JP2012186437A - 有機el素子 - Google Patents

有機el素子 Download PDF

Info

Publication number
JP2012186437A
JP2012186437A JP2011158657A JP2011158657A JP2012186437A JP 2012186437 A JP2012186437 A JP 2012186437A JP 2011158657 A JP2011158657 A JP 2011158657A JP 2011158657 A JP2011158657 A JP 2011158657A JP 2012186437 A JP2012186437 A JP 2012186437A
Authority
JP
Japan
Prior art keywords
group
formula
substituent
groups
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011158657A
Other languages
English (en)
Other versions
JP5982747B2 (ja
Inventor
Shoji Mima
祥司 美馬
Yoshinobu Ono
善伸 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011158657A priority Critical patent/JP5982747B2/ja
Publication of JP2012186437A publication Critical patent/JP2012186437A/ja
Application granted granted Critical
Publication of JP5982747B2 publication Critical patent/JP5982747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】常圧程度の雰囲気中において比較的安定な新規な電子注入材料を用いて形成される有機EL素子を提供する。
【解決手段】支持基板、陽極、発光層、電子注入層、および陰極が、この順で積層されて構成される有機EL素子であって、前記電子注入層は、イオン性ポリマーを含むインキを塗布成膜することによって形成され、前記陰極は、当該陰極となる材料を含むインキを塗布成膜する、または当該陰極となる導電性薄膜を転写することによって形成されている、有機EL素子。
【選択図】図1

Description

本発明は有機EL素子およびその製造方法に関する。
発光素子にはその構成や発光原理などを異にする種々のものがある。そのひとつとして現在、有機EL(Electro Luminescence)素子が実用化されつつある。
有機EL素子は、支持基板、陽極、有機物からなる発光層、および陰極がこの順で積層されて構成される。有機EL素子に電圧を印加すると、陽極から正孔が注入されるとともに、陰極から電子が注入される。そして、各電極から注入された正孔と電子が発光層において結合することで発光が生じる。
上述の陽極、発光層、および陰極のみからなる構成の有機EL素子では、所期の発光特性を得ることが難しいため、通常は陽極と陰極との間に発光層以外の所定の層が設けられる。たとえば陽極と陰極との間には、所定の層として正孔注入層や電子注入層などが設けられる。正孔注入層は、陽極からの正孔注入を容易にするために、陽極と発光層との間に設けられる。また電子注入層は、陰極からの電子注入を容易にするために、陰極と発光層との間に設けられる。このような有機EL素子は、支持基板、陽極、正孔注入層、発光層、電子注入層、および陰極をこの順で積層することによって形成される。
電子注入層は一般に大気中において不安定な電子注入材料によって構成されている。たとえば電子注入層はBa、BaOおよびNaFなどによって構成されており、通常は真空雰囲気において形成される。そして電子注入層上に設けられる陰極は、大気中で不安定な電子注入層の劣化を抑制するために、通常は真空雰囲気において形成される。
このように従来技術では電子注入層および陰極を形成するために、真空雰囲気を導入する必要があるが、真空雰囲気を作り出すためには、装置が大型化したり、工程が複雑化したりする。たとえば有機EL素子の作製を簡便にする方法のひとつとして考えられているロール・ツー・ロール法では、電子注入層および陰極を真空雰囲気で形成するために、可撓性フィルムを巻き取る装置を含めて装置全体を真空雰囲気に保つ必要があり、装置が大型化するという問題がある(たとえば特許文献1参照)。
そこで、真空雰囲気を導入することなく電子注入層を形成することを可能にするために、大気中において比較的安定であってかつ陰極からの電子注入を容易にする電子注入材料の開発が検討されている。このような電子注入材料として有機金属錯体が提案されており、従来の技術ではこの金属錯体を塗布成膜することによって電子注入層を形成している(たとえば特許文献2参照)。
特開2007−149589号公報 特開2005−158489号公報
しかしながら、常圧程度の雰囲気中において比較的安定であってかつ陰極からの電子注入を容易にする電子注入材料はその種類が限られており、現在のところ、有機EL素子として実用可能な種々の電子注入材料の開発が行われている。
したがって本発明の目的は、常圧程度の雰囲気中において比較的安定な新規な電子注入材料を用いて形成される有機EL素子を提供することにある。
本発明は、支持基板、陽極、発光層、電子注入層、および陰極が、この順で積層されて構成される有機EL素子であって、
前記電子注入層は、イオン性ポリマーを含むインキを塗布成膜することによって形成され、
前記陰極は、当該陰極となる材料を含むインキを塗布成膜する、または当該陰極となる導電性薄膜を転写することによって形成されている、有機EL素子に関する。
また本発明は、前記陰極が、導電性フィラーを含んで構成されている有機EL素子に関する。
また本発明は、支持基板上に、陽極、発光層、電子注入層、および陰極をこの順で積層する有機EL素子の製造方法であって、
イオン性ポリマーを含むインキを塗布成膜することによって電子注入層を形成する工程と、
導電性薄膜を転写することによって電子注入層上に陰極を形成する、または陰極となる材料を含むインキを電子注入層上に塗布成膜することによって電子注入層上に陰極を形成する工程とを含む、有機EL素子の製造方法に関する。
また本発明は、電子注入層および陰極をロール・ツー・ロール法によって形成する、有機EL素子の製造方法に関する。
本発明によれば、塗布法によって有機EL素子の電子注入層を形成することができ、真空雰囲気を導入することなく、電子注入層を形成することができる。
有機EL素子を模式的に示す断面図である。 有機EL素子の製造方法を模式的に示す図である。
本発明は、支持基板、陽極、発光層、電子注入層、および陰極が、この順で積層されて構成される有機EL素子であって、前記電子注入層は、イオン性ポリマーを含むインキを塗布成膜することによって形成され、前記陰極は、当該陰極となる材料を含むインキを塗布成膜する、または当該陰極となる導電性薄膜を転写することによって形成されている。
有機EL素子は、たとえば照明装置の光源や、表示装置のバックライトとして使用することができる。以下、図1を参照して、本実施形態の有機EL素子について説明する。図1は本実施形態の有機EL素子を模式的に示す断面図である。
本実施形態の有機EL素子は、支持基板上に、少なくとも陽極、発光層、電子注入層、および陰極が、この順で積層されて構成される。なお有機EL素子は陽極と陰極との間に、発光層および電子注入層に加えて、必要に応じて所定の層が設けられる。たとえば正孔注入層、正孔輸送層および電子輸送層などが、陽極と陰極との間に設けられる。図1では、一例として、支持基板2、陽極3、正孔注入層4、発光層5、電子注入層6、および陰極7がこの順で積層されて構成される有機EL素子1を示している。
有機EL素子は、各構成要素を順次積層することによって形成される。本発明では、電子注入層は、イオン性ポリマーを含むインキを塗布成膜することによって形成される。また陰極は、当該陰極となる材料を含むインキを塗布成膜する、または当該陰極となる導電性薄膜を転写することによって形成される。
後述するように、実験例において、イオン性ポリマーを含むインキを塗布成膜して電子注入層を大気中において形成し、この上にさらに陰極を形成することによって、発光する有機EL素子が得られることを確認した。すなわち大気中において電子注入層を形成したとしても、電子注入層として機能する層が得られることを確認した。なお従来技術のようにBa、BaOおよびNaFなどからなる電子注入層を形成した後に、これを大気中に曝すと、電子注入層がたちどころに劣化するため、一度劣化した電子注入層上にたとえ陰極を形成したとしても、発光する有機EL素子が得られることは期待することができない。
本実施形態では陰極は、当該陰極となる材料を含むインキを塗布成膜する、または当該陰極となる導電性薄膜を転写することによって形成される。この陰極の形成は大気中において行うこともできる。このように、電子注入層に加えて、陰極も真空雰囲気を導入することなく形成することができるため、有機EL素子の製造工程を簡便にすることが可能となる。なお後述の実験例では陰極の形成は真空雰囲気で行われているが、電子注入層を形成した後、陰極の形成を開始するまでの間、電子注入層は大気に曝されている。このようにたとえ電子注入層が大気中に曝されていたとしても、この電子注入層上に陰極を形成することによって、発光する有機EL素子が得られるため、この実験例の陰極の形成方法にかえて、大気中で陰極を形成することによって、発光する有機EL素子が得られる。
以下、図2を参照して、ロール・ツー・ロール法(以下、R2R法ということがある。
)によって有機EL素子を製造する方法について説明する。R2R法では、少なくとも一対の巻き芯11,12が配置される。一対の巻き芯11,12にはそれぞれ帯状の可撓性フィルムが巻き回されている。一方の巻き芯11から他方の巻き芯12への可撓性フィルムの巻き替えは、一方の巻き芯11から送り出された可撓性フィルムが、他方の巻き芯12に巻き取られることによって行われる。この可撓性フィルムの巻き替えの際に、有機EL素子の各構成要素がそれぞれ積層される。
本実施形態ではまず、その表面に予め陽極が形成された支持基板を用意し、この支持基板が巻き回された巻き芯11を使用する。
一方の巻き芯11から送り出される支持基板は、他方の巻き芯12に向けて水平方向に移動する(図2では、右方に支持基板が移動する。)。
支持基板の移動中、正孔注入層となる材料を含むインキが陽極上に塗布成膜され、正孔注入層が形成される。正孔注入層となる材料を含むインキは塗布装置13から供給される。
正孔注入層が形成されると、つぎに、発光層となる材料を含むインキが正孔注入層上に塗布成膜され、発光層が形成される。発光層となる材料を含むインキは塗布装置14から供給される。
発光層が形成されると、つぎに、電子注入層となる材料を含むインキが発光層上に塗布成膜され、電子注入層が形成される。電子注入層となる材料を含むインキは塗布装置15から供給される。
電子注入層が形成されると、つぎに、陰極となる材料を含むインキが電子注入層上に塗布成膜され、陰極が形成される。陰極となる材料を含むインキは塗布装置16から供給される。
以上の工程によって有機EL素子が形成される。
陰極が形成されると、つぎに、支持基板は他方の巻き芯12に巻き取られる。
以上の工程は大気中において行うことができる。たとえばクリーンルームにおいて有機EL素子を製造することができる。なお必要に応じて、不活性ガス雰囲気において以上の工程を行ってもよい。このように真空雰囲気を導入することなく、R2R法によって有機EL素子を形成することで、簡便に有機EL素子を形成することが可能となる。
上述の塗布装置13、14、15、16は、たとえばバーコート装置、キャピラリーコート装置、スリットコート装置、インクジェット装置、スプレーコート装置、ノズルコート装置および印刷装置などによって実現される。本実施形態では複数の塗布装置13、14、15、16が用いられるが、これらは全て同じ種類の装置であってもよく、またインキの種類に応じて適宜最適な塗布装置を個別に用いてもよい。
また図2では、支持基板の鉛直方向の上方から、支持基板上にインキを塗布成膜する形態を示しているが、他の実施形態として、支持基板の鉛直方向の下方から、支持基板上にインキを塗布成膜してもよい。
また図2では水平方向(図2では左右方向)に支持基板が送られる形態を示しているが、鉛直方向や、水平方向から鉛直方向に傾いた斜め方向に支持基板が送られてもよい。
また図2では塗布装置13、14、15、16のみを示しているが、必要に応じて、清掃装置や、乾燥装置、除電装置などが設けられる。
清掃装置は、一方の巻き芯11から送り出される支持基板に最初にインキが塗布される前の工程において、支持基板の清掃を行い、たとえば支持基板の表面(すなわち陽極表面)を改質する。清掃装置はたとえば低圧水銀ランプ、エキシマランプおよびプラズマ洗浄装置などによって実現される。たとえば5mm〜15mm程度離間して配置される波長184.2nmの低圧水銀ランプを用いて、照射強度5〜20mW/cm2の光を支持基板に照射することによって清掃を行うことができる。またプラズマ洗浄装置では、たとえば大気圧プラズマが好適に用いられ、酸素を1〜5体積%含有するアルゴンガスを用い、周波数100kHz〜150MHz、電圧10V〜10kV、照射距離5〜20mmの条件で清掃を行うことができる。
また各塗布装置13,14,15,16,17によってインキをそれぞれ塗布する前に、支持基板に除電処理を施すことが好ましい。このように除電処理を施すことによって、ごみの付着や絶縁破壊などを防ぐことができる。そのため除電装置は、インキを塗布する前の工程またはインキを塗布した後の工程において、支持基板の除電処理をする位置に配置される。除電装置は、たとえば空気イオンを生成する除電器によって実現される。除電装置によって生成した空気イオンは、帯電体に引き寄せられて反対極性の電荷を補う。これによって静電気を中和することができる。
また塗布成膜されたインキは、必要に応じて乾燥装置によって乾燥される。この乾燥装置は、インキを塗布した後の工程において、乾燥処理を施す位置に配置される。乾燥装置は、たとえば加熱装置や光照射装置によって実現される。なおインキが、エネルギーを加えることによって架橋する材料を含む場合、加熱装置や光照射装置を用いてエネルギーを加えることによって、薄膜を構成する材料の少なくとも一部が架橋した薄膜を得ることができる。
また各塗布装置13,14,15,16の間に、支持基板の移動速度を調整する速度調整手段を設けてもよい。この速度調整手段を設けることによって、各塗布装置13,14,15,16の塗布速度の相違を吸収することができる。速度調整手段はいわゆるアキュムレータによって実現される。
なお本実施形態では、陰極を塗布法によって形成する方法について説明したが、陰極は、当該陰極となる導電性薄膜を転写する方法によって形成してもよい。すなわち陰極となる材料を含むインキを塗布成膜する塗布装置16(図2参照)にかえて、いわゆるラミネート装置を配置し、ラミネート法によって陰極を形成してもよい。
また本実施形態ではR2R法によって有機EL素子を形成する方法について説明したが、たとえば枚葉方式で有機EL素子を形成してもよく、この場合、有機EL素子の各構成要素を、適宜公知の塗布法によって順次塗布成膜することによって有機EL素子を形成することができる。
つぎに有機EL素子の層構成および各層の構成材料をさらに詳しく説明する。
前述したように有機EL素子は種々の層構成をとりうる。有機EL素子は、一対の電極と、該電極間に設けられる複数の有機層とを含んで構成され、本実施形態では複数の有機層として少なくとも1層の発光層と電子注入層を有する。なお有機EL素子は、無機物と有機物とを含む層、および無機層などを含んでいてもよい。有機層を構成する有機物としては、低分子化合物でも高分子化合物でもよく、また低分子化合物と高分子化合物との混合物でもよい。有機層は、高分子化合物を含むことが好ましく、ポリスチレン換算の数平均分子量が10〜10である高分子化合物を含むことが好ましい。
陰極と発光層との間に設けられる層としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に近い層を電子注入層といい、発光層に近い層を電子輸送層という。陽極と発光層との間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に近い層を正孔注入層といい、発光層に近い層を正孔輸送層という。
以下に本発明の有機EL素子に適用されうる有機EL素子の層構成の一例を示す。
(a)支持基板/陽極/発光層/電子注入層/陰極
(b)支持基板/陽極/正孔注入層/発光層/電子注入層/陰極
(c)支持基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(d)支持基板/陽極/正孔輸送層/発光層/電子注入層/陰極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。

<支持基板>
支持基板には光透過性を示すもの、または不透光性を示すものが用いられる。なお、いわゆるボトムエミッション型の有機EL素子の場合、支持基板には光透過性を示すものが用いられる。またいわゆるトップエミッション型の有機EL素子の場合、支持基板には、光透過性を示すものに限らず、不透光性を示すものも使用することができる。ここでボトムエミッション型の有機EL素子とは、発光層から放射される光が陽極、支持基板を順次透過して外界に出射する型の素子を意味する。またトップエミッション型の有機EL素子とは、発光層から放射される光が陰極を透過して外界に出射する型の素子を意味する。
支持基板には、可撓性を示すもの、または可撓性を示さないものが有機EL素子の用途や製法に応じて適宜選択して用いられる。たとえば上述したようにR2R法で有機EL素子を形成する場合、支持基板には可撓性を示すものが用いられる。
支持基板としては、ガラス板、金属板、プラスチック、高分子フィルム、およびシリコン板、並びにこれらを積層したものなどが用いられる。なおガラス板、および金属板は、その厚さを薄くすることによって、可撓性を示す基板として使用することもできる。
<陽極>
ボトムエミッション型の有機EL素子の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物および金属などの薄膜を用いることができ、光透過率の高いものが好適に用いられる。たとえば酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、金、白金、銀、および銅などから成る薄膜が用いられ、これらの中でもITO、IZO、または酸化スズから成る薄膜が好適に用いられる。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
とくに、陽極としては導電性フィラーを含む陽極とは異なる陽極が好ましく、たとえば当該陽極を構成する材料が当該陽極全体にわたって実質的に均一に成膜された、平坦な陽極が好ましく、たとえば上記の陽極の材料を、真空蒸着法、スパッタリング法、イオンプレーティング法およびメッキ法などによって成膜した陽極、または導電性高分子を溶解または分散した塗布液を塗布法によって成膜した陽極が好ましい。このような導電性高分子としては、たとえばポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などをあげることができる。
なおトップエミッション型の有機EL素子の場合、陽極には、光を反射する材料を用いてもよく、このような材料としては、仕事関数3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。
陽極の膜厚は、光の透過性および電気抵抗などを考慮して、適宜選択することができ、例えば10nm〜10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
<正孔注入層>
正孔注入層を構成する正孔注入材料としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物や、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
正孔注入層の成膜方法としては、たとえば正孔注入材料を含む溶液からの成膜を挙げることができる。この溶液からの成膜に使用される溶液の溶媒としては、正孔注入材料を溶解させるものであれば特に制限はなく、たとえばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒、および水を挙げることができる。
正孔注入層の膜厚は、電気的な特性や成膜の容易性などを勘案して適宜設定され、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
<正孔輸送層>
正孔輸送層を構成する正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、又はポリ(2,5−チエニレンビニレン)若しくはその誘導体などを挙げることができる。
これらの中で正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、又はポリ(2,5−チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
正孔輸送層の成膜方法としては、特に制限はないが、溶液からの成膜を挙げることができる。
溶液からの成膜に用いられる溶液の溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はなく、正孔注入層を溶液から成膜する際に用いられる溶液の溶媒として例示したものを用いることができる。
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収の弱いものが好適に用いられ、例えばポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどを挙げることができる。
正孔輸送層の膜厚としては、電気的な特性や成膜の容易性などを勘案して適宜設定され、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
<発光層>
発光層は通常、主として蛍光及び/又はりん光を発光する有機物、またはこの有機物とこれを補助するドーパントとから構成される。ドーパントは、例えば発光効率の向上や、発光波長を変化させるために加えられる。なお有機物は、低分子化合物でも高分子化合物でもよく、発光層は、ポリスチレン換算の数平均分子量が、10〜10である高分子化合物を含むことが好ましい。発光層を構成する発光材料としては、例えば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
(色素系材料)
色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
(金属錯体系材料)
金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができ、例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
(高分子系材料)
高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
また緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
また赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
(ドーパント材料)
ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約2nm〜200nmである。
発光材料の成膜方法としては、特に制限はないが、溶液からの成膜を挙げることができる。製膜装置として、上述したようにバーコート装置、キャリラリーコート装置、スリットコート装置、インクジェット装置、スプレーコート装置、ノズルコート装置および印刷装置などを用いることができる。
<電子輸送層>
電子輸送層を構成する電子輸送材料としては、公知のものを使用でき、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
これらのうち、電子輸送材料としては、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
電子輸送層の成膜法としては溶液からの成膜を挙げることができる。
電子輸送層の膜厚は、電気的な特性や成膜の容易性などを勘案して適宜設定され、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
<電子注入層>
電子注入層はイオン性ポリマーを含んで構成される。電子注入層を構成するイオン性ポリマーとしては、例えば、下記式(1)で表される基及び下記式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を有する重合体が挙げられる。イオン性ポリマーの一形態としては、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を、全構造単位中、15〜100モル%有する重合体が挙げられる。
−(Q1n1−Y1(M1)a1(Z1)b1 (1)
(式(1)中、Q1は2価の有機基を表し、Y1は、−CO2 -、−SO3 -、−SO2 -、−PO3 2-又は−B(R を表し、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、n1は0以上の整数を表し、a1は1以上の整数を表し、b1は0以上の整数を表し、ただし、a1及びb1は、式(1)で表される基の電荷が0となるように選択され、Raは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、Q1、M及びZのおのおのは複数個ある場合、同一でも異なっていてもよい。)
−(Q2n2−Y2(M2)a2(Z2)b2 (2)
(式(2)中、
2は2価の有機基を表し、
2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン又はスルホニルカチオン又はヨードニウムカチオンを表し、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表し、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表し、n2は0以上の整数を表し、a2は1以上の整数を表し、b2は0以上の整数を表し、ただし、a2及びb2は、式(2)で表される基の電荷が0となるように選択され、Rbは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、Q2、M2及びZ2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
本発明で用いられるイオン性ポリマーの一形態としては、さらに下記式(3)で表される基を有する重合体が挙げられる。イオン性ポリマーが式(3)で表される基を有する場合、式(3)で表される基は、イオン性ポリマーの構造単位中に含まれていてもよく、式(1)で表される基及び式(2)で表される基からなる群から選ばれる一種以上の基を含む構造単位と同一の構造単位内に含まれていてもよいし、異なる他の構造単位内に含まれていてもよい。さらに、イオン性ポリマーの一形態としては、式(1)で表される基、式(2)で表される基、及び式(3)で表される基のうち少なくとも1種を含む構造単位を、全構造単位中、15〜100モル%有する重合体が挙げられる。
−(Qn3−Y3 (3)
(式(3)中、
は2価の有機基を表し、Y3は−CN又は式(4)〜(12)のいずれかで表される基を表し、n3は0以上の整数を表す。
−O−(R’O)a3−R’’ (4)
Figure 2012186437
−S−(R’S)a4−R’’ (6)
−C(=O)−(R’−C(=O))a4−R’’ (7)
−C(=S)−(R’−C(=S))a4−R’’ (8)
−N{(R’)a4R’’}2 (9)
−C(=O)O−(R’−C(=O)O)a4−R’’ (10)
−C(=O)O−(R’O)a4−R’’ (11)
−NHC(=O)−(R’NHC(=O))a4−R’’ (12)
(式(4)〜(12)中、R’は置換基を有し又は有さない2価の炭化水素基を表し、R’’は水素原子、置換基を有し若しくは有さない1価の炭化水素基、−COOH、−SO3H、−OH、−SH、−NRc 2、−CN又は−C(=O)NRc 2を表し、R’’’は置換基を有し若しくは有さない3価の炭化水素基を表し、a3は1以上の整数を表し、a4は0以上の整数を表し、Rcは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表し、R’、R’’及びR’’’のおのおのは複数個ある場合、同一でも異なっていてもよい。)) イオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を、全構造単位中、15〜100モル%含むことが好ましい。
Figure 2012186437
(式(13)中、Rは式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表し、R1は複数個ある場合、同一でも異なっていてもよい。
Figure 2012186437
(式(14)中、R2は(1+m1+m2)価の有機基を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m1及びm2はそれぞれ独立に1以上の整数を表し、Q1、Q3、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
Figure 2012186437
(式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表し、R3は複数個ある場合、同一でも異なっていてもよい。
Figure 2012186437
(式(16)中、R4は(1+m3+m4)価の有機基を表し、Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m3及びm4はそれぞれ独立に1以上の整数を表す。Q2、Q3、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
Figure 2012186437
(式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表し、R5及びR6のおのおのは複数個ある場合、同一でも異なっていてもよい。

−R7−{(Q1n1−Y1(M1)a1(Z1)b1}m5 (18)
(式(18)中、R7は直接結合又は(1+m5)価の有機基を表し、Q1、Y、M1、Z1、n1、a1及びb1は前述と同じ意味を表し、m5は1以上の整数を表し、Q1、Y、M1、Z1、n1、a1及びb1のおのおのは複数個ある場合、同一でも異なっていてもよい。)

−R8−{(Qn3−Y3m6 (19)
(式(19)中、R8は単結合又は(1+m6)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表し、Q、Y3及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。))
Figure 2012186437
(式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表し、R9及びR10のおのおのは複数個ある場合、同一でも異なっていてもよい。

−R11−{(Q2n2−Y2(M2)a2(Z2)b2}m7 (21)
(式(21)中、R11は単結合又は(1+m7)価の有機基を表し、Q2、Y2、M2、Z2、n2、a2及びb2は前述と同じ意味を表し、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表し、Q2、Y2、M2、Z2、n2、a2及びb2のおのおのは複数個ある場合、同一でも異なっていてもよい。)
−R12−{(Qn3−Y3}m8 (22)
(式(22)中、R12は単結合又は(1+m8)価の有機基を表し、Y3及びn3は前述と同じ意味を表し、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表し、Q、Y3及びn3、のおのおのは複数個ある場合、同一でも異なっていてもよい。))
前記イオン性ポリマー中の構造単位は、式(1)で表される基を2種類以上含んでいてもよく、式(2)で表される基を2種類以上含んでいてもよく、式(3)で表される基を2種類以上含んでいてもよい。
−式(1)で表される基−
式(1)中、Q1で表される2価の有機基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,3−ブチレン基、1,4−ブチレン基、1,5−ペンチレン基、1,6−ヘキシレン基、1,9−ノニレン基、1,12−ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3−ブテニレン基、2−ブテニレン基、2−ペンテニレン基、2−ヘキセニレン基、2−ノネニレン基、2−ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数2〜50のアルケニレン基、及び、エチニレン基を含む、置換基を有し又は有さない炭素原子数2〜50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数3〜50の2価の環状飽和炭化水素基;1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、1,5−ナフチレン基、2,6−ナフチレン基、ビフェニル−4,4'−ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレンオキシ基;炭素原子を含む置換基を有するイミノ基;炭素原子を含む置換基を有するシリレン基が挙げられ、イオン性ポリマーの原料となるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
前記置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基等が挙げられ、前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。これらのうち、アミノ基、シリル基、ハロゲン原子、ヒドロキシ基及びニトロ基以外の置換基は炭素原子を含む。
以下、置換基について説明する。なお、「C〜C」(m、nはm<nを満たす正の整数である)という用語は、この用語とともに記載された有機基の炭素原子数がm〜nであることを表す。例えば、C〜Cアルキル基であれば、アルキル基の炭素原子数がm〜nであることを表し、C〜Cアルキルアリール基であれば、アルキル基の炭素原子数がm〜nであることを表し、アリール−C〜Cアルキル基であれば、アルキル基の炭素原子数がm〜nであることを表す。
アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は通常1〜20であり、1〜10が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等が挙げられる。前記アルキル基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。なお、C1〜C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基が挙げられる。
アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は通常1〜20であり、1〜10が好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基等が挙げられる。
前記アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルコキシ基としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基等が挙げられる。また、該アルコキシ基には、メトキシメチルオキシ基、2−メトキシエチルオキシ基も含まれる。なお、C1〜C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。
アルキルチオ基としては、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は通常1〜20であり、1〜10が好ましい。アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等が挙げられる。前記アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキルチオ基としては、トリフルオロメチルチオ基等が挙げられる。
アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団であり、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基、例えば、ビニレン基等のアルケニレン基を介して結合した基も含まれる。アリール基は、炭素原子数が通常6〜60であり、7〜48であることが好ましい。アリール基としては、フェニル基、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、ペンタフルオロフェニル基等が挙げられる。アリール基の中では、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。
前記アリール基のうち、C1〜C12アルコキシフェニル基としては、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s−ブトキシフェニル基、t−ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2−エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7−ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。
前記アリール基のうち、C1〜C12アルキルフェニル基としては、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。
アリールオキシ基は、炭素原子数が通常6〜60であり、7〜48であることが好ましい。アリールオキシ基としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。アリールオキシ基の中では、C1〜C12アルコキシフェノキシ基及びC1〜C12アルキルフェノキシ基が好ましい。
前記アリールオキシ基のうち、C1〜C12アルコキシフェノキシ基としては、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、s−ブトキシフェノキシ基、t−ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2−エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7−ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。
前記アリールオキシ基のうち、C1〜C12アルキルフェノキシ基としては、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5−トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、s−ブチルフェノキシ基、t−ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。
アリールチオ基は、例えば、前述のアリール基に硫黄元素が結合した基である。アリールチオ基は、前記アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が通常6〜60であり、6〜30であることが好ましい。アリールチオ基としては、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられる。
アリールアルキル基は、例えば、前述のアリール基に前述のアルキル基が結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が通常7〜60であり、7〜30であることが好ましい。アリールアルキル基としては、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基等が挙げられる。
アリールアルコキシ基は、例えば、前述のアリール基に前述のアルコキシ基が結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が通常7〜60であり、7〜30であることが好ましい。アリールアルコキシ基としては、フェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基等が挙げられる。
アリールアルキルチオ基は、例えば、前述のアリール基に前述のアルキルチオ基が結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が通常7〜60であり、7〜30であることが好ましい。アリールアルキルチオ基としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基等が挙げられる。
アリールアルケニル基は、例えば、前述のアリール基にアルケニル基が結合した基である。アリールアルケニル基は、炭素原子数が通常8〜60であり、8〜30であることが好ましい。アリールアルケニル基としては、フェニル−C2〜C12アルケニル基、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C2〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基等が挙げられ、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C2〜C12アルキルフェニル−C2〜C12アルケニル基が好ましい。なお、C2〜C12アルケニル基としては、例えば、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基が挙げられる。
アリールアルキニル基は、例えば、前述のアリール基にアルキニル基が結合した基である。アリールアルキニル基は、炭素原子数が通常8〜60であり、8〜30であることが好ましい。アリールアルキニル基としては、フェニル−C2〜C12アルキニル基、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基等が挙げられ、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。なお、C2〜C12アルキニル基としては、例えば、エチニル基、1−プロピニル基、2−プロピニル基、1−ブチニル基、2−ブチニル基、1−ペンチニル基、2−ペンチニル基、1−ヘキシニル基、2−ヘキシニル基、1−オクチニル基が挙げられる。
置換アミノ基としては、アミノ基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1又は2個の基によって置換されたアミノ基が好ましい。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1〜60であり、2〜48が好ましい。置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s−ブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基等が挙げられる。
置換シリル基としては、シリル基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1〜3個の基によって置換されたシリル基が挙げられる。該アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換シリル基の炭素原子数は、該アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで通常1〜60であり、3〜48が好ましい。なお、置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t−ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル−C1〜C12アルキル)シリル基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)シリル基、(C1〜C12アルキルフェニル−C1〜C12アルキル)シリル基、(1−ナフチル−C1〜C12アルキル)シリル基、(2−ナフチル−C1〜C12アルキル)シリル基、(フェニル−C1〜C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p−キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
アシル基は、炭素原子数が通常2〜20であり、2〜18であることが好ましい。アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。
アシルオキシ基は、炭素原子数が通常2〜20であり、2〜18であることが好ましい。アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
イミン残基は、式:H−N=C<及び式:−N=CH−の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた残基を意味する。このようなイミン化合物としては、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、通常2〜20であり、2〜18が好ましい。イミン残基としては、例えば、一般式:−CRβ=N−Rγ又は一般式:−N=C(Rγ(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、ただし、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2〜18のアルキレン基として環を形成してもよい。)で表される基が挙げられる。イミン残基としては、以下の基が挙げられる。
Figure 2012186437
(式中、Meはメチル基を示し、以下、同様である。)
アミド基は、炭素原子数が通常1〜20であり、2〜18であることが好ましい。アミド基としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基等が挙げられる。
酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基であり、炭素原子数が通常4〜20であり、4〜18であることが好ましい。酸イミド基としては、以下の基が挙げられる。
Figure 2012186437
1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団をいう。
ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が通常3〜60であり、3〜20が好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような1価の複素環基としては、例えば、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられ、中でも、チエニル基、C1〜C12アルキルチエニル基、ピリジル基及びC1〜C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。
置換カルボキシル基とは、カルボキシル基中の水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換された基、すなわち、式:−C(=O)OR*(式中、Rはアルキル基、アリール基、アリールアルキル基又は1価の複素環基)で表される基である。置換オキシカルボニル基は、炭素原子数が通常2〜60であり、2〜48であることが好ましい。前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。なお、上記炭素原子数には、前記アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数は含まないものとする。置換カルボキシル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、s−ブトキシカルボニル基、t−ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2−エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7−ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。
式(1)中、Y1は、−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R 等の1価の基を表し、Y1としては、イオン性ポリマーの酸性度の観点からは−CO2 -、−SO2 -、−PO3 -が好ましく、−CO2 -がより好ましく、イオン性ポリマーの安定性の観点からは、−CO2 -、−SO3 -、−SO2 -又は−PO3 -が好ましい。
式(1)中、M1は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられ、Li+、Na+、K+、Cs+、Ag+、Mg2+、Ca2+が好ましい。また、アンモニウムイオンが有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、i−ブチル基、t−ブチル基等の炭素原子数1〜10のアルキル基が挙げられる。
式(1)中、Z1はF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。
式(1)中、n1は0以上の整数を表し、原料モノマーの合成の観点から、好ましくは0から8の整数であり、より好ましくは0から2の整数である。
式(1)中、a1は1以上の整数を表し、b1は0以上の整数を表す。
a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Yが−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R であり、Mが1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、ZがF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、a1=b1+1を満たすように選択される。Y1が−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R −-であり、M1が2価の金属カチオンであり、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=2×a1−1を満たすように選択される。Y1が−CO2 -、−SO3 -、−SO2 -、−PO3 -、又は−B(R であり、M1が3価の金属カチオンであり
、Z1がF-、Cl-、Br-、I-、OH-、RaSO3 -、RaCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合は、b1=3×a1−1を満たすように選択される。Y1が−CO2 -、−SO
3 -、−SO2 -、−PO3 -、又は−B(R であり、M1が1価の金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンであり、Z1がSO4 2−又はHPO4 2−である場合には、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。
aは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Raとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1〜20のアルキル基、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等の炭素原子数6〜30のアリール基等が挙げられる。
前記式(1)で表される基としては、例えば、以下の基が挙げられる。
Figure 2012186437
−式(2)で表される基−
式(2)中、Q2で表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられ、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
前記Q2で表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(2)中、Y2はカルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオン、又はヨードニウムカチオンを表す。
カルボカチオンとしては、例えば、
−C
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
アンモニウムカチオンとしては、例えば、
−N
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
ホスホニルカチオンとしては、例えば、
−P
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
スルホニルカチオンとしては、例えば、
−S
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
ヨードニウムカチオンとしては、例えば、
−I
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
式(2)中、Y2は、原料モノマーの合成の容易さ並びに原料モノマー及びイオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、カルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオンが好ましく、アンモニウムカチオンがより好ましい。
式(2)中、Z2は金属カチオン又は置換基を有し若しくは有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。また、アンモニウムカチオンが有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基等の炭素原子数1〜10のアルキル基が挙げられる。
式(2)中、M2はF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、SO4 2-、HSO4 -、PO4 3-、HPO4 2-、H2PO4 -、BF4 -又はPF6 -を表す。
式(2)中、n2は0以上の整数を表し、好ましくは0から6の整数であり、より好ましくは0から2の整数である。
式(2)中、a2は1以上の整数を表し、b2は、0以上の整数を表す。
a2及びb2は、式(2)で表される基の電荷が0となるように選択される。例えば、M2がF-、Cl-、Br-、I-、OH-、RbSO3 -、RbCOO-、ClO-、ClO2 -、ClO3 -、ClO4 -、SCN-、CN-、NO3 -、HSO4 -、H2PO4 -、BF4 -又はPF6 -である場合、Z2が1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、a2=b2+1を満たすように選択され、Z2が2価の金属イオンであれば、a2=2×b2+1を満たすように選択され、Z2が3価の金属イオンであれば、a2=3×b2+1を満たすように選択される。M2がSO4 2-、HPO4 2-である場合、Z2が1価の金属イオン又は置換基を有し若しくは有さないアンモニウムイオンであれば、b2=2×a2−1を満たすように選択され、Z2が3価の金属イオンであれば、2×a2=3×b2+1の関係を満たすように選択される。a2とb2との関係を表す上記のいずれの数式においても、a2は好ましくは1から3の整数であり、より好ましくは1又は2である。
bは置換基を有し若しくは有さない炭素原子数1〜30のアルキル基又は置換基を有し若しくは有さない炭素原子数6〜50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。Rbとしては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1〜20のアルキル基、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等の炭素原子数6〜30のアリール基等が挙げられる。
前記式(2)で表される基としては、例えば、以下の基が挙げられる。
Figure 2012186437
Figure 2012186437
−式(3)で表される基−
式(3)中、Qで表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられ、原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
前記Qで表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Qで表される2価の有機基としては、−(CH)−で表される基であることが好ましい。
n3は0以上の整数を表し、好ましくは0から20の整数であり、より好ましくは0から8の整数である。
式(3)中、Y3は−CN又は式(4)〜(12)のいずれかで表される基を表す。
式(4)〜(12)中、R’で表される2価の炭化水素基としては、メチレン基、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,3−ブチレン基、1,4−ブチレン基、1,5−ペンチレン基、1,6−ヘキシレン基、1,9−ノニレン基、1,12−ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3−ブテニレン基、2−ブテニレン基、2−ペンテニレン基、2−ヘキセニレン基、2−ノネニレン基、2−ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数2〜50のアルケニレン基、及び、エチニレン基を含む、置換基を有し又は有さない炭素原子数2〜50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数3〜50の2価の環状飽和炭化水素基;1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、1,5−ナフチレン基、2,6−ナフチレン基、ビフェニル−4,4’−ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレンオキシ基等が挙げられる。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(4)〜(12)中、R’’で表される1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1−ナフチル基、2−ナフチル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(5)中、R’’’で表される3価の炭化水素基としては、メタントリイル基、エタントリイル基、1,2,3−プロパントリイル基、1,2,4−ブタントリイル基、1,2,5−ペンタントリイル基、1,3,5−ペンタントリイル基、1,2,6−ヘキサントリイル基、1,3,6−ヘキサントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキルトリイル基;1,2,3−ベンゼントリイル基、1,2,4−ベンゼントリイル基、1,3,5−ベンゼントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メタントリイル基、エタントリイル基、1,2,4−ベンゼントリイル基、1,3,5−ベンゼントリイル基が好ましい。前記置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(4)〜(12)中、Rcとしては、イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1−ナフチル基、2−ナフチル基が好ましい
式(4)及び式(5)中、a3は1以上の整数を表し、3〜10の整数が好ましい。式(6)〜(12)中、a4は0以上の整数を表す。式(6)においては、a4は、0〜30の整数が好ましく、3〜20の整数がより好ましい。式(7)〜(10)においては、a4は、0〜10の整数が好ましく、0〜5の整数がより好ましい。式(11)においては、a4は、0〜20の整数が好ましく、3〜20の整数がより好ましい。式(12)においては、a4は、0〜20の整数が好ましく、0〜10の整数がより好ましい。
3としては、原料モノマーの合成の容易さの観点からは、−CN、式(4)で表される基、式(6)で表される基、式(10)で表される基、式(11)で表される基が好ましく、式(4)で表される基、式(6)で表される基、式(11)で表される基がより好ましく、以下の基が特に好ましい。
Figure 2012186437
−イオン性ポリマー中の構造単位−
本発明に用いられるイオン性ポリマーは、前記式(13)で表される構造単位、前記式(15)で表される構造単位、前記式(17)で表される構造単位、前記式(20)で表される構造単位を有することが好ましく、前記構造単位を全構造単位中、15〜100モル%有するイオン性ポリマーであることがより好ましい。
・式(13)で表される構造単位
式(13)中、R1は式(14)で表される基を含む1価の基であり、Ar1はR1以外の置換基を有し又は有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表す。
式(14)で表される基は、Arに直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してArに結合していてもよい。
前記ArはR1以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar1が有するR1以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(13)中、n4は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(13)中のAr1で表される(2+n4)価の芳香族基としては、(2+n4)価の芳香族炭化水素基、(2+n4)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n4)価の芳香族基が好ましい。該(2+n4)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、1,3,5−トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n4)個除いた(2+n4)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基等が挙げられる。
単環式芳香環としては、例えば、以下の環が挙げられる。
Figure 2012186437
縮合多環式芳香環としては、例えば、以下の環が挙げられる。
Figure 2012186437
芳香環集合としては、例えば、以下の環が挙げられる。
Figure 2012186437
有橋多環式芳香環としては、例えば、以下の環が挙げられる。
Figure 2012186437
前記(2+n4)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜14、26〜29、37〜39又は41で表される環から水素原子を(2+n4)個除いた基が好ましく、式1〜6、8、13、26、27、37又は41で表される環から水素原子を(2+n4)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n4)個除いた基がさらに好ましい。
式(14)中、R2で表される(1+m1+m2)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m1+m2)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m1+m2)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m1+m2)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m1+m2)個の水素原子を除いた基、アリール基から(m1+m2)個の水素原子を除いた基、アルコキシ基から(m1+m2)個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
・式(15)で表される構造単位
式(15)中、R3は式(16)で表される基を含む1価の基であり、Ar2はR3以外の置換基を有し又は有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表す。
式(16)で表される基は、Ar2に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr2に結合していてもよい。
前記Ar2はR3以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar2が有するR3以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(15)中、n5は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(15)中のAr2で表される(2+n5)価の芳香族基としては、(2+n5)価の芳香族炭化水素基、(2+n5)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n5)価の芳香族基が好ましい。該(2+n5)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、1,3,5−トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n5)個除いた(2+n5)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1〜12で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13〜27で表される環が挙げられる。
芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28〜36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37〜44で表される環が挙げられる。
前記(2+n5)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜14、26〜29、37〜39又は41で表される環から水素原子を(2+n5)個除いた基が好ましく、式1〜6、8、13、26、27、37又は41で表される環から水素原子を(2+n5)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n5)個除いた基がさらに好ましい。
式(16)中、m3及びm4はそれぞれ独立に1以上の整数を表す。
式(16)中、R4で表される(1+m3+m4)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m3+m4)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m3+m4)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m3+m4)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m3+m4)個の水素原子を除いた基、アリール基から(m3+m4)個の水素原子を除いた基、アルコキシ基から(m3+m4)個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
・式(17)で表される構造単位
式(17)中、R5は式(18)で表される基を含む1価の基であり、R6は式(19)で表される基を含む1価の基であり、Ar3はR5及びR6以外の置換基を有し又は有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表す。
式(18)で表される基及び式(19)で表される基は、Ar3に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr3に結合していてもよい。
前記Ar3はR5及びR6以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar3が有するR5及びR6以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(17)中、n6は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(17)中、n7は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(17)中のAr3で表される(2+n6+n7)価の芳香族基としては、(2+n6+n7)価の芳香族炭化水素基、(2+n6+n7)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n6+n7)価の芳香族基が好ましい。該(2+n6+n7)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環等の単環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1〜5、式7〜10で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13〜27で表される環が挙げられる。
芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28〜36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37〜44で表される環が挙げられる。
前記(2+n6+n7)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜5、7〜10、13、14、26〜29、37〜39又は41で表される環から水素原子を(2+n6+n7)個除いた基が好ましく、式1、37又は41で表される環から水素原子を(2+n6+n7)個除いた基がより好ましく、式1、38又は42で表される環から水素原子を(2+n6+n7)個除いた基がさらに好ましい。
式(18)中、Rは単結合又は(1+m5)価の有機基を表し、(1+m5)価の有機基であることが好ましい。
式(18)中、R7で表される(1+m5)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm5個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm5個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm5個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm5個の水素原子を除いた基、アリール基からm5個の水素原子を除いた基、アルコキシ基からm5個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(18)中、m5は1以上の整数を表し、ただし、R7が単結合のときm5は1を表す。
式(19)中、Rは単結合又は(1+m6)価の有機基を表し、(1+m6)価の有機基であることが好ましい。
式(19)中、R8で表される(1+m6)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm6個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm6個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm6個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm6個の水素原子を除いた基、アリール基からm6個の水素原子を除いた基、アルコキシ基からm6個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(19)中、m6は1以上の整数を表し、ただし、R8が単結合のときm6は1を表す。
・式(20)で表される構造単位
式(20)中、R9は式(21)で表される基を含む1価の基であり、R10は式(22)で表される基を含む1価の基であり、Ar4はR9及びR10以外の置換基を有し又は有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表す。
式(21)で表される基及び式(22)で表される基は、Ar4に直接結合していてもよく、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のオキシアルキレン基;置換基を有し又は有さないイミノ基;置換基を有し又は有さないシリレン基;置換基を有し又は有さないエテニレン基;エチニレン基;置換基を有し又は有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr4に結合していてもよい。
前記Ar4はR9及びR10以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記Ar4が有するR9及びR10以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基であることが好ましい。
式(20)中、n8は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(20)中、n9は1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(20)中のAr4で表される(2+n8+n9)価の芳香族基としては、(2+n8+n9)価の芳香族炭化水素基、(2+n8+n9)価の芳香族複素環基が挙げられ、炭素原子のみ、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n8+n9)価の芳香族基が好ましい。該(2+n8+n9)価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環等の単環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1〜5、式7〜10で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13〜27で表される環が挙げられる。
芳香環集合としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28〜36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37〜44で表される環が挙げられる。
前記(2+n8+n9)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1〜5、7〜10、13、14、26〜29、37〜39又は41で表される環から水素原子を(2+n8+n9)個除いた基が好ましく、式1〜6、8、14、27、28、38又は42で表される環から水素原子を(2+n8+n9)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n8+n9)個除いた基がさらに好ましい。
式(21)中、R11は単結合又は(1+m7)価の有機基を表し、(1+m7)価の有機基であることが好ましい。
式(21)中、R11で表される(1+m7)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm7個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm7個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm7個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm7個の水素原子を除いた基、アリール基からm7個の水素原子を除いた基、アルコキシ基からm7個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(21)中、m7は1以上の整数を表し、ただし、R11が単結合のときm7は1を表す。
式(22)中、R12は単結合又は(1+m8)価の有機基を表し、(1+m8)価の有機基であることが好ましい。
式(22)中、R12で表される(1+m8)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基からm8個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基からm8個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm8個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm8個の水素原子を除いた基、アリール基からm8個の水素原子を除いた基、アルコキシ基からm8個の水素原子を除いた基が好ましい。
前記置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。前記置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(22)中、m8は1以上の整数を表し、ただし、R12が単結合のときm8は1を表す。
式(13)で表される構造単位の例
式(13)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(23)で表される構造単位、式(24)で表される構造単位が好ましく、式(24)で表される構造単位がより好ましい。
Figure 2012186437
(式(23)中、R13は(1+m9+m10)価の有機基を表し、R14は1価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m9及びm10はそれぞれ独立に1以上の整数を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(23)中、R13で表される(1+m9+m10)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m9+m10)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m9+m10)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m9+m10)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m9+m10)個の水素原子を除いた基、アリール基から(m9+m10)個の水素原子を除いた基、アルコキシ基から(m9+m10)個の水素原子を除いた基が好ましい。
式(23)中、R14で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から1個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。
式(23)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
Figure 2012186437
(式(24)中、R13は(1+m11+m12)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m11及びm12はそれぞれ独立に1以上の整数を表し、R13、m11、m12、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(24)中、R13で表される(1+m11+m12)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m11+m12)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m11+m12)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m11+m12)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m11+m12)個の水素原子を除いた基、アリール基から(m11+m12)個の水素原子を除いた基、アルコキシ基から(m11+m12)個の水素原子を除いた基が好ましい。
式(24)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437
式(13)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(25)で表される構造単位が好ましい。
Figure 2012186437
(式(25)中、R15は(1+m13+m14)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m13、m14及びm15はそれぞれ独立に1以上の整数を表し、R15、m13、m14、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(25)中、R15で表される(1+m13+m14)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m13+m14)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m13+m14)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m13+m14)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m13+m14)個の水素原子を除いた基、アリール基から(m13+m14)個の水素原子を除いた基、アルコキシ基から(m13+m14)個の水素原子を除いた基が好ましい。
式(25)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
式(15)で表される構造単位の例
式(15)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(26)で表される構造単位、式(27)で表される構造単位が好ましく、式(27)で表される構造単位がより好ましい。
Figure 2012186437
(式(26)中、R16は(1+m16+m17)価の有機基を表し、R17は1価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(26)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
式(26)中、R17で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から1個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。
式(26)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
Figure 2012186437
(式(27)中、R16は(1+m16+m17)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表し、R16、m16、m17、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(27)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
式(27)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
Figure 2012186437
Figure 2012186437
式(15)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(28)で表される構造単位が好ましい。
Figure 2012186437
(式(28)中、R18は(1+m18+m19)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m18、m19及びm20はそれぞれ独立に1以上の整数を表し、R18、m18、m19、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(28)中、R18で表される(1+m18+m19)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m18+m19)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m18+m19)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m18+m19)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m18+m19)個の水素原子を除いた基、アリール基から(m18+m19)個の水素原子を除いた基、アルコキシ基から(m18+m19)個の水素原子を除いた基が好ましい。
式(28)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
式(17)で表される構造単位の例
式(17)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(29)で表される構造単位が好ましい。
Figure 2012186437
(式(29)中、R19は単結合又は(1+m21)価の有機基を表し、R20は単結合又は(1+m22)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m21及びm22はそれぞれ独立に1以上の整数を表し、ただし、R19が単結合のときm21は1を表し、R20が単結合のときm22は1を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(29)中、R19で表される(1+m21)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m21)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m21)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m21)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m21)個の水素原子を除いた基、アリール基から(m21)個の水素原子を除いた基、アルコキシ基から(m21)個の水素原子を除いた基が好ましい。
式(29)中、R20で表される(1+m22)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m22)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m22)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m22)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m22)個の水素原子を除いた基、アリール基から(m22)個の水素原子を除いた基、アルコキシ基から(m22)個の水素原子を除いた基が好ましい。
式(29)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
式(17)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(30)で表される構造単位が好ましい。
Figure 2012186437
(式(30)中、R21は単結合又は(1+m23)価の有機基を表し、R22は単結合又は(1+m24)価の有機基を表し、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m23及びm24はそれぞれ独立に1以上の整数を表し、ただし、R21が単結合のときm23は1を表し、R22が単結合のときm24は1を表し、m25及びm26はそれぞれ独立に1以上の整数を表し、m23、m24、R21、R22、Q1、Q、Y、M1、Z1、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(30)中、R21で表される(1+m23)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m23)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m23)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m23)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m23)個の水素原子を除いた基、アリール基から(m23)個の水素原子を除いた基、アルコキシ基から(m23)個の水素原子を除いた基が好ましい。
式(30)中、R22で表される(1+m24)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m24)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m24)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m24)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m24)個の水素原子を除いた基、アリール基から(m24)個の水素原子を除いた基、アルコキシ基から(m24)個の水素原子を除いた基が好ましい。
式(30)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
式(20)で表される構造単位の例
式(20)で表される構造単位としては、得られる電子輸送性の観点からは、式(31)で表される構造単位が好ましい。
Figure 2012186437
(式(31)中、R23は単結合又は(1+m27)価の有機基を表し、R24は単結合又は(1+m28)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m27及びm28はそれぞれ独立に1以上の整数を表し、ただし、R23が単結合のときm27は1を表し、R24が単結合のときm28は1を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(31)中、R23で表される(1+m27)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m27)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m27)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m27)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m27)個の水素原子を除いた基、アリール基から(m27)個の水素原子を除いた基、アルコキシ基から(m27)個の水素原子を除いた基が好ましい。
式(31)中、R24で表される(1+m28)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m28)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m28)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m28)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m28)個の水素原子を除いた基、アリール基から(m28)個の水素原子を除いた基、アルコキシ基から(m28)個の水素原子を除いた基が好ましい。
式(31)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
式(20)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(32)で表される構造単位が好ましい。
Figure 2012186437
(式(32)中、R25は単結合又は(1+m29)価の有機基を表し、R26は単結合又は(1+m30)価の有機基を表し、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m29及びm30はそれぞれ独立に1以上の整数を表し、ただし、R25が単結合のときm29は1を表し、R26が単結合のときm30は1を表し、m31及びm32はそれぞれ独立に1以上の整数を表し、m29、m30、R25、R26、Q2、Q、Y2、M2、Z2、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、同一でも異なっていてもよい。)
式(32)中、R25で表される(1+m29)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m29)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m29)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m29)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m29)個の水素原子を除いた基、アリール基から(m29)個の水素原子を除いた基、アルコキシ基から(m29)個の水素原子を除いた基が好ましい。
式(32)中、R26で表される(1+m30)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜20のアルキル基から(m30)個の水素原子を除いた基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数6〜30のアリール基から(m30)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有し又は有さない炭素原子数1〜50のアルコキシ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m30)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m30)個の水素原子を除いた基、アリール基から(m30)個の水素原子を除いた基、アルコキシ基から(m30)個の水素原子を除いた基が好ましい。
式(32)で表される構造単位としては、以下の構造単位が挙げられる。
Figure 2012186437
・その他の構造単位
本発明に用いられるイオン性ポリマーは、さらに式(33)で表される1種以上の構造単位を有していてもよい。
Figure 2012186437
(式(33)中、Ar5は置換基を有し若しくは有さない2価の芳香族基又は置換基を有し若しくは有さない2価の芳香族アミン残基を表し、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表し、m33及びm34はそれぞれ独立に0又は1を表し、m33及びm34の少なくとも1つは1である。)
式(33)中のAr5で表される2価の芳香族基としては、2価の芳香族炭化水素基、2価の芳香族複素環基が挙げられる。該2価の芳香族基としては、ベンゼン環、ピリジン環、1,2−ジアジン環、1,3−ジアジン環、1,4−ジアジン環、1,3,5−トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、アザジアゾール環等の単環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環からなる群から選ばれる二つ以上が縮合した縮合多環式芳香環から水素原子を2個除いた2価の基;該単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環集合から水素原子を2個除いた2価の基;該縮合多環式芳香環又は該芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基、イミノ基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を2個除いた2価の基等が挙げられる。
前記縮合多環式芳香環において、縮合する単環式芳香環の数は、イオン性ポリマーの溶解性の観点からは、2〜4が好ましく、2〜3がより好ましく、2がさらに好ましい。前記芳香環集合において、連結される芳香環の数は、溶解性の観点からは、2〜4が好ましく、2〜3がより好ましく、2がさらに好ましい。前記有橋多環式芳香環において、橋かけされる芳香環の数は、イオン性ポリマーの溶解性の観点からは、2〜4が好ましく、2〜3がより好ましく、2がさらに好ましい。
前記単環式芳香環としては、例えば、以下の環が挙げられる。
Figure 2012186437
前記縮合多環式芳香環としては、例えば、以下の環が挙げられる。
Figure 2012186437
前記芳香環集合としては、例えば、以下の環が挙げられる。
Figure 2012186437
前記有橋多環式芳香環としては、例えば、以下の環が挙げられる。
Figure 2012186437
前記イオン性ポリマーの電子受容性及び正孔受容性のいずれか一方又は両方の観点からは、Ar5で表される2価の芳香族基は式45〜60、61〜71、77〜80、91、92、93又は96で表される環から水素原子を2個除いた2価の基が好ましく、式45〜50、59、60、77、80、91、92又は96で表される環から水素原子を2個除いた2価の基がより好ましい。
上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。
式(33)中のAr5で表される2価の芳香族アミン残基としては、式(34)で表される基が挙げられる。
Figure 2012186437
(式(34)中、Ar6、Ar7、Ar8及びAr9は、それぞれ独立に、置換基を有し若しくは有さないアリーレン基又は置換基を有し若しくは有さない2価の複素環基を表し、Ar10、Ar11及びAr12は、それぞれ独立に、置換基を有し若しくは有さないアリール基又は置換基を有し若しくは有さない1価の複素環基を表し、n10及びm35は、それぞれ独立に、0又は1を表す。)
前記アリーレン基、アリール基、2価の複素環基、1価の複素環基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基等が挙げられる。該置換基は、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。
n10が0の場合、Ar6中の炭素原子とAr8中の炭素原子とが直接結合してもよく、−O−、−S−等の2価の基を介して結合していてもよい。
Ar10、Ar11、Ar12で表されるアリール基、1価の複素環基としては、前記で置換基として説明し例示したアリール基、1価の複素環基と同様である。
Ar6、Ar7、Ar8、Ar9で表されるアリーレン基としては、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団が挙げられ、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基、例えば、ビニレン基等のアルケニレン基を介して結合した基などが挙げられる。アリーレン基は、炭素原子数が通常6〜60であり、7〜48であることが好ましい。アリーレン基の具体例としては、フェニレン基、ビフェニレン基、C1〜C17アルコキシフェニレン基、C1〜C17アルキルフェニレン基、1−ナフチレン基、2−ナフチレン基、1−アントラセニレン基、2−アントラセニレン基、9−アントラセニレン基が挙げられる。前記アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、テトラフルオロフェニレン基等が挙げられる。アリール基の中では、フェニレン基、ビフェニレン基、C1〜C12アルコキシフェニレン基、C1〜C12アルキルフェニレン基が好ましい。
Ar6、Ar7、Ar8、Ar9で表される2価の複素環基としては、複素環式化合物から水素原子2個を除いた残りの原子団が挙げられる。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が通常4〜60であり、4〜20が好ましい。なお、2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。このような2価の複素環基としては、例えば、チオフェンジイル基、C1〜C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C1〜C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、イソキノリンジイル基が挙げられ、中でも、チオフェンジイル基、C1〜C12アルキルチオフェンジイル基、ピリジンジイル基及びC1〜C12アルキルピリジンジイル基がより好ましい。
構造単位として2価の芳香族アミン残基を含むイオン性ポリマーは、さらに他の構造単位を有していてもよい。他の構造単位としては、フェニレン基、フルオレンジイル基等のアリーレン基等が挙げられる。なお、これらのイオン性ポリマーの中では、架橋基を含んでいるものが好ましい。
また、式(34)で表される2価の芳香族アミン残基としては、下記式101〜110で表される芳香族アミンから水素原子を2個除いた基が例示される。
Figure 2012186437
式101〜110で表される芳香族アミンは2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよく、該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(33)中、X’は置換基を有し若しくは有さないイミノ基、置換基を有し若しくは有さないシリレン基、置換基を有し若しくは有さないエテニレン基又はエチニレン基を表す。イミノ基、シリル基若しくはエテニレン基が有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基等の炭素原子数1〜20のアルキル基;フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基等の炭素原子数6〜30のアリール基等が挙げられ、置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
前記イオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、X’はイミノ基、エテニレン基、エチニレン基が好ましい。
前記イオン性ポリマーの電子受容性、正孔受容性の観点からは、m33が1であり、m34が0であることが好ましい。
式(33)で表される構造単位としては、前記イオン性ポリマーの電子受容性の観点からは、式(35)で表される構造単位が好ましい。
Figure 2012186437

(式(35)中、Ar13は、置換基を有し若しくは有さないピリジンジイル基、置換基を有し若しくは有さないピラジンジイル基、置換基を有し若しくは有さないピリミジンジイル基、置換基を有し若しくは有さないピリダジンジイル基又は置換基を有し若しくは有さないトリアジンジイル基を表す。)
ピリジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピラジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピリミジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピリダジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
トリアジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
・構造単位の割合
本発明に用いられるイオン性ポリマーに含まれる式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位の合計の割合は、有機EL素子の発光効率の観点からは、末端の構造単位を除く該イオン性ポリマーに含まれる全構造単位中、30〜100モル%であることがより好ましい。
・末端の構造単位
なお、本発明に用いられるイオン性ポリマーの末端の構造単位(末端基)としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s−ブトキシフェニル基、t−ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2−エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7−ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s−ブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t−ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル−C1〜C12アルキル)シリル基、(C1〜C12アルコキシフェニル−C1〜C12アルキル)シリル基、(C1〜C12アルキルフェニル−C1〜C12アルキル)シリル基、(1−ナフチル−C1〜C12アルキル)シリル基、(2−ナフチル−C1〜C12アルキル)シリル基、(フェニル−C1〜C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p−キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシ基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。前記末端の構造単位が複数個存在する場合には、それらは同一でも異なっていてもよい。
−イオン性ポリマーの特性−
本発明で用いられるイオン性ポリマーは、好ましくは共役化合物である。本発明で用いられるイオン性ポリマーが共役化合物であるとは、該イオン性ポリマーが主鎖中に、多重結合(例えば、二重結合、三重結合)又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域を含むことを意味する。該イオン性ポリマーは、共役化合物である場合、共役化合物の電子輸送性の観点から、
{(多重結合又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(主鎖上の全原子の数)}×100%で計算される比が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。
また、本発明で用いられるイオン性ポリマーは、好ましくは高分子化合物であり、より好ましくは共役高分子化合物である。ここで、高分子化合物とは、ポリスチレン換算の数平均分子量が1×103以上である化合物をいう。また、本発明で用いられるイオン性ポリマーが共役高分子化合物であるとは、該イオン性ポリマーが共役化合物かつ高分子化合物であることを意味する。
本発明に用いられるイオン性ポリマーの塗布による成膜性の観点から、該イオン性ポリマーのポリスチレン換算の数平均分子量が1×103〜1×108であることが好ましく、2×103〜1×107であることがより好ましく、3×103〜1×107であることがより好ましく、5×103〜1×107であることがさらに好ましい。また、イオン性ポリマーの純度の観点から、ポリスチレン換算の重量平均分子量が1×103〜5×107であることが好ましく、1×103〜1×107であることがより好ましく、1×103〜5×106であることがさらに好ましい。また、イオン性ポリマーの溶解性の観点から、ポリスチレン換算の数平均分子量は1×103〜5×10であることが好ましく、1×103〜5×10であることがより好ましく、1×103〜3×10であることがさらに好ましい。本発明に用いられるイオン性ポリマーのポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、求めることができる。
本発明に用いられるイオン性ポリマーの純度の観点から、末端構造単位を除く該イオン性ポリマー中に含まれる全構造単位の数(即ち、重合度)は1以上20以下であることが好ましく、1以上10以下であることがより好ましく、1以上5以下であることがさらに好ましい。
本発明に用いられるイオン性ポリマーの電子受容性、正孔受容性の観点からは、該イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーが、−5.0eV以上−2.0eV以下であることが好ましく、−4.5eV以上−2.0eV以下がより好ましい。また、同様の観点から、該イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーが、−6.0eV以上−3.0eV以下であることが好ましく、−5.5eV以上−3.0eV以下がより好ましい。ただし、HOMOの軌道エネルギーはLUMOの軌道エネルギーよりも低い。なお、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、イオン性ポリマーのイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求める。一方、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求める。イオン化ポテンシャルの測定には光電子分光装置を用いる。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計を用いてイオン性ポリマーの吸収スペクトルを測定し、その吸収末端より求める。
なお、本発明に用いられる重合体は、電界発光素子で用いられた場合、実質的に非発光性であることが好ましい。ここで、ある重合体が実質的に非発光性であるとは、以下のとおりの意味である。まず、ある重合体を含む層を有する電界発光素子Aを作製する。一方、重合体を含む層を有さない電界発光素子2を作製する。電界発光素子Aは重合体を含む層を有するが、電界発光素子2は重合体を含む層を有さない点でのみ、電界発光素子Aと電界発光素子2とは異なる。次に、電界発光素子A及び電界発光素子2に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子2について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子2について得られた発光スペクトルを規格化し、波長について積分して規格化発光量S0を計算する。一方、波長λにおける発光強度を1として、電界発光素子Aについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S−S0)/S0×100%で計算される値が30%以下である場合、即ち、重合体を含む層を有さない電界発光素子2の規格化発光量に比べ、重合体を含む層を有する電界発光素子Aの規格化発光量の増加分が30%以下である場合に、用いた重合体は実質的に非発光性であるものとし、(S−S0)/S0×100で計算される値が15%以下であることが好ましく、10%以下であることがより好ましい。
前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(23)で表される基のみからなるイオン性ポリマー、式(23)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(24)で表される基のみからなるイオン性ポリマー、式(24)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(25)で表される基のみからなるイオン性ポリマー、式(25)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(29)で表される基のみからなるイオン性ポリマー、式(29)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(30)で表される基のみからなるイオン性ポリマー、式(30)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
前記式(1)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100−p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437

(式中、pは15〜100の数を表す。)
前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(26)で表される基のみからなるイオン性ポリマー、式(26)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(27)で表される基のみからなるイオン性ポリマー、式(27)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(28)で表される基のみからなるイオン性ポリマー、式(28)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(31)で表される基のみからなるイオン性ポリマー、式(31)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(32)で表される基のみからなるイオン性ポリマー、式(32)で表される基および式45〜50、59、60、77、80、91、92、96、101〜110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
前記式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100−p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
Figure 2012186437
Figure 2012186437
Figure 2012186437
Figure 2012186437
(式中、pは15〜100の数を表す。)
−イオン性ポリマーの製造方法−
次に、本発明に用いられるイオン性ポリマーを製造する方法について説明する。本発明に用いられるイオン性ポリマーを製造するための好適な方法としては、例えば、下記一般式(36)で表される化合物を原料の1つとして選択して用い、中でも、該一般式(36)中の−Aa−が式(13)で表される構造単位である化合物、該−Aa−が式(15)で表される構造単位である化合物、該−Aa−が式(17)で表される構造単位である化合物及び該−Aa−が式(20)で表される構造単位である化合物の少なくとも1種を必須の原料として含有させて、これを縮合重合させる方法を挙げることができる。

4−Aa−Y5 (36)
(式(36)中、Aaは式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位を表し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
また、本発明に用いられるイオン性ポリマー中に上記式(36)中の−Aa−で表される構造単位とともに、前記−Aa−以外の他の構造単位を含有させる場合には、前記−Aa−以外の他の構造単位となる、2個の縮合重合に関与する置換基を有する化合物を用い、これを前記式(36)で表される化合物とともに共存させて縮合重合させればよい。
このような他の構造単位を含有させるために用いられる2個の縮合重合可能な置換基を有する化合物としては、式(37)で表される化合物が例示される。このようにして、前記Y4−Aa−Y5で表される化合物に加えて、式(37)で表される化合物を縮合重合させることで、−Ab−で表される構造単位を更に有する本発明に用いられるイオン性ポリマーを製造することができる。

6−Ab−Y7 (37)
(式(37)中、Abは前記一般式(33)で表される構造単位又は一般式(35)で表される構造単位であり、Y6及びY7は、それぞれ独立に、縮合重合に関与する基を示す。
このような縮合重合に関与する基(Y4、Y5、Y6及びY7)としては、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、−B(OH)2、ホルミル基、シアノ基、ビニル基等が挙げられる。
このような縮合重合に関与する基として選択され得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
また、前記縮合重合に関与する基として選択され得るアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基が例示される。
前記縮合重合に関与する基として選択され得るアリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。
また、前記縮合重合に関与する基として選択され得るホウ酸エステル残基としては、下記式で表される基が例示される。
Figure 2012186437
さらに、前記縮合重合に関与する基として選択され得るスルホニウムメチル基としては、下記式:
−CH2+Me2-、又は、−CH2+Ph2-
(式中、Eはハロゲン原子を示す。Phはフェニル基を示し、以下、同じである。)で表される基が例示される。
また、前記縮合重合に関与する基として選択され得るホスホニウムメチル基としては、下記式:
−CH2+Ph3-
(式中、Eはハロゲン原子を示す。)で表される基が例示される。
また、前記縮合重合に関与する基として選択され得るホスホネートメチル基としては、下記式:
−CH2PO(ORd2
(式中、Rdはアルキル基、アリール基、又はアリールアルキル基を示す。)で表される基が例示される。
さらに、前記縮合重合に関与する基として選択され得るモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
さらに、縮合重合に関与する基として好適な基は、重合反応の種類によって異なるが、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基が挙げられる。また、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、−B(OH)2等が挙げられ、酸化剤又は電気化学的に酸化重合する場合には、水素原子が挙げられる。
本発明に用いられるイオン性ポリマーを製造する際には、例えば、縮合重合に関与する基を複数有する前記一般式(36)又は(37)で表される化合物(モノマー)を、必要に応じて有機溶媒に溶解し、アルカリや適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。このような重合方法としては、例えば、”オルガニック リアクションズ(Organic Reactions)”,第14巻,270−490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、”オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407−411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の公知の方法を採用することができる。
また、本発明に用いられるイオン性ポリマーを製造する際には、縮合重合に関与する基に応じて、既知の縮合重合反応を採用してもよい。このような重合方法としては、該当するモノマーを、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、適当な脱離基を有する中間体高分子の分解による方法等が挙げられる。このような重合反応の中でも、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、得られるイオン性ポリマーの構造制御がし易いので好ましい。
本発明に用いられるイオン性ポリマーの好ましい製造方法の1つの態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群から選択される基を有する原料モノマーを用いて、ニッケルゼロ価錯体の存在下で縮合重合して、イオン性ポリマーを製造する方法である。このような方法に使用する原料モノマーとしては、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン−アルキルスルホネート化合物、ハロゲン−アリールスルホネート化合物、ハロゲン−アリールアルキルスルホネート化合物、アルキルスルホネート−アリールスルホネート化合物、アルキルスルホネート−アリールアルキルスルホネート化合物及びアリールスルホネート−アリールアルキルスルホネート化合物が挙げられる。
前記イオン性ポリマーの好ましい製造方法の他の態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、−B(OH)2、及びホウ酸エステル残基からなる群から選ばれる基を有し、全原料モノマーが有する、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、−B(OH)2及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常 K/J は0.7〜1.2の範囲)である原料モノマーを用いて、ニッケル触媒又はパラジウム触媒の存在下で縮合重合して、イオン性ポリマーを製造する方法である。
前記有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために十分に脱酸素処理を施した有機溶媒を用いることが好ましい。イオン性ポリマーを製造する際には、このような有機溶媒を用いて不活性雰囲気下で反応を進行させることが好ましい。また、前記有機溶媒においては、前記脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応の場合にはその限りではない。
このような有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類、トリメチルアミン、トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ピリジン等のアミン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシド等のアミド類が例示される。これらの有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。また、このような有機溶媒の中でも、反応性の観点からはエーテル類がより好ましく、テトラヒドロフラン、ジエチルエーテルが更に好ましく、反応速度の観点からはトルエン、キシレンが好ましい。
前記イオン性ポリマーを製造する際においては、原料モノマーを反応させるために、アルカリや適当な触媒を添加することが好ましい。このようなアルカリ又は触媒は、採用する重合方法等に応じて選択すればよい。このようなアルカリ又は触媒としては、反応に用いる溶媒に十分に溶解するものが好ましい。また、前記アルカリ又は触媒を混合する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加するか、アルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。
本発明に用いられるイオン性ポリマーにおいては、末端基に重合活性基がそのまま残っていると得られる発光素子の発光特性や寿命特性が低下する可能性があるため、末端基が安定な基で保護されていてもよい。このように安定な基で末端基が保護されている場合、本発明に用いられるイオン性ポリマーが共役化合物であるときには、該イオン性ポリマーの主鎖の共役構造と連続した共役結合を有していることが好ましく、その構造としては、例えば、炭素−炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。このような末端基を保護する安定な基としては、特開平9−45478号公報において化10の構造式で示される1価の芳香族化合物基等の置換基が挙げられる。
式(1)で表される構造単位を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でカチオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからカチオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のカチオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、金属水酸化物、アルキルアンモニウムヒドロキシド等による加水分解反応等が挙げられる。
式(2)で表される基を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でイオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからイオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のイオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、ハロゲン化アルキルを用いたアミンの4級アンモニウム塩化反応、SbF5によるハロゲン引き抜き反応等が挙げられる。
本発明に用いられるイオン性ポリマーは電荷の注入性や輸送性に優れるため、高輝度で発光する素子が得られる。
イオン性ポリマーを含む層を形成する方法としては、例えば、イオン性ポリマーを含有する溶液を用いて成膜する方法が挙げられる。
このような溶液からの成膜に用いる溶媒としては、水を除くアルコール類、エーテル類、エステル類、二トリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、カルボン酸類等の溶媒のうち、溶解度パラメーターが9.3以上の溶媒が好ましい。該溶媒の例(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、メタノール(12.9)、エタノール(11.2)、2−プロパノール(11.5)、1−ブタノール(9.9)、t−ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2−エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2−ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。ここで、2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒について説明すると、該混合溶媒の溶解度パラメーター(δm)は、δm1×φ12×φ2により求めることとする(δ1は溶媒1の溶解度パラメーター、φ1は溶媒1の体積分率、δ2は溶媒2の溶解度パラメーター、φ2は溶媒2の体積分率である。)
電子注入層の膜厚としては、用いるイオン性ポリマーによって最適値が異なるため、駆動電圧と発光効率が適度な値となるように選択すればよく、ピンホールが発生しない厚さが必要である。素子の駆動電圧を低くする観点からは、該膜厚は、1nm〜1μmであることが好ましく、2nm〜500nmであることがより好ましく、2nm〜200nmであることがさらに好ましい。発光層を保護する観点からは、該膜厚は、5nm〜1μmであることが好ましい。
<陰極>
陰極は、たとえば導電性樹脂からなる薄膜、樹脂と導電性フィラーとからなる薄膜などによって構成される。導電性樹脂としては3,4−ポリエチレンジオキシチオフェン/ポリスチレンスルフォン酸を挙げることができる。
樹脂と導電性フィラーとからなる薄膜の場合、樹脂には導電性樹脂を使用することができる。また導電性フィラーとしては、金属微粒子や導電性ワイヤーなどを使用することができる。導電性フィラーとしてはAuやAg、Al、Cu、Cなどを使用することができる。陰極は、導電性フィラーおよび樹脂を分散媒に分散させたインキを塗布成膜することによって形成される。なお陰極は必要に応じて加熱焼成される。具体的にはタツタ電線社製の導電性同ペースト(TH9910)やタムラ製作所社製のカーボン導電性ペースト(MRX-713J-A)などを使用することができる。
以下、実施例、実験例及び比較例などに基づいて本発明をより具体的に説明するが、本発明は以下の実施例および実験例に限定されるものではない。
重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製:HLC−8220GPC)を用いて、ポリスチレン換算の重量平均分子量及び数平均分子量として求めた。また、測定する試料は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに50μL注入した。更に、GPCの移動相としてはテトラヒドロフランを用い、0.5mL/分の流速で流した。重合体の構造分析はVarian社製300MHzNMRスペクトロメータ−を用いた、1H-NMR解析によって行った。また、測定は、20 mg/mLの濃度になるように試料を可溶な重溶媒(溶媒分子中の水素原子が重水素原子で置換された溶媒)に溶解させて行った。重合体の最高占有分子軌道(HOMO)の軌道エネルギーは、重合体のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求めた。一方、重合体の最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求めた。イオン化ポテンシャルの測定には光電子分光装置(理研計器株式会社製:AC−2)を用いた。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計(Varian社製:Cary5E)を用いて重合体の吸収スペクトルを測定し、その吸収末端より求めた。
[参考例1]
2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物A)の合成
2,7−ジブロモ−9−フルオレノン(52.5g)、サリチル酸エチル(154.8g)、及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、窒素置換した(以下、フラスコ内の雰囲気を窒素で置換することを単に「窒素置換した」と記載することがある。)。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び18−クラウン−6(7.2g)をN、N−ジメチルホルムアミド(DMF)(670 mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮することで、2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物A)(51.2g)を得た。
Figure 2012186437

化合物A
[参考例2]
2,7−ビス(4,4,5,5−テトラメチル-1,3,2−ジオキサボロラン−2−イル)−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物B)の合成
窒素雰囲気下、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、ジオキサン(400mL)を混合し、110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。反応混合物をメタノールで3回洗浄した。沈殿物をトルエンに溶解させ、溶液に活性炭を加えて攪拌した。その後、ろ過を行い、ろ液を減圧濃縮することで、2,7−ビス(4,4,5,5−テトラメチル-1,3,2−ジオキサボロラン−2−イル)−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(化合物B)(11.7g)を得た。
Figure 2012186437

化合物B
[参考例3]
ポリ[9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン](重合体A)の合成
不活性雰囲気下、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4−t−ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9−ビス[3−エトキシカルボニル−4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン](重合体A(BSAFEGP))の収量は520mgであった。
重合体Aのポリスチレン換算の数平均分子量は5.2×104であった。重合体Aは、式(A)で表される繰り返し単位からなる。
Figure 2012186437
[実験例1]
重合体Aセシウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのセシウム塩を共役高分子化合物1と呼ぶ。共役高分子化合物1は式(B)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物1のHOMOの軌道エネルギーは−5.5eV、LUMOの軌道エネルギーは−2.7eVであった。
Figure 2012186437
[実験例2]
重合体Aカリウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化カリウム(400mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール50mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(131mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのカリウム塩を共役高分子化合物2と呼ぶ。共役高分子化合物2は式(C)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物2のHOMOの軌道エネルギーは−5.5eV、LUMOの軌道エネルギーは−2.7eVであった。
Figure 2012186437
[実験例3]
重合体Aナトリウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化ナトリウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。
反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(123mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのナトリウム塩を共役高分子化合物3と呼ぶ。共役高分子化合物3は式(D)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物3のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.8eVであった。
Figure 2012186437
[実験例4]
重合体Aアンモニウム塩の合成
重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(15mL)を混合し、混合溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。反応溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが90%消失していることを確認した。得られた重合体Aのアンモニウム塩を共役高分子化合物4と呼ぶ。共役高分子化合物4は式(E)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、90モル%である。)。共役高分子化合物4のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.8eVであった。
Figure 2012186437
[参考例4]
2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体B)の合成
不活性雰囲気下、化合物A(0.52g)、2,7−ビス(1,3,2−ジオキサボロラン−2−イル)−9,9−ジオクチルフルオレン(1.29g)、トリフェニルホスフィンパラジウム(0.0087g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、トルエン(10mL)、及び2M炭酸ナトリウム水溶液(10mL)を混合し、80℃に加熱した。反応液を3.5時間反応させた。その後、そこに、パラブロモトルエン(0.68g)を加えて、更に2.5時間反応させた。反応後、反応液を室温まで冷却し、酢酸エチル50ml/蒸留水50mlを加えて水層を除去した。再び蒸留水50mlを加えて水層を除去した後、乾燥剤として硫酸マグネシウムを加えて、不溶物をろ過して、有機溶媒を除去した。その後、得られた残渣を再びTHF10mLに溶かして、飽和ジエチルジチオカルバミン酸ナトリウム水2mLを添加して、30分間撹拌した後、有機溶媒を除去した。アルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1、v/v)を通して精製を行い、析出した沈殿をろ過して12時間減圧乾燥させたところ、2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体B)が524mg得られた。
重合体Bのポリスチレン換算の数平均分子量は、2.0×10であっ
た。なお、重合体Bは、式(F)で表される。
Figure 2012186437
[実験例5]
重合体Bセシウム塩の合成
重合体B(262mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(10mL)、及びメタノール(15mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(341mg)を水(1mL)に溶かした水溶液を添加し、55℃で5時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(250mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Bセシウム塩を共役高分子化合物5と呼ぶ。共役高分子化合物5は、式(G)で表される(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物5のHOMOの軌道エネルギーは−5.6eVであり、LUMOの軌道エネルギーは−2.6eVであった。
Figure 2012186437
[参考例5]
重合体Cの合成
不活性雰囲気下、化合物A(0.40g)、化合物B(0.49g)、N,N’-ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル-2,6−ジメチルフェニル)1,4−フェニレンジアミン(35mg)、トリフェニルホスフィンパラジウム(8mg)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液にフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Cの収量は526mgであった。
重合体Cのポリスチレン換算の数平均分子量は3.6×104であった。重合体Cは、式(H)で表される繰り返し単位からなる。
なお、N,N’-ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル-2,6−ジメチルフェニル)1,4−フェニレンジアミンは、例えば特開2008−74917号公報に記載されている方法で合成することができる。
Figure 2012186437
[実験例6]
重合体Cセシウム塩の合成
重合体C(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(20mL)を添加し混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、 重合体C内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Cのセシウム塩を共役高分子化合物6と呼ぶ。共役高分子化合物6は式(I)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、95モル%である。)。共役高分子化合物6のHOMOの軌道エネルギーは−5.3eV、LUMOの軌道エネルギーは−2.6eVであった。
Figure 2012186437
[参考例6]
重合体Dの合成
不活性雰囲気下、化合物A(0.55g)、化合物B(0.67g)、N,N’-ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル-2,6−ジメチルフェニル)1,4−フェニレンジアミン(0.038g)、3,7−ジブロモ−N−(4−n−ブチルフェニル)フェノキサジン(0.009g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、2時間還流させた。反応液にフェニルボロン酸(0.004g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Dの収量は590mgであった。
重合体Dのポリスチレン換算の数平均分子量は2.7×104であった。重合体Dは、式(J)で表される繰り返し単位からなる。
なお、3,7−ジブロモ−N−(4−n−ブチルフェニル)フェノキサジンは、特開2007−70620号に記載の方法に基づいて(あるいは特開2004−137456号公報に記載の方法を参考にして)合成した。
Figure 2012186437
[実験例7]
重合体Dセシウム塩の合成
重合体D(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(10mL)を混合した。混合溶液に、水酸化セシウム(360mg)を水(2mL)に溶解させた水溶液を添加し、65℃で3時間撹拌した。
反応溶液にメタノール10mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(210mg)を得た。NMRスペクトルにより、 重合体D内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Dのセシウム塩を共役高分子化合物7と呼ぶ。共役高分子化合物7は式(K)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、90モル%である。)。共役高分子化合物7のHOMOの軌道エネルギーは−5.3eV、LUMOの軌道エネルギーは−2.4eVであった。
Figure 2012186437
[参考例7]
重合体Eの合成
不活性雰囲気下、化合物A(0.37g)、化合物B(0.82g)、1,3−ジブロモベンゼン(0.09g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、7時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、10時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は293mgであった。
重合体Eのポリスチレン換算の数平均分子量は1.8×104であった。重合体Eは、式(L)で表される繰り返し単位からなる。
Figure 2012186437
[実験例8]
重合体Eセシウム塩の合成
重合体E(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(170mg)を得た。NMRスペクトルにより、 重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Eのセシウム塩を共役高分子化合物8と呼ぶ。共役高分子化合物8は式(M)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、75モル%である。)。共役高分子化合物8のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.6eVであった。
Figure 2012186437
[参考例8]
重合体Fの合成
不活性雰囲気下、化合物B(1.01g)、1,4−ジブロモ−2,3,5,6−テトラフルオロベンゼン(0.30g)、トリフェニルホスフィンパラジウム(0.02g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、4時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、4時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフラン/酢酸エチル(1/1(体積比))の混合溶媒に溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は343mgであった。
重合体Fのポリスチレン換算の数平均分子量は6.0×104であった。重合体Fは、式(N)で表される繰り返し単位からなる。
Figure 2012186437
[実験例9]
重合体Fセシウム塩の合成
重合体F(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(130mg)を得た。NMRスペクトルにより、 重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Fのセシウム塩を共役高分子化合物9と呼ぶ。共役高分子化合物9は式(O)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、75モル%である。)。共役高分子化合物9のHOMOの軌道エネルギーは−5.9eV、LUMOの軌道エネルギーは−2.8eVであった。
Figure 2012186437
[参考例9]
不活性雰囲気下、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(11.0g)、トリエチレングリコール(30.0g)、水酸化カリウム(3.3g)を混合し、100℃で18時間過熱攪拌した。放冷後、反応溶液を水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。濃縮した溶液を、クーゲルロワー蒸留(10mmTorr、180℃)することで、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エタノール(6.1g)を得た。
[参考例10]
不活性雰囲気下、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エタノール(8.0g)、水酸化ナトリウム(1.4g)、蒸留水(2mL)、テトラヒドロフラン(2mL)を混合し、氷冷した。混合溶液に、p−トシルクロリド(5.5g)のテトラヒドロフラン(6.4mL)溶液を30分かけて滴下し、滴下後反応溶液を室温に上げて15時間攪拌した。反応溶液に蒸留水(50mL)を加え、6M硫酸で反応溶液を中和した後、クロロホルムで分液抽出を行った。溶液を濃縮することで、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)p−トルエンスルホネート(11.8g)を得た。
[参考例11]
2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エトキシ]フェニル]−フルオレン(化合物C)の合成
2,7−ジブロモ−9−フルオレノン(127.2g)、サリチル酸エチル(375.2g)、及びメルカプト酢酸(3.5g)を300mLフラスコに入れ、窒素置換した。
そこに、メタンスルホン酸(1420mL)を添加し、混合物を75℃で終夜撹拌した。
混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別し固体(167.8g)を得た。得られた固体(5g)、2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)p−トルエンスルホネート(10.4g)、炭酸カリウム(5.3g)、及び18−クラウン−6(0.6g)をN、N−ジメチルホルムアミド(DMF)(100 mL)に溶解させ、溶液をフラスコへ移して105℃で4時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮した。濃縮物を酢酸エチルに溶解させ、アルミナのカラムに通液し、溶液を濃縮することで、2,7−ジブロモ−9,9−ビス[3−エトキシカルボニル−4−[2−(2−(2−(2−(2−(2−メトキシエトキシ)−エトキシ)−エトキシ)−エトキシ)−エトキシ)エトキシ]フェニル]−フルオレン(化合物C)(4.5g)を得た。
Figure 2012186437
化合物C
[参考例12]
重合体Gの合成
不活性雰囲気下、化合物C(1.0g)、4−t−ブチルフェニルブロミド(0.9mg)、2,2‘−ビピリジン(0.3g)、脱水テトラヒドロフラン(50mL)を200mLフラスコに入れ混合した。混合物を55℃に昇温した後、ビス(1,5−シクロオクタジエン)ニッケル(0.6g)を添加し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、1N希塩酸(200mL)の混合液に滴下した。生じた沈殿物をろ過により収集した後、テトラヒドロフランに再溶解させた。メタノール(200mL)、15%アンモニア水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。沈殿物をテトラヒドロフランに再溶解させ、メタノール(200mL)、水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。収集した沈殿物を減圧乾燥することで重合体G(360mg)を得た。
重合体Gのポリスチレン換算の数平均分子量は6.0×104であった。重合体Gは、式(P)で表される繰り返し単位からなる。
Figure 2012186437
[実験例10]
重合体Gセシウム塩の合成
重合体G(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(170mg)を水(2mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(95)mg)を得た。NMRスペクトルにより、重合体G内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。
得られた 重合体Gのセシウム塩を共役高分子化合物10と呼ぶ。共役高分子化合物10は式(Q)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物10のHOMOの軌道エネルギーは−5.7eV、LUMOの軌道エネルギーは−2.9eVであった。
Figure 2012186437
[参考例13]
1,3−ジブロモ−5−エトキシカルボニル−6−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]ベンゼンの合成
不活性雰囲気下、3,5−ジブロモサリチル酸(20g)、エタノール(17mL)、濃硫酸(1.5mL)、トルエン(7mL)を混合し、130℃で20時間過熱攪拌した。
放冷後、反応溶液を氷水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。得られた固体を、イソプロパノールに溶解し、溶液を蒸留水に滴下した。得られた析出物をろ別することにより、固体(18g)を得た。不活性雰囲気下、得られた固体(1g)、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(1.5g)、炭酸カリウム(0.7g)、DMF(15mL)を混合し、100℃で4時間過熱攪拌した。放冷後、クロロホルムを加えて分液抽出し、溶液を濃縮した。濃縮物をクロロホルムに溶解させ、シリカゲルカラムに通液することにより精製した。溶液を濃縮することにより、1,3−ジブロモ−5−エトキシカルボニル−6−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]ベンゼン(1.0g)を得た。
[参考例14]
重合体Hの合成
不活性雰囲気下、化合物A(0.2g)、化合物B(0.5g)、1,3−ジブロモ−5−エトキシカルボニル−6−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]ベンゼン(0.1g)、トリフェニルホスフィンパラジウム(30mg)、テトラブチルアンモニウムブロミド(4mg)、及びトルエン(19mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(5mL)を滴下し、5時間還流させた。反応液にフェニルボロン酸(6mg)を加え、14時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。水層を除去して有機層を蒸留水で洗浄し、濃縮して得られた固体をクロロホルムに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムからの溶出液を濃縮して乾燥させた。得られた重合体Hの収量は0.44gであった。
重合体Hのポリスチレン換算の数平均分子量は3.6×104であった。重合体Hは、式(R)で表される繰り返し単位からなる。
Figure 2012186437
[実験例11]
重合体Hセシウム塩の合成
重合体H(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(14mL)、及びメタノール(7mL)を添加し混合した。混合溶液に、水酸化セシウム(90mg)を水(1mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール5mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、重合体H内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Hのセシウム塩を共役高分子化合物11と呼ぶ。共役高分子化合物11は式(S)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。)。共役高分子化合物11のHOMOの軌道エネルギーは−5.6eV、LUMOの軌道エネルギーは−2.8eVであった。
Figure 2012186437
[参考例15]
2,7−ジブロモ−9,9−ビス[3,4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]−5−メトキシカルボニルフェニル]フルオレン (化合物D)の合成 2,7−ジブロモ−9−フルオレノン(34.1g)、2,3-ジヒドロキシ安息香酸メチル(101.3g)、及びメルカプト酢酸(1.4g)を500mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(350mL)を添加し、混合物を90℃で19時間撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(16.3g)、2−[2−(2−メトキシエトキシ)エトキシ]−p−トルエンスルホネート(60.3g)、炭酸カリウム(48.6g)、及び18−クラウン−6(2.4g)をN、N−ジメチルホルムアミド(DMF)(500 mL)に溶解させ、溶液をフラスコへ移して110℃で15時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液に酢酸エチル(300mL)を加えて分液抽出を行い、溶液を濃縮し、クロロホルム/メタノール(50/1(体積比))の混合溶媒に溶解させ、シリカゲルカラムを通すことにより精製した。カラムに通液した溶液を濃縮することで、2,7−ジブロモ−9,9−ビス[3,4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]−5−メトキシカルボニルフェニル]フルオレン (化合物D)(20.5g)を得た。
[参考例16]
2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[5−メトキシカルボニル−3,4−ビス[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体I)の合成
不活性雰囲気下、化合物D(0.70g)、2−(4,4,5,5−テトラメチル−1,2,3−ジオキサボラン−2−イル)−9,9−ジオクチルフルオレン (0.62g) 、トリフェニルホスフィンパラジウム(0.019g)、ジオキサン(40mL)、水(6mL)及び炭酸カリウム水溶液(1.38g)を混合し、80℃に加熱した。反応液を1時間反応させた。反応後、飽和ジエチルジチオカルバミン酸ナトリウム水5mLを添加して、30分間撹拌した後、有機溶媒を除去した。得られた固体をアルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1(体積比))を通して精製を行い、溶液を濃縮することで、2,7−ビス[7−(4−メチルフェニル)−9,9−ジオクチルフルオレン−2−イル]−9,9−ビス[3−エトキシカルボニル−4−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]フェニル]−フルオレン(重合体I)を660mg得た。
重合体Iのポリスチレン換算の数平均分子量は、2.0×10であった。重合体Iは、式(T)で表される。なお、2−(4,4,5,5−テトラメチル−1,2,3−ジオキサボラン−2−イル)−9,9−ジオクチルフルオレンは、例えばThe Journal of Physical Chemistry B 2000, 104,9118−9125に記載されている方法で合成することができる。
Figure 2012186437
[実験例12]
重合体Iセシウム塩の合成
重合体I(236mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(20mL)、及びメタノール(10mL)を添加し、混合物を65℃に昇温した。そこに、水酸化セシウム(240mg)を水(2mL)に溶かした水溶液を添加し、65℃で7時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Iセシウム塩を共役高分子化合物12と呼ぶ。共役高分子化合物12は、式(U)で表される(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物12のHOMOの軌道エネルギーは−5.6eVであり、LUMOの軌道エネルギーは−2.8eVであった。
Figure 2012186437
[参考例17]
化合物Eの合成
窒素雰囲気下、2,7−ジブロモ−9−フルオレノン(92.0g、272mmol)、及びジエチルエーテル(3.7L)を混合して0℃に冷却し、1mol/Lヨウ化メチルマグネシウム−ジエチルエーテル溶液(0.5L、545mmol)を滴下して3時間撹拌した。反応混合物に塩化アンモニウム水溶液を加えて水層を除去し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物E(92.81g、262mmol、収率96%)を得た。
Figure 2012186437
化合物E
化合物Fの合成
窒素雰囲気下、化合物E(83.0g、234mmol)、p−トルエンスルホン酸一水和物(4.49g、23.6mmol)、及びクロロホルム(2.5L)を1時間還流し、反応混合物に塩化アンモニウム水溶液を加えて水層を除去した。有機層を無水硫酸ナトリウムで乾燥し減圧濃縮して、下記式で表される化合物F(73.6g、219mmol、収率93%)を得た。
Figure 2012186437
化合物F
化合物Gの合成
窒素雰囲気下、化合物F(70.0g、208mmol)、サリチル酸エチル(104g、625mmol)、メルカプト酢酸(4.20g、45.6mmol)、及びメタンスルホン酸(1214g)を70℃で8時間撹拌し、反応混合物を氷水に滴下して析出した固体をろ過して回収し、メタノールで洗浄した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物G(52.14g、104mmol、収率50%)を得た。
Figure 2012186437
化合物G
化合物Hの合成
窒素雰囲気下、化合物G(41.2g、82.0mmol)、2−[2−(2−メトキシエトキシ)エトキシ]−エチル−p−トルエンスルホネート(75.8g、238mmol)、ジメチルホルムアミド(214g)、炭酸カリウム(54.4g、394mmol)、及び18−クラウン−6(4.68g、18mmol)を105℃で2時間撹拌し、反応混合物を水に加え、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物H(40.2g、62.0mmol、収率76%)を得た。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.37(3H),1.84(3H),3.36(3H),3.53(2H),3.58−3.79(6H),3.73(2H),4.12(2H),4.34(2H),6.80(1H),6.90(1H),7.28(2H),7.48(2H),7.58(2H),7.70(1H).
Figure 2012186437
化合物H
化合物Iの合成
窒素雰囲気下、化合物H(28.4g、43.8mmol)、ビス(ピナコラート)ジボロン(24.30g、95.7mol)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(0.35g、0.4mmol)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(0.24g、0.4mmol)、酢酸カリウム(25.60g、260mmol)、及び1,4−ジオキサン(480mL)を120℃で17時間撹拌し、反応混合物をろ過して酢酸エチルで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーにより精製し、次いで再結晶して精製することにより、下記式で表される化合物I(18.22g、24.5mmol、収率56%)を得た。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.30−1.47(27H),1.88(3H),3.35(3H),3.53(2H),3.60−3.69(4H),3.73(2H),3.84(2H),4.10(2H),4.34(2H),6.74(1H),6.87(1H),7.58(2H),7.72−7.89(5H).
Figure 2012186437
化合物I
重合体Jの合成
アルゴン雰囲気下、化合物H(0.47g)、化合物I(0.48g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.6mg)、テトラブチルアンモニウムブロミド(6mg)、トルエン(6mL)、2mol/L炭酸ナトリウム水溶液(2mL)を105℃で6時間撹拌し、次いでフェニルボロン酸(35mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.65g)と水(13mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し、析出物をろ過により回収して乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナカラムクロマトグラフィー、及びシリカゲルカラムクロマトグラフィーにより精製した。溶出液をメタノールに滴下し、析出物をろ過により回収して乾燥させ、重合体J(0.57g)を得た。
重合体Jのポリスチレン換算の数平均分子量は2.0×104であった。重合体Jは、式(V)で表される構造単位からなる。
Figure 2012186437
(V)
[実験例29]
重合体Jセシウム塩の合成
アルゴン雰囲気下、重合体J(0.20g)、THF(18mL)、メタノール(9mL)、水酸化セシウム一水和物(97mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(52mL)を加え65℃で6時間撹拌した。反応混合物を濃縮して乾燥し、得られた固体にメタノールを加えてろ過した。ろ液をイソプロパノールに滴下し、固体をろ過により回収して乾燥させることにより、重合体Jのセシウム塩(0.20g)を得た。得られた重合体Jのセシウム塩を共役高分子化合物13と呼ぶ。共役高分子化合物13は、式(W)で表される構造単位からなる。
Figure 2012186437
(W)
共役高分子化合物13のHOMOの軌道エネルギーは−5.51eV、LUMOの軌道エネルギーは−2.64eVであった。
[参考例18]
化合物Jの合成
窒素気流下、2,7−ジブロモ−9,9−ビス(3,4−ジヒドロキシ)−フルオレン(138.4g)、2−[2−(2−メトキシエトキシ)エトキシ]−エチル−p−トルエンスルホネート(408.6g)、炭酸カリウム(358.5g)及びアセトニトリル(2.5L)を混合し、3時間加熱還流した。放冷後、反応混合物をろ別し、ろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物J(109.4g)を得た。
Figure 2012186437
化合物J
化合物Kの合成
窒素雰囲気下、化合物J(101.2g)、ビス(ピナコラート)ジボロン(53.1g)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(3.7g)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(5.4g)、酢酸カリウム(90.6g)及びジオキサン(900mL)を混合し、110℃に加熱し、8時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物K(51.4g)を得た。
Figure 2012186437
化合物K
重合体Kの合成
化合物K(0.715g)、化合物J(0.426g)、aliquot336(6.60mg)、ビス(トリフェニルホスフィン)ジクロロパラジウム(0.460mg)、2mol/L炭酸ナトリウム水溶液(10mL)及びトルエン(20mL)を105℃で5時間撹拌し、次いでフェニルボロン酸(32mg)を加え105℃で6時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.72g)と水(14mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し、析出物をろ過により回収して乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナカラムクロマトグラフィー、及びシリカゲルカラムクロマトグラフィーにより精製した。溶出液を濃縮し乾燥させ、濃縮物をトルエンに溶解させた。得られた溶液をメタノールに滴下し、析出物をろ過により回収して乾燥させることにより、重合体K(0.55g)を得た。
重合体Kのポリスチレン換算の数平均分子量は2.3×104であった。重合体Kは、式(X)で表される構造単位からなる。
Figure 2012186437
(X)
[実験例30]
重合体Kセシウム塩の合成
アルゴン雰囲気下、重合体K(0.15g)、THF(20mL)、メタノール(10mL)、水酸化セシウム一水和物(103mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(20mL)を加え65℃で2時間撹拌した。反応混合物を濃縮して乾燥し、得られた固体にメタノールを加えてろ過した。ろ液を濃縮して乾燥し、得られた固体を水で洗浄した後、乾燥させることにより、重合体Kのセシウム塩(0.14g)を得た。得られた重合体Kのセシウム塩を共役高分子化合物14と呼ぶ。共役高分子化合物14は、式(Y)で表される構造単位からなる。
Figure 2012186437
(Y)
共役高分子化合物14のHOMOの軌道エネルギーは−5.56eV、LUMOの軌道エネルギーは−2.67eVであった。
[参考例19]
化合物Lの合成
窒素雰囲気下、5−ブロモ−2−ヒドロキシ安息香酸(92.85g)、エタノール(1140mL)、及び濃硫酸(45mL)を48時間還流し、減圧濃縮した後に酢酸エチル(1000mL)を加え、水及び10重量%炭酸ナトリウム水溶液で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物L(95.38g、収率91%)を得た。
Figure 2012186437
化合物L
化合物Mの合成
窒素雰囲気下、化合物L(95.0g)、ビス(ピナコラート)ジボロン(108.5g)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(3.3g)、1,1’−ビス(ジフェニルホスフィノ)フェロセン(2.2g)、酢酸カリウム(117.2g)、及び1,4−ジオキサン(1.3L)を105℃で22時間撹拌し、反応混合物をろ過してジオキサン及びトルエンで洗浄した。ろ液を減圧濃縮して酢酸エチルを加え、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物M(90.1g、308mmol)を得た。
Figure 2012186437
化合物M
化合物Nの合成
窒素雰囲気下、1,5−ジヒドロキシナフタレン(15.0g)、トリエチルアミン(28.5g)、及びクロロホルム(150mL)を混合して0℃に冷却し、トリフルオロメタンスルホン酸無水物(68.7g)を滴下して1時間撹拌した。反応混合物に水、及びクロロホルムを加えて、水層を除去し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し減圧濃縮した。得られた固体を再結晶して精製することにより、下記式で表される化合物N(31.46g)を得た。下記式中、Tfはトリフルオロメチルスルホニル基を示す。
Figure 2012186437
化合物N
化合物Oの合成
窒素雰囲気下、化合物N(16.90g)、化合物M(23.30g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(4.60g)、リン酸カリウム(42.30g)、及び1,2−ジメトキシエタン(340mL)を80℃で14時間撹拌し、反応混合物をろ過してクロロホルム及びメタノールで洗浄した。ろ液を減圧濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物O(8.85g)を得た。
Figure 2012186437
化合物O
化合物Pの合成
窒素雰囲気下、化合物O(8.80g)、2−[2−(2−メトキシエトキシ)エトキシ]−エチル−p−トルエンスルホネート(12.52g)、ジメチルホルムアミド(380mL)、炭酸カリウム(13.32g)、及び18−クラウン−6(1.02g)を100℃で23時間撹拌し、反応混合物を水に加え酢酸エチルで抽出した。有機層を塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥し減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製して、下記式で表される化合物P(7.38g)を得た。
Figure 2012186437
化合物P
化合物Qの合成
窒素雰囲気下、化合物P(5.53g)、ビス(ピナコラート)ジボロン(11.25g)、(1,5−シクロオクタジエン)(メトキシ)イリジウム(I)二量体(0.15g、シグマアルドリッチ社製)、4,4’−ジ−tert−ブチル−2,2’−ジピリジル(0.12g、シグマアルドリッチ社製)、及び1,4−ジオキサン(300mL)を110℃で19時間撹拌し、反応混合物を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにより精製し、次いで再結晶して精製することにより、下記式で表される化合物Q(5.81g)を得た。
H NMR(400MHz,CDCl,rt)
δ(ppm) 1.27−1.41(30H),3.39(6H),3.57(4H),3.66−3.75(8H),3.83(4H),3.99(4H),4.27−4.42(8H),7.13(2H),7.60(2H),7.76(2H),7.93(2H),8.30(2H).
Figure 2012186437
化合物Q
重合体Lの合成
アルゴン雰囲気下、化合物J(0.53g)、化合物Q(0.43g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.3mg)、Aliquat336(5mg、シグマアルドリッチ社製)、トルエン(12mL)、2mol/L炭酸ナトリウム水溶液(1mL)を105℃で9時間撹拌し、次いでフェニルボロン酸(23mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.40g)と水(8mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し、析出物をろ過により回収して乾燥させた。得られた固体をクロロホルムに溶解させ、アルミナカラムクロマトグラフィー、及びシリカゲルカラムクロマトグラフィーにより精製した。溶出液をメタノールに滴下し、析出物をろ過により回収して乾燥させることにより、重合体L(0.56g)を得た。
重合体Lのポリスチレン換算の数平均分子量は3.4×104であった。重合体Lは、式(Z)で表される構造単位からなる。
Figure 2012186437
(Z)
[実験例31]
重合体Lセシウム塩の合成
アルゴン雰囲気下、重合体L(0.25g)、THF(13mL)、メタノール(6mL)、水酸化セシウム一水和物(69mg)、及び水(1mL)を65℃で6時間撹拌し、反応混合物を濃縮してイソプロパノールに滴下し、固体をろ過により回収して乾燥させた。得られた固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し、固体をろ過により回収して乾燥させることにより、重合体Lのセシウム塩(0.19g)を得た。得られた重合体Lのセシウム塩を共役高分子化合物15と呼ぶ。共役高分子化合物15は、式(AA)で表される構造単位からなる。
Figure 2012186437
(AA)
共役高分子化合物15のHOMOの軌道エネルギーは−5.50eV、LUMOの軌道エネルギーは−2.65eVであった。
<有機EL素子の作製>
[実施例1]
ITO薄膜が片面に形成されたガラス基板を用意した。ITO薄膜は有機EL素子の陽極に相当し、その厚さは45nmである。なおITO薄膜はガラス基板上において、発光エリアに対応する形状および電極の取出しのための配線形状にあらかじめパターニングされている。このITO薄膜が形成されたガラス基板をアセトンに浸漬させ、超音波振動により洗浄した。ガラス基板をアセトンから取り出し、常温でアセトンを乾燥させた。つづいて、ITO薄膜の表面にUV照射によるオゾン洗浄をほどこした。
つぎに大気雰囲気中において、ITO薄膜上に、正孔注入層用の塗布材料をスピンコート法により塗布成膜し、厚みが60nmの正孔注入層用の塗布膜を形成した。正孔注入層用の塗布材料には、スタルクヴイテック(株)製のPEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸(製品名:「Baytron」)を用いた。つづいて大気雰囲気中において、正孔注入層用の塗布膜をホットプレート上で200℃、10分間乾燥し、正孔注入層を形成した。
つぎに高分子化合物aを混合溶媒(重量比が1:1のアニソールとシクロヘキシルベンゼンとからなる溶媒)に溶解し、高分子化合物aの濃度が0.5重量%の正孔輸送層用の塗布材料をえた。この塗布材料を、大気中においてスピンコート法によって正孔注入層上に塗布し、つづいて、真空雰囲気中において混合溶媒を乾燥することにより、膜厚が20nmの正孔輸送層をえた。さらに窒素雰囲気中において、ガラス基板をホットプレート上で180℃、30分の条件で加熱し、混合溶媒を除去した。
つぎに高分子化合物bを混合溶媒(重量比が1:1のアニソールとシクロヘキシルベンゼンとからなる溶媒)に溶解し、高分子化合物bの濃度が1.0重量%の発光層用の塗布材料をえた。この塗布材料を、大気中においてスピンコート法によって正孔輸送層上に塗布し、つづいて、真空雰囲気中において混合溶媒を乾燥することにより、膜厚が65nmの発光層をえた。さらに窒素雰囲気中において、ガラス基板をホットプレート上で180℃、30分の条件で加熱し、混合溶媒を除去した。
つぎに上記で合成した共役高分子化合物1を0.2重量%の濃度でメタノールに溶解し、電子注入層用の塗布材料をえた。この塗布材料を、大気中においてスピンコート法によって発光層上に塗布し、膜厚が10nmの電子注入層用の塗布膜を形成した。つづいて、大気雰囲気中において、ガラス基板をホットプレート上で130℃、10分の条件で加熱し、電子注入層をえた。
つぎに金属製のへらを用いて導電性塗布型材料(藤倉化成(株)製、ドータイト:D−550)を電子注入層上に塗布成膜した。その後、塗布膜に含まれる溶媒を除去するために、大気雰囲気中において、ガラス基板をホットプレート上で90℃、10分の条件で加熱し、銀のフィラーとアクリル樹脂とからなる陰極をえた。陰極のシート抵抗は2Ω/sqであった。このようにしてガラス基板上に積層構造体を作製した。
この積層構造体が形成されたガラス基板と封止材つきガラス基板とを、封止材を挟み込むようにして圧着し、有機EL素子を作製した。
えられた有機EL素子の陽極と陰極間に15Vの電圧を印加すると、有機EL素子が発光することを確認した。
[実験例13]
<有機EL素子の作製>
ガラス基板表面に成膜パターニングされたITO陽極(膜厚:45nm)上に、正孔注入材料溶液を塗布し、スピンコート法によって膜厚が60nmになるように正孔注入層を成膜した。正孔注入層が成膜されたガラス基板を不活性雰囲気下(窒素雰囲気下)、200℃で10分加熱して正孔注入層を不溶化させ、基板を室温まで自然冷却させ、正孔注入層が形成された基板を得た。
ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名:「Baytron」)を用いた。
次に、正孔輸送性高分子材料とキシレンとを混合し、0.7重量%の正孔輸送性高分子材料を含む正孔輸送層形成用組成物を得た。
ここで、正孔輸送高分子材料は、以下の方法で合成した。
還流冷却器及びオーバーヘッドスターラを装備した1リットルの三つ口丸底フラスコに、2,7−ビス(1,3,2−ジオキシボロール)−9,9−ジ(1−オクチル)フルオレン(3.863g、7.283mmol)、N,N−ジ(p−ブロモフェニル)−N−(4−(ブタン−2−イル)フェニル)アミン(3.177g、6.919mmol)及びジ(4−ブロモフェニル)ベンゾシクロブタンアミン(156.3mg、0.364mmol)を添加した。次いで、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(2.29g)、続いてトルエン50mLを添加した。PdCl(PPh(4.9mg)を添加した後、混合物を、105℃の油浴中で15分間撹拌した。炭酸ナトリウム水溶液(2.0M、14mL)を添加し、得られた混合物を105℃の油浴中、16.5時間撹拌した。次いで、フェニルボロン酸(0.5g)を添加し、得られた混合物を7時間撹拌した。水層を除去し、有機層を水50mLで洗浄した。有機層を反応フラスコに戻し、ジエチルジチオカルバミン酸ナトリウム0.75g及び水50mLを添加した。得られた混合物を85℃の油浴中、16時間撹拌した。水層を除去し、有機層を100mLの水で3回洗浄し、次いでシリカゲル及び塩基性アルミナのカラムに通した。溶離剤としてトルエンを用い、溶出してきたポリマーを含むトルエン溶液を回収した。次いで、回収した前記トルエン溶液をメタノールに注いでポリマーを沈殿させた。沈殿したポリマーを再度トルエンに溶解させ、得られたトルエン溶液をメタノールに注いでポリマーを再び沈殿させた。沈殿したポリマーを60℃で真空乾燥し、正孔輸送性高分子材料4.2gを得た。ゲルパーミエーションクロマトグラフィーによれば、得られた正孔輸送性高分子材料のポリスチレン換算の重量平均分子量は1.24×105であり、分子量分布指数(Mw/Mn)は2.8であった。
上記で得た正孔注入層が形成された基板の正孔注入層の上に、正孔輸送層形成用組成物をスピンコート法により塗布し、膜厚20nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、190℃で20分間加熱し、塗膜を不溶化させた後、室温まで自然冷却させ、正孔輸送層が形成された基板を得た。
次に、発光高分子材料(サメイション(株)製「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。
上記で得た正孔輸送層が形成された基板の正孔輸送層の上に、発光層形成用組成物をスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。
メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。上記で得た発光層が形成された基板の発光層の上に、前記組成物をスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を常圧の不活性雰囲気下(窒素雰囲気下)、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。
上記で得た共役高分子化合物1を含む層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAlを80nm成膜し、陰極を形成させて、積層構造体1を製造した。
上記で得た積層構造体1を真空装置より取り出し、不活性雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子1を得た。
[実験例14]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物2を用いた以外は、実験例13と同様に操作し、有機EL素子2を得た。
[実験例15]
実験例13において、メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得る代わりにメタノール、水および共役高分子化合物3を混合し(メタノール/水の体積比=20/1)、0.2重量%の共役高分子化合物3を含む組成物を用いた以外は、実験例13と同様に操作し、有機EL素子3を得た。
[実験例16]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物4を用いた以外は、実験例13と同様に操作し、有機EL素子4を得た。
[実験例17]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物5を用いた以外は、実験例13と同様に操作し、有機EL素子5を得た。
[実験例18]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物6を用いた以外は、実験例13と同様に操作し、有機EL素子6を得た。
[実験例19]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物7を用いた以外は、実験例13と同様に操作し、有機EL素子7を得た。
[実験例20]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物8を用いた以外は、実験例13と同様に操作し、有機EL素子8を得た。
[実験例21]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物9を用いた以外は、実験例13と同様に操作し、有機EL素子9を得た。
[実験例22]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物10を用いた以外は、実験例13と同様に操作し、有機EL素子10を得た。
[実験例23]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物11を用いた以外は、実験例13と同様に操作し、有機EL素子11を得た。
[実験例24]
実験例13において、共役高分子化合物1の代わりに共役高分子化合物12を用いた以外は、実験例13と同様に操作し、有機EL素子12を得た。
[実験例25]
実験例13において、メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得る代わりにメタノール、共役高分子化合物1、AlドープZnOナノ粒子(アルドリッチ製)を混合した組成物を用いた以外は、実験例13と同様に操作し、有機EL素子13を得た。
[実験例26]
実験例13において、メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得る代わりにメタノール、共役高分子化合物1、低分子化合物(アルドリッチ製、3,5−ビス(4−t−ブチルフェニル)−4−フェニル−4H−1,2,4−トリアゾール)を混合し、0.2重量%の共役高分子化合物1および0.2重量%の該低分子化合物を含む組成物を得た以外は、実験例13と同様に操作し、有機EL素子14を得た。
[実験例27]
実験例13において、Alの代わりにAgを用いた以外は、実験例13と同様に操作し、有機EL素子15を得た。
[実験例28]
実験例13において、Alの代わりにAuを用いた以外は、実験例13と同様に操作し、電界発光素子16を得た。
[測定]
上記で得られた有機EL素子1〜16に10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。
Figure 2012186437
1 有機EL素子
2 支持基板
3 陽極
4 正孔注入層
5 発光層
6 電子注入層
7 陰極
11,12 巻き芯
13,14,15,16 塗布装置

Claims (4)

  1. 支持基板、陽極、発光層、電子注入層、および陰極が、この順で積層されて構成される有機EL素子であって、
    前記電子注入層は、イオン性ポリマーを含むインキを塗布成膜することによって形成され、
    前記陰極は、当該陰極となる材料を含むインキを塗布成膜する、または当該陰極となる導電性薄膜を転写することによって形成されている、有機EL素子。
  2. 前記陰極が、導電性フィラーを含んで構成されている請求項1記載の有機EL素子。
  3. 支持基板上に、陽極、発光層、電子注入層、および陰極をこの順で積層する有機EL素子の製造方法であって、
    イオン性ポリマーを含むインキを塗布成膜することによって電子注入層を形成する工程と、
    電子注入層上に導電性薄膜を転写することによって陰極を形成する、または陰極となる材料を含むインキを電子注入層上に塗布成膜することによって陰極を形成する工程とを含む、有機EL素子の製造方法。
  4. 電子注入層および陰極をロールツーロール法によって形成する、請求項3記載の有機EL素子の製造方法。
JP2011158657A 2010-07-21 2011-07-20 有機el素子 Active JP5982747B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158657A JP5982747B2 (ja) 2010-07-21 2011-07-20 有機el素子

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010163675 2010-07-21
JP2010163675 2010-07-21
JP2011030605 2011-02-16
JP2011030605 2011-02-16
JP2011158657A JP5982747B2 (ja) 2010-07-21 2011-07-20 有機el素子

Publications (2)

Publication Number Publication Date
JP2012186437A true JP2012186437A (ja) 2012-09-27
JP5982747B2 JP5982747B2 (ja) 2016-08-31

Family

ID=45496929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158657A Active JP5982747B2 (ja) 2010-07-21 2011-07-20 有機el素子

Country Status (6)

Country Link
US (1) US8927978B2 (ja)
EP (1) EP2597696A4 (ja)
JP (1) JP5982747B2 (ja)
CN (1) CN103119744B (ja)
TW (1) TW201215226A (ja)
WO (1) WO2012011510A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133165A1 (ja) * 2011-03-28 2012-10-04 住友化学株式会社 発光素子及びその製造方法
KR102447308B1 (ko) 2015-05-28 2022-09-26 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6654913B2 (ja) * 2016-01-26 2020-02-26 住友化学株式会社 有機el素子の製造方法及び有機el素子
JP2019003735A (ja) * 2017-06-12 2019-01-10 株式会社Joled 有機電界発光素子、有機電界発光パネル、有機電界発光装置および電子機器
CN109232864B (zh) * 2018-09-17 2021-01-22 京东方科技集团股份有限公司 聚合物、电子注入层、oled器件及显示装置
JP7495231B2 (ja) 2019-02-08 2024-06-04 住友化学株式会社 化合物およびそれを用いた発光素子
US20210094226A1 (en) * 2019-09-26 2021-04-01 The Curators Of The University Of Missouri Oxidation polymerization additive manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079064A (ja) * 2003-09-03 2005-03-24 Seiko Epson Corp 有機el装置、有機el装置の製造方法および電子機器
WO2009012498A1 (en) * 2007-07-19 2009-01-22 Add-Vision, Inc. Method and apparatus for improved printed cathodes for organic electronic devices
JP2009123690A (ja) * 2007-10-22 2009-06-04 Konica Minolta Holdings Inc 塗布層形成後或いは対電極層形成後に乾燥剤フィルムを貼合して巻き取る有機エレクトロニクス素子とその製造方法
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
JP2010103040A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 有機エレクトロニクス素子、その製造方法、及び製造装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367064B2 (ja) 1995-02-01 2003-01-14 住友化学工業株式会社 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
TW334474B (en) 1995-02-01 1998-06-21 Sumitomo Kagaku Kk Method for making a polymeric fluorescent substrate and organic electrolumninescent element
US20030153141A1 (en) * 2001-12-20 2003-08-14 Carter Susan A. Screen printable electrode for light emitting polymer device
US6984461B2 (en) 2002-06-21 2006-01-10 Samsung Sdi Co., Ltd. Blue electroluminescent polymer and organic-electroluminescent device using the same
JP2005158489A (ja) 2003-11-26 2005-06-16 Seiko Epson Corp 有機el装置とその製造方法及び電子機器
CN100490206C (zh) * 2003-12-25 2009-05-20 华南理工大学 有机/高分子发光二极管
JP4329740B2 (ja) * 2004-10-22 2009-09-09 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置の製造方法、及び有機エレクトロルミネッセンス装置
CN100440572C (zh) * 2005-05-31 2008-12-03 华南理工大学 一种有机小分子或高分子顶发射发光器件
JP5135732B2 (ja) 2005-08-12 2013-02-06 住友化学株式会社 高分子化合物およびそれを用いた高分子発光素子
JP5575353B2 (ja) 2005-11-30 2014-08-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法
KR101243919B1 (ko) * 2006-01-27 2013-03-14 삼성디스플레이 주식회사 전도성 고분자 조성물 및 이를 채용한 유기 광전 소자
KR101386215B1 (ko) * 2006-06-07 2014-04-17 삼성디스플레이 주식회사 전도성 고분자 조성물 및 이를 채용한 유기 광전 소자
JP5162868B2 (ja) 2006-09-20 2013-03-13 住友化学株式会社 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
US20090032107A1 (en) * 2007-08-03 2009-02-05 Korea Institute Of Machinery & Materials Organic solar cell using conductive polymer transparent electrode and fabricating method thereof
US20110065282A1 (en) * 2009-09-11 2011-03-17 General Electric Company Apparatus and methods to form a patterned coating on an oled substrate
KR101173105B1 (ko) * 2010-05-24 2012-08-14 한국과학기술원 유기발광소자
CN103120019B (zh) * 2010-07-21 2015-09-16 住友化学株式会社 有机el元件的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079064A (ja) * 2003-09-03 2005-03-24 Seiko Epson Corp 有機el装置、有機el装置の製造方法および電子機器
WO2009012498A1 (en) * 2007-07-19 2009-01-22 Add-Vision, Inc. Method and apparatus for improved printed cathodes for organic electronic devices
JP2009123690A (ja) * 2007-10-22 2009-06-04 Konica Minolta Holdings Inc 塗布層形成後或いは対電極層形成後に乾燥剤フィルムを貼合して巻き取る有機エレクトロニクス素子とその製造方法
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
JP2010103040A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 有機エレクトロニクス素子、その製造方法、及び製造装置

Also Published As

Publication number Publication date
US8927978B2 (en) 2015-01-06
WO2012011510A1 (ja) 2012-01-26
CN103119744B (zh) 2016-01-06
TW201215226A (en) 2012-04-01
CN103119744A (zh) 2013-05-22
JP5982747B2 (ja) 2016-08-31
US20130181205A1 (en) 2013-07-18
EP2597696A1 (en) 2013-05-29
EP2597696A4 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP5653122B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5862086B2 (ja) 有機el素子の製造方法
JP5790819B2 (ja) 共役高分子化合物
JP5898424B2 (ja) 有機発光装置の製造方法
JP5863307B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5982747B2 (ja) 有機el素子
WO2012133465A1 (ja) 電子デバイス、高分子化合物、有機化合物及び高分子化合物の製造方法
WO2012133381A1 (ja) 電子デバイス、高分子化合物
WO2012133462A1 (ja) 電子デバイス、高分子化合物
WO2012046736A1 (ja) 有機el装置及びその製造方法
WO2012132149A1 (ja) 組成物
WO2012114936A1 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5899635B2 (ja) 有機el素子
WO2012011456A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置
WO2012070575A1 (ja) 発光装置及び発光装置の製造方法
JP5750247B2 (ja) 有機薄膜トランジスタ及びその製造方法
WO2012011471A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R151 Written notification of patent or utility model registration

Ref document number: 5982747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350