JP2012207222A - Composition for high thermal conductivity film-like adhesive, high thermal conductivity film-like adhesive, and semiconductor package and method for manufacturing the same using the adhesive - Google Patents

Composition for high thermal conductivity film-like adhesive, high thermal conductivity film-like adhesive, and semiconductor package and method for manufacturing the same using the adhesive Download PDF

Info

Publication number
JP2012207222A
JP2012207222A JP2012058702A JP2012058702A JP2012207222A JP 2012207222 A JP2012207222 A JP 2012207222A JP 2012058702 A JP2012058702 A JP 2012058702A JP 2012058702 A JP2012058702 A JP 2012058702A JP 2012207222 A JP2012207222 A JP 2012207222A
Authority
JP
Japan
Prior art keywords
adhesive
thermal conductivity
conductive film
high thermal
film adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058702A
Other languages
Japanese (ja)
Other versions
JP5871428B2 (en
Inventor
Minoru Morita
稔 森田
Tokuyuki Kirikae
徳之 切替
Hiroyuki Yano
博之 矢野
Akira Tokumitsu
明 徳光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2012058702A priority Critical patent/JP5871428B2/en
Publication of JP2012207222A publication Critical patent/JP2012207222A/en
Application granted granted Critical
Publication of JP5871428B2 publication Critical patent/JP5871428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PROBLEM TO BE SOLVED: To provide a composition for a high thermal conductivity film-like adhesive capable of giving a high thermal conductivity film-like adhesive which is excellent in adhesion to an adherend, ensures a sufficiently small wear rate of a processing blade, and exhibits excellent thermal conductivity after curing; a high thermal conductivity film-like adhesive; and a semiconductor package and a method for manufacturing the same using the adhesive.SOLUTION: The composition for a high thermal conductivity film-like adhesive comprises an epoxy resin (A), an epoxy resin curing agent (B), an inorganic filler (C) and a phenoxy resin (D). The inorganic filler (C) has (i) an average particle size of 0.1-5.0 μm, (ii) a Mohs hardness of 1-8, and (iii) a thermal conductivity of ≥30 W/(m K), and the content of the inorganic filler (C) is 30-70 vol.%.

Description

本発明は、高熱伝導性フィルム状接着剤用組成物、高熱伝導性フィルム状接着剤、並びに、それを用いた半導体パッケージとその製造方法に関する。   The present invention relates to a composition for a highly heat conductive film adhesive, a highly heat conductive film adhesive, a semiconductor package using the same, and a method for producing the same.

近年、電子機器の小型化及び高機能化が進む中で、その内部に搭載される半導体パッケージにおいても高機能化が進んでおり、半導体パッケージ内部の半導体素子の処理速度はより高速化されている。しかしながら、処理速度の高速化に伴って半導体素子表面には熱が発生しやすくなるため、発生した熱によって、例えば、半導体素子の動作スピードが低下したり、電子機器の動作不良が引き起こされるといった問題があった。   In recent years, as electronic devices have been reduced in size and functionality, the functions of semiconductor packages mounted therein have also been improved, and the processing speed of semiconductor elements inside the semiconductor package has been increased. . However, as the processing speed increases, the surface of the semiconductor element is likely to generate heat. For example, the generated heat reduces the operation speed of the semiconductor element or causes malfunction of the electronic device. was there.

このような熱による悪影響を排除するため、半導体パッケージの構成部材には、発生した熱をパッケージ外部へ逃がす熱伝導性が要求されている。また、半導体素子及び配線基板間、もしくは半導体素子同士間を接合するいわゆるダイアタッチ材料においては、高い熱伝導性と共に、十分な絶縁性、接着信頼性が要求されている。   In order to eliminate such adverse effects due to heat, the constituent members of the semiconductor package are required to have thermal conductivity that releases the generated heat to the outside of the package. In addition, a so-called die attach material for bonding between a semiconductor element and a wiring board or between semiconductor elements is required to have high thermal conductivity and sufficient insulation and adhesion reliability.

さらに、このようなダイアタッチ材料としては、従来はペースト形態で使用されることが多くあったが、半導体パッケージの高機能化に伴ってパッケージ内部の高密度実装化が要求されていることから、樹脂流れや樹脂はい上がり等による半導体素子やワイヤーパッド等の他部材の汚染を防止するため、近年ではフィルム形態(ダイアタッチフィルム)での使用が増加している。   Furthermore, as such a die attach material, in the past, it was often used in the form of a paste, but due to the high functionality of the semiconductor package, high density mounting inside the package is required, In order to prevent contamination of other members such as semiconductor elements and wire pads due to resin flow and resin rising, the use in the form of a film (die attach film) has been increasing in recent years.

しかしながら、ダイアタッチフィルムをウェハ裏面に貼り合わせる際や、ダイアタッチフィルムが設けられた半導体素子を実装するいわゆるダイアタッチ工程においては、ウェハ裏面や、特に半導体素子が搭載される配線基板の表面は必ずしも平滑な面状態ではないため、前記貼り合わせ時や前記搭載時にダイアタッチフィルムの粘度が高いとダイアタッチフィルムと被着体との間の密着性が低下して両者の界面に空気を巻き込むことがある。巻き込まれた空気はダイアタッチフィルムの加熱硬化後の接着力を低下させるだけでなく、パッケージクラックの原因となるといった問題があった。   However, when bonding the die attach film to the back surface of the wafer, or in the so-called die attach process for mounting the semiconductor element provided with the die attach film, the wafer back surface, particularly the surface of the wiring board on which the semiconductor element is mounted, is not necessarily provided. Since it is not a smooth surface state, when the viscosity of the die attach film is high at the time of pasting or mounting, the adhesion between the die attach film and the adherend may be reduced and air may be involved in the interface between the two. is there. The entrained air has a problem that it not only reduces the adhesive strength of the die attach film after heat curing but also causes package cracks.

従来、いわゆるダイアタッチフィルムとして用いることができる材料としては、例えば、特許文献1において水酸化アルミニウムと二酸化ケイ素とからなる熱伝導性フィラー及びシリコン系樹脂からなる熱伝導部材のシートが記載されている。しかしながら、特許文献1に記載されている熱伝導部材のシートにおいては、ある程度高い熱伝導性を有してはいるものの、被着体との密着性については未だ問題があった。   Conventionally, as a material that can be used as a so-called die attach film, for example, Patent Document 1 describes a heat conductive filler made of aluminum hydroxide and silicon dioxide and a sheet of a heat conductive member made of a silicon-based resin. . However, although the sheet of the heat conducting member described in Patent Document 1 has a certain degree of high heat conductivity, there is still a problem with the adhesion to the adherend.

また、特許文献2においては、酸化ケイ素等の無機フィラーを含有するエポキシ樹脂からなる接着シートが記載されている。しかしながら、特許文献2に記載の接着シートにおいては、高い熱伝導性と絶縁性、及び、ある程度の粘着性を有するものの、やはり被着体に対する密着性については未だ不十分であった。   Moreover, in patent document 2, the adhesive sheet which consists of an epoxy resin containing inorganic fillers, such as a silicon oxide, is described. However, although the adhesive sheet described in Patent Document 2 has high thermal conductivity, insulation, and a certain degree of tackiness, it still has insufficient adhesion to the adherend.

さらに、特許文献3においては、エポキシ樹脂、硬化剤、硬化促進剤及び特定のアルミナ粉末を含有する樹脂からなるフィルム状接着剤が記載されている。しかしながら、特許文献3に記載されているフィルム状接着剤においては、高い熱伝導性及び絶縁性を有してはいるものの、被着体に対する密着性については未だ不十分であった。   Furthermore, Patent Document 3 describes a film adhesive made of a resin containing an epoxy resin, a curing agent, a curing accelerator, and a specific alumina powder. However, although the film adhesive described in Patent Document 3 has high thermal conductivity and insulating properties, it still has insufficient adhesion to an adherend.

特開2009−286809号公報JP 2009-286809 A 特開2008−280436号公報JP 2008-280436 A 特開2007−246861号公報JP 2007-246861 A

半導体パッケージの製造工程においては、ダイアタッチフィルムと半導体素子が形成されたウェハとを同時に切断するいわゆるダイシング工程において、ダイアタッチフィルムによる加工ブレードの摩耗率が小さいことも必要である。   In the manufacturing process of the semiconductor package, it is also necessary that the wear rate of the processing blade by the die attach film is small in a so-called dicing process in which the die attach film and the wafer on which the semiconductor element is formed are cut simultaneously.

しかしながら、ダイアタッチフィルムの熱伝導性を向上させるために上記特許文献1〜3に記載されているような水酸化アルミニウム等の熱伝導性の無機充填剤を用いると、ダイアタッチフィルムによる加工ブレードの摩耗率が大きくなり、切断工程(ダイシング工程)の開始後しばらくは所定の切断ができるものの、次第にダイアタッチフィルムの切断量が不十分になり、図1に示すように、ダイアタッチフィルムがフルカットされない部分ができてしまうといった加工不良が生じることを本発明者らは見出した。   However, if a thermally conductive inorganic filler such as aluminum hydroxide as described in Patent Documents 1 to 3 is used in order to improve the thermal conductivity of the die attach film, the processing blade of the die attach film is used. Although the wear rate is increased and a predetermined cutting can be performed for a while after the start of the cutting process (dicing process), the amount of die attach film gradually becomes insufficient, and the die attach film is fully cut as shown in FIG. The present inventors have found that a processing defect such as forming a portion that is not performed occurs.

また、この不具合が生じないようにするためにブレードの交換頻度を多くすると生産性が低下するためコストアップに繋がり、他方、摩耗される量の小さいブレードを使用するとウェハに欠けができてしまうチッピング等が発生するため歩留低下を引き起こしてしまうといった問題があることを本発明者らは見出した。   Further, in order to prevent this problem from occurring, if the frequency of blade replacement is increased, the productivity decreases, leading to an increase in cost. On the other hand, if a blade with a small amount of wear is used, chipping may occur on the wafer. The present inventors have found that there is a problem that the yield is lowered due to the occurrence of the above.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、被着体との密着性に優れ、加工ブレードの摩耗率が十分に小さく、且つ、硬化後に優れた熱伝導性を発揮する高熱伝導性フィルム状接着剤を得ることが可能な高熱伝導性フィルム状接着剤用組成物、高熱伝導性フィルム状接着剤、並びに、それを用いた半導体パッケージとその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, has excellent adhesion to the adherend, has a sufficiently low wear rate of the processing blade, and exhibits excellent thermal conductivity after curing. It is possible to provide a composition for a high thermal conductive film adhesive, a high thermal conductive film adhesive, a semiconductor package using the same, and a method for manufacturing the same. Objective.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、フィルム状接着剤において80℃における溶融粘度が10000Pa・s以下となるようにすることにより、熱圧着によって被着体との優れた密着性が得られることを見出し、さらに、エポキシ樹脂、エポキシ樹脂硬化剤、フェノキシ樹脂、及び、特定の含有量の特定の無機充填剤を含有せしめた高熱伝導性フィルム状接着剤用組成物を用いることにより、前記溶融特性を有し、加工ブレードの摩耗率が十分に小さく、且つ、硬化後に優れた熱伝導性を発揮する高熱伝導性フィルム状接着剤を得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention have made the film-like adhesive have a melt viscosity at 80 ° C. of 10000 Pa · s or less so that it can be bonded to the adherend by thermocompression bonding. It has been found that excellent adhesion can be obtained, and further, a composition for a highly heat conductive film adhesive containing an epoxy resin, an epoxy resin curing agent, a phenoxy resin, and a specific inorganic filler having a specific content By using the present invention, it has been found that a highly heat-conductive film-like adhesive having the above-mentioned melting characteristics, having a sufficiently low wear rate of the processing blade, and exhibiting excellent heat conductivity after curing can be obtained. It came to complete.

すなわち、本発明の高熱伝導性フィルム状接着剤用組成物は、
エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、無機充填剤(C)及びフェノキシ樹脂(D)を含有しており、前記無機充填剤(C)が、下記(i)〜(iii):
(i)平均粒径が0.1〜5.0μm、
(ii)モース硬度が1〜8、
(iii)熱伝導率が30W/(m・K)以上、
の全条件を満たし、且つ、
前記無機充填剤(C)の含有量が30〜70体積%であることを特徴とするものである。
That is, the composition for high thermal conductive film adhesive of the present invention is
It contains an epoxy resin (A), an epoxy resin curing agent (B), an inorganic filler (C), and a phenoxy resin (D), and the inorganic filler (C) includes the following (i) to (iii):
(I) The average particle size is 0.1 to 5.0 μm,
(Ii) Mohs hardness of 1-8,
(Iii) Thermal conductivity is 30 W / (m · K) or more,
Satisfy all the conditions of
Content of the said inorganic filler (C) is 30-70 volume%, It is characterized by the above-mentioned.

本発明の高熱伝導性フィルム状接着剤用組成物においては、前記エポキシ樹脂(A)が下記式(1):   In the composition for high thermal conductive film adhesive of the present invention, the epoxy resin (A) is represented by the following formula (1):

[式(1)中、nは0〜10の整数を示す。]
で表わされるトリフェニルメタン型エポキシ樹脂であることが好ましく、前記無機充填剤(C)が窒化アルミニウムであることが好ましい。
[In Formula (1), n shows the integer of 0-10. ]
It is preferable that it is a triphenylmethane type epoxy resin represented by these, and it is preferable that the said inorganic filler (C) is aluminum nitride.

また、本発明の高熱伝導性フィルム状接着剤は、前記本発明の高熱伝導性フィルム状接着剤用組成物を加熱乾燥することによって得られ、厚さが10〜150μmであることを特徴とするものであり、レオメーターにて20℃から10℃/分の昇温速度で加熱した際に観測される80℃における溶融粘度が10000Pa・s以下であり、熱硬化後の熱伝導率が1.0W/(m・K)以上であることが好ましい。   Moreover, the highly heat conductive film adhesive of this invention is obtained by heat-drying the said composition for high heat conductive film adhesives of the said invention, and thickness is 10-150 micrometers, It is characterized by the above-mentioned. The melt viscosity at 80 ° C. observed when heated at a rate of temperature increase from 20 ° C. to 10 ° C./min with a rheometer is 10000 Pa · s or less, and the thermal conductivity after thermosetting is 1. It is preferably 0 W / (m · K) or more.

さらに、本発明の半導体パッケージの製造方法は、
表面に半導体回路が形成されたウェハの裏面に、前記本発明の高熱伝導性フィルム状接着剤を熱圧着して接着剤層を設ける第1の工程と、
前記ウェハとダイシングテープとを前記接着剤層を介して接着した後に、前記ウェハと前記接着剤層とを同時にダイシングすることにより前記ウェハと前記接着剤層とを備える半導体素子を得る第2の工程と、
前記接着剤層からダイシングテープを脱離し、前記半導体素子と配線基板とを前記接着剤層を介して熱圧着せしめる第3の工程と、
前記高熱伝導性フィルム状接着剤を熱硬化せしめる第4の工程と、
を含むことを特徴とするものであり、本発明の半導体パッケージは、前記本発明の半導体パッケージの製造方法により得られることを特徴とするものである。
Furthermore, the manufacturing method of the semiconductor package of the present invention includes:
A first step of providing an adhesive layer by thermocompression bonding of the high thermal conductive film adhesive of the present invention to the back surface of a wafer having a semiconductor circuit formed on the surface;
A second step of obtaining a semiconductor element including the wafer and the adhesive layer by dicing the wafer and the adhesive layer simultaneously after bonding the wafer and the dicing tape through the adhesive layer. When,
A third step of detaching the dicing tape from the adhesive layer and thermocompression bonding the semiconductor element and the wiring board through the adhesive layer;
A fourth step of thermosetting the high thermal conductive film adhesive;
The semiconductor package of the present invention is obtained by the method for manufacturing a semiconductor package of the present invention.

なお、本発明の構成によって前記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明においては、エポキシ樹脂、エポキシ樹脂硬化剤、フェノキシ樹脂、及び、特定の含有量の特定の無機充填剤を含有する高熱伝導性フィルム状接着剤用組成物を用いることにより、特定の温度範囲において特定の低い溶融粘度となる高熱伝導性フィルム状接着剤が得られる。従って、例えば、特許文献2に記載されているような単に半硬化状態(Bステージ状態)にあることによって粘着性を向上させた接着シートや、特許文献3に記載されているような引張強度等を向上させることにより接着性を向上させたフィルム状接着剤と比較して、本発明の高熱伝導性フィルム状接着剤は、前記特定の温度範囲で熱圧着することにより表面に凹凸がある被着体との界面を隙間なく埋めることができるため、より優れた密着性を発揮することができると本発明者らは推察する。   The reason why the object is achieved by the configuration of the present invention is not necessarily clear, but the present inventors infer as follows. That is, in the present invention, by using a composition for a highly thermally conductive film adhesive containing an epoxy resin, an epoxy resin curing agent, a phenoxy resin, and a specific content of a specific inorganic filler, A highly thermally conductive film adhesive having a specific low melt viscosity in the temperature range is obtained. Therefore, for example, an adhesive sheet whose adhesiveness is improved by simply being in a semi-cured state (B stage state) as described in Patent Document 2, tensile strength as described in Patent Document 3, etc. Compared with the film-like adhesive whose adhesion is improved by improving the adhesiveness, the highly heat-conductive film-like adhesive of the present invention has a surface with unevenness by thermocompression bonding in the specific temperature range. The present inventors infer that it is possible to fill the interface with the body without any gaps, and thus better adhesion can be exhibited.

また、本発明においては、特定の硬度及び粒径を有する無機充填剤を特定の含有量で含有することにより、本発明の高熱伝導性フィルム状接着剤用組成物を用いて得られた高熱伝導性フィルム状接着剤においては、加工ブレードの摩耗率を小さくすることができると本発明者らは推察する。   Moreover, in this invention, the high heat conductivity obtained using the composition for high heat conductive film adhesives of this invention by containing the inorganic filler which has specific hardness and a particle size by specific content. The present inventors infer that the wear rate of the processing blade can be reduced in the adhesive film-like adhesive.

本発明によれば、被着体との密着性に優れ、加工ブレードの摩耗率が十分に小さく、且つ、硬化後に優れた熱伝導性を発揮する高熱伝導性フィルム状接着剤を得ることが可能な高熱伝導性フィルム状接着剤用組成物、高熱伝導性フィルム状接着剤、並びに、それを用いた半導体パッケージとその製造方法を提供することが可能となる。   According to the present invention, it is possible to obtain a highly thermally conductive film adhesive that has excellent adhesion to an adherend, a sufficiently low wear rate of a processing blade, and exhibits excellent thermal conductivity after curing. It is possible to provide a highly heat conductive film adhesive composition, a high heat conductive film adhesive, a semiconductor package using the same, and a method for manufacturing the same.

従来のダイシング工程において加工ブレードが摩耗したことにより生じた加工不良をディスプレー上に表示した中間調画像を示す写真である。It is a photograph which shows the halftone image which displayed on the display the process defect produced by the process blade having worn out in the conventional dicing process. 本発明の半導体パッケージの製造方法の第1の工程の好適な一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows suitable one Embodiment of the 1st process of the manufacturing method of the semiconductor package of this invention. 本発明の半導体パッケージの製造方法の第2の工程の好適な一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows suitable one Embodiment of the 2nd process of the manufacturing method of the semiconductor package of this invention. 本発明の半導体パッケージの製造方法の第3の工程の好適な一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows suitable one Embodiment of the 3rd process of the manufacturing method of the semiconductor package of this invention. 本発明の半導体パッケージの製造方法のボンディングワイヤーを接続する工程の好適な一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows suitable one Embodiment of the process of connecting the bonding wire of the manufacturing method of the semiconductor package of this invention. 本発明の半導体パッケージの製造方法により製造される半導体パッケージの好適な一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows suitable one Embodiment of the semiconductor package manufactured by the manufacturing method of the semiconductor package of this invention.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の高熱伝導性フィルム状接着剤用組成物について説明する。本発明の高熱伝導性フィルム状接着剤用組成物は、エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、無機充填剤(C)及びフェノキシ樹脂(D)を含有しており、前記無機充填剤(C)が、下記(i)〜(iii):
(i)平均粒径が0.1〜5.0μm、
(ii)モース硬度が1〜8、
(iii)熱伝導率が30W/(m・K)以上、
の全条件を満たし、且つ、前記無機充填剤(C)の含有量が30〜70体積%であることを特徴とするものである。
First, the composition for highly heat conductive film adhesives of this invention is demonstrated. The highly thermally conductive film adhesive composition of the present invention contains an epoxy resin (A), an epoxy resin curing agent (B), an inorganic filler (C), and a phenoxy resin (D), and the inorganic filling described above. Agent (C) is the following (i) to (iii):
(I) The average particle size is 0.1 to 5.0 μm,
(Ii) Mohs hardness of 1-8,
(Iii) Thermal conductivity is 30 W / (m · K) or more,
And the content of the inorganic filler (C) is 30 to 70% by volume.

本発明に係るエポキシ樹脂(A)は、エポキシ基を有する熱硬化性樹脂であり、このようなエポキシ樹脂(A)としては、重量平均分子量が300〜2000であることが好ましく、300〜1500であることがより好ましい。重量平均分子量が前記下限未満であると単量体や2量体が増えて結晶性が強くなるため、フィルム状接着剤が脆弱になる傾向にあり、他方、前記上限を超えるとフィルム状接着剤の溶融粘度が高くなるため、配線基板に圧着する際に基板上の凹凸を埋め込むことが十分にできず、配線基板との密着性が低下する傾向にある。なお、本発明において、重量平均分子量とはゲルパーミエーションクロマトグラフィ(GPC)(商品名:HLC−82A(東ソー(株)製)、溶媒:テトラヒドロフラン、カラム:TSKgelG2000HXL(東ソー(株)製)(2本)、G4000HXL(東ソー(株)製)(1本)、温度:38℃、速度:1.0ml/min)により測定され、標準ポリスチレン(商品名:A−1000、東ソー(株)製)で換算した値である。   The epoxy resin (A) according to the present invention is a thermosetting resin having an epoxy group, and such an epoxy resin (A) preferably has a weight average molecular weight of 300 to 2000, and 300 to 1500. More preferably. If the weight average molecular weight is less than the above lower limit, the monomer or dimer increases and the crystallinity becomes strong, so that the film adhesive tends to be brittle. On the other hand, if the upper limit is exceeded, the film adhesive Since the melt viscosity of the substrate becomes high, the unevenness on the substrate cannot be embedded sufficiently when pressure-bonded to the wiring substrate, and the adhesion to the wiring substrate tends to be lowered. In the present invention, the weight average molecular weight is gel permeation chromatography (GPC) (trade name: HLC-82A (manufactured by Tosoh Corporation), solvent: tetrahydrofuran, column: TSKgel G2000HXL (manufactured by Tosoh Corporation) (two) ), G4000HXL (manufactured by Tosoh Corporation) (1), temperature: 38 ° C., speed: 1.0 ml / min), converted in standard polystyrene (trade name: A-1000, manufactured by Tosoh Corporation) It is the value.

前記エポキシ樹脂(A)としては、液体、固体又は半固体のいずれであってもよい。本発明において前記液体とは、軟化点が50℃未満であることをいい、前記固体とは、軟化点が60℃以上であることをいい、前記半固体とは、軟化点が前記液体の軟化点と固体の軟化点との間(50℃以上60℃未満)にあることをいう。前記エポキシ樹脂(A)としては、好適な温度範囲(例えば60〜120℃)で低溶融粘度に到達することができるフィルム状接着剤を得られるという観点から、軟化点が100℃以下であることが好ましい。なお、本発明において、軟化点とは、軟化点試験(環球式)法(測定条件:JIS−2817に準拠)により測定した値である。   The epoxy resin (A) may be liquid, solid or semi-solid. In the present invention, the liquid means that the softening point is less than 50 ° C., the solid means that the softening point is 60 ° C. or higher, and the semi-solid means that the softening point is softening of the liquid. The point is between the point and the softening point of the solid (from 50 ° C. to less than 60 ° C.) As said epoxy resin (A), a softening point is 100 degrees C or less from a viewpoint that the film adhesive which can reach | attain a low melt viscosity in a suitable temperature range (for example, 60-120 degreeC) is obtained. Is preferred. In the present invention, the softening point is a value measured by a softening point test (ring-and-ball type) method (measurement condition: conforming to JIS-2817).

前記エポキシ樹脂(A)において、硬化体の架橋密度が高くなり、結果として、配合される無機充填剤(C)同士の接触確率が高く接触面積が広くなることでより高い熱伝導率が得られるという観点から、エポキシ当量は500g/eq以下であることが好ましく、150〜450g/eqであることがより好ましい。なお、本発明において、エポキシ当量とは、1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)をいう。   In the epoxy resin (A), the crosslink density of the cured body is increased, and as a result, the contact probability between the inorganic fillers (C) to be blended is high and the contact area is widened to obtain a higher thermal conductivity. In view of the above, the epoxy equivalent is preferably 500 g / eq or less, and more preferably 150 to 450 g / eq. In addition, in this invention, an epoxy equivalent means the gram number (g / eq) of resin containing an epoxy group of 1 gram equivalent.

前記エポキシ樹脂(A)の骨格としては、フェノールノボラック型、オルソクレゾールノボラック型、クレゾールノボラック型、ジシクロペンタジエン型、ビフェニル型、フルオレンビスフェノール型、トリアジン型、ナフトール型、ナフタレンジオール型、トリフェニルメタン型、テトラフェニル型、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型、トリメチロールメタン型等が挙げられるが、樹脂の結晶性が低く、良好な外観を有するフィルム状接着剤を得られるという観点から、トリフェニルメタン型、ビスフェノールA型、クレゾールノボラック型、オルソクレゾールノボラック型であることが好ましく、より架橋密度が高くなり、フィルム状接着剤を硬化せしめたときに分子構造の秩序性が向上し熱伝導性が向上する傾向にあるという観点から、前記エポキシ樹脂(A)としては、下記式(1):   As the skeleton of the epoxy resin (A), phenol novolak type, orthocresol novolak type, cresol novolak type, dicyclopentadiene type, biphenyl type, fluorene bisphenol type, triazine type, naphthol type, naphthalenediol type, triphenylmethane type , Tetraphenyl type, bisphenol A type, bisphenol F type, bisphenol AD type, bisphenol S type, trimethylolmethane type, etc., but the film-like adhesive having low resin crystallinity and good appearance can be obtained. In view of the above, the triphenylmethane type, the bisphenol A type, the cresol novolak type, and the orthocresol novolak type are preferable, and the order of the molecular structure is increased when the crosslink density is increased and the film adhesive is cured. From the viewpoint of improved thermal conductivity tends to be improved, as the epoxy resin (A), the following equation (1):

[式(1)中、nは0〜10の整数を示す。]
で表わされるトリフェニルメタン型エポキシ樹脂がより好ましい。
[In Formula (1), n shows the integer of 0-10. ]
The triphenylmethane type epoxy resin represented by these is more preferable.

前記エポキシ樹脂(A)としては1種を単独で用いても2種以上を組み合わせて用いてもよく、2種以上を組み合わせて用いる場合には、例えば、組成物の粘度の調節がしやすく、フィルム状接着剤とウェハとを熱圧着せしめる工程(ウェハラミネート工程)を低温(好ましくは40〜80℃)で実施した場合においてもウェハとフィルム状接着剤との密着性が発揮される傾向にあるという観点から、軟化点が50〜100℃であるエポキシ樹脂(a1)と軟化点が50℃未満であるエポキシ樹脂(a2)とを組み合わせて用いることが好ましい。   As the epoxy resin (A), one kind may be used alone, or two or more kinds may be used in combination. When two or more kinds are used in combination, for example, the viscosity of the composition is easily adjusted. Even when the step of thermally pressing the film adhesive and the wafer (wafer laminating step) is performed at a low temperature (preferably 40 to 80 ° C.), the adhesion between the wafer and the film adhesive tends to be exhibited. In view of the above, it is preferable to use a combination of an epoxy resin (a1) having a softening point of 50 to 100 ° C. and an epoxy resin (a2) having a softening point of less than 50 ° C.

前記エポキシ樹脂(a1)としては、室温で固体又は半固体であり、軟化点が50〜100℃であることが好ましく、50〜80℃であることがより好ましい。軟化点が前記下限未満であると、得られるフィルム状接着剤の粘度が低下するため、常温においてフィルム形状を保持することが困難となる傾向にあり、他方、前記上限を超えると、得られるフィルム状接着剤において、好適な温度範囲(例えば60〜120℃)で低溶融粘度に到達することが困難となる傾向にある。   The epoxy resin (a1) is solid or semi-solid at room temperature, and preferably has a softening point of 50 to 100 ° C, more preferably 50 to 80 ° C. If the softening point is less than the lower limit, the viscosity of the obtained film-like adhesive is lowered, so that it tends to be difficult to maintain the film shape at room temperature. On the other hand, if the upper limit is exceeded, the resulting film is obtained. In the adhesive, it tends to be difficult to reach a low melt viscosity in a suitable temperature range (for example, 60 to 120 ° C.).

前記エポキシ樹脂(a1)としては、重量平均分子量が500を超えて2000以下であることが好ましく、600〜1200であることがより好ましい。重量平均分子量が前記下限未満であると単量体や2量体が増えて結晶性が強くなるため、フィルム状接着剤が脆弱になる傾向にあり、他方、前記上限を超えるとフィルム状接着剤の溶融粘度が高くなるため、配線基板に圧着する際に基板上の凹凸を埋め込むことが十分にできず、配線基板との密着性が低下する傾向にある。   As said epoxy resin (a1), it is preferable that a weight average molecular weight exceeds 500 and is 2000 or less, and it is more preferable that it is 600-1200. If the weight average molecular weight is less than the above lower limit, the monomer or dimer increases and the crystallinity becomes strong, so that the film adhesive tends to be brittle. On the other hand, if the upper limit is exceeded, the film adhesive Since the melt viscosity of the substrate becomes high, the unevenness on the substrate cannot be embedded sufficiently when pressure-bonded to the wiring substrate, and the adhesion to the wiring substrate tends to be lowered.

このようなエポキシ樹脂(a1)の骨格としては、樹脂の結晶性が低く、良好な外観を有するフィルム状接着剤を得られるという観点から、トリフェニルメタン型、ビスフェノールA型、クレゾールノボラック型、オルソクレゾールノボラック型であることが好ましく、より架橋密度が高くなり、フィルム状接着剤を硬化せしめたときに分子構造の秩序性が向上し熱伝導性が向上する傾向にあるという観点から、前記エポキシ樹脂(a1)としては、トリフェニルメタン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂がより好ましく、上記式(1)で表わされるトリフェニルメタン型エポキシ樹脂がさらに好ましい。   As the skeleton of such an epoxy resin (a1), triphenylmethane type, bisphenol A type, cresol novolak type, ortho type are used from the viewpoint of obtaining a film-like adhesive having low resin crystallinity and good appearance. From the viewpoint that the cresol novolac type is preferable, the crosslinking density is higher, and the order of the molecular structure is improved and the thermal conductivity tends to be improved when the film adhesive is cured. As (a1), a triphenylmethane type epoxy resin, a bisphenol A type epoxy resin, and a cresol novolac type epoxy resin are more preferable, and a triphenylmethane type epoxy resin represented by the above formula (1) is more preferable.

前記エポキシ樹脂(a2)としては、フィルム状接着剤とウェハとを熱圧着せしめる工程(ウェハラミネート工程)を低温(好ましくは40〜80℃)で実施した場合においてもウェハとフィルム状接着剤との密着性が発揮される傾向にあるという観点から、軟化点が50℃未満であることが好ましく、軟化点が40℃以下であることがより好ましい。このようなエポキシ樹脂(a2)としては、重量平均分子量が300〜500であることが好ましく、350〜450であることがより好ましい。重量平均分子量が前記下限未満であると単量体が増えて結晶性が強くなるため、フィルム状接着剤が脆弱になる傾向にあり、他方、前記上限を超えると溶融粘度が高くなるため、ウェハラミネート工程の際にウェハとフィルム状接着剤との密着性が低下する傾向にある。   As the epoxy resin (a2), even when the step of thermocompression bonding the film adhesive and the wafer (wafer laminating step) is performed at a low temperature (preferably 40 to 80 ° C.), the wafer and the film adhesive From the viewpoint that the adhesiveness tends to be exhibited, the softening point is preferably less than 50 ° C., and the softening point is more preferably 40 ° C. or less. As such an epoxy resin (a2), it is preferable that a weight average molecular weight is 300-500, and it is more preferable that it is 350-450. If the weight average molecular weight is less than the lower limit, the amount of monomers increases and the crystallinity increases, so the film adhesive tends to be brittle. During the laminating process, the adhesion between the wafer and the film adhesive tends to be lowered.

このようなエポキシ樹脂(a2)の骨格としては、樹脂の結晶性が低く、良好な外観を有するフィルム状接着剤を得られるという観点から、オリゴマータイプの液状エポキシ樹脂であるビスフェノールA型、ビスフェノールA/F混合型、ビスフェノールF型、プロピレンオキサイド変性ビスフェノールA型であることが好ましく、溶融粘度が低くより結晶性が低いという観点から、前記エポキシ樹脂(a2)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールA/F混合型エポキシ樹脂がより好ましい。   As the skeleton of such an epoxy resin (a2), from the viewpoint of obtaining a film-like adhesive having low resin crystallinity and good appearance, bisphenol A type and bisphenol A, which are oligomer type liquid epoxy resins, are used. / F mixed type, bisphenol F type, propylene oxide modified bisphenol A type, and from the viewpoint of low melt viscosity and lower crystallinity, the epoxy resin (a2) may be bisphenol A type epoxy resin or bisphenol. An A / F mixed epoxy resin is more preferable.

前記エポキシ樹脂(a1)及び前記エポキシ樹脂(a2)の割合としては、質量比(a1:a2)が95:5〜30:70であることが好ましく、70:30〜40:60であることがより好ましい。エポキシ樹脂(a1)の含有量が前記下限未満であると、フィルム状接着剤のフィルムタック性が強くなりカバーフィルムやダイシングテープから剥離しにくくなる傾向にあり、他方、前記上限を超えると組成物の粘度が高くなり、得られるフィルム状接着剤の性状が脆くなる傾向にある。   As a ratio of the epoxy resin (a1) and the epoxy resin (a2), the mass ratio (a1: a2) is preferably 95: 5 to 30:70, and preferably 70:30 to 40:60. More preferred. If the content of the epoxy resin (a1) is less than the above lower limit, the film adhesive property of the film-like adhesive tends to be strong and difficult to peel off from the cover film or the dicing tape. The viscosity of the film tends to be high, and the properties of the obtained film adhesive tend to be brittle.

前記エポキシ樹脂(A)としては、本発明の高熱伝導性フィルム状接着剤用組成物における含有量が5〜30質量%であることが好ましく、10〜25質量%であることがより好ましい。前記含有量が前記下限未満であると硬化せしめたときに架橋密度が高くなる樹脂成分が少なくなるため、フィルム状接着剤の熱伝導率が向上しにくくなる傾向にあり、他方、前記上限を超えると主成分がオリゴマーとなるため、少しの温度変化でもフィルム状態(フィルムタック性等)が変化しやすくなる傾向にある。   As said epoxy resin (A), it is preferable that content in the composition for highly heat conductive film adhesives of this invention is 5-30 mass%, and it is more preferable that it is 10-25 mass%. When the content is less than the lower limit, the resin component that increases the crosslink density when cured is reduced, and thus the thermal conductivity of the film adhesive tends to be difficult to improve, and on the other hand, exceeds the upper limit. Since the main component is an oligomer, the film state (film tackiness, etc.) tends to change easily even with a slight temperature change.

本発明に係るエポキシ樹脂硬化剤(B)としては、アミン類、酸無水物類、多価フェノール類等の公知の硬化剤を用いることができるが、前記エポキシ樹脂(A)及び前記フェノキシ樹脂(D)が低溶融粘度となる温度範囲を超える高温で硬化性を発揮し、速硬化性を有し、さらに、室温での長期保存が可能な保存安定性の高いフィルム状接着剤用組成物が得られるという観点から、潜在性硬化剤を用いることが好ましい。前記潜在性硬化剤としては、ジシアンジアミド、イミダゾール類、ヒドラジド類、三弗化ホウ素−アミン錯体、アミンイミド、ポリアミン塩、及びこれらの変性物やマイクロカプセル型のものを挙げることができる。これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。   As the epoxy resin curing agent (B) according to the present invention, known curing agents such as amines, acid anhydrides and polyhydric phenols can be used, but the epoxy resin (A) and the phenoxy resin ( D) exhibits a curability at a high temperature exceeding the temperature range where the low melt viscosity is obtained, has a fast curability, and further has a high storage stability that can be stored for a long time at room temperature. From the viewpoint of being obtained, it is preferable to use a latent curing agent. Examples of the latent curing agent include dicyandiamide, imidazoles, hydrazides, boron trifluoride-amine complexes, amine imides, polyamine salts, modified products thereof, and microcapsules. These may be used alone or in combination of two or more.

前記エポキシ樹脂硬化剤(B)の含有量は、通常、前記エポキシ樹脂(A)に対して0.5〜50質量%であり、1〜10質量%であることが好ましい。含有量が前記下限未満であると硬化時間が長くなる傾向にあり、他方、前記上限を超えると過剰の硬化剤がフィルム状接着剤中に残り、残硬化剤が水分を吸着するため、フィルム状接着剤を半導体に組み込んだ後の信頼性試験において不良が起こりやすくなる傾向にある。   Content of the said epoxy resin hardening | curing agent (B) is 0.5-50 mass% normally with respect to the said epoxy resin (A), and it is preferable that it is 1-10 mass%. If the content is less than the lower limit, the curing time tends to be longer. On the other hand, if the upper limit is exceeded, excess curing agent remains in the film adhesive, and the residual curing agent adsorbs moisture. There is a tendency that defects are likely to occur in a reliability test after the adhesive is incorporated into a semiconductor.

本発明に係る無機充填剤(C)は、高充填化が可能で流動性を有するという観点から粒状であり、その平均粒径は0.1〜5.0μmであることが必要である。平均粒径が前記下限未満であると充填剤同士が接触しにくくなり、フィルム状接着剤の熱伝導率が低くなる。他方、平均粒径が前記上限を超えるとロールナイフコーター等の塗工機で薄型のフィルム状接着剤を製造する際に、充填剤がきっかけとなりフィルム表面にスジを発生しやすくなったり、フィルム状接着剤による加工ブレードの摩耗率が大きくなる。さらに、前記無機充填剤(C)の平均粒径としては、熱伝導性を担保しつつ5μm以下の極薄フィルムを作製する場合には、0.5〜2.0μmであることが好ましい。なお、本発明において、平均粒径とは、レーザー回折・散乱法(測定条件:分散媒−ヘキサメタりん酸ナトリウム、レーザー波長:780nm、測定装置:マイクロトラックMT3300EX)により測定した粒子径分布において、粒子の全体積を100%としたとき粒子径の体積分率の累積カーブにおいて50%累積となるときの粒子径をいう。   The inorganic filler (C) according to the present invention is granular from the viewpoint that it can be highly filled and has fluidity, and its average particle size needs to be 0.1 to 5.0 μm. When the average particle size is less than the lower limit, the fillers are hardly brought into contact with each other, and the thermal conductivity of the film adhesive is lowered. On the other hand, when the average particle size exceeds the above upper limit, when producing a thin film adhesive with a coating machine such as a roll knife coater, the filler becomes a trigger and it is easy to generate streaks on the film surface. The wear rate of the processing blade by the adhesive increases. Furthermore, the average particle diameter of the inorganic filler (C) is preferably 0.5 to 2.0 μm when an ultrathin film of 5 μm or less is produced while ensuring thermal conductivity. In the present invention, the average particle size means a particle size distribution measured by a laser diffraction / scattering method (measuring condition: dispersion medium-sodium hexametaphosphate, laser wavelength: 780 nm, measuring device: Microtrac MT3300EX). The total particle size is 100% and the particle diameter is 50% cumulative in the cumulative volume fraction of particle diameter.

本発明に係る無機充填剤(C)は、モース硬度が1〜8である。モース硬度が前記上限を超えるとフィルム状接着剤による加工ブレードの摩耗率が大きくなる。また、前記無機充填剤(C)のモース硬度としては、フィルム状接着剤において程よい磨耗性を担保することで加工ブレードの刃先の樹脂目詰まりを防止するという観点から、3〜8であることが好ましい。なお、本発明において、モース硬度とは、10段階モース硬度計を用い、測定物に対し硬度の小さい鉱物から順番にこすり合わせ、測定物に傷がつくかつかないかを目測し、測定物の硬度を判定した値をいう。   The inorganic filler (C) according to the present invention has a Mohs hardness of 1 to 8. If the Mohs hardness exceeds the upper limit, the wear rate of the processing blade by the film adhesive increases. Further, the Mohs hardness of the inorganic filler (C) is 3 to 8 from the viewpoint of preventing resin clogging at the cutting edge of the processing blade by ensuring appropriate wearability in the film adhesive. preferable. In the present invention, the Mohs hardness is a 10-stage Mohs hardness tester, which is rubbed in order from a mineral having a lower hardness to the measured object, to determine whether the measured object is damaged or not. Is a value determined.

本発明に係る無機充填剤(C)は、熱伝導率が30W/以上(m・K)である。熱伝導率が前記下限未満であると目的の熱伝導率を担保するためにより多くの無機充填剤を配合することになり、その結果、フィルム状接着剤の溶融粘度が上昇し、配線基板に圧着する際に基板の凹凸を埋め込むことが十分にできず、配線基板との密着性が低下する。また、前記無機充填剤(C)の熱伝導率としては、少ない充填量で高い熱伝導率を担保するという観点から、100W/(m・K)以上であることが特に好ましい。なお、本発明において、充填剤の熱伝導率とは、レーザーフラッシュ法(測定条件:レーザーパルス幅0.4ms、レーザー波長1.06μm、測定装置:(株)アルバック製TC7000型)により熱拡散率を測定し、この値とフィラー種の密度と比熱との積により算出した値をいう。   The inorganic filler (C) according to the present invention has a thermal conductivity of 30 W / or more (m · K). If the thermal conductivity is less than the lower limit, more inorganic fillers will be added to ensure the desired thermal conductivity. As a result, the melt viscosity of the film adhesive will increase, and it will be crimped to the wiring board. In doing so, the unevenness of the substrate cannot be sufficiently embedded, and the adhesion to the wiring substrate is lowered. The thermal conductivity of the inorganic filler (C) is particularly preferably 100 W / (m · K) or more from the viewpoint of securing high thermal conductivity with a small filling amount. In the present invention, the thermal conductivity of the filler is a thermal diffusivity measured by a laser flash method (measurement conditions: laser pulse width 0.4 ms, laser wavelength 1.06 μm, measuring device: TC7000 type manufactured by ULVAC, Inc.). Is a value calculated from the product of this value, the density of the filler species, and the specific heat.

本発明に係る無機充填剤(C)の材質としては、電気絶縁性及び前記熱伝導率を有するものであればよく、例えば、窒化アルミニウム、酸化マグネシウム、窒化ホウ素、水酸化アルミニウム等が挙げられる。これらの中でも、前記無機充填剤(C)としては、フィルム状接着剤において、硬化後に優れた熱伝導性が発揮されるという観点から、窒化アルミニウムが好ましい。また、前記無機充填剤(C)としては、1種を単独で用いても2種以上を組み合わせて用いてもよいが、2種以上を組み合わせて用いる場合には、より高い熱伝導率を有するフィルム状接着剤を得ることができるという観点から、前記無機充填剤(C)のうちの少なくとも1種が窒化アルミニウムであることがより好ましく、前記無機充填剤(C)の全量に対して50体積%以上が窒化アルミニウムであることがさらに好ましい。   The inorganic filler (C) according to the present invention may be made of any material having electrical insulation and thermal conductivity, and examples thereof include aluminum nitride, magnesium oxide, boron nitride, and aluminum hydroxide. Among these, as the inorganic filler (C), aluminum nitride is preferable from the viewpoint that excellent thermal conductivity is exhibited after curing in the film adhesive. Moreover, as said inorganic filler (C), you may use individually by 1 type, or may be used in combination of 2 or more type, but when using combining 2 or more types, it has higher thermal conductivity. From the viewpoint that a film-like adhesive can be obtained, it is more preferable that at least one of the inorganic fillers (C) is aluminum nitride, and 50 volumes with respect to the total amount of the inorganic filler (C). It is more preferable that at least% is aluminum nitride.

本発明に係る無機充填剤(C)は、本発明の高熱伝導性フィルム状接着剤用組成物における含有量が30〜70体積%である。含有量が前記下限未満であるとフィルム状接着剤における硬化後の熱伝導率が低下し、半導体パッケージに用いたときにパッケージ外部への放熱効率が低下する。他方、前記上限を超えるとバインダーとして働くエポキシ樹脂(A)及びフェノキシ樹脂(D)の含有量が相対的に少なくなるため、フィルム状接着剤の性状が脆くなる。また、前記含有量は、熱硬化後のフィルム状接着剤において高い熱伝導率(好ましくは1.0W/(m・K)以上)が得られ、且つ、フィルム状接着剤の溶融粘度の上昇が抑制でき、配線基板に圧着する際に基板上の凹凸を十分に埋め込んで基板との密着性が担保できる傾向にあるという観点から、40〜60体積%であることが特に好ましい。   Content in the composition for highly heat conductive film adhesives of this invention is 30-70 volume% of the inorganic filler (C) which concerns on this invention. When the content is less than the lower limit, the thermal conductivity after curing in the film adhesive is lowered, and when used for a semiconductor package, the heat dissipation efficiency to the outside of the package is lowered. On the other hand, if the upper limit is exceeded, the contents of the epoxy resin (A) and the phenoxy resin (D) that act as binders are relatively reduced, and the properties of the film adhesive become brittle. The content is such that a high thermal conductivity (preferably 1.0 W / (m · K) or more) is obtained in the film adhesive after thermosetting, and the increase in the melt viscosity of the film adhesive is increased. It is particularly preferable that the amount is 40 to 60% by volume from the viewpoint that it can be suppressed and the unevenness on the substrate can be sufficiently embedded when pressure-bonding to the wiring substrate to ensure adhesion with the substrate.

本発明に係るフェノキシ樹脂(D)は、重量平均分子量が10000以上の熱可塑性樹脂である。このようなフェノキシ樹脂(D)を用いることにより、得られるフィルム状接着剤において、室温におけるタック性や脆さが解消される。   The phenoxy resin (D) according to the present invention is a thermoplastic resin having a weight average molecular weight of 10,000 or more. By using such a phenoxy resin (D), tackiness and brittleness at room temperature are eliminated in the obtained film adhesive.

前記フェノキシ樹脂(D)としては、重量平均分子量が30000〜100000であることが好ましく、40000〜70000であることがより好ましい。重量平均分子量が前記下限未満であるとフィルム状接着剤の支持性が弱くなり、脆弱性が強くなる傾向にあり、他方、前記上限を超えると溶融粘度が高くなる傾向にある。また、前記フェノキシ樹脂(D)としては、ガラス転移温度(Tg)が40〜90℃であることが好ましく、50〜80℃であることがより好ましい。ガラス転移温度が前記下限未満であるとフィルム状接着剤の常温におけるフィルムタック性が強くなり、カバーフィルムやダイシングテープから剥離しにくくなる傾向にあり、他方、前記上限を超えるとフィルム状接着剤の溶融粘度が高くなるため、配線基板に圧着する際に基板上の凹凸を埋め込むことが十分にできず、配線基板との密着性が低下する傾向にある。   The phenoxy resin (D) preferably has a weight average molecular weight of 30,000 to 100,000, more preferably 40,000 to 70,000. When the weight average molecular weight is less than the lower limit, the support of the film adhesive is weakened and the brittleness tends to be strong. On the other hand, when the upper limit is exceeded, the melt viscosity tends to be high. Moreover, as said phenoxy resin (D), it is preferable that glass transition temperature (Tg) is 40-90 degreeC, and it is more preferable that it is 50-80 degreeC. If the glass transition temperature is lower than the lower limit, the film adhesive property at room temperature of the film adhesive becomes strong, and tends to be difficult to peel off from the cover film or the dicing tape. Since the melt viscosity becomes high, the concaves and convexes on the substrate cannot be sufficiently embedded when pressure-bonding to the wiring substrate, and the adhesion to the wiring substrate tends to be lowered.

前記フェノキシ樹脂(D)の骨格としては、ビスフェノールA型、ビスフェノールA/F型、ビスフェノールF型、ビスフェノールS型、ビスフェノールA/S型、カルド骨格型等が挙げられるが、前記エポキシ樹脂(A)と構造が類似しているために相溶性がよく、また、溶融粘度が低く接着性もよいという観点からは、ビスフェノールA型であることが好ましく、好適な温度範囲(例えば60〜120℃)で低溶融粘度に到達することができるフィルム状接着剤が得られるという観点からはビスフェノールA/F型であることが好ましく、高耐熱性を有するという観点からはカルド骨格型であることが好ましい。このようなフェノキシ樹脂(D)としては、例えば、ビスフェノールAとエピクロロヒドリンとから得られるビスフェノールA型フェノキシ樹脂、ビスフェノールA、ビスフェノールFとエピクロロヒドリンとから得られるビスフェノールA/F型フェノキシ樹脂等が挙げられる。前記フェノキシ樹脂(D)としては、これのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、また、例えば、YP−50S(ビスフェノールA型フェノキシ樹脂、新日化エポキシ製造(株)製)、YP−70(ビスフェノールA/F型フェノキシ樹脂、新日化エポキシ製造(株)製)、FX−316(ビスフェノールF型フェノキシ樹脂、新日化エポキシ製造(株)製)、及び、FX−280S(カルド骨格型フェノキシ樹脂、新日化エポキシ製造(株)製)等の市販のフェノキシ樹脂を前記フェノキシ樹脂(D)として用いてもよい。   Examples of the skeleton of the phenoxy resin (D) include bisphenol A type, bisphenol A / F type, bisphenol F type, bisphenol S type, bisphenol A / S type, and cardo skeleton type. The epoxy resin (A) From the viewpoint that the structure is similar to each other and the compatibility is good, and the melt viscosity is low and the adhesiveness is good, the bisphenol A type is preferable, and in a suitable temperature range (for example, 60 to 120 ° C.). The bisphenol A / F type is preferable from the viewpoint of obtaining a film adhesive capable of reaching a low melt viscosity, and the cardo skeleton type is preferable from the viewpoint of having high heat resistance. Examples of such phenoxy resin (D) include bisphenol A type phenoxy resin obtained from bisphenol A and epichlorohydrin, bisphenol A, bisphenol A / F type phenoxy obtained from bisphenol F and epichlorohydrin. Examples thereof include resins. As the phenoxy resin (D), one of these may be used alone, or two or more may be used in combination. For example, YP-50S (bisphenol A type phenoxy resin, Nippon Kayaku Epoxy) Manufactured Co., Ltd.), YP-70 (Bisphenol A / F type phenoxy resin, manufactured by Nippon Kayaku Epoxy Co., Ltd.), FX-316 (Bisphenol F type phenoxy resin, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.) Commercially available phenoxy resins such as FX-280S (cardo skeleton type phenoxy resin, manufactured by Nippon Kasei Epoxy Manufacturing Co., Ltd.) may be used as the phenoxy resin (D).

前記フェノキシ樹脂(D)としては、本発明の高熱伝導性フィルム状接着剤用組成物における含有量が1〜20質量%であることが好ましく、3〜10質量%であることがより好ましい。前記含有量が前記下限未満であるとフィルム状接着剤のフィルムタック性が強くなり、カバーフィルムやダイシングテープから剥離しにくくなる傾向にあり、他方、前記上限を超えるとフィルム状接着剤の溶融粘度が高くなるため、配線基板に圧着する際に基板上の凹凸を埋め込むことが十分にできず、配線基板との密着性が低下する傾向にある。   As said phenoxy resin (D), it is preferable that content in the composition for highly heat conductive film adhesives of this invention is 1-20 mass%, and it is more preferable that it is 3-10 mass%. When the content is less than the lower limit, the film adhesive property of the film adhesive becomes strong and tends to be difficult to peel off from the cover film or the dicing tape. On the other hand, when the content exceeds the upper limit, the melt viscosity of the film adhesive is increased. Therefore, the unevenness on the substrate cannot be embedded sufficiently when pressure-bonded to the wiring board, and the adhesion to the wiring board tends to be lowered.

本発明の高熱伝導性フィルム状接着剤用組成物としては、前記エポキシ樹脂(A)、前記エポキシ樹脂硬化剤(B)、前記無機充填剤(C)及び前記フェノキシ樹脂(D)の他に、本発明の効果を阻害しない範囲において、例えば、前記無機充填剤(C)以外の充填剤、カップリング剤、酸化防止剤、難燃剤、着色剤、ブタジエン系ゴムやシリコーンゴム等の応力緩和剤等の添加剤を含有していてもよい。本発明においては、前記エポキシ樹脂(A)と前記無機充填剤(B)との界面を補強することができ、優れた破壊強度及び接着性を有するフィルム状接着剤が得られるという観点から、カップリング剤を含有していることが好ましく、このようなカップリング剤としては、アミノ基、エポキシ基を含有したものがより好ましい。また、このような添加剤を含有する場合、その含有量は、本発明の高熱伝導性フィルム状接着剤用組成物において、3質量%以下であることが好ましい。   In addition to the epoxy resin (A), the epoxy resin curing agent (B), the inorganic filler (C), and the phenoxy resin (D), the composition for a highly thermally conductive film adhesive of the present invention includes: In the range not inhibiting the effect of the present invention, for example, fillers other than the inorganic filler (C), coupling agents, antioxidants, flame retardants, colorants, stress relaxation agents such as butadiene rubber and silicone rubber, etc. The additive may be contained. In the present invention, from the viewpoint that the interface between the epoxy resin (A) and the inorganic filler (B) can be reinforced, and a film-like adhesive having excellent breaking strength and adhesiveness can be obtained. It preferably contains a ring agent, and as such a coupling agent, one containing an amino group or an epoxy group is more preferred. Moreover, when it contains such an additive, it is preferable that the content is 3 mass% or less in the composition for highly heat conductive film adhesives of this invention.

次いで、本発明の高熱伝導性フィルム状接着剤について説明する。本発明の高熱伝導性フィルム状接着剤は、前記高熱伝導性フィルム状接着剤用組成物を加熱乾燥することによって得られることを特徴とする。   Next, the highly heat conductive film adhesive of the present invention will be described. The highly heat conductive film adhesive of the present invention is obtained by heating and drying the composition for high heat conductive film adhesive.

本発明の高熱伝導性フィルム状接着剤の製造方法の好適な一実施形態としては、前記高熱伝導性フィルム状接着剤用組成物を溶媒に溶解させたワニスを離型処理した基材に塗工し、加熱乾燥を施す方法が挙げられるが、この方法に特に制限されるものではない。   As a preferred embodiment of the method for producing a highly heat conductive film adhesive of the present invention, a varnish obtained by dissolving the above composition for a highly heat conductive film adhesive in a solvent is applied to a release-treated substrate. However, there is a method of heat drying, but the method is not particularly limited.

前記溶媒としては、公知の溶媒を適宜採用することができ、例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン(MIBK)、メチルエチルケトン(MEK)等のケトン類、モノグライム、ジグライム等のエーテル類、及びこれらの混合物等が挙げられる。前記離型処理した基材としては、公知の基材に離型処理したものを適宜採用することができ、例えば、離型処理されたポリプロピレン(PP)、離型処理されたポリエチレン(PE)、離型処理されたポリエチレンテレフタレート(PET)等が挙げられる。前記塗工方法としては、公知の方法を適宜採用することができ、例えば、ロールナイフコーター、グラビアコーター、ダイコーター、リバースコーター等が挙げられる。   As the solvent, known solvents can be appropriately employed. For example, aromatic hydrocarbons such as toluene and xylene, ketones such as methyl isobutyl ketone (MIBK) and methyl ethyl ketone (MEK), ethers such as monoglyme and diglyme. And mixtures thereof. As the base material subjected to the release treatment, a known base material that has been subjected to the release treatment can be appropriately employed. For example, the release-treated polypropylene (PP), the release-treated polyethylene (PE), Examples thereof include polyethylene terephthalate (PET) that has been subjected to a release treatment. As the coating method, a known method can be appropriately employed. Examples thereof include a roll knife coater, a gravure coater, a die coater, and a reverse coater.

前記加熱乾燥は、前記高熱伝導性フィルム状接着剤用組成物の硬化開始温度未満の温度で行う。このような温度としては、使用する樹脂の種類により異なるものであり、一概に言えるものではないが、例えば、40〜100℃であることが好ましく、60〜100℃であることがより好ましい。温度が前記下限未満であるとフィルム状接着剤に残存する溶媒量が多くなり、フィルムタック性が強くなる傾向にあり、他方、硬化開始温度以上となると前記高熱伝導性フィルム状接着剤用組成物が硬化してしまい、フィルム状接着剤の接着性が低下する傾向にある。また、前記加熱乾燥の時間としては、例えば、10〜60分間であることが好ましい。   The heat drying is performed at a temperature lower than the curing start temperature of the highly heat conductive film adhesive composition. Such temperature varies depending on the type of resin used, and cannot be generally described, but is preferably 40 to 100 ° C, and more preferably 60 to 100 ° C, for example. If the temperature is lower than the lower limit, the amount of the solvent remaining in the film-like adhesive tends to increase, and the film tackiness tends to be strong. Is hardened, and the adhesiveness of the film adhesive tends to decrease. The heat drying time is preferably 10 to 60 minutes, for example.

このように得られた本発明の高熱伝導性フィルム状接着剤としては、厚さが10〜150μmであることが好ましい。厚さが前記下限未満であると配線基板表面の凹凸を十分に埋め込めず、十分な密着性が担保できなくなる傾向にあり、他方、前記上限を超えると製造時において溶媒を除去することが困難になるため、残存溶媒量が多くなり、フィルムタック性が強くなる傾向にある。   The thus obtained highly heat-conductive film adhesive of the present invention preferably has a thickness of 10 to 150 μm. If the thickness is less than the lower limit, unevenness on the surface of the wiring board cannot be sufficiently embedded, and sufficient adhesion tends not to be ensured.On the other hand, if the upper limit is exceeded, it is difficult to remove the solvent during production. Therefore, the amount of residual solvent increases and the film tackiness tends to increase.

本発明の高熱伝導性フィルム状接着剤においては、レオメーターにて20℃から10℃/分の昇温速度で加熱した際に観測される80℃における溶融粘度が10000Pa・s以下となることができる。前記溶融粘度としては、10〜10000Pa・sであることがより好ましい。溶融粘度が前記下限未満であると、ウェハと接着する際において、樹脂流れや樹脂はい上がり等によって他の部材を汚染する傾向にあり、他方、溶融粘度が前記上限を超えると、フィルム状接着剤をウェハ裏面や凹凸のある配線基板の表面に貼り合わせる際に被着体との界面に空気を巻き込みやすくなる傾向にある。   In the high thermal conductive film adhesive of the present invention, the melt viscosity at 80 ° C. observed when heated with a rheometer at a rate of temperature increase from 20 ° C. to 10 ° C./min may be 10000 Pa · s or less. it can. The melt viscosity is more preferably 10 to 10,000 Pa · s. When the melt viscosity is less than the lower limit, when adhering to the wafer, there is a tendency to contaminate other members due to resin flow or resin rising, and when the melt viscosity exceeds the upper limit, a film adhesive is used. Tends to be easily entrapped at the interface with the adherend when the wafer is bonded to the back surface of the wafer or the surface of the wiring substrate having irregularities.

本発明の高熱伝導性フィルム状接着剤は、このような溶融粘度特性を有するため、好適な温度範囲(例えば60〜120℃)で被着体へ圧着することが可能であり、被着体に対して優れた密着性を発揮する。なお、本発明において、溶融粘度とは、所定の温度における溶融樹脂の粘性抵抗を測定することにより得られる値であり、80℃における溶融粘度とは、レオメーター(商品名:RS150、Haake社製)を用い、温度範囲20〜100℃、昇温速度10℃/minでの粘性抵抗の変化を測定し、得られた温度−粘性抵抗曲線において温度が80℃のときの粘性抵抗をいう。   Since the high thermal conductive film adhesive of the present invention has such melt viscosity characteristics, it can be pressure-bonded to the adherend in a suitable temperature range (for example, 60 to 120 ° C.). Excellent adhesion is exhibited. In the present invention, the melt viscosity is a value obtained by measuring the viscosity resistance of the molten resin at a predetermined temperature, and the melt viscosity at 80 ° C. is a rheometer (trade name: RS150, manufactured by Haake Corporation). ), The change in viscosity resistance at a temperature range of 20 to 100 ° C. and a heating rate of 10 ° C./min is measured, and the viscosity resistance when the temperature is 80 ° C. in the obtained temperature-viscosity resistance curve.

また、本発明の高熱伝導性フィルム状接着剤は、熱硬化後において、熱伝導率が1.0W/(m・K)以上とすることができる。前記熱伝導率としては、1.5W/(m・K)以上であることがより好ましい。熱伝導率が前記下限未満であると、発生した熱をパッケージ外部へ逃がしにくくなる傾向にある。本発明の高熱伝導性フィルム状接着剤は硬化後にこのような優れた熱伝導率を発揮するため、本発明の高熱伝導性フィルム状接着剤をウェハや配線基板等の被着体に密着させ、熱硬化せしめることによって、半導体パッケージ外部への放熱効率が向上する。なお、本発明において、このような熱硬化後のフィルム状接着剤の熱伝導率とは、熱伝導率測定装置(商品名:HC−110、英弘精機(株)製)を用いて、熱流計法(JIS−A1412に準拠)により熱伝導率を測定した値をいう。   Moreover, the high thermal conductivity film adhesive of the present invention can have a thermal conductivity of 1.0 W / (m · K) or more after thermosetting. The thermal conductivity is more preferably 1.5 W / (m · K) or more. If the thermal conductivity is less than the lower limit, the generated heat tends to be difficult to escape to the outside of the package. Since the high thermal conductive film adhesive of the present invention exhibits such excellent thermal conductivity after curing, the high thermal conductive film adhesive of the present invention is adhered to an adherend such as a wafer or a wiring board, By heat curing, the efficiency of heat radiation to the outside of the semiconductor package is improved. In the present invention, the thermal conductivity of the film-like adhesive after thermosetting is a heat flow meter using a thermal conductivity measuring device (trade name: HC-110, manufactured by Eihiro Seiki Co., Ltd.). A value obtained by measuring the thermal conductivity by the method (conforming to JIS-A1412).

前記熱硬化は、前記高熱伝導性フィルム状接着剤用組成物の硬化開始温度以上の温度で行う。このような温度としては、使用する樹脂の種類により異なるものであり、一概に言えるものではないが、例えば、120〜180℃であることが好ましく、120〜140℃であることがより好ましい。温度が硬化開始温度未満であると熱硬化が十分に進まず、熱硬化後のフィルム状接着剤の強度や熱伝導性が低下する傾向にあり、他方、前記上限を超えると硬化過程中にフィルム状接着剤中のエポキシ樹脂、硬化剤や添加剤等が揮発して接着剤層が発泡しやすくなる傾向にある。また、前記硬化処理の時間としては、例えば、10〜180分間であることが好ましい。さらに、前記熱硬化においては、0.1〜10MPa程度の圧力をかけることがより好ましい。   The thermosetting is performed at a temperature equal to or higher than the curing start temperature of the highly thermal conductive film adhesive composition. Such temperature varies depending on the type of resin used, and cannot be generally described. For example, it is preferably 120 to 180 ° C, and more preferably 120 to 140 ° C. If the temperature is lower than the curing start temperature, the thermal curing does not proceed sufficiently, and the strength and thermal conductivity of the film-like adhesive after the thermal curing tend to decrease. There is a tendency that the epoxy resin, the curing agent, the additive, and the like in the adhesive are volatilized and the adhesive layer easily foams. Moreover, as time of the said hardening process, it is preferable that it is for 10 to 180 minutes, for example. Furthermore, in the said thermosetting, it is more preferable to apply the pressure of about 0.1-10 MPa.

次いで、図面を参照しながら本発明の半導体パッケージの製造方法の好適な実施形態について詳細に説明する。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。図2A〜図2Eは、本発明の半導体パッケージの製造方法の各工程の好適な一実施形態を示す概略縦断面図である。   Next, a preferred embodiment of the semiconductor package manufacturing method of the present invention will be described in detail with reference to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted. 2A to 2E are schematic longitudinal sectional views showing a preferred embodiment of each step of the method for manufacturing a semiconductor package of the present invention.

本発明の半導体パッケージの製造方法においては、先ず、第1の工程として、図2Aに示すように、表面に半導体回路が形成されたウェハ1の裏面に、前記本発明の高熱伝導性フィルム状接着剤を熱圧着して接着剤層2を設ける。   In the method for producing a semiconductor package of the present invention, first, as a first step, as shown in FIG. 2A, the highly thermally conductive film-like adhesive of the present invention is adhered to the back surface of a wafer 1 on which a semiconductor circuit is formed. The adhesive layer 2 is provided by thermocompression bonding the agent.

ウェハ1としては、表面に半導体回路が形成されたウェハを適宜用いることができ、例えば、シリコンウェハ、SiCウェハ、GaSウェハ等が挙げられる。接着剤層2としては、前記本発明の高熱伝導性フィルム状接着剤を1層で単独で用いても2層以上を積層して用いてもよい。   As the wafer 1, a wafer having a semiconductor circuit formed on the surface can be used as appropriate, and examples thereof include a silicon wafer, a SiC wafer, and a GaS wafer. As the adhesive layer 2, the high thermal conductive film adhesive of the present invention may be used alone as one layer or may be used by laminating two or more layers.

このような接着剤層2をウェハ1の裏面に設ける方法としては、前記高熱伝導性フィルム状接着剤をウェハ1の裏面に積層させることが可能な方法を適宜採用することができ、ウェハ1の裏面に前記高熱伝導性フィルム状接着剤を貼り合せた後、2層以上を積層する場合には所望の厚さとなるまで順次高熱伝導性フィルム状接着剤を積層させる方法や、高熱伝導性フィルム状接着剤を予め目的の厚さに積層した後にウェハ1の裏面に貼り合せる方法等を挙げることができる。また、このような接着剤層2をウェハ1の裏面に設ける際に用いる装置としては特に制限されず、例えば、ロールラミネーター等のような公知の装置を適宜用いることができる。   As a method of providing such an adhesive layer 2 on the back surface of the wafer 1, a method capable of laminating the high thermal conductive film adhesive on the back surface of the wafer 1 can be appropriately employed. After laminating the high thermal conductive film adhesive on the back surface, when laminating two or more layers, a method of laminating the high thermal conductive film adhesive sequentially until the desired thickness is obtained, or a high thermal conductive film shape The method of laminating | bonding the adhesive agent on the back surface of the wafer 1 after laminating | stacking beforehand the target thickness etc. can be mentioned. Moreover, it does not restrict | limit especially as an apparatus used when providing such an adhesive bond layer 2 in the back surface of the wafer 1, For example, well-known apparatuses, such as a roll laminator, can be used suitably.

接着剤層2をウェハ1の裏面に設ける際には、前記高熱伝導性フィルム状接着剤の溶融粘度が10000Pa・s以下となる温度以上であって且つ前記高熱伝導性フィルム状接着剤の熱硬化開始温度未満である温度範囲内の温度において前記高熱伝導性フィルム状接着剤をウェハ1の裏面に張り合わせることが好ましい。このような温度条件としては、使用する樹脂の種類により異なるものであり、一概に言えるものではないが、例えば、40〜100℃であることが好ましく、40〜80℃であることがより好ましい。温度が前記下限未満であると、接着剤層2とウェハ1との界面に空気が巻き込まれやすくなる傾向にあり、接着剤層2が2層以上積層したものである場合には、前記高熱伝導性フィルム状接着剤の層間の接着が不十分になる傾向にある。他方、熱硬化開始温度以上となると前記高熱伝導性フィルム状接着剤が硬化してしまい、配線基板に接着するときの接着性が低下する傾向にある。また、このような熱圧着の時間としては、例えば1〜180秒間程度であることが好ましい。   When the adhesive layer 2 is provided on the back surface of the wafer 1, the high thermal conductive film adhesive has a melt viscosity of 10000 Pa · s or less and the thermosetting of the high thermal conductive film adhesive. It is preferable that the high thermal conductive film adhesive is bonded to the back surface of the wafer 1 at a temperature within a temperature range lower than the start temperature. Such temperature conditions vary depending on the type of resin to be used and cannot be generally described, but are preferably 40 to 100 ° C, and more preferably 40 to 80 ° C, for example. When the temperature is lower than the lower limit, air tends to be easily caught at the interface between the adhesive layer 2 and the wafer 1, and when the adhesive layer 2 is a laminate of two or more layers, the high thermal conductivity There is a tendency that the adhesion between the layers of the adhesive film-like adhesive is insufficient. On the other hand, when the temperature is higher than the thermosetting start temperature, the high thermal conductive film adhesive is cured, and the adhesiveness when adhering to the wiring board tends to be lowered. In addition, the thermocompression bonding time is preferably about 1 to 180 seconds, for example.

また、接着剤層2をウェハ1の裏面に設ける際には、0.1〜1MPa程度の圧力をかけることが好ましい。圧力が前記下限未満では、接着剤層2をウェハ1と貼り合わせるために時間がかかり、更にはボイドの発生を十分に防止できなくなる傾向にあり、他方、前記上限を超えると、接着剤のはみ出しを制御できなくなる傾向にある。   Further, when the adhesive layer 2 is provided on the back surface of the wafer 1, it is preferable to apply a pressure of about 0.1 to 1 MPa. If the pressure is less than the lower limit, it takes time to bond the adhesive layer 2 to the wafer 1, and further, it tends to be impossible to sufficiently prevent the occurrence of voids. On the other hand, if the pressure exceeds the upper limit, the adhesive protrudes. Tend to be out of control.

次いで、本発明の半導体パッケージの製造方法においては、第2の工程として、図2Bに示すように、ウェハ1とダイシングテープ3とを接着剤層2を介して接着した後に、ウェハ1と接着剤層2とを同時にダイシングすることによりウェハ1と接着剤層2とを備える半導体素子4を得る。   Next, in the semiconductor package manufacturing method of the present invention, as shown in FIG. 2B, the wafer 1 and the dicing tape 3 are bonded to each other through the adhesive layer 2 as shown in FIG. The semiconductor element 4 provided with the wafer 1 and the adhesive layer 2 is obtained by dicing the layer 2 at the same time.

ダイシングテープ3としては特に制限されず、適宜公知のダイシングテープを用いることができる。更に、ダイシングに用いる装置も特に制限されず、適宜公知のダイシング装置を用いることができる。   It does not restrict | limit especially as the dicing tape 3, A well-known dicing tape can be used suitably. Furthermore, the apparatus used for dicing is not particularly limited, and a known dicing apparatus can be used as appropriate.

本発明においては、接着剤層2が前記本発明の高熱伝導性フィルム状接着剤用組成物を用いて得られる高熱伝導性フィルム状接着剤からなるため、ダイシング装置の加工ブレードの摩耗率が十分に小さい。例えば、厚さが100μmのシリコンウェハと高熱伝導性フィルム状接着剤からなる厚さが20μmの接着剤層とを、2軸のダイシングブレード(Z1:NBC−ZH2030−SE(DD)、DISCO社製/Z2:NBC−ZH127F−SE(BB)、DISCO社製)が設置されたダイシング装置(商品名:DFD−6340、DISCO社製)にて3.0×3.0mmサイズにダイシングを実施した場合には、カット長さ20mにおける加工ブレードの摩耗率を5.0%以下とすることができる。磨耗率が前記上限を超えると、ダイシング工程中に高熱伝導性フィルム状接着剤がフルカットされないといった不具合を生じる。また、加工ブレードの摩耗率や交換頻度も多くなり、コストアップや生産性低下の問題を生じる。   In the present invention, since the adhesive layer 2 is made of the high thermal conductive film adhesive obtained using the composition for high thermal conductive film adhesive of the present invention, the wear rate of the processing blade of the dicing apparatus is sufficient. Small. For example, a silicon wafer having a thickness of 100 μm and an adhesive layer having a thickness of 20 μm made of a highly heat conductive film adhesive are formed by a biaxial dicing blade (Z1: NBC-ZH2030-SE (DD), manufactured by DISCO). / Z2: When dicing to 3.0 × 3.0 mm size with a dicing apparatus (trade name: DFD-6340, manufactured by DISCO) in which NBC-ZH127F-SE (BB), manufactured by DISCO) is installed In addition, the wear rate of the machining blade at a cut length of 20 m can be 5.0% or less. If the wear rate exceeds the upper limit, a problem arises that the high thermal conductive film adhesive is not fully cut during the dicing process. In addition, the wear rate and replacement frequency of the processing blade increase, resulting in problems of increased costs and reduced productivity.

次いで、本発明の半導体パッケージの製造方法においては、第3の工程として、図2Cに示すように、接着剤層2からダイシングテープ3を脱離し、半導体素子4と配線基板5とを接着剤層2を介して熱圧着せしめる。   Next, in the semiconductor package manufacturing method of the present invention, as a third step, as shown in FIG. 2C, the dicing tape 3 is detached from the adhesive layer 2, and the semiconductor element 4 and the wiring board 5 are bonded to the adhesive layer. 2 is used for thermocompression bonding.

配線基板5としては、表面に半導体回路が形成された基板を適宜用いることができ、例えば、プリント回路基板(PCB)、各種リードフレーム、及び、基板表面に抵抗素子やコンデンサー等の電子部品が搭載されているものが挙げられる。また、配線基板5として別の半導体素子を用いることにより、接着剤層2を介して半導体素子を複数個積層することもできる。   As the wiring substrate 5, a substrate having a semiconductor circuit formed on the surface can be used as appropriate. For example, a printed circuit board (PCB), various lead frames, and electronic components such as a resistance element and a capacitor are mounted on the substrate surface. What is being done is mentioned. In addition, by using another semiconductor element as the wiring substrate 5, a plurality of semiconductor elements can be stacked via the adhesive layer 2.

このような配線基板5に半導体素子4を実装する方法としては特に制限されず、接着剤層2を利用して半導体素子4を配線基板5又は配線基板5の表面上に搭載された電子部品に接着させることが可能な従来の方法を適宜採用することができる。このような実装方法としては、上部からの加熱機能を有するフリップチップボンダーを用いた実装技術を用いる方法、下部からのみの加熱機能を有するダイボンダーを用いる方法、ラミネーターを用いる方法等の従来公知の加熱、加圧方法を挙げることができる。   A method for mounting the semiconductor element 4 on the wiring board 5 is not particularly limited, and the adhesive layer 2 is used to mount the semiconductor element 4 on the wiring board 5 or an electronic component mounted on the surface of the wiring board 5. A conventional method capable of bonding can be appropriately employed. As such a mounting method, a conventionally known heating method such as a method using a mounting technique using a flip chip bonder having a heating function from the upper part, a method using a die bonder having a heating function only from the lower part, a method using a laminator, etc. And a pressurizing method.

このように、前記高熱伝導性フィルム状接着剤からなる接着剤層2を用いて半導体素子4を配線基板5上に実装することで、電子部品により生じる配線基板5上の凹凸に、前記高熱伝導性フィルム状接着剤を追従させながら半導体素子4と配線基板5とを密着して固定することが可能となる。   Thus, by mounting the semiconductor element 4 on the wiring board 5 using the adhesive layer 2 made of the high thermal conductive film adhesive, the high thermal conductivity is formed on the unevenness on the wiring board 5 caused by the electronic component. The semiconductor element 4 and the wiring board 5 can be brought into close contact and fixed while following the adhesive film adhesive.

配線基板5と半導体素子4とを接着する際には、前記高熱伝導性フィルム状接着剤の溶融粘度が10000Pa・s以下となる温度以上であって且つ前記高熱伝導性フィルム状接着剤の熱硬化開始温度未満である温度範囲内の温度において配線基板5と半導体素子4を接着することが好ましい。このような温度条件下において配線基板5と半導体素子4とを接着することで、接着剤層2と配線基板5との界面に空気が巻き込まれにくくなる傾向にある。このような温度条件、時間条件及び圧力条件としては、前記第1の工程で述べたとおりである。   When the wiring substrate 5 and the semiconductor element 4 are bonded, the high thermal conductive film adhesive has a melt viscosity of not less than 10000 Pa · s and the thermosetting of the high thermal conductive film adhesive. The wiring substrate 5 and the semiconductor element 4 are preferably bonded at a temperature within a temperature range that is lower than the start temperature. By bonding the wiring board 5 and the semiconductor element 4 under such temperature conditions, air tends to be less likely to be caught in the interface between the adhesive layer 2 and the wiring board 5. Such temperature conditions, time conditions, and pressure conditions are as described in the first step.

次いで、本発明の半導体パッケージの製造方法においては、第4の工程として、前記高熱伝導性フィルム状接着剤を熱硬化せしめる。前記熱硬化の温度としては、前記高熱伝導性フィルム状接着剤の熱硬化開始温度以上であれば特に制限がなく、使用する樹脂の種類により異なるものであり、一概に言えるものではないが、例えば、120〜180℃であることが好ましく、120〜130℃であることがより好ましい。温度が熱硬化開始温度未満であると、熱硬化が十分に進まず、接着層2の強度や熱伝導性が低下する傾向にあり、他方、前記上限を超えると硬化過程中にフィルム状接着剤中のエポキシ樹脂、硬化剤や添加剤等が揮発して発泡しやすくなる傾向にある。また、前記硬化処理の時間としては、例えば、10〜180分間であることが好ましく、さらに、前記熱硬化においては、0.1〜10MPa程度の圧力をかけることがより好ましい。本発明においては、前記高熱伝導性フィルム状接着剤を熱硬化せしめることにより、優れた破壊強度及び熱伝導率を有する接着層2が得られ、配線基板5と半導体素子4とが強固に接着された半導体パッケージを得ることができる。   Next, in the semiconductor package manufacturing method of the present invention, as the fourth step, the high thermal conductive film adhesive is thermally cured. The temperature of the heat curing is not particularly limited as long as it is equal to or higher than the heat curing start temperature of the high thermal conductive film adhesive, and varies depending on the type of resin to be used. 120-180 ° C is preferable, and 120-130 ° C is more preferable. If the temperature is lower than the thermosetting start temperature, thermosetting does not proceed sufficiently, and the strength and thermal conductivity of the adhesive layer 2 tend to decrease. On the other hand, if the temperature exceeds the upper limit, a film adhesive is used during the curing process. There is a tendency that the epoxy resin, the curing agent, the additive and the like in the inside evaporate and foam easily. Moreover, as time of the said hardening process, it is preferable that it is 10 to 180 minutes, for example, and also in the said thermosetting, it is more preferable to apply the pressure of about 0.1-10 MPa. In the present invention, the adhesive layer 2 having excellent breaking strength and thermal conductivity is obtained by thermosetting the high thermal conductive film adhesive, and the wiring substrate 5 and the semiconductor element 4 are firmly bonded. A semiconductor package can be obtained.

次いで、本発明の半導体パッケージの製造方法においては、図2Dに示すように、配線基板5と半導体素子4とをボンディングワイヤー6を介して接続することが好ましい。このような接続方法としては特に制限されず、従来公知の方法、例えば、ワイヤーボンディング方式の方法、TAB(Tape Automated Bonding)方式の方法等を適宜採用することができる。   Next, in the method for manufacturing a semiconductor package of the present invention, it is preferable to connect the wiring substrate 5 and the semiconductor element 4 via the bonding wires 6 as shown in FIG. 2D. Such a connection method is not particularly limited, and a conventionally known method such as a wire bonding method, a TAB (Tape Automated Bonding) method, or the like can be appropriately employed.

次いで、図2Eに示すように、封止樹脂7により配線基板5と半導体素子4とを封止することが好ましく、このようにして半導体パッケージ8を得ることができる。封止樹脂7としては特に制限されず、半導体パッケージの製造に用いることができる適宜公知の封止樹脂を用いることができる。また、封止樹脂7を用いる方法としても特に制限されず、適宜公知の方法を採用することが可能である。   Next, as shown in FIG. 2E, it is preferable to seal the wiring substrate 5 and the semiconductor element 4 with the sealing resin 7, and thus the semiconductor package 8 can be obtained. The sealing resin 7 is not particularly limited, and a known sealing resin that can be used for manufacturing a semiconductor package can be used as appropriate. Moreover, it does not restrict | limit especially as a method using sealing resin 7, A well-known method can be employ | adopted suitably.

このような本発明の半導体パッケージの製造方法によれば、ウェハ1との界面及び配線基板5上の凹凸を高熱伝導性フィルム状接着剤からなる接着剤層2によって埋め込むことができるため、ウェハ1と接着剤層2との間及び配線基板5と半導体素子4との間に空間を生じることなく半導体素子4を配線基板5に固定することができる。また、本発明の半導体パッケージの製造方法においては、前記本発明の高熱伝導性フィルム状接着剤用組成物を用いた高熱伝導性フィルム状接着剤を用いているため、加工ブレードの摩耗率を少なくすることができる。さらに、本発明の製造方法により製造された半導体パッケージは、接着層に用いている高熱伝導性フィルム状接着剤が硬化後に優れた熱伝導性を発揮するため、パッケージ外部への放熱効率が高い。   According to such a method of manufacturing a semiconductor package of the present invention, the interface with the wafer 1 and the irregularities on the wiring substrate 5 can be embedded by the adhesive layer 2 made of a highly heat conductive film adhesive. The semiconductor element 4 can be fixed to the wiring board 5 without creating a space between the wiring board 5 and the adhesive layer 2 and between the wiring board 5 and the semiconductor element 4. Further, in the method for manufacturing a semiconductor package of the present invention, since the high thermal conductive film adhesive using the composition for high thermal conductive film adhesive of the present invention is used, the wear rate of the processing blade is reduced. can do. Furthermore, the semiconductor package manufactured by the manufacturing method of the present invention has high heat dissipation efficiency to the outside of the package because the high thermal conductive film adhesive used for the adhesive layer exhibits excellent thermal conductivity after curing.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各実施例及び比較例において、熱伝導率、溶融粘度及び加工ブレード摩耗率はそれぞれ以下に示す方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In each example and comparative example, the thermal conductivity, melt viscosity, and processing blade wear rate were measured by the following methods.

(熱伝導率の測定)
得られたフィルム状接着剤を一辺50mm以上の四角片に切り取り、厚みが5mm以上になるように切り取った試料を積層し、直径50mm、厚さ5mmの円盤状金型の上に置き、圧縮プレス成型機を用いて温度150℃、圧力2MPaにおいて10分間加熱して取り出した後、さらに乾燥機中において温度180℃で1時間加熱することによりフィルム状接着剤を熱硬化させ、直径50mm、厚さ5mmの円盤状試験片を得た。この試験片について、熱伝導率測定装置(商品名:HC−110、英弘精機(株)製)を用いて、熱流計法(JIS−A1412に準拠)により熱伝導率(W/(m・K))を測定した。
(Measurement of thermal conductivity)
The obtained film adhesive was cut into a square piece with a side of 50 mm or more, a sample cut to have a thickness of 5 mm or more was laminated, placed on a disk-shaped mold with a diameter of 50 mm and a thickness of 5 mm, and a compression press After taking out by heating for 10 minutes at a temperature of 150 ° C. and a pressure of 2 MPa using a molding machine, the film adhesive is thermoset by heating in a dryer at a temperature of 180 ° C. for 1 hour, diameter 50 mm, thickness A 5 mm disk-shaped test piece was obtained. About this test piece, heat conductivity (W / (m · K) was measured by a heat flow meter method (based on JIS-A1412) using a thermal conductivity measuring device (trade name: HC-110, manufactured by Eihiro Seiki Co., Ltd.). )) Was measured.

(溶融粘度の測定)
得られたフィルム状接着剤を2.5×2.5cmサイズに切り取り、真空ラミネーター装置(商品名:MVLP−500、(株)名機製作所製)を用いて温度50℃、圧力0.3MPa、貼り合わせ時間10秒間の条件で、フィルム状接着剤を300μmの厚みまで積層して貼り合わせた試験片を得た。この試験片について、レオメーター(RS150、Haake社製)を用い、温度範囲20〜100℃、昇温速度10℃/minでの粘性抵抗の変化を測定し、得られた温度−粘性抵抗曲線から80℃における溶融粘度(Pa・s)を算出した。
(Measurement of melt viscosity)
The obtained film adhesive was cut into a size of 2.5 × 2.5 cm, and the temperature was 50 ° C., the pressure was 0.3 MPa, using a vacuum laminator device (trade name: MVLP-500, manufactured by Meiki Seisakusho). The test piece which laminated | stacked and bonded the film adhesive to the thickness of 300 micrometers on the conditions for the bonding time of 10 second was obtained. About this test piece, using a rheometer (RS150, manufactured by Haake), a change in viscosity resistance at a temperature range of 20 to 100 ° C. and a heating rate of 10 ° C./min was measured, and from the obtained temperature-viscosity resistance curve The melt viscosity (Pa · s) at 80 ° C. was calculated.

(加工ブレード摩耗率の測定)
先ず、得られたフィルム状接着剤をマニュアルラミネーター(商品名:FM−114、テクノビジョン社製)を用いて温度70℃、圧力0.3MPaにおいてダミーシリコンウェハ(8inchサイズ、厚さ100μm)に貼り合わせ、次いで、同マニュアルラミネーターを用いて室温、圧力0.3MPaにおいてフィルム状接着剤のダミーシリコンウェハと反対の面側にダイシングテープ(商品名:G−11、リンテック(株)製)及びダイシングフレーム(商品名:DTF2−8−1H001、DISCO社製)を貼り合わせて試験片とした。この試験片について、2軸のダイシングブレード(Z1:NBC−ZH2030−SE(DD)、DISCO社製/Z2:NBC−ZH127F−SE(BB)、DISCO社製)が設置されたダイシング装置(商品名:DFD−6340、DISCO社製)にて3.0×3.0mmサイズにダイシングを実施した。ダイシング前(加工前)と20mカット時点(加工後)とにおいてセットアップを実施し、非接触式(レーザー式)によりブレード刃先出し量を測定して、加工後におけるブレード磨耗量(加工前のブレード刃先出し量−加工後のブレード刃先出し量)を算出した。この磨耗量から、次式:
加工ブレード磨耗率(%)=(加工後のブレード磨耗量)÷(加工前のブレード刃先出し量)×100
により、加工ブレード磨耗率(%)を算出した。
(Measurement of processing blade wear rate)
First, the obtained film adhesive was attached to a dummy silicon wafer (8 inch size, thickness 100 μm) using a manual laminator (trade name: FM-114, manufactured by Technovision) at a temperature of 70 ° C. and a pressure of 0.3 MPa. Then, using the same manual laminator, dicing tape (trade name: G-11, manufactured by Lintec Co., Ltd.) and dicing frame on the side opposite to the dummy silicon wafer of the film adhesive at room temperature and pressure of 0.3 MPa (Product name: DTF2-8-1H001, manufactured by DISCO) was bonded to obtain a test piece. About this test piece, a dicing apparatus (trade name) in which a biaxial dicing blade (Z1: NBC-ZH2030-SE (DD), manufactured by DISCO / Z2: NBC-ZH127F-SE (BB), manufactured by DISCO) was installed. : DFD-6340, manufactured by DISCO Corporation), and dicing was performed to a size of 3.0 × 3.0 mm. Set up before dicing (before processing) and at the time of 20m cutting (after processing), measure blade blade tip amount by non-contact type (laser type), blade wear amount after processing (blade blade tip before processing) The amount of protrusion-the amount of blade blade tip after processing) was calculated. From this amount of wear, the following formula:
Machining blade wear rate (%) = (blade wear after machining) ÷ (blade tip advance before machining) × 100
Thus, the processing blade wear rate (%) was calculated.

(実施例1)
先ず、トリフェニルメタン型エポキシ樹脂(商品名:EPPN−501H、重量平均分子量:1000、軟化点:55℃、固体、エポキシ当量:167、日本化薬(株)製)55質量部、ビスフェノールA型エポキシ樹脂(商品名:YD−128、重量平均分子量:400、軟化点:25℃以下、液体、エポキシ当量:190、新日化エポキシ製造(株)製)49質量部、及び、ビスフェノールA/F型フェノキシ樹脂(商品名:YP−70、重量平均分子量:55000、Tg:70℃、新日化エポキシ製造(株)製)30質量部を秤量し、91質量部のメチルイソブチルケトン(MIBK)を溶媒として500mlのセパラブルフラスコ中において温度110℃で2時間加熱攪拌し、樹脂ワニスを得た。次いで、この樹脂ワニス225質量部を800mlのプラネタリーミキサーに移し、窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)355質量部、イミダゾール型硬化剤(商品名:2PHZ−PW、四国化成(株)製)9質量部を加えて室温において1時間攪拌混合後、真空脱泡して混合ワニスを得た。次いで、得られた混合ワニスを厚さ50μmの離型処理されたPETフィルム上に塗布して加熱乾燥(100℃で10分間保持)し、厚さが20μmであるフィルム状接着剤を得た。得られたフィルム状接着剤の溶融粘度及び加工ブレード摩耗率、並びに、熱硬化後の熱伝導率を測定した。得られた結果をフィルム状接着剤の組成と共に表1に示す。
Example 1
First, triphenylmethane type epoxy resin (trade name: EPPN-501H, weight average molecular weight: 1000, softening point: 55 ° C., solid, epoxy equivalent: 167, manufactured by Nippon Kayaku Co., Ltd.) 55 parts by mass, bisphenol A type 49 parts by mass of epoxy resin (trade name: YD-128, weight average molecular weight: 400, softening point: 25 ° C. or less, liquid, epoxy equivalent: 190, manufactured by Nippon Kayaku Epoxy Co., Ltd.), and bisphenol A / F Type phenoxy resin (trade name: YP-70, weight average molecular weight: 55000, Tg: 70 ° C., manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd.) 30 parts by mass, 91 parts by mass of methyl isobutyl ketone (MIBK) A 500 ml separable flask as a solvent was heated and stirred at a temperature of 110 ° C. for 2 hours to obtain a resin varnish. Next, 225 parts by mass of this resin varnish was transferred to an 800 ml planetary mixer, and aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), (stock) ) Tokuyama) 355 parts by mass, imidazole type curing agent (trade name: 2PHZ-PW, manufactured by Shikoku Kasei Co., Ltd.) 9 parts by mass, after stirring and mixing at room temperature for 1 hour, vacuum degassing to obtain a mixed varnish It was. Subsequently, the obtained mixed varnish was applied onto a 50 μm thick release-treated PET film and dried by heating (held at 100 ° C. for 10 minutes) to obtain a film adhesive having a thickness of 20 μm. The melt viscosity and processing blade wear rate of the obtained film adhesive and the thermal conductivity after thermosetting were measured. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例2)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)の使用量を489質量部に代えたこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Example 2)
Except for using 489 parts by mass of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation) A film adhesive was obtained in the same manner as in Example 1. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例3)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)の使用量を267質量部に代えたこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Example 3)
Except for using 267 parts by mass of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation) A film adhesive was obtained in the same manner as in Example 1. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例4)
トリフェニルメタン型エポキシ樹脂(商品名:EPPN−501H、重量平均分子量:1000、軟化点:55℃、固体、エポキシ当量:167、日本化薬(株)製)をクレゾールノボラック型エポキシ樹脂(商品名:ECON−1020−80、重量平均分子量:1200、軟化点:80℃、固体、エポキシ当量:200、日本化薬(株)製)に代えたこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
Example 4
A triphenylmethane type epoxy resin (trade name: EPPN-501H, weight average molecular weight: 1000, softening point: 55 ° C., solid, epoxy equivalent: 167, manufactured by Nippon Kayaku Co., Ltd.) is used as a cresol novolac type epoxy resin (trade name) : ECON-1020-80, weight average molecular weight: 1200, softening point: 80 ° C., solid, epoxy equivalent: 200, manufactured by Nippon Kayaku Co., Ltd. An agent was obtained. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例5)
トリフェニルメタン型エポキシ樹脂(商品名:EPPN−501H、重量平均分子量:1000、軟化点:55℃、固体、エポキシ当量:167、日本化薬(株)製)をビスフェノールA型エポキシ樹脂(商品名:YD−011、重量平均分子量:1000、軟化点:70℃、固体、エポキシ当量:450、新日化エポキシ製造(株)製)に代えたこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Example 5)
Triphenylmethane type epoxy resin (trade name: EPPN-501H, weight average molecular weight: 1000, softening point: 55 ° C., solid, epoxy equivalent: 167, manufactured by Nippon Kayaku Co., Ltd.) is replaced with bisphenol A type epoxy resin (trade name) : YD-011, weight average molecular weight: 1000, softening point: 70 ° C., solid, epoxy equivalent: 450, manufactured by Nikka Epoxy Manufacturing Co., Ltd.) An agent was obtained. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例6)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)に代えて、窒化アルミニウム(商品名:5.0μm窒化アルミニウム、平均粒径5.0μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)を用いたこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Example 6)
Instead of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation), aluminum nitride (trade name: 5.0 μm) A film-like adhesive was obtained in the same manner as in Example 1 except that aluminum nitride, average particle size 5.0 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation) was used. It was. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例7)
窒化アルミニウム(商品名:5.0μm窒化アルミニウム、平均粒径5.0μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)の使用量を489質量部に代えたこと以外は実施例6と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Example 7)
The amount of aluminum nitride (trade name: 5.0 μm aluminum nitride, average particle size 5.0 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation) was replaced with 489 parts by mass. Except for this, a film adhesive was obtained in the same manner as in Example 6. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(実施例8)
窒化アルミニウム(商品名:5.0μm窒化アルミニウム、平均粒径5.0μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)の使用量を267質量部に代えたこと以外は実施例6と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Example 8)
The amount of aluminum nitride (trade name: 5.0 μm aluminum nitride, average particle size 5.0 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation) was changed to 267 parts by mass. Except for this, a film adhesive was obtained in the same manner as in Example 6. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(比較例1)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)355質量部に代えて球状シリカ(商品名:FB−3SDX、平均粒径3.0μm、モース硬度7、熱伝導率1.0W/(m・K)、電気化学工業(株)製)を237質量部使用したこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Comparative Example 1)
Instead of 355 parts by mass of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation), spherical silica (trade name: FB) -3 SDX, average particle size 3.0 μm, Mohs hardness 7, thermal conductivity 1.0 W / (m · K), manufactured by Denki Kagaku Kogyo Co., Ltd.) Thus, a film adhesive was obtained. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(比較例2)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)355質量部に代えて酸化マグネシウム(商品名:クールフィラー、平均粒径40μm、モース硬度5.5、熱伝導率13W/(m・K)、タテホ化学工業(株)製)を385質量部使用したこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Comparative Example 2)
Magnesium oxide (trade name: cool) instead of 355 parts by mass of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation) A film-like shape as in Example 1 except that 385 parts by mass of filler, average particle size 40 μm, Mohs hardness 5.5, thermal conductivity 13 W / (m · K), manufactured by Tateho Chemical Co., Ltd.) were used. An adhesive was obtained. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(比較例3)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)355質量部に代えて球状アルミナ(商品名:AX3−15R、平均粒径3.0μm、モース硬度9、熱伝導率36W/(m・K)、新日鉄マテリアルズ(株)製)を409質量部使用したこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Comparative Example 3)
Instead of 355 parts by mass of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation), spherical alumina (trade name: AX3 -15R, average particle size 3.0 μm, Mohs hardness 9, thermal conductivity 36 W / (m · K), manufactured by Nippon Steel Materials Co., Ltd.) A shaped adhesive was obtained. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

(比較例4)
窒化アルミニウム(商品名:Hグレード、平均粒径1.1μm、モース硬度8、熱伝導率200W/(m・K)、(株)トクヤマ製)355質量部に代えて窒化ホウ素(商品名:HP−01、平均粒径10μm、モース硬度2、熱伝導率60W/(m・K)、水島合金鉄(株)製)を247質量部使用したこと以外は実施例1と同様にしてフィルム状接着剤を得た。得られたフィルム状接着剤について実施例1と同様の測定を行った。得られた結果をフィルム状接着剤の組成と共に表1に示す。
(Comparative Example 4)
Instead of 355 parts by mass of aluminum nitride (trade name: H grade, average particle size 1.1 μm, Mohs hardness 8, thermal conductivity 200 W / (m · K), manufactured by Tokuyama Corporation), boron nitride (trade name: HP -01, average particle size 10 μm, Mohs hardness 2, thermal conductivity 60 W / (m · K), Mizushima Alloy Iron Co., Ltd.) was used in the same manner as in Example 1 except that 247 parts by mass was used. An agent was obtained. The film-like adhesive obtained was measured in the same manner as in Example 1. The obtained results are shown in Table 1 together with the composition of the film adhesive.

表1に示した結果から明らかなように、実施例1〜8で得られた高熱伝導性フィルム状接着剤は、80℃において十分に低い溶融粘度を有し、加工ブレードの摩耗率が十分に小さく、且つ、硬化後に優れた熱伝導性を発揮することが確認された。   As is clear from the results shown in Table 1, the high thermal conductive film adhesives obtained in Examples 1 to 8 have a sufficiently low melt viscosity at 80 ° C., and the wear rate of the processing blade is sufficiently high. It was confirmed that it was small and exhibited excellent thermal conductivity after curing.

以上説明したように、本発明の高熱伝導性フィルム状接着剤用組成物によれば、被着体との密着性に優れ、加工ブレードの摩耗率が十分に小さく、且つ、硬化後に優れた熱伝導性を発揮する高熱伝導性フィルム状接着剤を得ることが可能となる。   As described above, according to the composition for a highly thermally conductive film adhesive of the present invention, the adhesiveness to the adherend is excellent, the wear rate of the processing blade is sufficiently small, and the heat after curing is excellent. It becomes possible to obtain a highly heat-conductive film adhesive that exhibits conductivity.

また、本発明の半導体パッケージの製造方法によれば、ウェハとの界面や配線基板上の凹凸を本発明の高熱伝導性フィルム状接着剤からなる接着剤層によって埋め込むことができるため、配線基板と半導体素子との間に空間を生じることなく半導体素子を配線基板に固定することができ、また、加工ブレードの摩耗率を少なくすることができる。   Further, according to the semiconductor package manufacturing method of the present invention, the unevenness on the interface with the wafer or on the wiring board can be embedded with the adhesive layer made of the high thermal conductive film adhesive of the present invention. The semiconductor element can be fixed to the wiring board without generating a space between the semiconductor element and the wear rate of the processing blade can be reduced.

さらに、本発明の半導体パッケージは、接着剤層に用いている高熱伝導性フィルム状接着剤が硬化後に優れた熱伝導性を発揮するため、パッケージ外部への放熱効率が高い。   Furthermore, the semiconductor package of the present invention has high heat dissipation efficiency to the outside of the package because the high thermal conductive film adhesive used for the adhesive layer exhibits excellent thermal conductivity after curing.

従って、本発明は半導体パッケージ内の半導体素子と配線基板との間や半導体素子と半導体素子との間を接合するための技術として非常に有用である。   Therefore, the present invention is very useful as a technique for bonding between a semiconductor element and a wiring board in a semiconductor package or between a semiconductor element and a semiconductor element.

1…ウェハ、2…接着剤層、3…ダイシングテープ、4…半導体素子、5…配線基板、6…ボンディングワイヤー、7…封止樹脂、8…半導体パッケージ。   DESCRIPTION OF SYMBOLS 1 ... Wafer, 2 ... Adhesive layer, 3 ... Dicing tape, 4 ... Semiconductor element, 5 ... Wiring board, 6 ... Bonding wire, 7 ... Sealing resin, 8 ... Semiconductor package.

Claims (7)

エポキシ樹脂(A)、エポキシ樹脂硬化剤(B)、無機充填剤(C)及びフェノキシ樹脂(D)を含有しており、前記無機充填剤(C)が、下記(i)〜(iii):
(i)平均粒径が0.1〜5.0μm、
(ii)モース硬度が1〜8、
(iii)熱伝導率が30W/(m・K)以上、
の全条件を満たし、且つ、
前記無機充填剤(C)の含有量が30〜70体積%であることを特徴とする高熱伝導性フィルム状接着剤用組成物。
It contains an epoxy resin (A), an epoxy resin curing agent (B), an inorganic filler (C), and a phenoxy resin (D), and the inorganic filler (C) includes the following (i) to (iii):
(I) The average particle size is 0.1 to 5.0 μm,
(Ii) Mohs hardness of 1-8,
(Iii) Thermal conductivity is 30 W / (m · K) or more,
Satisfy all the conditions of
Content of the said inorganic filler (C) is 30-70 volume%, The composition for highly heat conductive film adhesives characterized by the above-mentioned.
前記エポキシ樹脂(A)が下記式(1):
[式(1)中、nは0〜10の整数を示す。]
で表わされるトリフェニルメタン型エポキシ樹脂であることを特徴とする請求項1に記載の高熱伝導性フィルム状接着剤用組成物。
The epoxy resin (A) is represented by the following formula (1):
[In Formula (1), n shows the integer of 0-10. ]
The composition for highly heat conductive film adhesives of Claim 1 which is a triphenylmethane type epoxy resin represented by these.
前記無機充填剤(C)が窒化アルミニウムであることを特徴とする請求項1又は2に記載の高熱伝導性フィルム状接着剤用組成物。   The composition for high thermal conductive film adhesive according to claim 1 or 2, wherein the inorganic filler (C) is aluminum nitride. 請求項1〜3のうちのいずれか一項に記載の高熱伝導性フィルム状接着剤用組成物を加熱乾燥することによって得られ、厚さが10〜150μmであることを特徴とする高熱伝導性フィルム状接着剤。   It is obtained by heat-drying the composition for high thermal conductive film adhesives according to any one of claims 1 to 3, and has a thickness of 10 to 150 µm. Film adhesive. レオメーターにて20℃から10℃/分の昇温速度で加熱した際に観測される80℃における溶融粘度が10000Pa・s以下であり、
熱硬化後の熱伝導率が1.0W/(m・K)以上であること、
を特徴とする請求項4に記載の高熱伝導性フィルム状接着剤。
The melt viscosity at 80 ° C. observed when heated at a rate of temperature increase from 20 ° C. to 10 ° C./min with a rheometer is 10,000 Pa · s or less,
The thermal conductivity after thermosetting is 1.0 W / (m · K) or more,
The highly heat conductive film adhesive of Claim 4 characterized by these.
表面に半導体回路が形成されたウェハの裏面に、請求項4又は5に記載の高熱伝導性フィルム状接着剤を熱圧着して接着剤層を設ける第1の工程と、
前記ウェハとダイシングテープとを前記接着剤層を介して接着した後に、前記ウェハと前記接着剤層とを同時にダイシングすることにより前記ウェハと前記接着剤層とを備える半導体素子を得る第2の工程と、
前記接着剤層からダイシングテープを脱離し、前記半導体素子と配線基板とを前記接着剤層を介して熱圧着せしめる第3の工程と、
前記高熱伝導性フィルム状接着剤を熱硬化せしめる第4の工程と、
を含むことを特徴とする半導体パッケージの製造方法。
A first step of providing an adhesive layer by thermocompression bonding the highly heat conductive film adhesive according to claim 4 or 5 on the back surface of the wafer having a semiconductor circuit formed on the surface;
A second step of obtaining a semiconductor element including the wafer and the adhesive layer by dicing the wafer and the adhesive layer simultaneously after bonding the wafer and the dicing tape through the adhesive layer. When,
A third step of detaching the dicing tape from the adhesive layer and thermocompression bonding the semiconductor element and the wiring board through the adhesive layer;
A fourth step of thermosetting the high thermal conductive film adhesive;
A method for manufacturing a semiconductor package, comprising:
請求項6に記載の製造方法により得られることを特徴とする半導体パッケージ。   A semiconductor package obtained by the manufacturing method according to claim 6.
JP2012058702A 2011-03-16 2012-03-15 High thermal conductive film adhesive composition, high thermal conductive film adhesive, semiconductor package using the same, and manufacturing method thereof Active JP5871428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058702A JP5871428B2 (en) 2011-03-16 2012-03-15 High thermal conductive film adhesive composition, high thermal conductive film adhesive, semiconductor package using the same, and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011057694 2011-03-16
JP2011057694 2011-03-16
JP2012058702A JP5871428B2 (en) 2011-03-16 2012-03-15 High thermal conductive film adhesive composition, high thermal conductive film adhesive, semiconductor package using the same, and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016002581A Division JP6005309B2 (en) 2011-03-16 2016-01-08 Semiconductor package using high thermal conductive film adhesive and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2012207222A true JP2012207222A (en) 2012-10-25
JP5871428B2 JP5871428B2 (en) 2016-03-01

Family

ID=46808671

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012058702A Active JP5871428B2 (en) 2011-03-16 2012-03-15 High thermal conductive film adhesive composition, high thermal conductive film adhesive, semiconductor package using the same, and manufacturing method thereof
JP2016002581A Active JP6005309B2 (en) 2011-03-16 2016-01-08 Semiconductor package using high thermal conductive film adhesive and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016002581A Active JP6005309B2 (en) 2011-03-16 2016-01-08 Semiconductor package using high thermal conductive film adhesive and method for manufacturing the same

Country Status (4)

Country Link
JP (2) JP5871428B2 (en)
KR (1) KR101856557B1 (en)
CN (1) CN102676105B (en)
TW (1) TWI553077B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234482A (en) * 2013-06-04 2014-12-15 日東電工株式会社 Adhesive sheet and dicing/die-bonding film
JP2015005636A (en) * 2013-06-21 2015-01-08 日東電工株式会社 Dicing/die-bonding film
JP2015103580A (en) * 2013-11-21 2015-06-04 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet method for manufacturing thermosetting die bond film and method for manufacturing semiconductor device
JP2015103578A (en) * 2013-11-21 2015-06-04 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet and method for manufacturing semiconductor device
JP2015103649A (en) * 2013-11-25 2015-06-04 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet, method for manufacturing semiconductor device and semiconductor device
KR20160004270A (en) * 2013-04-30 2016-01-12 닛토덴코 가부시키가이샤 Film-like adhesive, dicing tape-integrated film-like adhesive, and method for manufacturing semiconductor device
KR20160023679A (en) 2013-06-25 2016-03-03 아지노모토 가부시키가이샤 Resin composition
JP2016115804A (en) * 2014-12-15 2016-06-23 リンテック株式会社 Dicing-die bonding sheet
WO2017002315A1 (en) * 2015-06-29 2017-01-05 タツタ電線株式会社 Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JP2017008153A (en) * 2015-06-18 2017-01-12 Dic株式会社 Epoxy resin composition for thermal conductive material, cured article thereof and electronic member
WO2017158994A1 (en) * 2016-03-15 2017-09-21 古河電気工業株式会社 Film-like adhesive composition, film-like adhesive, film-like adhesive production method, semiconductor package using film-like adhesive, and production method therefor
WO2017213248A1 (en) * 2016-06-10 2017-12-14 日立化成株式会社 Adhesive film and dicing die-bonding integral film
WO2018203527A1 (en) * 2017-05-01 2018-11-08 古河電気工業株式会社 Adhesive film, tape for processing semiconductor wafer, semiconductor package, and production method therefor
WO2019017303A1 (en) * 2017-07-20 2019-01-24 日立化成株式会社 Heat dissipating die bonding film, and dicing/die bonding film
JP2020029562A (en) * 2019-10-30 2020-02-27 味の素株式会社 Method for producing protective film-fitted adhesive sheet
WO2021033368A1 (en) * 2019-08-22 2021-02-25 古河電気工業株式会社 Adhesive composition, film-like adhesive and production method thereof, and semiconductor package using film-like adhesive and method for manufacturing same
WO2021181748A1 (en) * 2020-03-13 2021-09-16 古河電気工業株式会社 Dicing die attach film, semiconductor package using dicing die attach film, and method for manufacturing semiconductor package

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410066A (en) * 2016-05-11 2022-04-29 日立化成株式会社 Liquid resin composition for sealing and electronic component device
KR102019468B1 (en) * 2016-11-29 2019-09-06 주식회사 엘지화학 Adhesive film for semiconductor device and semiconductor device
WO2019013299A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Thermally conductive material, device provided with thermally conductive layer, thermally conductive material formation composition, disc-shaped liquid crystal compound
WO2019044886A1 (en) * 2017-09-04 2019-03-07 東亞合成株式会社 Composition for powder coating materials and coated article
JP6800129B2 (en) 2017-11-07 2020-12-16 古河電気工業株式会社 Manufacturing method of semiconductor package using film-like adhesive and film-like adhesive
JP7157511B2 (en) * 2018-04-19 2022-10-20 株式会社ディスコ Cutting device and cutting blade detection method
CN111019578B (en) * 2019-12-26 2022-04-12 深圳德邦界面材料有限公司 Epoxy resin heat-conducting adhesive sheet and preparation method thereof
JP7042986B1 (en) * 2020-07-30 2022-03-28 古河電気工業株式会社 A composition for an adhesive, a film-like adhesive, and a semiconductor package using the film-like adhesive and a method for manufacturing the same.
CN114774047A (en) * 2022-05-18 2022-07-22 江苏斯迪克新材料科技股份有限公司 Flexible heat-conducting glue composition and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339371A (en) * 2003-05-15 2004-12-02 Nippon Kayaku Co Ltd Epoxy resin composition and cured product thereof
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP2009149727A (en) * 2007-12-19 2009-07-09 Nippon Steel Chem Co Ltd Film-like adhesive, semiconductor package using it, and its manufacturing method
WO2010021167A1 (en) * 2008-08-18 2010-02-25 積水化学工業株式会社 Insulating sheet and laminated structure
JP2010205498A (en) * 2009-03-02 2010-09-16 Sekisui Chem Co Ltd Insulating sheet, and laminated structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031574A1 (en) * 1995-04-04 1996-10-10 Hitachi Chemical Company, Ltd. Adhesive, adhesive film and adhesive-backed metal foil
TWI300083B (en) * 2003-04-25 2008-08-21 Mitsui Chemicals Inc Epoxy resin and its usage
JP4493929B2 (en) * 2003-05-01 2010-06-30 新日鐵化学株式会社 Adhesive film for coating electronic components
CN101362926B (en) 2003-06-06 2012-08-15 日立化成工业株式会社 Adhesive sheet, dicing tape integrated type adhesive sheet, and semiconductor device producing method
JP4816871B2 (en) * 2004-04-20 2011-11-16 日立化成工業株式会社 Adhesive sheet, semiconductor device, and method of manufacturing semiconductor device
JP2007270125A (en) * 2006-03-08 2007-10-18 Hitachi Chem Co Ltd Adhesive sheet, integrated sheet, semiconductor device, and method for producing the semiconductor device
JP5524465B2 (en) * 2007-10-24 2014-06-18 日立化成株式会社 Adhesive sheet, semiconductor device using the same, and manufacturing method thereof
JP2010254763A (en) * 2009-04-22 2010-11-11 Hitachi Chem Co Ltd Adhesive composition, method for manufacturing the same, adhesive sheet using this, integrated sheet, method for manufacturing the same, and semiconductor device and method for manufacturing the same
TWI431090B (en) * 2010-04-07 2014-03-21 Furukawa Electric Co Ltd Wafer processing tape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339371A (en) * 2003-05-15 2004-12-02 Nippon Kayaku Co Ltd Epoxy resin composition and cured product thereof
JP2007254527A (en) * 2006-03-22 2007-10-04 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same
JP2009149727A (en) * 2007-12-19 2009-07-09 Nippon Steel Chem Co Ltd Film-like adhesive, semiconductor package using it, and its manufacturing method
WO2010021167A1 (en) * 2008-08-18 2010-02-25 積水化学工業株式会社 Insulating sheet and laminated structure
JP2010205498A (en) * 2009-03-02 2010-09-16 Sekisui Chem Co Ltd Insulating sheet, and laminated structure

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212774B1 (en) 2013-04-30 2021-02-05 닛토덴코 가부시키가이샤 Film-like adhesive, dicing tape-integrated film-like adhesive, and method for manufacturing semiconductor device
KR20160004270A (en) * 2013-04-30 2016-01-12 닛토덴코 가부시키가이샤 Film-like adhesive, dicing tape-integrated film-like adhesive, and method for manufacturing semiconductor device
JP2014234482A (en) * 2013-06-04 2014-12-15 日東電工株式会社 Adhesive sheet and dicing/die-bonding film
JP2015005636A (en) * 2013-06-21 2015-01-08 日東電工株式会社 Dicing/die-bonding film
KR20160023679A (en) 2013-06-25 2016-03-03 아지노모토 가부시키가이샤 Resin composition
JP2015103580A (en) * 2013-11-21 2015-06-04 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet method for manufacturing thermosetting die bond film and method for manufacturing semiconductor device
JP2015103578A (en) * 2013-11-21 2015-06-04 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet and method for manufacturing semiconductor device
JP2015103649A (en) * 2013-11-25 2015-06-04 日東電工株式会社 Thermosetting die bond film, die bond film with dicing sheet, method for manufacturing semiconductor device and semiconductor device
JP2016115804A (en) * 2014-12-15 2016-06-23 リンテック株式会社 Dicing-die bonding sheet
JP2017008153A (en) * 2015-06-18 2017-01-12 Dic株式会社 Epoxy resin composition for thermal conductive material, cured article thereof and electronic member
WO2017002315A1 (en) * 2015-06-29 2017-01-05 タツタ電線株式会社 Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JPWO2017002315A1 (en) * 2015-06-29 2018-04-19 タツタ電線株式会社 Composition for adhering heat dissipation material, heat dissipation material with adhesive, inlay substrate, and manufacturing method thereof
US20180298185A1 (en) * 2015-06-29 2018-10-18 Tatsuta Electric Wire & Cable Co., Ltd. Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
US11236227B2 (en) 2015-06-29 2022-02-01 Tatsuta Electric Wire & Cable Co., Ltd. Heat dissipation material adhering composition, heat dissipation material having adhesive, inlay substrate, and method for manufacturing same
JPWO2017158994A1 (en) * 2016-03-15 2019-01-17 古河電気工業株式会社 Composition for film adhesive, film adhesive, method for producing film adhesive, semiconductor package using film adhesive, and method for producing the same
WO2017158994A1 (en) * 2016-03-15 2017-09-21 古河電気工業株式会社 Film-like adhesive composition, film-like adhesive, film-like adhesive production method, semiconductor package using film-like adhesive, and production method therefor
WO2017213248A1 (en) * 2016-06-10 2017-12-14 日立化成株式会社 Adhesive film and dicing die-bonding integral film
WO2018203527A1 (en) * 2017-05-01 2018-11-08 古河電気工業株式会社 Adhesive film, tape for processing semiconductor wafer, semiconductor package, and production method therefor
JP2018188540A (en) * 2017-05-01 2018-11-29 古河電気工業株式会社 Adhesive film, tape for working semiconductor wafer, semiconductor package and method for manufacturing the same
KR20190017961A (en) * 2017-05-01 2019-02-20 후루카와 덴키 고교 가부시키가이샤 Adhesive film, tape for semiconductor wafer processing, semiconductor package and manufacturing method thereof
KR102183279B1 (en) 2017-05-01 2020-11-26 후루카와 덴키 고교 가부시키가이샤 Adhesive film, tape for semiconductor wafer processing, semiconductor package and manufacturing method thereof
KR20200026799A (en) * 2017-07-20 2020-03-11 히타치가세이가부시끼가이샤 Heat-resistant die bonding film and dicing die bonding film
CN110945634A (en) * 2017-07-20 2020-03-31 日立化成株式会社 Heat dissipating die bond film and dicing die bond film
JP2019021829A (en) * 2017-07-20 2019-02-07 日立化成株式会社 Heat-dissipating die bonding film and dicing die bonding film
WO2019017303A1 (en) * 2017-07-20 2019-01-24 日立化成株式会社 Heat dissipating die bonding film, and dicing/die bonding film
KR102451368B1 (en) * 2017-07-20 2022-10-05 쇼와덴코머티리얼즈가부시끼가이샤 Heat dissipation die bonding film and dicing die bonding film
CN110945634B (en) * 2017-07-20 2023-08-29 株式会社力森诺科 Heat-dissipating die bonding film and dicing die bonding film
WO2021033368A1 (en) * 2019-08-22 2021-02-25 古河電気工業株式会社 Adhesive composition, film-like adhesive and production method thereof, and semiconductor package using film-like adhesive and method for manufacturing same
JP6858315B1 (en) * 2019-08-22 2021-04-14 古河電気工業株式会社 Adhesive compositions, film-like adhesives and methods for manufacturing them, and semiconductor packages using film-like adhesives and methods for manufacturing them.
CN113165364A (en) * 2019-08-22 2021-07-23 古河电气工业株式会社 Composition for adhesive, film-like adhesive and method for producing same, and semiconductor package using film-like adhesive and method for producing same
US11952513B2 (en) 2019-08-22 2024-04-09 Furukawa Electric Co., Ltd. Adhesive composition, film-like adhesive and production method thereof, and semiconductor package using film-like adhesive and production method thereof
JP2020029562A (en) * 2019-10-30 2020-02-27 味の素株式会社 Method for producing protective film-fitted adhesive sheet
WO2021181748A1 (en) * 2020-03-13 2021-09-16 古河電気工業株式会社 Dicing die attach film, semiconductor package using dicing die attach film, and method for manufacturing semiconductor package
JP2021145115A (en) * 2020-03-13 2021-09-24 古河電気工業株式会社 Dicing die attach film, semiconductor package using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP6005309B2 (en) 2016-10-12
KR20120106623A (en) 2012-09-26
CN102676105A (en) 2012-09-19
CN102676105B (en) 2016-03-02
KR101856557B1 (en) 2018-05-10
JP2016129231A (en) 2016-07-14
TW201239056A (en) 2012-10-01
JP5871428B2 (en) 2016-03-01
TWI553077B (en) 2016-10-11

Similar Documents

Publication Publication Date Title
JP6005309B2 (en) Semiconductor package using high thermal conductive film adhesive and method for manufacturing the same
KR102207101B1 (en) Method for manufacturing semiconductor package using film adhesive and film adhesive
JP6239500B2 (en) Composition for film adhesive and method for producing the same, film adhesive, semiconductor package using film adhesive, and method for producing the same
KR101856914B1 (en) Film adhesive, semiconductor package using film adhesive and method for manufacturing same
CN107406742B (en) Composition for film-like adhesive, film-like adhesive and method for producing the same, and semiconductor package using film-like adhesive and method for producing the same
JP5802400B2 (en) Resin sheet for sealing, semiconductor device using the same, and method for manufacturing the semiconductor device
JP2013254921A (en) Circuit board and electronic-component mounting board
JP5585542B2 (en) Adhesive film, use thereof, and method for manufacturing semiconductor device
JP6662074B2 (en) Adhesive film
TWI812784B (en) Film-like adhesive, adhesive sheet, semiconductor device, and manufacturing method thereof
JP2022100210A (en) Underfill film for semiconductor package and manufacturing method of semiconductor package using the same
JP2009135506A (en) Adhesive film, use of the same, and method of manufacturing semiconductor device
JP7223090B1 (en) Adhesive composition, film-like adhesive, semiconductor package using film-like adhesive, and manufacturing method thereof
TW202401588A (en) Adhesive film for semiconductors, dicing die bonding film, and method for manufacturing semiconductor device
TW202242057A (en) Film-like adhesive, integrated dicing/die bonding film, semiconductor device and method for producing same
CN116670829A (en) Composition for adhesive, film-like adhesive, semiconductor package using film-like adhesive, and method for manufacturing semiconductor package

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160111

R151 Written notification of patent or utility model registration

Ref document number: 5871428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350