JP2012159823A - プロジェクター - Google Patents

プロジェクター Download PDF

Info

Publication number
JP2012159823A
JP2012159823A JP2011234969A JP2011234969A JP2012159823A JP 2012159823 A JP2012159823 A JP 2012159823A JP 2011234969 A JP2011234969 A JP 2011234969A JP 2011234969 A JP2011234969 A JP 2011234969A JP 2012159823 A JP2012159823 A JP 2012159823A
Authority
JP
Japan
Prior art keywords
light
diffusion
diffused
lens array
diffused light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011234969A
Other languages
English (en)
Other versions
JP5866968B2 (ja
Inventor
Makoto Otani
信 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011234969A priority Critical patent/JP5866968B2/ja
Priority to US13/331,142 priority patent/US9146450B2/en
Priority to CN201210010390.1A priority patent/CN102591109B/zh
Priority to CN201510214289.1A priority patent/CN104765083A/zh
Publication of JP2012159823A publication Critical patent/JP2012159823A/ja
Application granted granted Critical
Publication of JP5866968B2 publication Critical patent/JP5866968B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】スペックルノイズを確実に抑制することが可能なプロジェクターを提供する。
【解決手段】レーザー光を射出する光源11と、光源11から射出されたレーザー光を拡散して第1拡散光として射出する第1拡散部12と、第1拡散部12から射出された第1拡散光を変調する光変調素子20と、を備え、光変調素子20は、第1拡散部12から射出された第1拡散光を拡散して第2拡散光として射出する第2拡散部16を有し、第2拡散部16から射出される第2拡散光の拡散強度分布は、当該第2拡散光の中心軸にまたがって連続的な分布である。
【選択図】図2

Description

本発明は、プロジェクターに関するものである。
プロジェクター用の光源として高出力な光が得られるレーザー光源が注目されている。レーザー光源は、高圧水銀ランプに比べて、色再現性に優れること、瞬時点灯が容易であること、長寿命であること等の長所を有している。しかしながら、レーザー光はコヒーレント光であるため、スクリーン上には、干渉によって生じたスペックルと呼ばれる斑点模様が表示され、表示品質を低下させる原因となる。
このような問題を解決するための技術が検討されており、例えば、特許文献1のプロジェクターでは、スクリーン上の任意の一点に対する配光角が所定の角度以上となるように光変調素子の特性及び配置が設定されている。配光角を大きくすると、スペックルによる表示品質の低下(スペックルノイズ)を抑制することができることが知られている。
特開2010−197916号公報
しかしながら、配光角を大きくするだけではスペックルノイズを十分に抑制することができない。
例えば、拡散素子と光変調素子との間の光の光路上には、拡散素子から射出された光の強度分布を均一化させるためにフライアイ光学系やロッド光学系を設ける構成がある。このような光学系から射出される光の拡散強度分布は離散的となり、このような角度分布が光変調素子を透過した後も保存されることで、スクリーンに入射する角度分布が著しく不均一になり、投写画像がスペックルにより劣化される場合がある。
本発明はこのような事情に鑑みてなされたものであって、スペックルノイズを確実に抑制することが可能なプロジェクターを提供することを目的とする。
上記の課題を解決するため、本発明のプロジェクターは、レーザー光を射出する光源と、前記光源から射出された前記レーザー光を拡散して第1拡散光として射出する第1拡散部と、前記第1拡散部から射出された第1拡散光を変調する光変調素子と、を備え、前記光変調素子は、前記第1拡散部から射出された第1拡散光を拡散して第2拡散光として射出する第2拡散部を有し、前記第2拡散部から射出される第2拡散光の拡散強度分布は、当該第2拡散光の中心軸にまたがって連続的な分布であることを特徴とする。
このプロジェクターによれば、光源から射出されたレーザー光が第1拡散部と第2拡散部とによって二重に拡散される。このため、第2拡散部から射出される第2拡散光の拡散強度分布は連続的な分布となり、離散的な分布とはならない。このような角度分布が第2拡散部から射出された後も保存されることで、スクリーンに入射する角度分布が連続的な分布となり、スペックルノイズが抑制された投写画像が得られる。したがって、スペックルノイズを確実に抑制することが可能なプロジェクターを提供することができる。
なお、ここで言う拡散強度分布とは、第2拡散部の射出端面に対して垂直な面内の分布である。
前記プロジェクターにおいて、前記第2拡散部から射出される第2拡散光の拡散強度分布は、さらに、当該第2拡散光の中心軸にまたがって平坦部を有する分布であってもよい。
このプロジェクターによれば、光強度の高い第2拡散光が射出される部分において突出部を有する分布とはならず、いわゆるフラットトップ型の分布となる。第2拡散部から射出される第2拡散光の拡散強度分布がフラットトップ型の分布となるため、光強度の高い第2拡散光の中心軸に近い部分においてスペックルの干渉の度合いが弱め合う。このような光強度分布が第2拡散部から射出された後も保存されることで、スクリーンに入射する光強度分布が平均化した分布となり、投写画像においてスペックルが目立ちにくくなる。したがって、スペックルノイズを確実に抑制することが可能なプロジェクターを提供することができる。
前記プロジェクターにおいて、前記第1拡散部から射出された第1拡散光を平行な光線束として前記光変調素子に向けて射出する平行化レンズを備えていてもよい。
このプロジェクターによれば、平行化レンズによって第1拡散部からの第1拡散光が光変調素子に垂直に入射する。このため、光変調素子を平行な光線束として射出された第1拡散光の進行方向にある程度移動させた場合でも、第1拡散部からの第1拡散光を光変調素子に十分に入射させることができる。これにより、光変調素子を配置する際に要求される位置精度が緩和される。よって、組立てが容易になる。
前記プロジェクターにおいて、前記第2拡散部は、前記光変調素子の前記第1拡散光が射出される側に配置されたレンズアレイであってもよい。
このプロジェクターによれば、簡単な構成で光を拡散させることができる。また、レンズアレイの製造が容易となる。例えば、第2拡散部が光変調素子の第1拡散光が入射する側に配置された構成を考える。光変調素子が液晶ライトバルブを有した構成であると、第1拡散光を効率良く利用するために、第1拡散光が遮光膜を避けて液晶ライトバルブの各画素の中心に集光することが要求される。このような要求に応えるには、レンズアレイを構成する小レンズを液晶ライトバルブの各画素に対応させたサイズとする必要がある。しかしながら、第2拡散部が光変調素子の第1拡散光が射出される側に配置された構成であると、レンズアレイを構成する小レンズを液晶ライトバルブの各画素に対応させたサイズとするなどの制約がない。よって、レンズアレイの製造が容易となる。
前記プロジェクターにおいて、前記第2拡散部は、第1レンズアレイと、第2レンズアレイと、第3レンズアレイと、を備え、前記第1レンズアレイは、前記第1拡散部から射出された第1拡散光を集光して前記第2レンズアレイに向けて射出し、前記第2レンズアレイは、前記第1レンズアレイから射出された第1拡散光を平行な光線束として前記第3レンズアレイに向けて射出し、前記第3レンズアレイは、前記第2レンズアレイから射出された第1拡散光を拡散して第2拡散光として射出し、前記平行化レンズと前記第1レンズアレイとの間の前記第1拡散光の光路上には入射側偏光板が配置されており、前記第2レンズアレイと前記第3レンズアレイとの間の前記第1拡散光の光路上には射出側偏光板が配置されていてもよい。
このプロジェクターによれば、平行な光線束が入射側偏光板と射出側偏光板とに入射する。このため、第1拡散部から射出された第1拡散光が各偏光板に斜めに入射することを抑制して偏光した光を取り出すことができる。よって、光の利用効率を向上させることができる。
前記プロジェクターにおいて、前記第2拡散部は、前記光変調素子の前記第1拡散光が入射する側に配置されたレンズアレイであってもよい。
このプロジェクターによれば、光の利用効率を向上させることができる。例えば、光変調素子が液晶ライトバルブを有した構成である場合、レンズアレイを構成する小レンズを液晶ライトバルブの各画素に対応させたサイズに設定する。これにより、第1拡散光が遮光膜を避けて液晶ライトバルブの各画素の中心に集光するようになる。したがって、第1拡散光を効率良く利用することができる。
前記プロジェクターにおいて、前記光変調素子は、一対の基板間に液晶層を挟持して構成され、前記一対の基板の前記第1拡散光が入射する側と反対側の基板には、前記第1拡散光を反射する、表面が凹形状または凸形状の反射面を有する反射膜が形成されており、前記反射膜は、前記第2拡散部として機能してもよい。
このプロジェクターによれば、光変調素子を反射型液晶素子(反射型の液晶ライトバルブ)とした反射型の構成において、レンズアレイなど新たな部材を追加することなく、スペックルノイズを確実に抑制することが可能となる。
前記プロジェクターにおいて、前記光変調素子は、複数の可動式のマイクロミラーを有し、前記複数のマイクロミラーの可動量を制御することにより光を変調するマイクロミラーデバイスであり、前記マイクロミラーは、表面が前記第1拡散光を反射する凹形状または凸形状の反射面となっており、前記マイクロミラーは、前記第2拡散部として機能してもよい。
このプロジェクターによれば、光変調素子をデジタルマイクロミラーデバイス(Digital Micromirror Device)とした反射型の構成において、レンズアレイなど新たな部材を追加することなく、スペックルノイズを確実に抑制することが可能となる。
前記プロジェクターにおいて、前記第1拡散部の前記レーザー光が照射される領域を時間的に変動させる駆動装置を備えていてもよい。
このプロジェクターによれば、第1拡散部に入射する光の位置が刻々と変化するため、この変化に伴い、視認されるスペックルが移動したり、スペックルのパターンが複雑に変化したりする。その結果、人間の眼の残像時間内でスペックルのパターンが積分平均化され、スペックルが視認されにくくなる。よって、高画質な画像を投影することが可能となる。
前記プロジェクターにおいて、前記駆動装置は、前記第1拡散部を所定の回転軸の周りに回転させるモーターを含んでいてもよい。
このプロジェクターによれば、簡単な構成で高画質な画像を投影することが可能となる。また、第1拡散部に入射する光の位置に死点(動きが一瞬止まる点)が発生しないため、人間の眼の残像時間内でスペックルが認識されることはない。よって、スペックルノイズをより確実に抑えることが可能となる。
前記プロジェクターにおいて、前記第1拡散部は、ホログラム素子であってもよい。
このプロジェクターによれば、ホログラム素子による回折現象を利用して、第1拡散部から射出される光の拡散強度分布を容易に制御することができる。このため、第2拡散部に入射する光の面内強度分布を均一化することが容易になり、輝度ムラを低減することが可能となる。
前記プロジェクターにおいて、前記第1拡散部は、内部に光を拡散させる拡散粒子が分散されてなる拡散板であってもよい。
このプロジェクターによれば、簡単な構成で光を拡散させることができる。
本発明の第1実施形態に係るプロジェクターの光学系を示す模式図である。 同、プロジェクターの概略構成を示す光路図である。 同、第1拡散部を示す模式図である。 配光特性を例示するグラフである。 同、第2拡散部から射出される光の拡散強度分布を示す図である。 同、第2拡散部から射出される光の拡散強度分布を示す図である。 同、光変調素子の第1変形例を示す図である。 同、光変調素子の第2変形例を示す図である。 同、第1拡散部の第1変形例を示す図である。 本発明の第2実施形態に係るプロジェクターの光学系を示す模式図である。 同、光変調素子を示す模式図である。 同、光変調素子の第1変形例を示す模式図である。 本発明の第3実施形態に係るプロジェクターの光学系を示す模式図である。 同、光変調素子を示す模式図である。 同、光変調素子の第1変形例を示す模式図である。
以下、図面を参照して、本発明の実施の形態について説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等が異なっている。
[第1実施形態]
本発明のプロジェクターの一実施形態について、図1から図6を参照して説明する。
本実施形態においては、プロジェクター1として光変調素子で生成された画像情報を含む色光を投写光学系を介してスクリーン(被投写面)上に投写する投写型のプロジェクターを例に挙げて説明する。
図1に示すように、プロジェクター1は、光源装置10と、光変調素子20と、ダイクロイックプリズム30と、投写光学系40とを備えている。
光源装置10は、赤色光を射出する赤色光源装置10R、緑色光を射出する緑色光源装置10G、青色光を射出する青色光源装置10B、とからなる。
光変調素子20は、赤色光源装置10Rから射出された光を画像情報に応じて光変調する2次元の赤色用光変調素子20Rと、緑色光源装置10Gから射出された光を画像情報に応じて光変調する2次元の緑色用光変調素子20Gと、青色光源装置10Bから射出された光を画像情報に応じて光変調する2次元の青色用光変調素子20Bとからなる。
ダイクロイックプリズム30は、各光変調素子20R,20G,20Bにより変調された各色光を合成するものである。
投写光学系40は、ダイクロイックプリズム30で合成された光をスクリーン50上に投写するものである。
各光源装置10(赤色光源装置10R、緑色光源装置10G、青色光源装置10B)は、光源11から射出されるレーザー光の光路に沿って見ると、光源11、第1拡散部12、平行化レンズ14がこの順に配置された構成となっている。各光源装置10において、各第1拡散部12には、駆動装置13が取り付けられている。
図2は、本実施形態に係るプロジェクター1の概略構成を示す光路図である。図2では、光源11から射出されたレーザー光がスクリーン50に投射される光路図を見易くするために、第1拡散部12、平行化レンズ14、光変調素子20、投写光学系40、スクリーン50を直線配置として示し、ダイクロイックプリズム30の図示を省略している。また、ここでは便宜上、投写光学系40を1つのレンズで示している。
光源11は、レーザー光を射出する光源である。赤色光源11Rは赤色のレーザー光を射出する光源である。緑色光源11Gは緑色のレーザー光を射出する光源である。青色光源11Bは青色レーザー光を射出する光源である。
第1拡散部12は、光源11から射出されたレーザー光を拡散して第1拡散光として射出するものである。具体的には、第1拡散部12は、光源11から射出されたレーザー光を所定のスポットサイズを持った光線束に広げる機能を有する。本実施形態では、第1拡散部12としてホログラム素子を用いる。第1拡散部12から射出された第1拡散光は、平行化レンズ14に入射する。
図3は、本実施形態に係る第1拡散部12を示す模式図である。第1拡散部12は、例えば石英(ガラス)、透明な合成樹脂等、光を透過可能な材料で形成することが可能である。また、本実施形態では、第1拡散部12として表面レリーフ型のホログラム素子を用いる。ホログラム素子としては、例えば、ガラス基板に計算機で計算して人工的に作成した凹凸構造が形成された計算機合成ホログラム(CGH :Computer Generated Hologram、以下CGHと称す。)を用いることができる。このCGHは回折現象を利用して入射光の波面を変換する波面変換素子である。特に位相変調型のCGHは入射光波のエネルギーをほとんど失うことなく波面変換が可能である。このように、CGHは均一な強度分布や単純な形状の強度分布を発生させることができる。
具体的には、第1拡散部12は、その表面に互いに異なる深さの複数の矩形状の凹部(凹凸構造)12Mを有している。また、凹部12Mどうしの間の複数の凸部も互いに異なる高さを有している。そして、凹部12Mどうしのピッチd及び凹部12Mの深さ(凸部の高さ)tを含む第1拡散部12の表面条件を適宜調整することにより、第1拡散部12に所定の拡散機能を持たせることができる。その表面条件を最適化する設計手法としては、例えば反復フーリエ法など、所定の演算手法(シミュレーション手法)が挙げられる。
例えば、図3に示す第1拡散部12の深さt1は、約100nmであり、光軸O方向の厚みは1μm〜10μm程度であることが好ましい。
図2に戻り、駆動装置13は、第1拡散部12のレーザー光が照射される領域を時間的に変動させるものである。駆動装置13は、第1拡散部12を所定の回転軸の周りに回転させるモーターを含む。
第1拡散部12は、中心にモーターが接続され、モーターを中心として回転可能に設けられている。モーターは、第1拡散部12を使用時において、例えば7500rpmで回転させる。この場合、第1拡散部12上の光が照射される領域(ビームスポット)は、約18m/秒で移動する。すなわち、モーターは、第1拡散部12上におけるビームスポットの位置を変化させる位置変位手段として機能する。
平行化レンズ14は、第1拡散部12から射出された第1拡散光を平行な光線束として光変調素子20に向けて射出するものである。第1拡散光は、平行化レンズ14で平行化されて光変調素子20に垂直に入射する。
光変調素子20は、透過型の液晶ライトバルブ15と、第2拡散部16と、を備えている。液晶ライトバルブ15は、一対の基板間(第1基板15aと第2基板15bとの間)に液晶層15cを挟持して構成されている。液晶ライトバルブ15は、第1拡散部12から射出された第1拡散光を変調する機能を有する。
第2拡散部16は、光変調素子20の第1拡散光が射出される側(第2基板15bの液晶層15cとは反対側)に配置されたマイクロレンズアレイ(レンズアレイ)である。マイクロレンズアレイ16は、基材16aに複数のマイクロレンズ16bを平面的に配列させることで構成されている。マイクロレンズアレイ16は、液晶ライトバルブ15によって変調された第1拡散光を拡散して第2拡散光として射出するものである。マイクロレンズアレイ16から射出された第2拡散光は、図示略のダイクロイックプリズム30を経て投写光学系40に入射する。
次に、マイクロレンズアレイ16から射出された第2拡散光について説明する。
図2に示すように、平行化レンズ14から射出された光は、液晶ライトバルブ15によって変調された後、マイクロレンズアレイ16の入射端面に対して垂直な方向から入射する。次いで、当該光は、マイクロレンズアレイ16の射出端面(仮想平面)から散乱角θで射出される。そして、当該光は、図示略のダイクロイックプリズム30から投写光学系40を経てスクリーン50に投写される。
ここで、マイクロレンズアレイ16の射出端面の点Qにおいて拡散される光について説明する。ここで、マイクロレンズアレイ16において拡散された光は所定の幅を有する光となり、平面視したときの上端側の光線をL1とし、光の中心軸の光線をL2とし、下端側の光線をL3とする。また、マイクロレンズアレイ16により拡散された光は、図示略のダイクロイックプリズム30から投写光学系40を経て、スクリーン50の上端側に集光する。このとき、光線L1,光線L2,光線L3のマイクロレンズアレイ16からスクリーン50までの光路長(光学的距離)はL1<L2<L3となっている。
なお、平行化レンズ14の中心に対応するマイクロレンズアレイ16の射出端面の点Q0から射出された光も所定の幅を有する光となる。点Q0から射出された光を平面視したときの上端側の光線をL1aとし、光の中心軸の光線をL2aとし、下端側の光線をL3aとする。マイクロレンズアレイ16の射出端面の中心Q0において拡散された光は、図示略の投写光学系40を投写光学系40を経て、スクリーン50の中央部に集光する。このとき、光線L1aと光線L3aとの光路長が同じになるため、光線L1aと光線L2aとの光路差と、光線L2aと光線L3aとの光路差とが同じになる。
図4(a)、(b)は、拡散角に対する光強度の分布を例示するグラフである。なお、図4(a)、(b)において、横軸は光束の中心軸を0°とした拡散角を示し、縦軸は光束の規格化された光強度を示している。
図4(a)は、一般的な拡散分布であるガウシアン分布を示している。光の拡散角の評価は、例えば拡散角に対する光強度の分布について標準偏差を求めること等により行うことができる。標準偏差が大きくなるほど、拡散角が大きいことを意味する。
スペックルの干渉パターンを多く発生させ、スペックルコントラストを低下するためには、拡散角を大きくすればよく、具体的には、光束全体の光量に対して光束の中心軸から離れた部分における光量(広角成分)の占める割合を大きくすればよい。拡散角や光強度は、マイクロレンズアレイ16の屈折率やマイクロレンズ16bのピッチ、マイクロレンズ16bの疎密等により調整することができる。これにより、図4(b)に示すような配光特性にするとよい。
図4(b)は、光強度がフラットトップ型の分布になっている例である。フラットトップ型の分布において、光強度は光束の中心軸(拡散角0°)で最大となっているとともに、光束の中心軸周り(ここでは拡散角が−3°〜3°程度)で略均一になっている。つまり、光強度分布は、光束の中心軸にまたがって平坦部を有している。マイクロレンズアレイ16から射出される光束をフラットトップ型にすれば、図4(a)に示したガウシアン分布のものよりも広角成分の占める割合が大きくなり、スペックルコントラストが低下する。
図5は、本実施形態に係るマイクロレンズアレイ16の入射端面に対して垂直に入射した光がマイクロレンズアレイ16によって拡散されたときの光拡散強度分布である。図5の横軸は、図2に示すマイクロレンズアレイ16における散乱角θである。縦軸は光束の規格化された光強度である。
図5に示すように、マイクロレンズアレイ16の点Qから射出される第2拡散光の拡散強度分布は矩形状の分布になっている。マイクロレンズアレイ16の点Qから射出される第2拡散光の拡散強度分布が、相対的に光路差が長くなる光、すなわち、散乱角θ1における光線L1の光強度A1の分布と散乱角θ3における光線L3の光強度A3の分布が一定になるように形成されている。マイクロレンズアレイ16は、当該マイクロレンズアレイ16の点Qから射出される第2拡散光の拡散強度分布が、当該第2拡散光の中心軸にまたがって連続的な分布となるように形成されている。また、マイクロレンズアレイ16は、当該拡散強度分布が、当該第2拡散光の中心軸にまたがって平坦部を有する拡散強度分布となるように形成されている。ここで、拡散強度分布とは、マイクロレンズアレイ16の射出端面に対して垂直な面内の分布である。
また、マイクロレンズアレイ16の同心円上から射出される第2拡散光の拡散強度分布についても、図5に示すような分布となっている。
なお、マイクロレンズアレイ16の点Qから射出される第2拡散光の拡散強度分布は図5に示すように矩形状の分布に限らず、図6に示すように拡散強度分布の裾の部分が最大光強度A1(A3)から0になるまで、なだらかに変化する分布であってもよい。また、図5及び図6に示すように、角度θ1〜θ3まで平坦な領域を有する必要はなく、わずかでも光の中心軸にまたがって平坦部を有する拡散強度分布であればよい。すなわち、マイクロレンズアレイ16の点Qから射出される第2拡散光の拡散強度分布は、当該第2拡散光の中心軸にまたがって連続的な分布であり、且つ、当該第2拡散光の中心軸にまたがって平坦部を有する拡散強度分布となっていればよい。
図1に戻り、赤色用光変調素子20R、緑色用光変調素子20G、青色用光変調素子20Bは、画像情報を含んだ画像信号を供給するPC等の信号源(図示略)と電気的に接続されており、供給された画像信号に基づき入射光を画素ごとに空間変調して、それぞれ赤色画像、緑色画像、青色画像を形成する。赤色用光変調素子20R、緑色用光変調素子20G、青色用光変調素子20Bにより変調された光(形成された画像)は、ダイクロイックプリズム30に入射する。
ダイクロイックプリズム30は、4つの三角柱プリズムが互いに貼り合わされた構造になっている。三角柱プリズムにおいて貼り合わされる面は、ダイクロイックプリズムの内面になる。ダイクロイックプリズムの内面に、赤色光Rが反射し緑色光Gが透過するミラー面と、青色光Bが反射し緑色光Gが透過するミラー面とが互いに直交して形成されている。ダイクロイックプリズムに入射した緑色光Gは、ミラー面を通ってそのまま射出される。ダイクロイックプリズムに入射した赤色光R、青色光Bは、ミラー面で選択的に反射あるいは透過して、緑色光Gの射出方向と同じ方向に射出される。このようにして3つの色光(画像)が重ね合わされて合成され、合成された色光が投写光学系40によってスクリーン50に拡大投写される。
本実施形態のプロジェクター1では、以上のようにして画像表示を行う。
本実施形態のプロジェクター1によれば、光源11から射出されたレーザー光が第1拡散部12と第2拡散部16とによって二重に拡散される。このため、第2拡散部16から射出される第2拡散光の拡散強度分布は連続的な分布となり、離散的な分布とはならない。このような角度分布が第2拡散部16から射出された後も保存されることで、スクリーンに入射する角度分布が連続的な分布となり、スペックルノイズが抑制された投写画像が得られる。したがって、スペックルノイズを確実に抑制することが可能なプロジェクター1を提供することができる。
また、第2拡散部16が光変調素子20に設けられているので、第2拡散部16を光変調素子20とは別体に配設する構成に比べて、装置構成の簡素化を図ることができる。
また、この構成によれば、光強度の高い第2拡散光が射出される部分において突出部を有する分布とはならず、いわゆるフラットトップ型の分布となる。第2拡散部から射出される第2拡散光の拡散強度分布がフラットトップ型の分布となるため、光強度の高い第2拡散光の中心軸に近い部分においてスペックルの干渉の度合いが弱め合う。このような光強度分布が第2拡散部16から射出された後も保存されることで、スクリーン50に入射する光強度分布が平均化した分布となり、投写画像においてスペックルが目立ちにくくなる。したがって、スペックルノイズを確実に抑制することが可能なプロジェクター1を提供することができる。
また、この構成によれば、平行化レンズ14によって第1拡散部12からの第1拡散光が光変調素子20に垂直に入射する。このため、光変調素子20を平行な光線束として射出された第1拡散光の進行方向にある程度移動させた場合でも、第1拡散部12からの第1拡散光を光変調素子20に十分に入射させることができる。これにより、光変調素子20を配置する際に要求される位置精度が緩和される。よって、組立てが容易になる。
また、この構成によれば、簡単な構成で光を拡散させることができる。また、マイクロレンズアレイ16の製造が容易となる。例えば、マイクロレンズアレイが光変調素子20の第1拡散光が入射する側に配置された構成を考える。光変調素子が液晶ライトバルブを有した構成であると、第1拡散光を効率良く利用するために、第1拡散光が遮光膜を避けて液晶ライトバルブの各画素の中心に集光することが要求される。このような要求に応えるには、マイクロレンズアレイを構成する小レンズを液晶ライトバルブの各画素に対応させたサイズとする必要がある。しかしながら、マイクロレンズアレイ16が光変調素子の第1拡散光が射出される側に配置された構成であると、マイクロレンズアレイ16を構成する小レンズを液晶ライトバルブ15の各画素に対応させたサイズとするなどの制約がない。よって、マイクロレンズアレイ16の製造が容易となる。
また、この構成によれば、駆動装置13を備えているので、第1拡散部12に入射する光の位置が刻々と変化するため、この変化に伴い、視認されるスペックルが移動したり、スペックルのパターンが複雑に変化したりする。その結果、人間の眼の残像時間内でスペックルのパターンが積分平均化され、スペックルが視認されにくくなる。よって、高画質な画像を投影することが可能となる。
また、この構成によれば、駆動装置13がモーターを含んでいるので、簡単な構成で高画質な画像を投影することが可能となる。また、第1拡散部12に入射する光の位置に死点(動きが一瞬止まる点)が発生しないため、人間の眼の残像時間内でスペックルが認識されることはない。よって、スペックルノイズをより確実に抑えることが可能となる。
また、この構成によれば、ホログラム素子による回折現象を利用して、第1拡散部12から射出される光の拡散強度分布を容易に制御することができる。このため、第2拡散部16に入射する光の面内輝度分布を均一化することが容易になり、輝度ムラを低減することが可能となる。
また、この構成によれば、第1拡散部12として回転拡散板の構成を採用しており、第1拡散部12が光源11の位置に近いので、第1拡散部12を小さくすることができる。よって、装置構成のコンパクト化を図ることができる。例えば、第2拡散部として回転拡散板の構成を採用し、光源から射出されるレーザー光の光路に沿って、光源、第1拡散部、平行化レンズ、第2拡散部がこの順に配置された構成を考える。このような構成であると、光源と第2拡散部(回転拡散板)の間に第1拡散部と平行化レンズが配置される。この場合、第1拡散部から射出された拡散光が平行化レンズによって平行化され、所定のスポットサイズを持った光線束として第2拡散部に入射する。そのため、第2拡散部を、所定のスポットサイズを持った光線束を入射させることが可能な大きさとする必要がある。これに対し、本実施形態においては、第1拡散部12として回転拡散板の構成を採用し、光源11から射出されるレーザー光の光路に沿って、光源11、第1拡散部12がこの順に配置された構成である。そのため、第1拡散部12を、光源11から射出されるレーザー光のスポットサイズに対応させた大きさとすれば足りる。よって、第1拡散部12を小さくし、装置構成のコンパクト化を図ることができる。
また、この構成によれば、第2拡散部16としてマイクロレンズアレイを用いており、光変調素子20にマイクロレンズアレイを設けているので作りやすい。また、部材も特殊なものを必要としない。
また、この構成によれば、投写光学系40から見た結像面の近くで光が制御されるので、第2拡散部16から射出される第2拡散光の連続的な角度分布が保存され、スクリーン50に入射する角度分布が連続的な分布となる。よって、均一化の性能が向上する。例えば、第2拡散部として回転拡散板を用いた構成を考える。このような構成であると、投写光学系から見た結像面から遠いところで光が制御される。そのため、第2拡散部から射出される第2拡散光の連続的な角度分布が保存されにくい。これに対し、本実施形態においては、第2拡散部16が光変調素子20の第1拡散光が射出される側に配置されるので、投写光学系40から見た結像面の近くで光が制御される。そのため、第2拡散部16から射出される第2拡散光の連続的な角度分布が保存されやすい。よって、スクリーン50に入射する角度分布が連続的な分布となり、均一化の性能が向上する。
また、この構成によれば、平行化レンズ14によって平行化された光が光変調素子20に入射する。そして、平行化レンズ14によって平行化された光が第2拡散部16によって制御される。よって、均一化の性能が向上する。
なお、本実施形態に係るプロジェクター1において、第1拡散部12は、図3に示すレリーフ型を用いたが、これに限らない。例えば、第1拡散部は、斜面を有する三角形状の凹部を有する、いわゆる、ブレーズ型を用いることもできる。
また、本実施形態に係るプロジェクター1では、色光合成手段として、クロスダイクロイックプリズムを用いたが、これに限るものではない。色光合成手段としては、例えば、ダイクロイックミラーをクロス配置とし色光を合成するもの、ダイクロイックミラーを平行に配置し色光を合成するものを用いることができる。
(第1実施形態に係る光変調素子の変形例1)
図7は、第1実施形態に係る光変調素子120の第1変形例を示す図である。
図7に示すように、本変形例の光変調素子120は、透過型の液晶ライトバルブ15と、第2拡散部116と、を備えている。液晶ライトバルブ15の構成については、図2で示した構成と同様であるので、詳細な説明は省略する。
第2拡散部116は、第1レンズアレイ116Aと、第2レンズアレイ116Bと、第3レンズアレイ116Cと、を備えている。図示略の平行化レンズ14と第1レンズアレイ116Aとの間の第1拡散光の光路上には入射側偏光板117Aが配置されている。第2レンズアレイ116Bと第3レンズアレイ116Cとの間の第1拡散光の光路上には射出側偏光板117Bが配置されている。
第1レンズアレイ116Aは、液晶ライトバルブ15の第1拡散光が入射する側(第1基板15aの液晶層15cとは反対側)に配置されたマイクロレンズアレイである。マイクロレンズアレイ116Aは、基材116Aaに複数のマイクロレンズ116Abを平面的に配列させることで構成されている。マイクロレンズアレイ116Aは、図示略の平行化レンズ14で平行化されて入射側偏光板117Aによって所定方向に偏光された第1拡散光を集光して液晶ライトバルブ15に向けて射出するものである。マイクロレンズアレイ116Aから射出された第1拡散光は液晶ライトバルブ15を経て第2レンズアレイ116Bに入射する。
第2レンズアレイ116Bは、液晶ライトバルブ15の第1拡散光が射出される側(第2基板15bの液晶層15cとは反対側)に配置されたマイクロレンズアレイである。マイクロレンズアレイ116Bは、基材116Baに複数のマイクロレンズ116Bbを平面的に配列させることで構成されている。マイクロレンズアレイ116Bは、液晶ライトバルブ15によって変調された第1拡散光を平行な光線束として射出側偏光板117Bに向けて射出するものである。マイクロレンズアレイ116Bから射出された第1拡散光は射出側偏光板117Bを経て第3レンズアレイ116Cに入射する。
第3レンズアレイ116Cは、射出側偏光板117Bの第1拡散光が射出される側に配置されたマイクロレンズアレイである。マイクロレンズアレイ116Cは、基材116Caに複数のマイクロレンズ116Cbを平面的に配列させることで構成されている。マイクロレンズアレイ116Cは、射出側偏光板117Bによって所定方向に偏光された第1拡散光を拡散して第2拡散光として射出するものである。マイクロレンズアレイ116Cから射出された第2拡散光は、図示略のダイクロイックプリズム30から投写光学系40を経てスクリーン50に投写される。
本変形例の構成によれば、平行な光線束が入射側偏光板117Aと射出側偏光板117Bとに入射する。このため、第1拡散部12から射出された第1拡散光が各偏光板117A,117Bに斜めに入射することを抑制して偏光した光を取り出すことができる。よって、光の利用効率を向上させることができる。
(第1実施形態に係る光変調素子の変形例2)
図8は、第1実施形態に係る光変調素子220の第2変形例を示す図である。
図8に示すように、本変形例の光変調素子220は、透過型の液晶ライトバルブ15と、第2拡散部216と、を備えている。液晶ライトバルブ15の構成については、図2で示した構成と同様であるので、詳細な説明は省略する。
第2拡散部216は、光変調素子220の第1拡散光が入射する側(第1基板15aの液晶層15cとは反対側)に配置されたマイクロレンズアレイ(レンズアレイ)である。マイクロレンズアレイ216は、基材216aに複数のマイクロレンズ216bを平面的に配列させることで構成されている。マイクロレンズアレイ216は、図示略の平行化レンズ14によって平行化された第1拡散光を拡散して第2拡散光として射出するものである。マイクロレンズアレイ216から射出された第2拡散光は、液晶ライトバルブ15から図示略の投写光学系40を経てスクリーン50に投写される。
本変形例の構成によれば、光の利用効率を向上させることができる。例えば、光変調素子220が液晶ライトバルブ15を有した構成である場合、マイクロレンズアレイ216を構成するマイクロレンズ216bを液晶ライトバルブの各画素に対応させたサイズに設定する。これにより、第1拡散光が遮光膜を避けて液晶ライトバルブ15の各画素の中心に集光するようになる。したがって、第1拡散光を効率良く利用することができる。
(第1実施形態に係る第1拡散部の変形例1)
図9は、第1実施形態に係る第1拡散部112の第1変形例を示す図である。
図9に示すように、本変形例の第1拡散部112は、内部に光を拡散させる拡散粒子112bが分散されてなる拡散板である。拡散板112は、例えば透明樹脂等の光透過材料からなる基材112aに光拡散性を有する拡散粒子112bを分散させて構成されている。この第1拡散部112(基材112a)の厚みは、約1〜2mmである。
本変形例の構成によれば、簡単な構成で光を拡散させることができる。
[第2実施形態]
図10は、図1に対応した、本発明の第2実施形態に係るプロジェクター2を示す模式図である。
図10に示すように、本実施形態に係るプロジェクター2は、光源装置10とダイクロイックプリズム30との間の光の光路上に偏光ビームスプリッター130が配置されている点、光変調素子320が反射型の液晶ライトバルブである点、で上述の第1実施形態に係るプロジェクター1と異なっている。その他の点は、上述の構成と同様であるので、図1と同様の要素には同一の符号を付し、詳細な説明は省略する。
図10に示すように、プロジェクター2は、光源装置10と、偏光ビームスプリッター130と、光変調素子320と、ダイクロイックプリズム30と、投写光学系40とを備えている。
偏光ビームスプリッター130は、赤色用偏光ビームスプリッター130Rと、緑色用偏光ビームスプリッター130Gと、青色用偏光ビームスプリッター130Bと、からなる。
赤色用偏光ビームスプリッター130Rは、赤色光源装置10Rから射出された光を反射させて赤色用光変調素子120Rに到達させるとともに、赤色用光変調素子120Rによって変調された光を透過させてダイクロイックプリズム30へ到達させる機能を有する。
緑色用偏光ビームスプリッター130Gは、緑色光源装置10Gから射出された光を反射させて緑色用光変調素子120Gに到達させるとともに、緑色用光変調素子120Gによって変調された光を透過させてダイクロイックプリズム30へ到達させる機能を有する。
青色用偏光ビームスプリッター130Bは、青色光源装置10Bから射出された光を反射させて青色用光変調素子120Bに到達させるとともに、青色用光変調素子120Bによって変調された光を透過させてダイクロイックプリズム30へ到達させる機能を有する。
光変調素子320は、赤色用偏光ビームスプリッター130Rによって反射された光を画像情報に応じて光変調する2次元の赤色用光変調素子320Rと、緑色用偏光ビームスプリッター130Gによって反射された光を画像情報に応じて光変調する2次元の緑色用光変調素子320Gと、青色用偏光ビームスプリッター130Bによって反射された光を画像情報に応じて光変調する2次元の青色用光変調素子320Bとからなる。
図11は、第2実施形態に係る光変調素子320を示す模式図である。
図11に示すように、本実施形態の光変調素子320は、反射型の液晶ライトバルブであり、一対の基板間(第1基板315aと第2基板315bとの間)に液晶層315cを挟持して構成されている。一対の基板の第1拡散光Laが入射する側と反対側の基板(第2基板315b)には、第1拡散光Laを反射する、表面が凹形状の反射面316aを有する反射膜316が形成されている。本実施形態において、反射膜316は、第2拡散部として機能する。
赤色用偏光ビームスプリッター130R、緑色用偏光ビームスプリッター130G、青色用偏光ビームスプリッター130Bにより反射された光は、赤色用光変調素子320R、緑色用光変調素子320G、青色用光変調素子320Bにより変調される。また、赤色用光変調素子320R、緑色用光変調素子320G、青色用光変調素子320Bに入射した第1拡散光Laは、反射膜316により拡散されて第2拡散光Lbとして、赤色用偏光ビームスプリッター130R、緑色用偏光ビームスプリッター130G、青色用偏光ビームスプリッター130Bに向けて射出される。
図10に戻り、赤色用光変調素子320R、緑色用光変調素子320G、青色用光変調素子320Bにより変調された光(形成された画像)は、赤色用偏光ビームスプリッター130R、緑色用偏光ビームスプリッター130G、青色用偏光ビームスプリッター130Bを透過してダイクロイックプリズム30に入射する。
そして、ダイクロイックプリズム30により3つの色光(画像)が重ね合わされて合成され、合成された色光が投写光学系40によってスクリーン50に拡大投写される。
本実施形態のプロジェクター2では、以上のようにして画像表示を行う。
本実施形態のプロジェクター2によれば、光変調素子320を反射型液晶素子(反射型の液晶ライトバルブ)とした反射型の構成において、レンズアレイなど新たな部材を追加することなく、スペックルノイズを確実に抑制することが可能となる。
(第2実施形態に係る光変調素子の変形例1)
図12は、第2実施形態に係る光変調素子420の第1変形例を示す図である。
図12に示すように、本変形例の光変調素子420は、反射型の液晶ライトバルブであり、一対の基板間(第1基板415aと第2基板415bとの間)に液晶層415cを挟持して構成されている。一対の基板の第1拡散光Laが入射する側と反対側の基板(第2基板415b)には、第1拡散光Laを反射する、表面が凸形状の反射面416aを有する反射膜416が形成されている。本実施形態において、反射膜416は、第2拡散部として機能する。
本変形例の構成においても、反射型の構成において、レンズアレイなど新たな部材を追加することなく、スペックルノイズを確実に抑制することが可能となる。
[第3実施形態]
図13は、図11に対応した、本発明の第3実施形態に係るプロジェクター3を示す模式図である。
図13に示すように、本実施形態に係るプロジェクター2は、光源装置10とダイクロイックプリズム30との間の光の光路上にマイクロミラー型の光変調素子520が配置されている点、で上述の第2実施形態に係るプロジェクター2と異なっている。その他の点は、上述の構成と同様であるので、図11と同様の要素には同一の符号を付し、詳細な説明は省略する。
図13に示すように、プロジェクター3は、光源装置10と、光変調素子520と、ダイクロイックプリズム30と、投写光学系40とを備えている。
図14は、第3実施形態に係る光変調素子520を示す模式図である。
図14に示すように、本実施形態の光変調素子520は、DMD(デジタルマイクロミラーデバイス)(TI社の商標)である。本実施形態に係るプロジェクター3は、DMDと専用信号処理技術を用いたDLP(Digital Light Processing)方式を採用している。
DMD520は、基板521上に、複数の可動式のマイクロミラー522がマトリクス状に配列されたものである。DMD520は、複数のマイクロミラー522の可動量を制御することにより光を変調するデバイスである。具体的には、DMD520は、正面方向に対して一方向に傾いた入射方向から入射した光を、複数のマイクロミラー522の傾き方向の切換えにより正面方向のオン状態光線と斜め方向のオフ状態光線とに分けて反射することにより画像を表示する。一方の傾き方向に傾動されたマイクロミラー522に入射した光を該マイクロミラー522により正面方向に反射してオン状態光線とし、他方の傾き方向に傾動されたマイクロミラー522に入射した光を該マイクロミラーにより斜め方向に反射してオフ状態光線とするとともに、該オフ状態光線を吸光板で吸収し、正面方向への反射による明表示と、斜め方向への反射による暗表示とにより画像を生成する。DMD520は、光源装置10から射出される赤色光、緑色光、青色光を順次変調する。
マイクロミラー522は、表面が第1拡散光Laを反射する凹形状の反射面522aとなっている。本実施形態において、マイクロミラー522は第2拡散部として機能する。
赤色光源装置10R、緑色光源装置10G、青色光源装置10Bに入射した第1拡散光Laは、マイクロミラー522により拡散されて第2拡散光Lbとして、ダイクロイックプリズム30に向けて射出される。
図13に戻り、DMD520により変調された光(形成された画像)は、ダイクロイックプリズム30に入射する。そして、ダイクロイックプリズム30により3つの色光(画像)が重ね合わされて合成され、合成された色光が投写光学系40によってスクリーン50に拡大投写される。
本実施形態のプロジェクター3では、以上のようにして画像表示を行う。
本実施形態のプロジェクター3によれば、光変調素子520をデジタルマイクロミラーデバイス(Digital Micromirror Device)とした反射型の構成において、レンズアレイなど新たな部材を追加することなく、スペックルノイズを確実に抑制することが可能となる。
(第3実施形態に係る光変調素子の変形例1)
図15は、第3実施形態に係る光変調素子620の第1変形例を示す図である。
図15に示すように、本変形例の光変調素子620は、本実施形態の光変調素子520は、DMD(デジタルマイクロミラーデバイス)(TI社の商標)であり、基板621上に、複数のマイクロミラー622がマトリクス状に配列されたものである。マイクロミラー622は、表面が第1拡散光Laを反射する凸形状の反射面622aとなっている。本実施形態において、マイクロミラー622は第2拡散部として機能する。
本変形例の構成においても、反射型の構成において、レンズアレイなど新たな部材を追加することなく、スペックルノイズを確実に抑制することが可能となる。
本発明は、投写画像を観察する側から投写するフロント投写型プロジェクターに適用する場合にも、投写画像を観察する側とは反対の側から投写するリア投写型プロジェクターに適用する場合にも、適用することができる。
上記各実施形態においては、本発明の照明装置をプロジェクターに適用した例について説明したが、これに限らない。例えば、本発明の照明装置を他の光学機器(例えば、光ディスク装置、自動車のヘッドランプ、照明機器等)に適用することも可能である。
1,2,3…プロジェクター、11、11R,11G,11B…光源、12,112…第1拡散部、13…駆動装置、14…平行化レンズ、15a,15b,315a,315b…基板、15c,315c…液晶層、16,116,216…マイクロレンズアレイ(レンズアレイ)、20,20R,20G,20B,120,220,320,320R,320G,320B,420,520,620…光変調素子、112b…拡散粒子、116A…第1レンズアレイ、116B…第2レンズアレイ、116C…第3レンズアレイ、117A…入射側偏光板、117B…射出側偏光板、316,416…反射膜、316a,416a,522a,622a…反射面、522,622…マイクロミラー、La…第1拡散光、Lb…第2拡散光

Claims (12)

  1. レーザー光を射出する光源と、
    前記光源から射出された前記レーザー光を拡散して第1拡散光として射出する第1拡散部と、
    前記第1拡散部から射出された第1拡散光を変調する光変調素子と、を備え、
    前記光変調素子は、前記第1拡散部から射出された第1拡散光を拡散して第2拡散光として射出する第2拡散部を有し、
    前記第2拡散部から射出される第2拡散光の拡散強度分布は、当該第2拡散光の中心軸にまたがって連続的な分布であることを特徴とするプロジェクター。
  2. 前記第2拡散部から射出される第2拡散光の拡散強度分布は、さらに、当該第2拡散光の中心軸にまたがって平坦部を有する分布であることを特徴とする請求項1に記載のプロジェクター。
  3. 前記第1拡散部から射出された第1拡散光を平行な光線束として前記光変調素子に向けて射出する平行化レンズを備えることを特徴とする請求項1または2に記載のプロジェクター。
  4. 前記第2拡散部は、前記光変調素子の前記第1拡散光が射出される側に配置されたレンズアレイであることを特徴とする請求項3に記載のプロジェクター。
  5. 前記第2拡散部は、
    第1レンズアレイと、第2レンズアレイと、第3レンズアレイと、を備え、
    前記第1レンズアレイは、前記第1拡散部から射出された第1拡散光を集光して前記第2レンズアレイに向けて射出し、
    前記第2レンズアレイは、前記第1レンズアレイから射出された第1拡散光を平行な光線束として前記第3レンズアレイに向けて射出し、
    前記第3レンズアレイは、前記第2レンズアレイから射出された第1拡散光を拡散して第2拡散光として射出し、
    前記平行化レンズと前記第1レンズアレイとの間の前記第1拡散光の光路上には入射側偏光板が配置されており、
    前記第2レンズアレイと前記第3レンズアレイとの間の前記第1拡散光の光路上には射出側偏光板が配置されていることを特徴とする請求項3に記載のプロジェクター。
  6. 前記第2拡散部は、前記光変調素子の前記第1拡散光が入射する側に配置されたレンズアレイであることを特徴とする請求項3に記載のプロジェクター。
  7. 前記光変調素子は、一対の基板間に液晶層を挟持して構成され、
    前記一対の基板の前記第1拡散光が入射する側と反対側の基板には、前記第1拡散光を反射する、表面が凹形状または凸形状の反射面を有する反射膜が形成されており、
    前記反射膜は、前記第2拡散部として機能することを特徴とする請求項3に記載のプロジェクター。
  8. 前記光変調素子は、複数の可動式のマイクロミラーを有し、前記複数のマイクロミラーの可動量を制御することにより光を変調するマイクロミラーデバイスであり、
    前記マイクロミラーは、表面が前記第1拡散光を反射する凹形状または凸形状の反射面となっており、
    前記マイクロミラーは、前記第2拡散部として機能することを特徴とする請求項3に記載のプロジェクター。
  9. 前記第1拡散部の前記レーザー光が照射される領域を時間的に変動させる駆動装置を備えることを特徴とする請求項1〜8のいずれか一項に記載のプロジェクター。
  10. 前記駆動装置は、前記第1拡散部を所定の回転軸の周りに回転させるモーターを含むことを特徴とする請求項9に記載のプロジェクター。
  11. 前記第1拡散部は、ホログラム素子であることを特徴とする請求項1〜10のいずれか一項に記載のプロジェクター。
  12. 前記第1拡散部は、内部に光を拡散させる拡散粒子が分散されてなる拡散板であることを特徴とする請求項1〜10のいずれか一項に記載のプロジェクター。
JP2011234969A 2011-01-13 2011-10-26 プロジェクター Active JP5866968B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011234969A JP5866968B2 (ja) 2011-01-13 2011-10-26 プロジェクター
US13/331,142 US9146450B2 (en) 2011-01-13 2011-12-20 Projector
CN201210010390.1A CN102591109B (zh) 2011-01-13 2012-01-13 投影机
CN201510214289.1A CN104765083A (zh) 2011-01-13 2012-01-13 投影机

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011004731 2011-01-13
JP2011004731 2011-01-13
JP2011234969A JP5866968B2 (ja) 2011-01-13 2011-10-26 プロジェクター

Publications (2)

Publication Number Publication Date
JP2012159823A true JP2012159823A (ja) 2012-08-23
JP5866968B2 JP5866968B2 (ja) 2016-02-24

Family

ID=46479978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011234969A Active JP5866968B2 (ja) 2011-01-13 2011-10-26 プロジェクター

Country Status (3)

Country Link
US (1) US9146450B2 (ja)
JP (1) JP5866968B2 (ja)
CN (2) CN104765083A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142574A (ja) * 2013-01-22 2014-08-07 Machvision Inc 行走査に用いる多角度照明の光学部材及びそれを使用する光源系統
JP2015057632A (ja) * 2013-08-12 2015-03-26 旭硝子株式会社 光学素子及び投影装置
WO2015045358A1 (ja) * 2013-09-24 2015-04-02 セイコーエプソン株式会社 プロジェクター
US9354503B2 (en) 2013-05-23 2016-05-31 Seiko Epson Corporation Laser projector
JP2016149305A (ja) * 2015-02-13 2016-08-18 スタンレー電気株式会社 車両用前照灯ユニット、車両用前照灯システム
US9939561B2 (en) 2012-12-28 2018-04-10 Asahi Glass Company, Limited Projector having diffuser
US10401631B2 (en) 2015-01-21 2019-09-03 Hitachi-Lg Data Storage, Inc. Image display device
US10634982B2 (en) 2017-09-01 2020-04-28 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014118378A1 (de) * 2014-12-11 2016-06-16 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
CN105116675B (zh) 2015-06-03 2017-03-01 海信集团有限公司 一种激光光源和投影显示设备
CN105093795B (zh) 2015-06-03 2017-06-16 海信集团有限公司 一种双色激光光源
WO2017056890A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 光通信コネクタ、光通信ケーブル及び電子機器
JP6998532B2 (ja) * 2017-12-13 2022-01-18 パナソニックIpマネジメント株式会社 光センシング装置
CN110412817B (zh) * 2018-04-28 2024-05-03 中强光电股份有限公司 投影装置以及照明系统
US10310362B2 (en) * 2018-06-29 2019-06-04 Intel Corporation LED pattern projector for 3D camera platforms
JP7087828B2 (ja) * 2018-08-27 2022-06-21 セイコーエプソン株式会社 光学素子、光射出装置および画像表示システム
CN109270779A (zh) * 2018-11-27 2019-01-25 深圳市微阵技术有限公司 一种新型动态图像投影系统
CN112738484B (zh) * 2019-10-28 2024-02-20 青岛海信激光显示股份有限公司 激光投影设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208089A (ja) * 1992-07-29 1994-07-26 Texas Instr Inc <Ti> コヒーレント光を用いる無スペックル・ディスプレイ装置
JP2007286110A (ja) * 2006-04-12 2007-11-01 Sony Corp 液晶プロジェクタおよび画像再生装置
JP2007316393A (ja) * 2006-05-26 2007-12-06 Sony Corp 反射型液晶プロジェクタおよび画像再生装置
JP2008122823A (ja) * 2006-11-15 2008-05-29 Seiko Epson Corp プロジェクタ
JP2009042372A (ja) * 2007-08-07 2009-02-26 Seiko Epson Corp プロジェクタ及び投射装置
JP2010097177A (ja) * 2008-09-19 2010-04-30 Mitsubishi Electric Corp 光源ユニット、及び画像表示装置
JP2011128205A (ja) * 2009-12-15 2011-06-30 Seiko Epson Corp 画像表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594090B2 (en) * 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
CN100524000C (zh) * 2003-07-22 2009-08-05 松下电器产业株式会社 二维成像装置
WO2006090681A1 (ja) 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. 二次元画像形成装置
JP2007279204A (ja) * 2006-04-04 2007-10-25 Seiko Epson Corp プロジェクタ
JP5167789B2 (ja) * 2006-12-01 2013-03-21 セイコーエプソン株式会社 光源装置、画像表示装置、プロジェクタ、照明装置、及びモニタ装置
WO2008124595A2 (en) 2007-04-05 2008-10-16 Analog Devices, Inc. Polysilicon deposition and anneal process enabling thick polysilicon films for mems applications
JP5417897B2 (ja) 2009-02-27 2014-02-19 大日本印刷株式会社 投射型映像表示装置および映像表示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208089A (ja) * 1992-07-29 1994-07-26 Texas Instr Inc <Ti> コヒーレント光を用いる無スペックル・ディスプレイ装置
JP2007286110A (ja) * 2006-04-12 2007-11-01 Sony Corp 液晶プロジェクタおよび画像再生装置
JP2007316393A (ja) * 2006-05-26 2007-12-06 Sony Corp 反射型液晶プロジェクタおよび画像再生装置
JP2008122823A (ja) * 2006-11-15 2008-05-29 Seiko Epson Corp プロジェクタ
JP2009042372A (ja) * 2007-08-07 2009-02-26 Seiko Epson Corp プロジェクタ及び投射装置
JP2010097177A (ja) * 2008-09-19 2010-04-30 Mitsubishi Electric Corp 光源ユニット、及び画像表示装置
JP2011128205A (ja) * 2009-12-15 2011-06-30 Seiko Epson Corp 画像表示装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939561B2 (en) 2012-12-28 2018-04-10 Asahi Glass Company, Limited Projector having diffuser
JP2014142574A (ja) * 2013-01-22 2014-08-07 Machvision Inc 行走査に用いる多角度照明の光学部材及びそれを使用する光源系統
US9354503B2 (en) 2013-05-23 2016-05-31 Seiko Epson Corporation Laser projector
JP2015057632A (ja) * 2013-08-12 2015-03-26 旭硝子株式会社 光学素子及び投影装置
WO2015045358A1 (ja) * 2013-09-24 2015-04-02 セイコーエプソン株式会社 プロジェクター
JP2015064444A (ja) * 2013-09-24 2015-04-09 セイコーエプソン株式会社 プロジェクター
CN105492968A (zh) * 2013-09-24 2016-04-13 精工爱普生株式会社 投影机
CN105492968B (zh) * 2013-09-24 2017-06-13 精工爱普生株式会社 投影机
US10025168B2 (en) 2013-09-24 2018-07-17 Seiko Epson Corporation Projector capable of reducing speckle noise
US10401631B2 (en) 2015-01-21 2019-09-03 Hitachi-Lg Data Storage, Inc. Image display device
JP2016149305A (ja) * 2015-02-13 2016-08-18 スタンレー電気株式会社 車両用前照灯ユニット、車両用前照灯システム
US10634982B2 (en) 2017-09-01 2020-04-28 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus

Also Published As

Publication number Publication date
CN102591109B (zh) 2015-08-19
JP5866968B2 (ja) 2016-02-24
CN104765083A (zh) 2015-07-08
CN102591109A (zh) 2012-07-18
US20120182529A1 (en) 2012-07-19
US9146450B2 (en) 2015-09-29

Similar Documents

Publication Publication Date Title
JP5866968B2 (ja) プロジェクター
JP4379482B2 (ja) 光源装置及びプロジェクタ
JP5386821B2 (ja) 光源装置及びプロジェクタ
US7972009B2 (en) Projector and projection unit
US9851581B2 (en) Optical scanning device, illumination device, projection apparatus and optical device
JP5682813B2 (ja) 照明装置及びプロジェクター
JP2015060035A (ja) プロジェクター
EP2490070B1 (en) Illuminating optical system and projector device
JP2009186647A (ja) 照明装置及びプロジェクタ
JP5262860B2 (ja) プロジェクター
JP5849728B2 (ja) 投射型表示装置
JP2012145804A (ja) プロジェクター
JP4997931B2 (ja) プロジェクタ
JP5428822B2 (ja) 照明装置およびプロジェクター
JP5725138B2 (ja) 照明装置およびプロジェクター
JP6146626B2 (ja) 光学素子、照明装置、投射装置および投射型映像表示装置
JP5720203B2 (ja) 照明装置、投射装置および投射型映像表示装置
JP5991389B2 (ja) 照明装置及びプロジェクター
JP2009168882A (ja) プロジェクタ
JP5541375B2 (ja) プロジェクター
JP2014191177A (ja) プロジェクター
JP6229929B2 (ja) 照明装置および投射装置
JP5446530B2 (ja) 画像投射装置
JP2012230153A (ja) プロジェクター
JP6331254B2 (ja) プロジェクター

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5866968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350