-03-14

Family

ID=39599471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327320A Active JP4897450B2 (ja) 2006-12-04 2006-12-04 船舶用自動操舵装置

Country Status (1)

Country Link
JP (1) JP4897450B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479788B2 (ja) * 2009-06-23 2014-04-23 古野電気株式会社 自動操舵システム及び自動操舵装置
JP5094800B2 (ja) * 2009-08-21 2012-12-12 横河電子機器株式会社 自動操舵装置及び方法
JP5682009B2 (ja) * 2011-03-31 2015-03-11 東京計器株式会社 船舶用自動操舵装置
JP6278745B2 (ja) * 2014-02-28 2018-02-14 東京計器株式会社 船舶用自動操舵装置
JP7157945B2 (ja) * 2019-06-06 2022-10-21 日本発條株式会社 自動設定装置、自動設定方法およびプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917272B2 (ja) * 2005-05-20 2012-04-18 東京計器株式会社 船舶用自動操舵装置

Also Published As

Publication number Publication date
JP2008137545A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
Tannuri et al. Dynamic positioning systems: An experimental analysis of sliding mode control
Dukan et al. Dynamic positioning system for a small size ROV with experimental results
JP4917272B2 (ja) 船舶用自動操舵装置
EP4151517A1 (en) Method for autonomously guiding vessel, program for autonomously guiding vessel, system for autonomously guiding vessel, and vessel
JP4897450B2 (ja) 船舶用自動操舵装置
Corno et al. Data-driven online speed optimization in autonomous sailboats
Kragelund et al. Adaptive speed control for autonomous surface vessels
Sethuramalingam et al. A proposed system of ship trajectory control using particle swarm optimization
Breivik A ship heading and speed control concept inherently satisfying actuator constraints
US11027804B2 (en) Underwater sailing body and method of controlling posture of underwater sailing body
Tomera A multivariable low speed controller for a ship autopilot with experimental results
Johansen et al. Optimal constrained control allocation in marine surface vessels with rudders
Witkowska et al. Adaptive backstepping tracking control for an over–actuated DP marine vessel with inertia uncertainties
Pandey et al. Autonomous navigation of catamaran surface vessel
EP3798111B1 (en) Ship speed control device, ship speed controlling method, and ship speed control program
Rodriguez et al. Adaptive takeoff maneuver optimization of a sailing boat for America’s cup
Tipsuwan et al. Overview and control strategies of autonomous sailboats—A survey
JP6487365B2 (ja) 船舶用自動操舵装置
JP5639428B2 (ja) 船舶用自動操舵装置
CN114384900A (zh) 内河水面自主船舶航行驾驶方法、装置及存储介质
Andersson Automatic Tuning of Motion Control System for an Autonomous Underwater Vehicle
Tomera Dynamic positioning system design for “Blue Lady”. Simulation tests
JP6605677B1 (ja) 船舶用自動操舵装置
Kinjo Nonlinear feedback control system development for an autonomous river shuttle
Aurlien et al. Multivariate modeling and adaptive control of autonomous ferries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R150 Certificate of patent or registration of utility model

Ref document number: 4897450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250