JP2012162776A - Copper alloy plate and method for manufacturing the same - Google Patents

Copper alloy plate and method for manufacturing the same Download PDF

Info

Publication number
JP2012162776A
JP2012162776A JP2011024748A JP2011024748A JP2012162776A JP 2012162776 A JP2012162776 A JP 2012162776A JP 2011024748 A JP2011024748 A JP 2011024748A JP 2011024748 A JP2011024748 A JP 2011024748A JP 2012162776 A JP2012162776 A JP 2012162776A
Authority
JP
Japan
Prior art keywords
copper alloy
mass
alloy sheet
rolling
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024748A
Other languages
Japanese (ja)
Other versions
JP5675404B2 (en
Inventor
Tatsunori Murata
達則 村田
Irin Ko
維林 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2011024748A priority Critical patent/JP5675404B2/en
Publication of JP2012162776A publication Critical patent/JP2012162776A/en
Application granted granted Critical
Publication of JP5675404B2 publication Critical patent/JP5675404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Cr-Zr based copper alloy plate having high strength, high conductivity and satisfactory bending performance, and a method for manufacturing the Cu-Cr-Zr based copper alloy plate.SOLUTION: In a method for manufacturing a copper alloy plate, a cast piece obtained by dissolving a raw copper alloy which has a composition including 0.25-1.5 mass% of Zr, 0.01-1.0 mass% of Cr and Cu and inevitable impurities in a remaining part to be casted is subjected to the hot rolling of 5-10 paths at a rolling rate in the final path of 20% or more after heated up to 900-1,080°C, quenched by water cooling after the completion of the hot rolling while the end temperature of the hot rolling is set at 700-800°C, thereafter subjected to aging treatment while being maintained at 350-450°C for 1-20 hours after subjected to cold rolling at a rolling rate of 80% or more, and then subjected to finish cold rolling at a rolling rate of 0-40%.

Description

本発明は、銅合金板材およびその製造方法に関し、特に、バスバー、リードフレーム、端子などの電気電子機器の通電部品に適したCu−Cr−Zr系の銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly to a Cu—Cr—Zr-based copper alloy sheet suitable for current-carrying parts of electrical and electronic equipment such as bus bars, lead frames, and terminals, and a method for manufacturing the same.

バスバー、リードフレーム、端子などの電気電子機器の通電部品に使用される材料には、通電によるジュール熱の発生を抑制するために良好な導電性を有することが要求されるとともに、電気電子機器の組立時や作動時に付与される応力に耐え得る高い強度を有することが要求される。また、これらの通電部品は、一般に、板材の曲げ加工などの成形加工により作製されることから、優れた加工性を有することも要求される。   Materials used for current-carrying parts of electrical and electronic equipment such as bus bars, lead frames, and terminals are required to have good conductivity in order to suppress the generation of Joule heat due to current conduction. It is required to have a high strength that can withstand the stress applied during assembly and operation. In addition, since these current-carrying parts are generally produced by a forming process such as a bending process of a plate material, it is also required to have excellent workability.

特に、近年では、電気自動車やハイブリッドカー(所謂EVやHEV)などの普及に伴って、燃費の向上やセンサーなどの機能の増加に対応するために、電気電子機器の通電部品は高集積化、小型化および軽量化が進む傾向にあり、それに伴って、通電部品の素材である銅や銅合金の板材には薄肉化の要求が高まっている。このような要求から素材を薄肉化すると、素材に流れる電流密度が増大して発生した熱を放散するために、従来より高い導電性が要求される。また、素材を薄肉化すると、素材に要求される強度レベルも一層厳しくなる。さらに、通電部品の形状の複雑化に対応するために、板材の曲げ加工などの成形加工による形状や寸法の精度の向上が要求される。具体的には、引張強さが600N/mm以上、導電率が75%IACS以上で、良好な曲げ加工性を有する素材が望まれている。 In particular, in recent years, with the spread of electric vehicles and hybrid cars (so-called EV and HEV), the current-carrying parts of electric and electronic devices are highly integrated in order to cope with the improvement of fuel economy and the increase in functions of sensors, etc. There is a tendency for miniaturization and weight reduction, and accordingly, there is an increasing demand for thinning of copper and copper alloy plate materials which are materials of current-carrying parts. When the material is made thinner due to such a requirement, the current density flowing through the material is increased and the generated heat is dissipated, so that higher conductivity is required than before. Further, when the material is made thinner, the strength level required for the material becomes more severe. Furthermore, in order to cope with the complicated shape of the current-carrying parts, it is required to improve the accuracy of the shape and dimensions by forming such as bending of the plate material. Specifically, a material having a good bending workability with a tensile strength of 600 N / mm 2 or more and an electrical conductivity of 75% IACS or more is desired.

強度と導電性が比較的高い素材として、0.1〜0.4質量%のCrと0.1〜0.4質量%のZrを含み、残部がCuおよび不可避不純物からなるCu−Cr−Zr系合金が知られている。Cu−Cr−Zr系合金は、合金成分であるCrやZrが単独または化合物の形で母相となるCu相中に析出する析出硬化型の合金であり、導電率が70%IACS以上で引張強さが500N/mm以上の板材を得ることができる。 Cu—Cr—Zr containing 0.1 to 0.4 mass% Cr and 0.1 to 0.4 mass% Zr as a material having relatively high strength and conductivity, with the balance being Cu and inevitable impurities Based alloys are known. A Cu—Cr—Zr alloy is a precipitation hardening type alloy in which Cr or Zr, which is an alloy component, is precipitated alone or in the form of a compound in a Cu phase as a parent phase, and has a conductivity of 70% IACS or higher. A plate material having a strength of 500 N / mm 2 or more can be obtained.

しかし、Cu−Cr−Zr系合金は、Cu−Ni−Si系合金に代表される他の析出硬化型の合金と比較して、析出硬化による強度の大幅な上昇が見込めない。そのため、Cu−Cr−Zr系合金では、加工硬化による強度の向上を図っているが、強加工により過剰に蓄積された歪が曲げ加工性を著しく悪化させるので、高強度で良好な曲げ加工性を実現することは困難であり、特に、引張強さが600N/mmを超えると曲げ加工性が著しく悪化する。 However, the Cu—Cr—Zr-based alloy cannot be expected to have a significant increase in strength due to precipitation hardening as compared with other precipitation hardening type alloys typified by Cu—Ni—Si based alloys. Therefore, in Cu-Cr-Zr alloys, the strength is improved by work hardening. However, the strain accumulated excessively by the strong processing significantly deteriorates the bending workability, so that the bending workability is high and good. Is difficult to achieve, and particularly when the tensile strength exceeds 600 N / mm 2 , the bending workability is significantly deteriorated.

Cu−Cr−Zr系合金の冷間圧延の加工硬化による曲げ加工性の悪化を改善するために、0.1〜0.4質量%のCrと0.02〜0.2質量%のZrを含有し、残部がCuおよび不可避的な不純物からなる銅合金の素材を熱間圧延した後、加工度20〜60%の冷間圧延と350〜600℃で10〜600秒間加熱する析出硬化処理とを組み合わせた圧延・析出硬化工程を3回以上行うことにより、Cu−Cr−Zr系合金材の延性の低下を抑えて曲げ加工性の悪化を防止しながら強度を高める方法が提案されている(例えば、特許文献1参照)。   In order to improve the deterioration of bending workability due to work hardening of cold rolling of a Cu-Cr-Zr alloy, 0.1 to 0.4 mass% Cr and 0.02 to 0.2 mass% Zr are added. A copper alloy material containing Cu and the inevitable impurities contained therein, and after hot rolling, cold rolling with a workability of 20 to 60% and precipitation hardening treatment heating at 350 to 600 ° C. for 10 to 600 seconds; A method of increasing the strength while suppressing deterioration of the ductility of the Cu-Cr-Zr-based alloy material and preventing the deterioration of the bending workability by performing the rolling / precipitation hardening process combined with three or more times has been proposed ( For example, see Patent Document 1).

しかし、この方法では、Cu−Cr−Zr系合金材の曲げ加工性の悪化を防止しながら高める強度は、引張り強さ580〜600N/mm程度であり、それ以上に強度を高めるためにさらに加工硬化を行うと、急激に曲げ加工性が悪化する。 However, in this method, the strength to be increased while preventing the bending workability of the Cu—Cr—Zr alloy material from being deteriorated is about 580 to 600 N / mm 2 in tensile strength. When work hardening is performed, bending workability deteriorates rapidly.

一般に、銅合金板材の曲げ加工性を改善するためには、結晶粒を微細化することが有効である。そのため、銅合金板材の結晶粒の粗大化を防ぐために、溶体化処理を比較的低温域で行うのが望ましい。しかし、Cu−Cr−Zr系の銅合金板材の溶体化処理を低温域で行うと、全ての析出物が固溶する高温域ではないため、結晶粒を微細化することができても、CrとZrの固溶量が少なくなり、その後の時効処理による強度の向上が期待できない。   Generally, in order to improve the bending workability of a copper alloy sheet, it is effective to make crystal grains fine. Therefore, in order to prevent the crystal grains of the copper alloy sheet from becoming coarse, it is desirable to perform the solution treatment at a relatively low temperature range. However, when the solution treatment of the Cu—Cr—Zr-based copper alloy sheet material is performed in a low temperature region, it is not a high temperature region in which all precipitates are dissolved, so even if the crystal grains can be refined, Cr The amount of solid solution of Zr is reduced, and the strength cannot be improved by the subsequent aging treatment.

また、Cu−Zr合金は、Cu中へのZrの固溶度が極めて小さいため、Cu母相と、Cu母相およびCuZrからなる共晶相との二相組織を形成して、高強度と高導電性を兼ね備えた銅合金になる。このようなCu−Zr合金として、Cu−Zr二元系あるいはCu−Zr−B三元系からなる単純な合金組成において、Cu母相と、Cu母相とCu−Zr間あるいはCu−Zr−B間のいずれかまたは双方の化合物との共晶相とが互いに層状になる組織で構成され、隣り合うCu母相の結晶粒同士が断続的に接する二相組織を呈する銅合金が提案されている(例えば、特許文献2参照)。 Further, since the solid solubility of Zr in Cu is very small, the Cu—Zr alloy forms a two-phase structure of a Cu parent phase and a eutectic phase composed of a Cu parent phase and Cu 9 Zr 2 . The copper alloy has both high strength and high conductivity. As such a Cu—Zr alloy, in a simple alloy composition comprising a Cu—Zr binary system or a Cu—Zr—B ternary system, a Cu matrix, a Cu matrix and a Cu—Zr, or a Cu—Zr— A copper alloy has been proposed which is composed of a structure in which the eutectic phase with one or both of the compounds between B is layered with each other, and has a two-phase structure in which adjacent crystal grains of the Cu matrix are intermittently in contact with each other. (For example, refer to Patent Document 2).

特開2009−19239号公報(段落番号0008−0010)JP 2009-19239 A (paragraph number 0008-0010) 特開2005−281757号公報(段落番号0010−0011)Japanese Patent Laying-Open No. 2005-281757 (paragraph numbers 0010-0011)

しかし、特許文献2の銅合金を製造する方法では、引張強さが600N/mm以上且つ導電率が75%IACS以上の銅合金を製造することができず、また、過剰にZrを添加して共晶相の割合が増加することによって粗大な析出物が残存し、この析出物が割れの起点となって曲げ加工性の悪化を招いてしまう。 However, in the method for producing a copper alloy of Patent Document 2, a copper alloy having a tensile strength of 600 N / mm 2 or more and a conductivity of 75% IACS or more cannot be produced, and Zr is added excessively. When the proportion of the eutectic phase increases, coarse precipitates remain, and the precipitates become starting points of cracking, leading to deterioration of bending workability.

したがって、本発明は、このような従来の問題点に鑑み、高強度且つ高導電率で良好な曲げ加工性を有するCu−Cr−Zr系の銅合金板材およびその製造方法を提供することを目的とする。   Accordingly, in view of the above-described conventional problems, the present invention aims to provide a Cu—Cr—Zr-based copper alloy sheet material having high strength, high conductivity, and good bending workability, and a method for producing the same. And

本発明者らは、上記課題を解決するために鋭意研究した結果、0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより得られた鋳片を900〜1080℃に加熱した後、最終パスの圧延率を20%以上として熱間圧延を行い、次いで、圧延率80%以上で冷間圧延を行った後、350〜450℃で保持して時効処理を行い、次いで、圧延率0〜40%で仕上げ冷間圧延を行うことにより、高強度且つ高導電率で良好な曲げ加工性を有するCu−Cr−Zr系の銅合金板材を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention contain 0.25 to 1.5% by mass of Zr and 0.01 to 1.0% by mass of Cr, with the balance being Cu and inevitable impurities. After heating the cast slab obtained by melting and casting the raw material of the copper alloy having the composition consisting of 900 to 1080 ° C., hot rolling is performed with the rolling rate of the final pass being 20% or more, After performing cold rolling at a rolling rate of 80% or more, holding at 350 to 450 ° C., performing aging treatment, and then performing finish cold rolling at a rolling rate of 0 to 40%, high strength and high conductivity The present inventors have found that a Cu—Cr—Zr-based copper alloy sheet having good bending workability at a high rate can be produced, and the present invention has been completed.

すなわち、本発明による銅合金板材の製造方法は、0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより得られた鋳片を900〜1080℃に加熱した後、最終パスの圧延率を20%以上として熱間圧延を行い、次いで、圧延率80%以上で冷間圧延を行った後、350〜450℃で保持して時効処理を行い、次いで、圧延率0〜40%で仕上げ冷間圧延を行うことを特徴とする。   That is, the method for producing a copper alloy sheet according to the present invention has a composition containing 0.25 to 1.5% by mass of Zr and 0.01 to 1.0% by mass of Cr, with the balance being Cu and inevitable impurities. After the cast slab obtained by melting and casting the raw material of the copper alloy is heated to 900 to 1080 ° C., hot rolling is performed with the rolling rate of the final pass being 20% or more, and then the rolling rate is 80% or more. After the cold rolling, the aging treatment is performed by holding at 350 to 450 ° C., and then the finish cold rolling is performed at a rolling rate of 0 to 40%.

この銅合金板材の製造方法において、銅合金の原料の組成が、Ceを含む希土類金属とSi、Sn、Mg、BおよびPからなる群から選ばれる1種以上の元素を合計0.3質量%以下の範囲でさらに含んでもよい。また、時効処理の保持時間が1〜20時間であるのが好ましい。また、熱間圧延の終了温度を700〜800℃に設定し、熱間圧延終了後に急冷するのが好ましく、この急冷が水冷によって行われるのが好ましい。また、仕上げ冷間圧延を行う場合には、圧延率10〜30%で仕上げ冷間圧延を行うのが好ましく、その後、350〜425℃で低温焼鈍を行うのが好ましい。   In this copper alloy sheet manufacturing method, the composition of the raw material of the copper alloy is a total of 0.3% by mass of a rare earth metal containing Ce and one or more elements selected from the group consisting of Si, Sn, Mg, B and P. You may further include in the following ranges. Moreover, it is preferable that the retention time of an aging treatment is 1 to 20 hours. Moreover, it is preferable to set the end temperature of hot rolling to 700-800 degreeC, and to cool rapidly after completion | finish of hot rolling, and it is preferable that this rapid cooling is performed by water cooling. Moreover, when performing finish cold rolling, it is preferable to perform finish cold rolling at a rolling rate of 10 to 30%, and then it is preferable to perform low temperature annealing at 350 to 425 ° C.

また、本発明による銅合金板材は、0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、残部がCuおよび不可避不純物からなる組成を有し、引張強さが600N/mm以上、導電率が75%IACS以上であり、長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片についてJIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが1.0未満であることを特徴とする。 The copper alloy sheet according to the present invention contains 0.25 to 1.5% by mass of Zr and 0.01 to 1.0% by mass of Cr, and the balance is composed of Cu and inevitable impurities. A bending test piece having a strength of 600 N / mm 2 or more, an electrical conductivity of 75% IACS or more, and a longitudinal direction of TD (direction perpendicular to the rolling direction and the plate thickness direction) is 90 ° in accordance with JIS H3110. The ratio R / t between the minimum bending radius R at which no cracks occur after the W bending test is performed and the thickness t of the copper alloy sheet is less than 1.0.

この銅合金板材において、銅合金の組成が、Ceを含む希土類金属とSi、Sn、Mg、BおよびPからなる群から選ばれる1種以上の元素を合計0.3質量%以下の範囲でさらに含んでもよい。また、銅合金がCu母相と第二相からなる二相組織を有するのが好ましく、Cu母相の平均結晶粒径が5〜20μmであるのが好ましい。また、銅合金板材の表面に存在する共晶相の面積の比率が4〜25%であるのが好ましく、銅合金板材の表面に存在する1μm以下の微細共晶相の面積の割合が共晶相の全面積の40%以上であるのが好ましい。さらに、第二相が、Cu母相とCu−ZrおよびCu−Cr−Zrの少なくとも一方の化合物との共晶相と、Cu母相中に析出したCr、Zr、Cr−Zr、Cr−Cu、
Zr−CuおよびCr−Zr−Cuのいずれか1つ以上を含む化合物から構成されるのが好ましい。
In this copper alloy sheet, the composition of the copper alloy further includes a rare earth metal containing Ce and one or more elements selected from the group consisting of Si, Sn, Mg, B, and P in a total range of 0.3% by mass or less. May be included. Moreover, it is preferable that a copper alloy has a two-phase structure which consists of Cu mother phase and a 2nd phase, and it is preferable that the average crystal grain diameter of Cu mother phase is 5-20 micrometers. Moreover, it is preferable that the ratio of the area of the eutectic phase existing on the surface of the copper alloy sheet is 4 to 25%, and the ratio of the area of the fine eutectic phase of 1 μm 2 or less existing on the surface of the copper alloy sheet is the same. It is preferably 40% or more of the total area of the crystal phase. Further, the second phase includes a eutectic phase of a Cu matrix and at least one compound of Cu—Zr and Cu—Cr—Zr, and Cr, Zr, Cr—Zr, Cr—Cu precipitated in the Cu matrix. ,
It is preferably composed of a compound containing at least one of Zr—Cu and Cr—Zr—Cu.

本発明によれば、高強度且つ高導電率で良好な曲げ加工性を有するCu−Cr−Zr系の銅合金板材を製造することができる。特に、引張強さが600N/mm以上、導電率が75%IACS以上であり、長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片についてJIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが1.0未満になる良好な(BadWayの)曲げ加工性を有するCu−Cr−Zr系の銅合金板材を製造することができる。 According to the present invention, it is possible to produce a Cu—Cr—Zr-based copper alloy sheet having high strength and high electrical conductivity and good bending workability. In particular, a bending test piece having a tensile strength of 600 N / mm 2 or more, an electrical conductivity of 75% IACS or more, and a longitudinal direction of TD (direction perpendicular to the rolling direction and the plate thickness direction) conforms to JIS H3110. The ratio (R / t) between the minimum bending radius R at which cracking does not occur and the thickness t of the copper alloy sheet after the 90 ° W bending test is less than 1.0 has good (BadWay) bending workability A Cu—Cr—Zr-based copper alloy sheet can be produced.

本発明による銅合金板材の製造方法の実施の形態では、0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、必要に応じてCeを含む希土類金属とSi、Sn、Mg、BおよびPからなる群から選ばれる1種以上の元素を合計0.3質量%以下の範囲で含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより鋳片を得る工程(溶解・鋳造工程)と、得られた鋳片を900〜1080℃に加熱した後、最終パスの圧延率20%以上として5〜10パスの熱間圧延を行う工程(熱間圧延工程)と、この熱間圧延後に圧延率80%以上で冷間圧延を行う工程(冷間圧延工程)と、この冷間圧延後に350〜450℃で1〜20時間保持する時効処理を行う工程(時効処理工程)と、この時効処理後に圧延率0〜40%(「圧延率0%」は仕上げ冷間圧延を行わない場合を意味する。)で仕上げ冷間圧延を行う工程(仕上げ冷間圧延工程)を備えている。なお、仕上げ冷間圧延を行う場合には、圧延率10〜30%で仕上げ冷間圧延を行うのが好ましく、その後に350〜425℃で低温焼鈍を行う工程(低温焼鈍工程)を備えているのが好ましい。また、熱間圧延の前後には、必要に応じて面削を行い、熱処理後には、必要に応じて酸洗、研磨、脱脂を行ってもよい。   In the embodiment of the method for producing a copper alloy sheet according to the present invention, a rare earth metal containing 0.25 to 1.5% by mass of Zr and 0.01 to 1.0% by mass of Cr, and optionally containing Ce. And a raw material of a copper alloy having a composition of one or more elements selected from the group consisting of Si, Sn, Mg, B, and P in a total amount of 0.3% by mass or less, with the balance being Cu and inevitable impurities The process of obtaining a slab by melting and casting (melting / casting process), and heating the obtained slab to 900 to 1080 ° C., then the heat of 5 to 10 passes at a rolling rate of 20% or more in the final pass A step of performing cold rolling (hot rolling step), a step of performing cold rolling at a rolling rate of 80% or more after the hot rolling (cold rolling step), and 350 to 450 ° C. after the cold rolling at 1 to 350 ° C. A process of performing an aging treatment for 20 hours (aging process); After this aging treatment, there is provided a step (finishing cold rolling step) of performing finish cold rolling at a rolling rate of 0 to 40% ("rolling rate 0%" means not performing finish cold rolling). . In addition, when performing finish cold rolling, it is preferable to perform finish cold rolling at a rolling rate of 10 to 30%, and thereafter includes a step of performing low temperature annealing at 350 to 425 ° C. (low temperature annealing step). Is preferred. Further, before and after hot rolling, chamfering may be performed as necessary, and after heat treatment, pickling, polishing, and degreasing may be performed as necessary.

本発明による銅合金板材の製造方法の実施の形態では、Cu−Cr−Zr系の銅合金が従来よりも過剰なZrを含有しても、CuZrからなる強固な共晶相などの析出物を粗大化させずに微細に分散させることができるとともに、Cu母相の結晶粒を微細化することができる。そのため、本発明による銅合金板材の製造方法の実施の形態では、Cu母相と共晶相との二相組織による強度の向上と、析出硬化による強度の向上を組み合わせて、高強度且つ高導電率で良好な曲げ加工性を有するCu−Cr−Zr系の銅合金板材を製造することができる。 In the embodiment of the method for producing a copper alloy sheet according to the present invention, even if the Cu—Cr—Zr-based copper alloy contains an excessive amount of Zr than in the prior art, a strong eutectic phase composed of Cu 9 Zr 2, etc. The precipitate can be finely dispersed without being coarsened, and the crystal grains of the Cu matrix can be refined. Therefore, in the embodiment of the method for producing a copper alloy sheet according to the present invention, the strength improvement by the two-phase structure of the Cu parent phase and the eutectic phase is combined with the strength improvement by precipitation hardening, thereby providing high strength and high conductivity. Cu-Cr-Zr-based copper alloy sheets having good bending workability at a high rate can be produced.

以下、本発明による銅合金板材の製造方法の実施の形態の各工程について詳細に説明する。   Hereinafter, each process of embodiment of the manufacturing method of the copper alloy board | plate material by this invention is demonstrated in detail.

(合金組成)
銅合金板材の原料として、0.25〜1.5質量%、好ましくは0.3〜1.2質量%のZrと、0.01〜1.0質量%、好ましくは0.01〜0.5質量%のCrとを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を使用する。また、銅合金板材の強度を高めるために、Ceを含む希土類金属とSi、Sn、Mg、B及びPからなる群から選ばれる1種以上の元素を合計0.3質量%以下、好ましくは0.01〜0.3質量%の範囲でさらに含んでもよい。このように微量のZrやCrなどの添加元素がCu母相中に析出することによって、銅合金板材の強度を向上させることができる。
(Alloy composition)
As a raw material of the copper alloy sheet, 0.25 to 1.5% by mass, preferably 0.3 to 1.2% by mass of Zr, 0.01 to 1.0% by mass, preferably 0.01 to 0. A copper alloy raw material containing 5% by mass of Cr and having the balance of Cu and inevitable impurities is used. Further, in order to increase the strength of the copper alloy sheet, the total amount of Ce-containing rare earth metal and one or more elements selected from the group consisting of Si, Sn, Mg, B and P is 0.3% by mass or less, preferably 0 It may further be included in the range of 0.01 to 0.3% by mass. Thus, the strength of the copper alloy sheet can be improved by precipitation of a small amount of additive elements such as Zr and Cr in the Cu matrix.

銅合金の原料としてZrを添加するのは、Cu母相と共晶相との二相組織による強度の向上を図るためであり、Zr含有量を0.25〜1.5質量%としたのは、0.25質量%より少ないと、共晶相の割合が低くなって二相組織による強度の向上を十分に図ることができず、1.5質量%を超えると、粗大な共晶相が過剰に存在して曲げ加工性を著しく悪化させる原因となるからである。   The reason why Zr is added as a raw material for the copper alloy is to improve the strength by the two-phase structure of the Cu parent phase and the eutectic phase, and the Zr content is set to 0.25 to 1.5 mass%. If the amount is less than 0.25% by mass, the proportion of the eutectic phase becomes low, and the strength cannot be sufficiently improved by the two-phase structure. If the amount exceeds 1.5% by mass, the coarse eutectic phase This is because excessively present causes a marked deterioration in bending workability.

また、銅合金の原料としてCrを添加するのは、析出硬化による強度の向上を図るためであり、Cr含有量を0.01〜1.0質量%としたのは、0.01質量%より少ないと、十分な析出硬化が得られないために析出硬化による強度の向上を図ることができず、1.0質量%を超えると、Crの析出物が粗大化して割れの起点となり易いからである。また、Cr含有量を0.5質量%より多くしてもさらに強度を向上させることができないので、Cr含有量を0.01〜0.5質量%の範囲にするのが好ましい。   The reason why Cr is added as a raw material for the copper alloy is to improve the strength by precipitation hardening. The reason why the Cr content is 0.01 to 1.0% by mass is from 0.01% by mass. If the amount is too small, sufficient precipitation hardening cannot be obtained, so that the strength cannot be improved by precipitation hardening. If the amount exceeds 1.0% by mass, the Cr precipitate is coarsened and tends to be the starting point of cracking. is there. Further, even if the Cr content is more than 0.5% by mass, the strength cannot be further improved, so the Cr content is preferably in the range of 0.01 to 0.5% by mass.

さらに、銅合金の原料としてCeを含む希土類金属とSi、Sn、Mg、B及びPからなる群から選ばれる1種以上の元素を添加するのは、これらの析出強化元素により、さらに析出硬化による強度の向上を図るためであり、0.01質量%より少ないと、さらに析出硬化による強度の向上を図ることができず、0.3質量%を超えると、強度の向上に寄与しない粗大な析出物が増加して曲げ加工性を悪化させるからである。   Furthermore, the addition of one or more elements selected from the group consisting of rare earth metals containing Ce and Si, Sn, Mg, B, and P as raw materials for copper alloys is due to precipitation hardening by these precipitation strengthening elements. This is to improve the strength. If the content is less than 0.01% by mass, the strength cannot be further improved by precipitation hardening. If the content exceeds 0.3% by mass, coarse precipitation that does not contribute to the improvement in strength. This is because the number of objects increases and bending workability deteriorates.

(溶解・鋳造工程)
高周波真空溶解炉を用いて上記の組成の銅合金の原料を溶解した後、鋳片を製造する。
(Melting and casting process)
A slab is manufactured after melt | dissolving the raw material of the copper alloy of said composition using a high frequency vacuum melting furnace.

(熱間圧延工程)
得られた鋳片を900〜1080℃に設定した炉に30分〜1時間保持して加熱する。この加熱により、鋳造時に析出した粗大なZrやCrなどの添加元素を一旦Cu母相中に強制的に固溶させて溶体化の効果を得ることができる。この加熱の適正な温度は、共晶温度である980℃近傍であるのが好ましいが、銅合金の結晶粒が粗大化するため、930〜960℃の範囲であるのがさらに好ましい。このように900〜1080℃の温度域で加熱した後、熱間圧延を複数パス、好ましくは5〜10パス程度行う。この熱間圧延の最終パスは、700〜800℃の温度域において圧延率20%以上に設定して行う。最終パスの圧延率を20%以上に設定するのは、大きな歪を形成させて結晶粒の成長を抑制して、結晶粒を微細化する効果を得るためである。この熱間圧延の終了直後の温度を再結晶温度である700〜800℃に保ち、その後、水冷による急冷を行うのが好ましい。
(Hot rolling process)
The obtained slab is heated for 30 minutes to 1 hour in a furnace set at 900 to 1080 ° C. By this heating, additive elements such as coarse Zr and Cr deposited during casting can be forcibly solid-solved in the Cu matrix once to obtain a solution effect. The appropriate temperature for this heating is preferably around 980 ° C., which is the eutectic temperature, but it is more preferably in the range of 930-960 ° C. because the crystal grains of the copper alloy become coarse. Thus, after heating in a temperature range of 900 to 1080 ° C., hot rolling is performed for a plurality of passes, preferably about 5 to 10 passes. The final pass of this hot rolling is performed at a rolling rate of 20% or more in a temperature range of 700 to 800 ° C. The reason why the rolling rate of the final pass is set to 20% or more is to obtain an effect of forming a large strain and suppressing the growth of crystal grains to refine the crystal grains. It is preferable to keep the temperature immediately after the end of this hot rolling at the recrystallization temperature of 700 to 800 ° C. and then perform rapid cooling by water cooling.

(冷間圧延工程)
熱間圧延後に圧延率80%以上で冷間圧延を行う。この冷間圧延により、Cu母相の粒界に偏析した共晶相を均一に分散させる効果と、Cu母相中に固溶したCrやZrなどの添加元素のいずれかを含む化合物を効率良く析出させる効果を得ることができる。共晶相をさらに分散させるためには、冷間圧延の圧延率を90%以上にするのが好ましく、95%以上するのがさらに好ましい。
(Cold rolling process)
Cold rolling is performed at a rolling rate of 80% or more after hot rolling. By this cold rolling, the effect of uniformly dispersing the eutectic phase segregated at the grain boundaries of the Cu matrix and the compound containing any of the additive elements such as Cr and Zr dissolved in the Cu matrix is efficiently obtained. The effect of precipitating can be obtained. In order to further disperse the eutectic phase, the rolling rate of cold rolling is preferably 90% or more, and more preferably 95% or more.

(時効処理工程)
冷間圧延後に350〜450℃で1〜20時間保持する時効処理を行う。この時効処理により、Cu母相中に固溶したCrやZrなどの添加元素の単体またはいずれかを含む化合物を析出させ、強度と導電率を向上させることができる。これらの特性の向上させるためには、350〜450℃で時効処理を行うのが好ましく、350℃より低いと、析出に要する時間が極端に長くなり、450℃より高いと、析出物が粗大化して強度の低下と曲げ加工性の悪化を招く。また、効率良く析出させて結晶粒の粗大化を防ぎ、高強度且つ高導電率で良好な曲げ加工性を有する銅合金板材を得るためには、時効処理を375〜425℃で行うのが好ましい。
(Aging process)
After cold rolling, an aging treatment is performed at 350 to 450 ° C. for 1 to 20 hours. By this aging treatment, a compound containing a single element or any of additive elements such as Cr and Zr dissolved in the Cu matrix can be precipitated, and the strength and conductivity can be improved. In order to improve these characteristics, it is preferable to perform an aging treatment at 350 to 450 ° C. When the temperature is lower than 350 ° C., the time required for precipitation becomes extremely long. When the temperature is higher than 450 ° C., the precipitate becomes coarse. As a result, the strength decreases and bending workability deteriorates. Moreover, in order to precipitate efficiently and prevent the coarsening of a crystal grain and to obtain the copper alloy board | plate material which has favorable bending workability with high intensity | strength and high electrical conductivity, it is preferable to perform an aging treatment at 375-425 degreeC. .

(仕上げ冷間圧延工程)
時効処理後にさらに強度の向上を図るために圧延率0〜40%、好ましくは10〜30%で仕上げ冷間圧延を行う。なお、冷間圧延の圧延率の増大に伴って析出物の周辺に蓄積される転位により曲げ加工性が悪化するので、高強度と良好な曲げ加工性を両立させるのは困難であるため、曲げ加工性の極端な悪化を防ぐために、仕上げ冷間圧延の圧延率を30%以下にするのが好ましい。
(Finish cold rolling process)
In order to further improve the strength after the aging treatment, finish cold rolling is performed at a rolling rate of 0 to 40%, preferably 10 to 30%. Note that bending workability deteriorates due to dislocations accumulated around the precipitates as the rolling rate of cold rolling increases, so it is difficult to achieve both high strength and good bending workability. In order to prevent extreme deterioration in workability, it is preferable to set the rolling rate of finish cold rolling to 30% or less.

(低温焼鈍工程)
仕上げ冷間圧延を行う場合には、仕上げ冷間圧延後に350〜425℃で低温焼鈍を行ってもよい。この低温焼鈍により、銅合金板材の強度をほとんど低下させずに、残留応力の低減による曲げ加工性を向上させることができるとともに、導電率を上昇させることができる。この低温焼鈍の温度が高過ぎると、短時間で軟化して特性のバラツキが生じ易くなり、低過ぎると、これらの特性の改善の効果を十分に得ることができない。
(Low temperature annealing process)
When performing finish cold rolling, you may perform low temperature annealing at 350-425 degreeC after finish cold rolling. By this low-temperature annealing, the bending workability due to the reduction of residual stress can be improved and the electrical conductivity can be increased without substantially reducing the strength of the copper alloy sheet. If the temperature of this low-temperature annealing is too high, it will soften in a short time and tend to cause variations in characteristics, and if it is too low, the effect of improving these characteristics cannot be obtained sufficiently.

上述した銅合金板材の製造方法の実施の形態により、0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、残部がCuおよび不可避不純物からなる組成を有し、引張強さが600N/mm以上(好ましくは610N/mm以上、さらに好ましくは620N/mm以上)、導電率が75%IACS以上であり、長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片についてJIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが1.0未満である銅合金板材を製造することができる。この銅合金板材の銅合金の組成が、Ceを含む希土類金属とSi、Sn、Mg、BおよびPからなる群から選ばれる1種以上の元素を合計0.3質量%以下の範囲でさらに含んでもよい。また、この銅合金板材の銅合金がCu母相と第二相からなる二相組織を有し、Cu母相の平均結晶粒径が5〜20μmになるようにすることができる。 According to the embodiment of the method for producing a copper alloy sheet described above, a composition containing 0.25 to 1.5 mass% of Zr and 0.01 to 1.0 mass% of Cr, with the balance being Cu and inevitable impurities. It has a tensile strength of 600N / mm 2 or more (preferably 610N / mm 2 or more, more preferably 620N / mm 2 or higher), and a conductivity of 75% IACS or more, longitudinally TD (rolling direction and the plate The ratio of the minimum bending radius R at which cracking does not occur and the thickness t of the copper alloy sheet material R / after bending the 90 ° W bending test in accordance with JIS H3110 with respect to the bending test piece in the direction perpendicular to the thickness direction R / A copper alloy sheet having a t of less than 1.0 can be produced. The copper alloy composition of the copper alloy sheet further includes a rare earth metal containing Ce and one or more elements selected from the group consisting of Si, Sn, Mg, B, and P in a range of 0.3 mass% or less in total. But you can. Moreover, the copper alloy of this copper alloy plate material can have a two-phase structure composed of a Cu matrix and a second phase, and the average crystal grain size of the Cu matrix can be 5 to 20 μm.

なお、Cu−Zr二元系状態図およびCu−Cr−Zr三元系状態図から、0.172〜12.27質量%のZrと0.01〜0.5質量%のCrを含み、残部がCuからなる銅合金では、二相組織の第二相が、Cu母相とCu−Zr(CuZr)およびCu−Cr−Zrの少なくとも一方の化合物との共晶相からなることが推測される。また、微量のCrおよびZrがCuに固溶するため、Cu母相中にCr、Zr、Cr−Zr、Cr−Cu、Zr−Cu、Cr−Zr−Cuの少なくとも1つ以上の化合物が析出すると推測され、これらも第二相に含まれる。 From the Cu-Zr binary phase diagram and the Cu-Cr-Zr ternary phase diagram, it contains 0.172-12.27 mass% Zr and 0.01-0.5 mass% Cr, and the balance In the copper alloy in which Cu is made of Cu, the second phase of the two-phase structure may be composed of a eutectic phase of a Cu parent phase and at least one compound of Cu—Zr (Cu 9 Zr 2 ) and Cu—Cr—Zr. Guessed. In addition, since a small amount of Cr and Zr are dissolved in Cu, at least one compound of Cr, Zr, Cr—Zr, Cr—Cu, Zr—Cu, and Cr—Zr—Cu is precipitated in the Cu matrix. It is speculated that these are also included in the second phase.

以下、本発明による銅合金板材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the copper alloy sheet material and the manufacturing method thereof according to the present invention will be described in detail.

[実施例1〜11]
0.53質量%のZrと0.86質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(実施例1)、1.05質量%のZrと0.31質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(実施例2)、1.38質量%のZrと0.02質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(実施例3)、0.45質量%のZrと0.11質量%のCrと0.18質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例4)、0.40質量%のZrと0.09質量%のCrと0.14質量%のSnを含み、残部がCuおよび不可避不純物からなる銅合金(実施例5)、0.39質量%のZrと0.14質量%のCrと0.04質量%のMgを含み、残部がCuおよび不可避不純物からなる銅合金(実施例6)、0.46質量%のZrと0.13質量%のCrと0.05質量%のBを含み、残部がCuおよび不可避不純物からなる銅合金(実施例7)、0.34質量%のZrと0.10質量%のCrと0.03質量%のPを含み、残部がCuおよび不可避不純物からなる銅合金(実施例8)、0.41質量%のZrと0.08質量%のCrと0.08質量%のCeを含み、残部がCuおよび不可避不純物からなる銅合金(実施例9)、0.28質量%のZrと0.51質量%のCrと0.22質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例10)、0.37質量%のZrと0.49質量%のCrと0.17質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(実施例11)の原料をそれぞれ溶製し、高周波真空溶解炉を用いて鋳造して得られた鋳塊から鋳片を切り出した。
[Examples 1 to 11]
A copper alloy (Example 1) containing 0.53% by mass of Zr and 0.86% by mass of Cr, with the balance being Cu and inevitable impurities, 1.05% by mass of Zr and 0.31% by mass of Cr A copper alloy (Example 2) containing Cu and unavoidable impurities in the balance, and a copper alloy containing 1.38% by mass of Zr and 0.02% by mass of Cr and the balance consisting of Cu and unavoidable impurities (Example 3) ), A copper alloy containing 0.45% by mass of Zr, 0.11% by mass of Cr and 0.18% by mass of Si, the balance being Cu and inevitable impurities (Example 4), 0.40% by mass of A copper alloy (Example 5) containing Zr, 0.09 mass% Cr and 0.14 mass% Sn with the balance being Cu and inevitable impurities, 0.39 mass% Zr and 0.14 mass% Contains Cr and 0.04 mass% Mg, with the balance being Cu and impossibility Copper alloy consisting of impurities (Example 6), copper alloy containing 0.46% by mass of Zr, 0.13% by mass of Cr and 0.05% by mass of B, with the balance being Cu and inevitable impurities (Example) 7), a copper alloy containing 0.34% by mass of Zr, 0.10% by mass of Cr and 0.03% by mass of P, with the balance being Cu and inevitable impurities (Example 8), 0.41% by mass Of Zr, 0.08% by mass of Cr and 0.08% by mass of Ce, with the balance being Cu and inevitable impurities (Example 9), 0.28% by mass of Zr and 0.51% by mass Copper alloy containing 0.22% by mass of Cr and 0.22% by mass of Si, the balance being Cu and inevitable impurities (Example 10), 0.37% by mass of Zr, 0.49% by mass of Cr and 0.17% by mass A copper alloy containing Si and the balance consisting of Cu and inevitable impurities The raw material of 11) were melted respectively, were cut slab from the resulting ingot by casting using a high frequency vacuum melting furnace.

次いで、それぞれの鋳片をそれぞれ950℃(実施例1、2、7〜11)、900℃(実施例3)、970℃(実施例4)、1000℃(実施例5)、925℃(実施例6)に設定した炉に30分間保持して加熱した後、それぞれの加熱保持温度を開始温度として熱間圧延を8パス行った。なお、それぞれの熱間圧延の最終パスは、731℃で圧延率25%(実施例1)、722℃で圧延率25%(実施例2)、713℃で圧延率30%(実施例3)、728℃で圧延率25%(実施例4)、715℃で圧延率25%(実施例5)、710℃で圧延率25%(実施例6)、724℃で圧延率20%(実施例7)、730℃で圧延率30%(実施例8)、721℃で圧延率35%(実施例9)、762℃で圧延率25%(実施例10)、746℃で圧延率25%(実施例11)に設定して行った。その後、それぞれ水冷による急冷を行った。   Subsequently, each slab was 950 ° C. (Examples 1, 2, 7 to 11), 900 ° C. (Example 3), 970 ° C. (Example 4), 1000 ° C. (Example 5), and 925 ° C. (implemented). After heating for 30 minutes in the furnace set in Example 6), hot rolling was performed for 8 passes with each heating and holding temperature as the starting temperature. In addition, the final pass of each hot rolling is a rolling rate of 25% (Example 1) at 731 ° C., a rolling rate of 25% (Example 2) at 722 ° C., and a rolling rate of 30% at 713 ° C. (Example 3). The rolling rate is 25% at 728 ° C (Example 4), the rolling rate is 25% at 715 ° C (Example 5), the rolling rate is 25% at 710 ° C (Example 6), and the rolling rate is 20% at 724 ° C (Example). 7), rolling rate 30% at 730 ° C. (Example 8), rolling rate 35% at 721 ° C. (Example 9), rolling rate 25% at 762 ° C. (Example 10), rolling rate 25% at 746 ° C. ( Example 11) was performed. Thereafter, each was quenched by water cooling.

次いで、それぞれ圧延率97.1%(実施例1〜3)、90.0%(実施例4〜7、9)、95.0%(実施例8、10、11)で冷間圧延を行った。   Next, cold rolling was performed at a rolling rate of 97.1% (Examples 1 to 3), 90.0% (Examples 4 to 7, 9), and 95.0% (Examples 8, 10, and 11), respectively. It was.

次いで、それぞれ400℃で5時間(実施例1、2、4、5)、425℃で11時間(実施例3)、350℃で20時間(実施例6)、425℃で3時間(実施例7、10)、375℃で17時間(実施例8)、450℃で2時間(実施例9)、375℃で8時間(実施例11)保持して時効処理を行った。   Then, 400 ° C for 5 hours (Examples 1, 2, 4, 5), 425 ° C for 11 hours (Example 3), 350 ° C for 20 hours (Example 6), and 425 ° C for 3 hours (Example) 7, 10) 17 hours (Example 8) at 375 ° C., 2 hours at 450 ° C. (Example 9), and 8 hours (Example 11) at 375 ° C. for aging treatment.

なお、実施例10および11では、時効処理後に圧延率30%で仕上げ圧延を行い、その後、それぞれ400℃で30分間(実施例10)、350℃で1時間(実施例11)保持して低温焼鈍を行った。   In Examples 10 and 11, finish rolling was performed at a rolling rate of 30% after the aging treatment, and then kept at 400 ° C. for 30 minutes (Example 10) and 350 ° C. for 1 hour (Example 11), respectively. Annealing was performed.

これらの実施例で得られた板厚0.2mmの銅合金板材から試料を採取し、結晶粒組織、平均結晶粒径、共晶相の比率、微細共晶相の割合、引張強さ、導電率、曲げ加工性の評価を以下のように行った。   Samples were taken from the 0.2 mm thick copper alloy sheets obtained in these examples, and the grain structure, average crystal grain size, eutectic phase ratio, fine eutectic phase ratio, tensile strength, conductivity The rate and bending workability were evaluated as follows.

まず、得られた銅合金板材の試料の表面(圧延面)を研磨した後、エッチングし、その表面を光学顕微鏡で結晶粒組織を観察して、JIS H0501の切断法により平均結晶粒径を求めた。その結果、銅合金板材の試料は、Cu母相と第二相からなる二相組織を有し、そのCu母相の平均結晶粒径は、それぞれ6μm(実施例1)、9μm(実施例2、4、9)、8μm(実施例3)、11μm(実施例5〜7)、12μm(実施例8)、13μm(実施例10)、16μm(実施例11)であった。   First, after polishing the surface (rolled surface) of the sample of the obtained copper alloy sheet material, the surface was etched, the crystal grain structure was observed with an optical microscope, and the average grain size was determined by the cutting method of JIS H0501. It was. As a result, the sample of the copper alloy sheet has a two-phase structure composed of a Cu matrix and a second phase, and the average crystal grain sizes of the Cu matrix are 6 μm (Example 1) and 9 μm (Example 2), respectively. 4, 9), 8 μm (Example 3), 11 μm (Examples 5 to 7), 12 μm (Example 8), 13 μm (Example 10), and 16 μm (Example 11).

また、得られた銅合金板材の試料の表面(圧延面)を研磨した後、エッチングし、その表面の100μm×50μmの測定領域について電子プローブ微量分析を行った。この電子プローブ微量分析では、100μm×50μmの測定領域を1μm×1μmの5000個の正方形の微小領域に分割し、電子プローブマイクロアナライザ(EPMA)を用いて、加速電圧15kV、照射電流300nA、積算速度30ms、プローブ径1μmの条件で、各々の微小領域の中心にプローブ径1μmの電子線を照射して、それぞれのZr元素の積分強度を測定した。この電子プローブ微量分析によってZr元素が検出された微小領域を共晶相が存在する微小領域として、そのZr元素が検出された微小領域の合計数を求め、その合計数を測定領域内の微小領域の数(5000)で割った値を共晶相の比率(測定領域の全面積に対する共晶相が占める面積の比率)とした。また、ある微小領域(1つの微小領域)でZr元素が検出され、その微小領域を取り囲む8つの微小領域(上下左右の4つの微小領域と対角線方向に存在する4つの微小領域)でZr元素が検出されなかった場合に、そのZr元素が検出された微小領域に1μm以下の微細共晶相が存在するとし、そのような1μm以下の微細共晶相が存在する微小領域の合計数をZr元素が検出された微小領域の合計数で割った値を1μm以下の微細共晶相の割合α/X(αは1μm以下の微細共晶相が占める面積、Xは共晶相が占める合計面積)として評価した。その結果、共晶相の比率は、それぞれ4.8%(実施例1)、16.9%(実施例2)、21.3%(実施例3)、4.1%(実施例4)、5.3%(実施例5)、4.3%(実施例6)、8.5%(実施例7)、5.1%(実施例8)、6.7%(実施例9)、10.3%(実施例10)、12.7%(実施例11)であり、微細共晶相の割合(α/X)は、それぞれ71%(実施例1)、66%(実施例2)、51%(実施例3)、53%(実施例4)、50%(実施例5)、55%(実施例6)、54%(実施例7)、47%(実施例8)、60%(実施例9)、65%(実施例10)、68%(実施例11)であった。 Moreover, after grind | polishing after etching the surface (rolling surface) of the sample of the obtained copper alloy board | plate material, the electron probe microanalysis was performed about the measurement area | region of 100 micrometers x 50 micrometers of the surface. In this electron probe microanalysis, a measurement area of 100 μm × 50 μm is divided into 5000 square areas of 1 μm × 1 μm, and an electron probe microanalyzer (EPMA) is used to accelerate voltage 15 kV, irradiation current 300 nA, integration speed Under the conditions of 30 ms and a probe diameter of 1 μm, an electron beam with a probe diameter of 1 μm was irradiated to the center of each minute region, and the integrated intensity of each Zr element was measured. Using the micro area where the Zr element is detected by the microanalysis of the electron probe as the micro area where the eutectic phase is present, the total number of micro areas where the Zr element is detected is obtained, and the total number is calculated as the micro area within the measurement area. The value divided by the number of (5000) was the ratio of the eutectic phase (the ratio of the area occupied by the eutectic phase to the total area of the measurement region). Further, the Zr element is detected in a certain minute region (one minute region), and the Zr element is detected in eight minute regions surrounding the minute region (four minute regions on the upper, lower, left, and right sides and four minute regions existing diagonally). If not detected, as its Zr elements are present 1 [mu] m 2 or less fine eutectic phase to the detected small area, the total number of micro-regions such 1 [mu] m 2 or less fine eutectic phase is present The ratio of the fine eutectic phase of 1 μm 2 or less α / X (α is the area occupied by the fine eutectic phase of 1 μm 2 or less, X is the eutectic phase (Total area occupied). As a result, the ratio of the eutectic phase was 4.8% (Example 1), 16.9% (Example 2), 21.3% (Example 3), and 4.1% (Example 4), respectively. 5.3% (Example 5), 4.3% (Example 6), 8.5% (Example 7), 5.1% (Example 8), 6.7% (Example 9) 10.3% (Example 10) and 12.7% (Example 11), and the proportion of the eutectic phase (α / X) was 71% (Example 1) and 66% (Example), respectively. 2), 51% (Example 3), 53% (Example 4), 50% (Example 5), 55% (Example 6), 54% (Example 7), 47% (Example 8) 60% (Example 9), 65% (Example 10), and 68% (Example 11).

また、銅合金板材の引張強さとして、得られた銅合金板材の試料から長手方向が圧延方向(LD)の引張試験用の試験片(JIS Z2241の5号試験片)をそれぞれ3個ずつ採取し、JIS Z2241に準拠した引張試験を行い、平均値によって引張強さを求めた。その結果、引張強さは、それぞれ622N/mm(実施例1)、620N/mm(実施例2)、617N/mm(実施例3)、613N/mm(実施例4)、621N/mm(実施例5)、618N/mm(実施例6)、628N/mm(実施例7)、620N/mm(実施例8)、633N/mm(実施例9)、618N/mm(実施例10)、631N/mm(実施例11)であった。 Also, as the tensile strength of the copper alloy sheet, three specimens for tensile testing (JIS Z2241 No. 5 specimen) each having a longitudinal direction in the rolling direction (LD) were taken from the obtained copper alloy sheet sample. Then, a tensile test based on JIS Z2241 was performed, and the tensile strength was obtained by an average value. As a result, the tensile strengths were 622 N / mm 2 (Example 1), 620 N / mm 2 (Example 2), 617 N / mm 2 (Example 3), 613 N / mm 2 (Example 4), and 621 N, respectively. / Mm 2 (Example 5), 618 N / mm 2 (Example 6), 628 N / mm 2 (Example 7), 620 N / mm 2 (Example 8), 633 N / mm 2 (Example 9), 618 N / Mm 2 (Example 10) and 631 N / mm 2 (Example 11).

また、銅合金板材の試料の導電率は、JIS H0505の導電率測定方法に従って測定した。その結果、導電率は、それぞれ76.3%IACS(実施例1)、75.2%IACS(実施例2)、77.1%IACS(実施例3)、78.2%IACS(実施例4)、75.1%IACS(実施例5)、76.1%IACS(実施例6)、75.5%IACS(実施例7)、77.5%IACS(実施例8)、75.3%IACS(実施例9)、77.6%IACS(実施例10)、76.1%IACS(実施例11)であった。   Moreover, the electrical conductivity of the sample of the copper alloy sheet was measured according to the electrical conductivity measurement method of JIS H0505. As a result, the electrical conductivity was 76.3% IACS (Example 1), 75.2% IACS (Example 2), 77.1% IACS (Example 3), and 78.2% IACS (Example 4), respectively. ), 75.1% IACS (Example 5), 76.1% IACS (Example 6), 75.5% IACS (Example 7), 77.5% IACS (Example 8), 75.3% IACS (Example 9), 77.6% IACS (Example 10), and 76.1% IACS (Example 11).

また、銅合金板材の曲げ加工性を評価するために、銅合金板材から長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片(幅10mm)をそれぞれ3個ずつ採取し、それぞれの試験片について、JIS H3110に準拠した90°W曲げ試験を行った。これらの試験後の試験片の各々について、光学顕微鏡によって曲げ加工部の表面および断面をそれぞれ20倍および50倍の倍率で観察して、割れが発生しない最小曲げ半径Rを求め、この最小曲げ半径Rを銅合金板材の板厚tで除することによって、TDのR/t値を求めた。それぞれ3個の試験片のうち、それぞれ最も悪い結果の試験片の結果を採用してR/t値とした。その結果、実施例1、2および4〜9では、R/t=0.0であり、優れた曲げ加工性を有していた。また、実施例10では、R/t=0.5であり、実施例3および11では、R/t=0.6であった。   Further, in order to evaluate the bending workability of the copper alloy sheet, three bending test pieces (width 10 mm) each having a longitudinal direction TD (direction perpendicular to the rolling direction and the plate thickness direction) from the copper alloy sheet The samples were collected and subjected to a 90 ° W bending test in accordance with JIS H3110 for each test piece. For each of the test specimens after these tests, the surface and cross section of the bent portion were observed with an optical microscope at a magnification of 20 times and 50 times, respectively, to obtain a minimum bending radius R at which no cracks occurred, and this minimum bending radius. The R / t value of TD was determined by dividing R by the plate thickness t of the copper alloy sheet. Of the three test pieces, the result of the worst test piece was adopted as the R / t value. As a result, in Examples 1, 2, and 4 to 9, R / t = 0.0, and excellent bending workability was obtained. In Example 10, R / t = 0.5, and in Examples 3 and 11, R / t = 0.6.

[比較例1〜11]
0.21質量%のZrと0.14質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(比較例1)、1.65質量%のZrと0.43質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(比較例2)、0.48質量%のZrと1.25質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(比較例3)、1.05質量%のZrと0.31質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(比較例4〜8)、0.40質量%のZrと0.13質量%のCrと0.44質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(比較例9)、0.28質量%のZrと0.15質量%のCrと0.22質量%のSiを含み、残部がCuおよび不可避不純物からなる銅合金(比較例10)、0.11質量%のZrと0.23質量%のCrを含み、残部がCuおよび不可避不純物からなる銅合金(比較例11)をそれぞれ溶製し、高周波真空溶解炉を用いて鋳造して得られた鋳塊から鋳片を切り出した。
[Comparative Examples 1 to 11]
A copper alloy (Comparative Example 1) containing 0.21% by mass of Zr and 0.14% by mass of Cr, with the balance being Cu and inevitable impurities, 1.65% by mass of Zr and 0.43% by mass of Cr. A copper alloy (comparative example 2) containing Cu and inevitable impurities, and a copper alloy containing 0.48% by mass of Zr and 1.25% by mass of Cr with the balance being Cu and inevitable impurities (comparative example 3) ), A copper alloy containing 1.05 mass% Zr and 0.31 mass% Cr with the balance being Cu and inevitable impurities (Comparative Examples 4 to 8), 0.40 mass% Zr and 0.13 mass % Copper and 0.44% by mass of Si, with the balance being Cu and inevitable impurities (Comparative Example 9), 0.28% by mass of Zr, 0.15% by mass of Cr and 0.22% by mass % Copper with the balance being Cu and inevitable impurities A copper alloy (Comparative Example 11) containing gold (Comparative Example 10), 0.11% by mass of Zr and 0.23% by mass of Cr, and the balance of Cu and inevitable impurities was respectively melted, and a high-frequency vacuum melting furnace A slab was cut out from an ingot obtained by casting using the above.

次いで、それぞれの鋳片をそれぞれ950℃(比較例1、3〜6、8〜11)、900℃(比較例2)、850℃(比較例7)に設定した炉に30分間保持して加熱した後、それぞれの加熱温度を開始温度として熱間圧延を8パス行った。なお、それぞれの熱間圧延の最終パスは、712℃で圧延率25%(比較例1)、705℃で圧延率30%(比較例2)、742℃で圧延率25%(比較例3)、735℃で圧延率25%(比較例4)、718℃で圧延率25%(比較例5)、718℃で圧延率25%(比較例6)、718℃で圧延率25%(比較例7)、745℃で圧延率15%(比較例8)、733℃で圧延率25%(比較例9)、738℃で圧延率25%(比較例10)、727℃で圧延率25%(比較例11)に設定して行った。その後、それぞれ水冷による急冷を行った。   Subsequently, each slab was heated for 30 minutes in a furnace set at 950 ° C. (Comparative Examples 1, 3-6, 8-11), 900 ° C. (Comparative Example 2), and 850 ° C. (Comparative Example 7), respectively. After that, hot rolling was performed for 8 passes with each heating temperature as a starting temperature. The final pass of each hot rolling was 712 ° C. with a rolling rate of 25% (Comparative Example 1), 705 ° C. with a rolling rate of 30% (Comparative Example 2), and 742 ° C. with a rolling rate of 25% (Comparative Example 3). The rolling rate is 25% at 735 ° C (Comparative Example 4), the rolling rate is 25% at 718 ° C (Comparative Example 5), the rolling rate is 25% at 718 ° C (Comparative Example 6), and the rolling rate is 25% at 718 ° C (Comparative Example). 7) Rolling rate 15% at 745 ° C. (Comparative Example 8), rolling rate 25% at 733 ° C. (Comparative Example 9), rolling rate 25% at 738 ° C. (Comparative Example 10), rolling rate 25% at 727 ° C. Comparative Example 11) was performed. Thereafter, each was quenched by water cooling.

次いで、それぞれ圧延率90.5%(比較例1)、99.2%(比較例2)、83.0%(比較例3)、62.5%(比較例4)、97.1%(比較例5〜8)、90.0%(比較例9)、95.0%(比較例10、11)で冷間圧延を行った。   Next, the rolling ratio was 90.5% (Comparative Example 1), 99.2% (Comparative Example 2), 83.0% (Comparative Example 3), 62.5% (Comparative Example 4), 97.1% ( Cold rolling was performed at Comparative Examples 5 to 8), 90.0% (Comparative Example 9), and 95.0% (Comparative Examples 10 and 11).

次いで、それぞれ375℃で15時間(比較例1)、450℃で3時間(比較例2)、400℃で5時間(比較例3、7〜9)、400℃で3時間(比較例4)、475℃で1時間(比較例5)、325℃で20時間(比較例6)、425℃で3時間(比較例10)、400℃で2時間(比較例11)保持して時効処理を行った。   Next, 15 hours at 375 ° C. (Comparative Example 1), 3 hours at 450 ° C. (Comparative Example 2), 5 hours at 400 ° C. (Comparative Examples 3, 7-9), 3 hours at 400 ° C. (Comparative Example 4) Aging at 475 ° C. for 1 hour (Comparative Example 5), 325 ° C. for 20 hours (Comparative Example 6), 425 ° C. for 3 hours (Comparative Example 10), and 400 ° C. for 2 hours (Comparative Example 11) went.

なお、比較例10では、時効処理後に圧延率50%で仕上げ冷間圧延を行い、その後、それぞれ400℃で1時間保持して低温焼鈍を行った。   In Comparative Example 10, finish cold rolling was performed at a rolling rate of 50% after the aging treatment, and thereafter, low temperature annealing was performed by holding at 400 ° C. for 1 hour.

これらの比較例で得られた板厚0.2mmの銅合金板材から試料を採取し、実施例1〜11と同様の方法により結晶粒組織、平均結晶粒径、共晶相の比率、微細共晶相の割合、引張強さ、導電率、曲げ加工性の評価を行った。   Samples were taken from the 0.2 mm-thick copper alloy sheets obtained in these comparative examples, and crystal grain structure, average crystal grain size, eutectic phase ratio, fine coexistence were obtained in the same manner as in Examples 1-11. The ratio of crystal phase, tensile strength, electrical conductivity, and bending workability were evaluated.

その結果、銅合金板材の試料は、Cu母相と第二相からなる二相組織を有し、そのCu母相の平均結晶粒径は、それぞれ8μm(比較例1)、24μm(比較例2)、31μm(比較例3)、20μm(比較例4)、29μm(比較例5)、8μm(比較例1)、10μm(比較例7)、35μm(比較例8)、30μm(比較例9)、18μm(比較例10)、11μm(比較例11)であった。   As a result, the sample of the copper alloy sheet has a two-phase structure composed of a Cu matrix and a second phase, and the average crystal grain sizes of the Cu matrix are 8 μm (Comparative Example 1) and 24 μm (Comparative Example 2), respectively. ), 31 μm (Comparative Example 3), 20 μm (Comparative Example 4), 29 μm (Comparative Example 5), 8 μm (Comparative Example 1), 10 μm (Comparative Example 7), 35 μm (Comparative Example 8), 30 μm (Comparative Example 9) 18 μm (Comparative Example 10) and 11 μm (Comparative Example 11).

また、銅合金板材の共晶相の比率は、それぞれ2.5%(比較例1)、28.3%(比較例2)、5.9%(比較例3)、13.1%(比較例4)、14.3%(比較例5)、12.0%(比較例6)、15.3%(比較例7)、11.9%(比較例8)、4.3%(比較例9)、2.7%(比較例10)であり、微細共晶相の割合(α/X)は、それぞれ45%(比較例1)、24%(比較例2)、45%(比較例3)、15%(比較例4)、68%(比較例5)、62%(比較例6)、50%(比較例7)、41%(比較例8)、51%(比較例9)、61%(比較例10)であった。   Moreover, the ratio of the eutectic phase of the copper alloy sheet was 2.5% (Comparative Example 1), 28.3% (Comparative Example 2), 5.9% (Comparative Example 3), and 13.1% (Comparative), respectively. Example 4), 14.3% (Comparative Example 5), 12.0% (Comparative Example 6), 15.3% (Comparative Example 7), 11.9% (Comparative Example 8), 4.3% (Comparative) Example 9) is 2.7% (Comparative Example 10), and the proportion of the fine eutectic phase (α / X) is 45% (Comparative Example 1), 24% (Comparative Example 2), and 45% (Comparative), respectively. Example 3), 15% (Comparative Example 4), 68% (Comparative Example 5), 62% (Comparative Example 6), 50% (Comparative Example 7), 41% (Comparative Example 8), 51% (Comparative Example 9) ), 61% (Comparative Example 10).

また、銅合金板材の引張強さは、それぞれ557N/mm(比較例1)、660N/mm(比較例2)、608N/mm(比較例3)、564N/mm(比較例4)、603N/mm(比較例5)、521N/mm(比較例6)、561N/mm(比較例7)、615N/mm(比較例8)、611N/mm(比較例9)、641N/mm(比較例10)、565N/mm(比較例11)であった。 The tensile strengths of the copper alloy sheets were 557 N / mm 2 (Comparative Example 1), 660 N / mm 2 (Comparative Example 2), 608 N / mm 2 (Comparative Example 3), 564 N / mm 2 (Comparative Example 4), respectively. ), 603 N / mm 2 (Comparative Example 5), 521 N / mm 2 (Comparative Example 6), 561 N / mm 2 (Comparative Example 7), 615 N / mm 2 (Comparative Example 8), 611 N / mm 2 (Comparative Example 9) ), 641 N / mm 2 (Comparative Example 10), and 565 N / mm 2 (Comparative Example 11).

また、銅合金板材の試料の導電率は、それぞれ82.5%IACS(比較例1)、71.5%IACS(比較例2)、80.9%IACS(比較例3)、82.1%IACS(比較例4)、80.1%IACS(比較例5)、71.1%IACS(比較例6)、81.5%IACS(比較例7)、76.5%IACS(比較例8)、76.0%IACS(比較例9)、76.2%IACS(比較例10)、80.5%IACS(比較例11)であった。   Moreover, the electrical conductivity of the sample of a copper alloy board | plate material is 82.5% IACS (comparative example 1), 71.5% IACS (comparative example 2), 80.9% IACS (comparative example 3), and 82.1%, respectively. IACS (Comparative Example 4), 80.1% IACS (Comparative Example 5), 71.1% IACS (Comparative Example 6), 81.5% IACS (Comparative Example 7), 76.5% IACS (Comparative Example 8) 76.0% IACS (Comparative Example 9), 76.2% IACS (Comparative Example 10), and 80.5% IACS (Comparative Example 11).

また、銅合金板材のR/tは、比較例1、6、7および11では、R/t=0.0であり、優れた曲げ加工性を有していたが、比較例4ではR/t=0.6、比較例9ではR/t=1.2、比較例3、5および8ではR/t=1.5、比較例2および10ではR/t=2.0であった。   The R / t of the copper alloy plate material was R / t = 0.0 in Comparative Examples 1, 6, 7 and 11, and had excellent bending workability. t = 0.6, R / t = 1.2 in Comparative Example 9, R / t = 1.5 in Comparative Examples 3, 5 and 8, and R / t = 2.0 in Comparative Examples 2 and 10 .

これらの実施例および比較例の銅合金の組成を表1に示し、銅合金板材の製造条件を表2に示し、銅合金板材の組織および特性についての結果を表3に示す。   The compositions of the copper alloys of these examples and comparative examples are shown in Table 1, the production conditions of the copper alloy sheet are shown in Table 2, and the results on the structure and properties of the copper alloy sheet are shown in Table 3.

Figure 2012162776
Figure 2012162776

Figure 2012162776
Figure 2012162776

Figure 2012162776
Figure 2012162776

また、実施例および比較例で得られた銅合金板材の引張強さ、導電率および曲げ加工性について、引張強さが620N/mm以上の場合に◎、600〜620N/mm未満の場合に○、600N/mmより低い場合に×とし、導電率が80%IACS以上の場合に◎、75〜80%IACS未満の場合に○、75%IACSより低い場合に×とし、R/tが0の場合に◎、0より大きく1以下の場合に○、1より大きい場合に×と評価して表4に示す。 In addition, regarding the tensile strength, electrical conductivity, and bending workability of the copper alloy sheet materials obtained in Examples and Comparative Examples, ◎ when the tensile strength is 620 N / mm 2 or more, and 600 to less than 620 N / mm 2 ○, when X is lower than 600 N / mm 2 , ◎ when the conductivity is 80% IACS or more, ○ when the conductivity is less than 75-80% IACS, X when it is lower than 75% IACS, R / t Table 4 shows ◎ when 0 is greater, ◯ when greater than 0 and 1 or less, and x when greater than 1 and shown in Table 4.

Figure 2012162776
Figure 2012162776

表3および表4に示すように、実施例1、2、5、7および9では、1μm以下の微細共晶相の割合(α/X)が50%以上であり、導電率が75%IACS以上、引張強さが620N/mm以上、R/t=0の極めて良好な曲げ加工性を有していた。実施例8では、1μm以下の微細共晶相の割合(α/X)が45%以上であり、導電率が75%IACS以上、引張強さが620N/mm以上、R/t=0の極めて良好な曲げ加工性を有していた。実施例4および6では、1μm以下の微細共晶相の割合(α/X)が50%以上であり、導電率が75%IACS以上、引張強さが600N/mm以上、R/t=0の極めて良好な曲げ加工性を有していた。実施例3および10では、1μm以下の微細共晶相の割合(α/X)が50%以上であり、導電率が75%IACS以上、引張強さが600N/mm以上、R/t=0.5〜0.6の良好な曲げ加工性を有していた。実施例11では、1μm以下の微細共晶相の割合(α/X)が50%以上であり、導電率が75%IACS以上、引張強さが620N/mm以上、R/t=0.6の良好な曲げ加工性を有していた。 As shown in Tables 3 and 4, in Examples 1, 2 , 5, 7 and 9, the proportion of the fine eutectic phase (α / X) of 1 μm 2 or less is 50% or more, and the conductivity is 75%. It had a very good bending workability of IACS or more, tensile strength of 620 N / mm 2 or more, and R / t = 0. In Example 8, the ratio (α / X) of the fine eutectic phase of 1 μm 2 or less is 45% or more, the conductivity is 75% IACS or more, the tensile strength is 620 N / mm 2 or more, and R / t = 0. It had a very good bending workability. In Examples 4 and 6, the ratio (α / X) of the fine eutectic phase of 1 μm 2 or less is 50% or more, the conductivity is 75% IACS or more, the tensile strength is 600 N / mm 2 or more, R / t It had a very good bending workability of = 0. In Examples 3 and 10, the ratio (α / X) of the fine eutectic phase of 1 μm 2 or less is 50% or more, the conductivity is 75% IACS or more, the tensile strength is 600 N / mm 2 or more, R / t = Good bending workability of 0.5 to 0.6. In Example 11, the ratio (α / X) of the fine eutectic phase of 1 μm 2 or less is 50% or more, the conductivity is 75% IACS or more, the tensile strength is 620 N / mm 2 or more, and R / t = 0. .6 good bending workability.

比較例1では、Zr含有量が0.21質量%と少なかったので、1μm以下の微細共晶相の割合が45%と高いものの、共晶相の比率が2.5%と低かったため、Cu母相と共晶相との二相組織による強度の向上の効果が十分に得られず、導電率は82.5%IACSと高く且つ曲げ加工性が極めて良好であったものの、引張強さが557N/mmと低かった。 In Comparative Example 1, since the Zr content was as low as 0.21% by mass, the proportion of the fine eutectic phase of 1 μm 2 or less was as high as 45%, but the proportion of the eutectic phase was as low as 2.5%. Although the effect of improving the strength due to the two-phase structure of the Cu matrix and the eutectic phase was not sufficiently obtained, the electrical conductivity was as high as 82.5% IACS and the bending workability was very good, but the tensile strength Was as low as 557 N / mm 2 .

比較例2では、Zr含有量が1.65質量%と多かったので、平均結晶粒径が24μmと粗大化し、共晶相の比率が28.3%と高く、1μm以下の微細共晶相の割合が24%と低かったため、分散されずに残存した粗大な共晶相が割れの起点となり、R/t=2と曲げ加工性が悪化した。また、引張強さは660N/mmと高かったものの、導電率は71.5%IACSと低かった。 In Comparative Example 2, since the Zr content was as large as 1.65% by mass, the average crystal grain size was coarsened to 24 μm, the ratio of the eutectic phase was as high as 28.3%, and the fine eutectic phase of 1 μm 2 or less. Therefore, the coarse eutectic phase that remained without being dispersed became the starting point of cracking, and R / t = 2 and bending workability deteriorated. Moreover, although the tensile strength was as high as 660 N / mm 2 , the conductivity was as low as 71.5% IACS.

比較例3では、Cr含有量が1.25質量%と多かったので、平均結晶粒径が31μmと粗大化し、強度の向上に寄与しない過剰なCrが粗大化したため、引張強さが608N/mmと高く且つ導電率が80.9%IACSと高かったものの、R/t=1.5と曲げ加工性が悪化した。 In Comparative Example 3, since the Cr content was as large as 1.25% by mass, the average crystal grain size was coarsened to 31 μm, and excess Cr that did not contribute to the improvement in strength was coarsened, so the tensile strength was 608 N / mm. Although it was as high as 2 and the conductivity was as high as 80.9% IACS, the bending workability deteriorated as R / t = 1.5.

比較例4では、冷間圧延の圧延率が62.5%と低かったので、導電率が82.1%IACSと高く且つR/t=0.6と曲げ加工性が良好であったものの、1μm以下の微細共晶相の割合が15%と低いため、共晶相が十分に分散されず、引張強さが564N/mmと低かった。 In Comparative Example 4, the rolling ratio of cold rolling was as low as 62.5%, so the conductivity was as high as 82.1% IACS and R / t = 0.6 and the bending workability was good. Since the ratio of the fine eutectic phase of 1 μm 2 or less was as low as 15%, the eutectic phase was not sufficiently dispersed, and the tensile strength was as low as 564 N / mm 2 .

比較例5では、時効処理温度が475℃と高かったので、平均結晶粒径が29μmと粗大化したため、引張強さが603N/mmと高く且つ導電率が80.1%IACSと高かったものの、R/t=1.5と曲げ加工性が悪化した。 In Comparative Example 5, since the aging treatment temperature was as high as 475 ° C., the average crystal grain size was increased to 29 μm, so the tensile strength was as high as 603 N / mm 2 and the conductivity was as high as 80.1% IACS. R / t = 1.5 and bending workability deteriorated.

比較例6では、時効処理温度が325℃と低かったので、Cu母相に固溶したCrおよびZrが完全に析出しなかったため、R/t=0.0と曲げ加工性が極めて良好であったものの、引張強さが521N/mmと低く、導電率が71.1%IACSと低かった。 In Comparative Example 6, since the aging treatment temperature was as low as 325 ° C., Cr and Zr dissolved in the Cu matrix were not completely precipitated, so the bending workability was extremely good at R / t = 0.0. However, the tensile strength was as low as 521 N / mm 2 and the conductivity was as low as 71.1% IACS.

比較例7では、熱間圧延時の開始温度が850℃と低かったので、溶体化の際のCu母相へのCrおよびZrの固溶量が少なくなったため、導電率が81.5%IACSと高く且つR/t=0.0と曲げ加工性が極めて良好であったものの、時効処理後の強度の向上が少なく、引張り強さが561N/mmと低かった。 In Comparative Example 7, since the start temperature during hot rolling was as low as 850 ° C., the amount of Cr and Zr dissolved in the Cu matrix during solution treatment was reduced, and therefore the conductivity was 81.5% IACS. Although the bending workability was very good with R / t = 0.0, the improvement in strength after aging treatment was small and the tensile strength was as low as 561 N / mm 2 .

比較例8では、熱間圧延の最終パスの圧延率が15%と低かったので、平均結晶粒径が35μmと粗大化したため、引張強さが615N/mmと高く且つ導電率が76.5%IACSと高かったものの、R/t=1.5と曲げ加工性が悪化した。 In Comparative Example 8, since the rolling rate of the final pass of the hot rolling was as low as 15%, the average crystal grain size was increased to 35 μm, so that the tensile strength was as high as 615 N / mm 2 and the conductivity was 76.5. Although it was high with% IACS, the bending workability deteriorated with R / t = 1.5.

比較例9では、Si含有量が0.44質量%と多かったので、平均結晶粒径が30μmと粗大化し、強度の向上に寄与しない過剰なSi析出物が粗大化したため、引張強さが611N/mmと高く且つ導電率が76.0%IACSと高かったものの、R/t=1.2と曲げ加工性が悪化した。 In Comparative Example 9, since the Si content was as large as 0.44% by mass, the average crystal grain size was coarsened to 30 μm, and excessive Si precipitates that did not contribute to the improvement in strength were coarsened, so that the tensile strength was 611N. / Mm 2 and the conductivity was as high as 76.0% IACS, but the bending workability deteriorated with R / t = 1.2.

比較例10では、仕上げ冷間圧延の圧延率が50%と高かったので、引張強さが641N/mmと高く且つ導電率が76.2%IACSと高かったものの、R/t=2.0と曲げ加工性が悪化した。 In Comparative Example 10, since the rolling rate of finish cold rolling was as high as 50%, the tensile strength was as high as 641 N / mm 2 and the conductivity was as high as 76.2% IACS, but R / t = 2. 0 and bending workability deteriorated.

比較例11は、従来のCu−Cr−Zr合金を使用した例であるが、Zr含有量が0.11質量%と低かったので、導電率が80.5%IACSと高く且つR/t=0.0と曲げ加工性が極めて良好であったが、引張り強さが565N/mmと低かった。 Comparative Example 11 is an example in which a conventional Cu—Cr—Zr alloy was used. However, since the Zr content was as low as 0.11% by mass, the conductivity was as high as 80.5% IACS and R / t = The bending workability was extremely good at 0.0, but the tensile strength was as low as 565 N / mm 2 .

Claims (13)

0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、残部がCuおよび不可避不純物からなる組成を有する銅合金の原料を溶解して鋳造することにより得られた鋳片を900〜1080℃に加熱した後、最終パスの圧延率を20%以上として熱間圧延を行い、次いで、圧延率80%以上で冷間圧延を行った後、350〜450℃で保持して時効処理を行い、次いで、圧延率0〜40%で仕上げ冷間圧延を行うことを特徴とする、銅合金板材の製造方法。 Obtained by melting and casting a raw material of a copper alloy containing 0.25 to 1.5% by mass of Zr and 0.01 to 1.0% by mass of Cr, with the balance consisting of Cu and inevitable impurities After heating the obtained slab to 900 to 1080 ° C., hot rolling is performed with the rolling rate of the final pass being 20% or more, and then cold rolling is performed at a rolling rate of 80% or more, and then 350 to 450 ° C. A method for producing a copper alloy sheet material, characterized in that the aging treatment is carried out by holding, followed by finish cold rolling at a rolling rate of 0 to 40%. 前記銅合金の原料の組成が、Ceを含む希土類金属とSi、Sn、Mg、BおよびPからなる群から選ばれる1種以上の元素を合計0.3質量%以下の範囲でさらに含むことを特徴とする、請求項1に記載の銅合金板材の製造方法。 The composition of the raw material of the copper alloy further includes a rare earth metal containing Ce and one or more elements selected from the group consisting of Si, Sn, Mg, B and P in a total range of 0.3% by mass or less. The method for producing a copper alloy sheet according to claim 1, wherein 前記時効処理の保持時間が1〜20時間であることを特徴とする、請求項1または2に記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to claim 1 or 2, wherein the retention time of the aging treatment is 1 to 20 hours. 前記熱間圧延の終了温度を700〜800℃に設定し、前記熱間圧延終了後に急冷することを特徴とする、請求項1乃至3のいずれかに記載の銅合金板材の製造方法。 The method for producing a copper alloy sheet according to any one of claims 1 to 3, wherein an end temperature of the hot rolling is set to 700 to 800 ° C, and rapid cooling is performed after the hot rolling is finished. 前記急冷が水冷によって行われることを特徴とする、請求項4に記載の銅合金板材の製造方法。 The said rapid cooling is performed by water cooling, The manufacturing method of the copper alloy board | plate material of Claim 4 characterized by the above-mentioned. 前記時効処理後に圧延率10〜30%で仕上げ冷間圧延を行った後、350〜425℃で低温焼鈍を行うことを特徴とする、請求項1乃至5のいずれかに記載の銅合金板材の製造方法。 The copper alloy sheet according to any one of claims 1 to 5, wherein after the aging treatment, finish cold rolling is performed at a rolling rate of 10 to 30%, and then low temperature annealing is performed at 350 to 425 ° C. Production method. 0.25〜1.5質量%のZrと0.01〜1.0質量%のCrを含み、残部がCuおよび不可避不純物からなる組成を有し、引張強さが600N/mm以上、導電率が75%IACS以上であり、長手方向がTD(圧延方向および板厚方向に対して垂直な方向)の曲げ試験片についてJIS H3110に準拠して90°W曲げ試験を行った後に割れが発生しない最小曲げ半径Rと銅合金板材の厚さtとの比R/tが1.0未満であることを特徴とする、銅合金板材。 It contains 0.25 to 1.5% by mass of Zr and 0.01 to 1.0% by mass of Cr, with the balance being composed of Cu and inevitable impurities, with a tensile strength of 600 N / mm 2 or more, conductive Cracks occurred after a 90 ° W bending test was performed on a bending test piece having a rate of 75% IACS or more and a longitudinal direction of TD (direction perpendicular to the rolling direction and the plate thickness direction) in accordance with JIS H3110. A copper alloy sheet, wherein a ratio R / t between the minimum bending radius R and the thickness t of the copper alloy sheet is less than 1.0. 前記銅合金の組成が、Ceを含む希土類金属とSi、Sn、Mg、BおよびPからなる群から選ばれる1種以上の元素を合計0.3質量%以下の範囲でさらに含むことを特徴とする、請求項7に記載の銅合金板材。 The composition of the copper alloy further includes a rare earth metal containing Ce and one or more elements selected from the group consisting of Si, Sn, Mg, B and P in a total range of 0.3% by mass or less. The copper alloy sheet material according to claim 7. 前記銅合金がCu母相と第二相からなる二相組織を有することを特徴とする、請求項7または8に記載の銅合金板材。 The copper alloy sheet according to claim 7 or 8, wherein the copper alloy has a two-phase structure composed of a Cu matrix and a second phase. 前記Cu母相の平均結晶粒径が5〜20μmであることを特徴とする、請求項9に記載の銅合金板材。 The copper alloy sheet according to claim 9, wherein an average crystal grain size of the Cu matrix is 5 to 20 μm. 前記銅合金板材の表面に存在する共晶相の面積の比率が4〜25%であることを特徴とする、請求項9または10に記載の銅合金板材。 11. The copper alloy sheet according to claim 9, wherein a ratio of the area of the eutectic phase existing on the surface of the copper alloy sheet is 4 to 25%. 前記銅合金板材の表面に存在する1μm以下の微細共晶相の面積の割合が共晶相の全面積の40%以上であることを特徴とする、請求項9乃至11のいずれかに記載の銅合金板材。 The ratio of the area of the fine eutectic phase of 1 µm 2 or less existing on the surface of the copper alloy sheet is 40% or more of the total area of the eutectic phase, according to any one of claims 9 to 11. Copper alloy sheet material. 前記第二相が、Cu母相とCu−ZrおよびCu−Cr−Zrの少なくとも一方の化合物との共晶相と、前記Cu母相中に析出したCr、Zr、Cr−Zr、Cr−Cu、
Zr−CuおよびCr−Zr−Cuのいずれか1つ以上を含む化合物から構成されることを特徴とする、請求項9乃至12のいずれかに記載の銅合金板材。
The second phase includes a eutectic phase of a Cu matrix and at least one compound of Cu-Zr and Cu-Cr-Zr, and Cr, Zr, Cr-Zr, Cr-Cu precipitated in the Cu matrix. ,
The copper alloy sheet according to any one of claims 9 to 12, wherein the copper alloy sheet is composed of a compound containing at least one of Zr-Cu and Cr-Zr-Cu.
JP2011024748A 2011-02-08 2011-02-08 Copper alloy sheet and manufacturing method thereof Active JP5675404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024748A JP5675404B2 (en) 2011-02-08 2011-02-08 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024748A JP5675404B2 (en) 2011-02-08 2011-02-08 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012162776A true JP2012162776A (en) 2012-08-30
JP5675404B2 JP5675404B2 (en) 2015-02-25

Family

ID=46842442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024748A Active JP5675404B2 (en) 2011-02-08 2011-02-08 Copper alloy sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5675404B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899521A (en) * 2012-11-09 2013-01-30 华东理工大学 Copper-chromium-zirconium alloy material and preparation method thereof
CN103695825A (en) * 2013-12-31 2014-04-02 上海电缆研究所 Preparation method of high-conductivity high-strength copper chromium zirconium alloy thin line conductor
CN104561642A (en) * 2014-12-23 2015-04-29 中国兵器科学研究院宁波分院 Ultrathin high-conductivity Cr-Zr-Cu wire and preparation method thereof
KR20160133372A (en) 2015-05-12 2016-11-22 가부시키가이샤 고베 세이코쇼 Copper alloy
CN106319279A (en) * 2015-06-29 2017-01-11 新疆正源泰铜合金科技有限公司 High-conductivity high-thermal-conductivity high-hardness high-wear-resisting EDM copper alloy material and preparing method thereof
CN109266883A (en) * 2018-09-17 2019-01-25 西安理工大学 A kind of preparation method of Cu-Cr-Zr-Mg alloy bar material
CN111455294A (en) * 2019-10-17 2020-07-28 湖南稀土金属材料研究院 High-purity Ho/Er/Tm rare earth metal foil and preparation method thereof
CN113234956A (en) * 2021-05-14 2021-08-10 中铝沈阳有色金属加工有限公司 Vacuum casting method for large-tonnage chromium-zirconium-copper cast ingot
CN113653573A (en) * 2021-08-05 2021-11-16 陕西斯瑞新材料股份有限公司 Manufacturing method of inner wall blank of combustion chamber of aerospace engine
CN113897510A (en) * 2021-09-28 2022-01-07 扬州市华烨金属制品有限公司 High-density alloy profiled bar and manufacturing method and production line thereof
CN115074564A (en) * 2022-07-04 2022-09-20 江西理工大学 Preparation method of high-strength high-conductivity copper-chromium-zirconium alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620135A (en) * 1979-07-25 1981-02-25 Sumitomo Light Metal Ind Ltd High-tensile electrically-conductive copper alloy
JPS61170550A (en) * 1985-01-24 1986-08-01 Furukawa Electric Co Ltd:The Manufacture of copper alloy material for lead frame
JPH0375346A (en) * 1989-08-16 1991-03-29 Nippon Steel Corp Production of high strength and high conductivity type metallic sheet for lead frame
JPH0625777A (en) * 1988-06-13 1994-02-01 Yazaki Corp Manufacture of high strength and high conductivity copper alloy
JP2005281850A (en) * 2003-09-19 2005-10-13 Sumitomo Metal Ind Ltd Copper alloy and method for producing thereof
JP2006283106A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article
JP2008088558A (en) * 2007-10-17 2008-04-17 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy with excellent ductility

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620135A (en) * 1979-07-25 1981-02-25 Sumitomo Light Metal Ind Ltd High-tensile electrically-conductive copper alloy
JPS61170550A (en) * 1985-01-24 1986-08-01 Furukawa Electric Co Ltd:The Manufacture of copper alloy material for lead frame
JPH0625777A (en) * 1988-06-13 1994-02-01 Yazaki Corp Manufacture of high strength and high conductivity copper alloy
JPH0375346A (en) * 1989-08-16 1991-03-29 Nippon Steel Corp Production of high strength and high conductivity type metallic sheet for lead frame
JP2005281850A (en) * 2003-09-19 2005-10-13 Sumitomo Metal Ind Ltd Copper alloy and method for producing thereof
JP2006283106A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk Production method of chromium-containing copper alloy, chromium-containing copper alloy and drawn copper article
JP2008088558A (en) * 2007-10-17 2008-04-17 Nikko Kinzoku Kk High-strength and high-conductivity copper alloy with excellent ductility

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899521A (en) * 2012-11-09 2013-01-30 华东理工大学 Copper-chromium-zirconium alloy material and preparation method thereof
CN103695825A (en) * 2013-12-31 2014-04-02 上海电缆研究所 Preparation method of high-conductivity high-strength copper chromium zirconium alloy thin line conductor
CN103695825B (en) * 2013-12-31 2016-05-04 上海电缆研究所 A kind of preparation method of high-strength copper Cr-Zr alloy fine rule conductor of high conductivity
CN104561642A (en) * 2014-12-23 2015-04-29 中国兵器科学研究院宁波分院 Ultrathin high-conductivity Cr-Zr-Cu wire and preparation method thereof
KR20160133372A (en) 2015-05-12 2016-11-22 가부시키가이샤 고베 세이코쇼 Copper alloy
CN106148753A (en) * 2015-05-12 2016-11-23 株式会社神户制钢所 Copper alloy
CN106319279A (en) * 2015-06-29 2017-01-11 新疆正源泰铜合金科技有限公司 High-conductivity high-thermal-conductivity high-hardness high-wear-resisting EDM copper alloy material and preparing method thereof
CN109266883A (en) * 2018-09-17 2019-01-25 西安理工大学 A kind of preparation method of Cu-Cr-Zr-Mg alloy bar material
CN111455294A (en) * 2019-10-17 2020-07-28 湖南稀土金属材料研究院 High-purity Ho/Er/Tm rare earth metal foil and preparation method thereof
CN113234956A (en) * 2021-05-14 2021-08-10 中铝沈阳有色金属加工有限公司 Vacuum casting method for large-tonnage chromium-zirconium-copper cast ingot
CN113653573A (en) * 2021-08-05 2021-11-16 陕西斯瑞新材料股份有限公司 Manufacturing method of inner wall blank of combustion chamber of aerospace engine
CN113653573B (en) * 2021-08-05 2022-08-23 陕西斯瑞新材料股份有限公司 Manufacturing method of inner wall blank of combustion chamber of aerospace engine
CN113897510A (en) * 2021-09-28 2022-01-07 扬州市华烨金属制品有限公司 High-density alloy profiled bar and manufacturing method and production line thereof
CN115074564A (en) * 2022-07-04 2022-09-20 江西理工大学 Preparation method of high-strength high-conductivity copper-chromium-zirconium alloy
CN115074564B (en) * 2022-07-04 2023-05-09 江西理工大学 Preparation method of high-strength high-conductivity copper-chromium-zirconium alloy

Also Published As

Publication number Publication date
JP5675404B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5675404B2 (en) Copper alloy sheet and manufacturing method thereof
JP4143662B2 (en) Cu-Ni-Si alloy
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5962707B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP5307305B1 (en) Copper alloy material and method of manufacturing the same
JP5647703B2 (en) High-strength Cu-Ni-Co-Si-based copper alloy sheet, its manufacturing method, and current-carrying parts
KR102441663B1 (en) Copper alloy sheet material, production method therefor, and electrical/electronic component comprising said copper alloy sheet material
JP5654571B2 (en) Cu-Ni-Si alloy for electronic materials
JP2010126783A (en) Copper alloy sheet or strip for electronic material
KR20110038143A (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
KR20090094458A (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
JP2006249516A (en) Copper alloy and its manufacturing method
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP2010059543A (en) Copper alloy material
JP6494681B2 (en) Copper alloy and electronic parts for electronic materials
JP7242996B2 (en) Copper alloy
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts
JP6301734B2 (en) Copper alloy material and method for producing the same
JP5952726B2 (en) Copper alloy
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP7234501B2 (en) Copper alloy
JP2010236029A (en) Cu-Si-Co ALLOY FOR ELECTRONIC MATERIAL, AND METHOD OF MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141224

R150 Certificate of patent or registration of utility model

Ref document number: 5675404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250