JP2012147538A - 車両用電源装置 - Google Patents

車両用電源装置 Download PDF

Info

Publication number
JP2012147538A
JP2012147538A JP2011002682A JP2011002682A JP2012147538A JP 2012147538 A JP2012147538 A JP 2012147538A JP 2011002682 A JP2011002682 A JP 2011002682A JP 2011002682 A JP2011002682 A JP 2011002682A JP 2012147538 A JP2012147538 A JP 2012147538A
Authority
JP
Japan
Prior art keywords
storage unit
power storage
converter
output current
low voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011002682A
Other languages
English (en)
Inventor
Satoshi Moriguchi
聡 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011002682A priority Critical patent/JP2012147538A/ja
Publication of JP2012147538A publication Critical patent/JP2012147538A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】電流が変化しても高効率にDC/DCコンバータを動作できる車両用電源装置の提供。
【解決手段】高電圧蓄電部11と低電圧蓄電部19の間に接続されるDC/DCコンバータ15と、出力電流検出部23と、負荷電流検出部25と、低電圧蓄電部電圧検出回路27と、これらと接続される制御部29とを備え、制御部29は、出力電流Ioが既定出力電流Iokよりも大きい場合は蓄電部電圧Vbが既定蓄電部電圧Vbkを維持するようにDC/DCコンバータ15を駆動し、出力電流Ioが既定出力電流Iok以下である間は、低電圧蓄電部19の放電電荷量Qdが既定放電電荷量Qdkに至るまでDC/DCコンバータ15を停止する動作と、放電電荷量Qdが既定放電電荷量Qdkに至れば、駆動期間tcに亘り出力端子17に既定出力電流Iokが流れるようにDC/DCコンバータ15を駆動する動作と、を繰り返す。
【選択図】図1

Description

本発明は、高電圧蓄電部と低電圧蓄電部を有した車両において、高電圧蓄電部から低電圧蓄電部へ電力を供給する車両用電源装置に関するものである。
近年、省燃費化を図るためにハイブリッド自動車や電気自動車が開発され、車の電動化が進んできている。ハイブリッド自動車はエンジンの補助動力源として電動機を用いており、この電動機を減速時に発電機として使用することで、減速運動エネルギを電気エネルギに変換すること(回生)ができる。従って、回生で得られた電気エネルギを電動機駆動に再利用することで省燃費化を図ることができる。一方、電気自動車は加減速を電動機のみで行うが、ハイブリッド自動車と同様に回生が可能であるので、回生で得られた電気エネルギの再利用により省燃費化を図ることができる。
これらの車両では、電動機の駆動、および回生で得られた電気エネルギの蓄電のために高電圧蓄電部(主バッテリ)を搭載している。この高電圧蓄電部に蓄えられた電気エネルギは電動機を駆動するだけでなく、車両全体を制御する車両制御部(ECU)やヘッドライト等の補機類の電源としても用いられている。すなわち、補機類は例えば12Vの低電圧で動作するため、基本的には低電圧蓄電部(補助バッテリ)から電力が供給されるが、補機類の動作状態によっては低電圧蓄電部だけで電力をまかないきれない場合がある。そこで、高電圧蓄電部から低電圧蓄電部や補機類に電力が供給される構成としている。そして、高電圧蓄電部からの電力供給のために、DC/DCコンバータが搭載されている。
このようなDC/DCコンバータとして、例えば特許文献1に示される電気自動車用DC/DCコンバータが提案されている。その電気回路図を図3に示す。電気自動車の電動機101はチョッパ103が直列に接続される。また、電動機101とチョッパ103の直列回路には主バッテリ105が接続される。さらに、主バッテリ105はDC/DCコンバータ107を介してECU109、補機類111、および補助バッテリ113が接続されている。従って、ECU109、補機類111、および補助バッテリ113が低電圧系の回路を構成している。なお、ECU109にはアクセルとブレーキからの信号が入力される構成としている。また、ECU109はチョッパ103とも接続される。従って、ECU109はアクセルとブレーキからの信号に応じてチョッパ103を制御することで、電気自動車の加減速を行なう。
DC/DCコンバータ107は降圧部119と制御部121から構成され、制御部121に内蔵された電圧制御回路123によって降圧部119が制御される。また、制御部121にはリレーコイル125によって切替制御される切替手段127と、切替手段127に接続される抵抗体129、131が設けられている。さらに、リレーコイル125にはタイマー手段133が接続される。
次に、このようなDC/DCコンバータ107の動作について説明する。DC/DCコンバータ107は主バッテリ105の高電圧を降圧部119によって低電圧に変換して、ECU109、補機類111、および補助バッテリ113に電力を供給する。この際、通常はタイマー手段133によりリレーコイル125への通電が行なわれないように制御されるため、切替手段127は図3に示す接点を選択する。この時、電圧制御回路123に入力される電圧を第1設定電圧という。ゆえに、リレーコイル125が通電されない場合は、DC/DCコンバータ107の出力電圧が第1設定電圧になるように制御される。なお、第1設定電圧は補助バッテリ113の満充電に近い電圧であるので、補助バッテリ113が満充電に近くなると充電速度が低下し、過充電が防がれる。従って、補助バッテリ113が長寿命化される。
タイマー手段133は、1時間毎に5分だけリレーコイル125を通電制御する。これにより、切替手段127が抵抗体129、131を選択する。その結果、電圧制御回路123に入力される電圧は、抵抗体129、131の抵抗値で決定される第2設定電圧となる。この第2設定電圧は第1設定電圧よりも高いため、補助バッテリ113は切替手段127が切り替わることにより急速充電される。この時、補助バッテリ113の電解液が攪拌され比重が均一化する。これにより低電圧充電による補助バッテリ113の短命化を防ぐ。
このように、DC/DCコンバータ107の出力電圧を間欠的に高めることで、補助バッテリ113の長寿命化を図っている。
特許第2850922号公報
上記した図3に示すDC/DCコンバータ107の動作によると、確かに補助バッテリ113の長寿命化が図れるのであるが、負荷である補機類111や補助バッテリ113に流れる電流によってはDC/DCコンバータ107の効率が低下する可能性があるという課題があった。
すなわち、図3に示す構成における補助バッテリ113の充電方法としては2通りの電圧が設定されており、それに合わせてDC/DCコンバータ107は補助バッテリ113を充電している。従って、DC/DCコンバータ107は電流の大小にかかわらず第1設定電圧、または第2設定電圧を保つように常に動作しているため、DC/DCコンバータ107には常時スイッチング損失が発生している。その結果、特に電流が小さい場合はDC/DCコンバータのエネルギ変換効率が悪くなるという課題があった。
本発明は前記従来の課題を解決するもので、電流が変化しても高効率にDC/DCコンバータを動作できる車両用電源装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の車両用電源装置は、高電圧蓄電部と、前記高電圧蓄電部と入力端子を介して電気的に接続されるDC/DCコンバータと、前記DC/DCコンバータの出力端子と電気的に接続される低電圧蓄電部と、前記低電圧蓄電部と電気的に接続される低電圧負荷と、前記DC/DCコンバータの前記出力端子に流れる出力電流(Io)を検出する出力電流検出部と、前記低電圧負荷に流れる負荷電流(If)を検出する負荷電流検出部と、前記低電圧蓄電部と電気的に接続され、前記低電圧蓄電部の蓄電部電圧(Vb)を検出する低電圧蓄電部電圧検出回路と、前記DC/DCコンバータ、出力電流検出部、負荷電流検出部、および低電圧蓄電部電圧検出回路と電気的に接続される制御部と、を備え、前記制御部は、前記出力電流(Io)が既定出力電流(Iok)よりも大きい場合は前記蓄電部電圧(Vb)が既定蓄電部電圧(Vbk)を維持するように前記DC/DCコンバータを駆動し、前記出力電流(Io)が前記既定出力電流(Iok)以下である間は、前記負荷電流(If)に基づいて求められる前記低電圧蓄電部の放電電荷量(Qd)が、既定放電電荷量(Qdk)に至るまで、前記DC/DCコンバータを停止する動作と、前記放電電荷量(Qd)が前記既定放電電荷量(Qdk)に至れば、前記既定放電電荷量(Qdk)を、前記既定出力電流(Iok)と前記負荷電流(If)との電流差(ΔI)で除して得られる駆動期間(tc)に亘り、前記出力端子に前記既定出力電流(Iok)が流れるように前記DC/DCコンバータを駆動する動作と、を繰り返すようにしたものである。
本発明の車両用電源装置によれば、出力電流(Io)に応じてDC/DCコンバータを連続運転、または間欠運転に切替えるため、出力電流(Io)が小さい間欠運転中でDC/DCコンバータが停止中にはスイッチング損失がなくなり、動作中には既定出力電流(Iok)をDC/DCコンバータの最大効率になるように設定することでスイッチング損失を減らすことができる。従って、DC/DCコンバータの損失が低減でき、高効率的な車両用電源装置を提供することができる。
本発明の実施の形態1における車両用電源装置のブロック回路図 本発明の実施の形態1における車両用電源装置の各種電流の経時特性図であり、(a)は低電圧負荷要求電流Ifdの経時特性図、(b)は出力電流(Io)の経時特性図 従来の電気自動車用DC/DCコンバータの電気回路図
以下、本発明を実施するための形態について図面を参照しながら説明する。
(実施の形態1)
図1は、本発明の実施の形態1における車両用電源装置のブロック回路図である。図2は、本発明の実施の形態1における車両用電源装置の各種電流の経時特性図であり、(a)は低電圧負荷要求電流Ifdの経時特性図、(b)は出力電流(Io)の経時特性図を、それぞれ示す。なお、図1において太線は電力系配線を、細線は信号系配線をそれぞれ示す。
図1において、高電圧蓄電部11は車両を駆動するためのモータ(図示せず)に電力を供給するもので、ニッケル水素電池やリチウムイオン電池などの二次電池で構成される。なお、高電圧蓄電部11の電圧は前記モータを駆動するために、数100Vとしている。この高電圧蓄電部11は入力端子13を介してDC/DCコンバータ15と電気的に接続される。
DC/DCコンバータ15は入力端子13に入力される数100Vの高電圧を降圧して出力端子17から出力する機能を有する。ここでは、一般的な車両の電装品に供給される電圧として、12Vまで降圧する構成としている。従って、DC/DCコンバータ15は絶縁型とし、そのグランドは高電圧系と低電圧系で独立した構成としている。
出力端子17には低電圧蓄電部19が電気的に接続されている。低電圧蓄電部19は定格12Vの電圧を有するもので、鉛バッテリで構成される。ここで、低電圧蓄電部19における電圧を蓄電部電圧Vbと呼ぶ。なお、低電圧蓄電部19は鉛バッテリに限定されるものではなく、上記した二次電池や大容量キャパシタ等であってもよい。
低電圧蓄電部19には低電圧負荷21が電気的に接続される。ここで、低電圧負荷21は一般的な車両に搭載される電装品であり、12Vの低電圧で駆動する。このような構成により、DC/DCコンバータ15は高電圧蓄電部11の高電圧を降圧して低電圧蓄電部19を充電するとともに、低電圧負荷21に電力を供給する。低電圧蓄電部19は車両が急加速を行なうなどで高電圧蓄電部11が大電力を放電している時に低電圧負荷21へ電力を供給したり、高電圧蓄電部11やDC/DCコンバータ15が異常となった場合に低電圧負荷21に電力を供給するバックアップ電源としての役割を有する。
DC/DCコンバータ15の出力端子17には、出力端子17に流れる出力電流Ioを検出するための出力電流検出部23が設けられている。ここで、出力電流検出部23は、シャント抵抗器(図示せず)の両端電圧を測定することで出力電流Ioを検出する構成とした。なお、出力電流検出部23は上記構成に限定されるものではなく、例えばホール素子のように磁気的に検出するものであってもよい。また、出力電流検出部23はDC/DCコンバータ15の中で出力電流Ioが検出できる部分に内蔵される構成としてもよい。この場合、出力電流IoはDC/DCコンバータ15から出力される構成とする。
同様に、低電圧負荷21には、低電圧負荷21に流れる負荷電流Ifを検出するための負荷電流検出部25が設けられている。この負荷電流検出部25も出力電流検出部23と同じ構成とした。
低電圧蓄電部19には、蓄電部電圧Vbを検出するための低電圧蓄電部電圧検出回路27が電気的に接続されている。低電圧蓄電部電圧検出回路27は2つの検出抵抗器(図示せず)の中点電圧を測定することで検出する構成とした。なお、低電圧蓄電部電圧検出回路27は上記構成に限定されるものではなく、例えばA/Dコンバータにより蓄電部電圧Vbを直接デジタル値に変換する構成のものでもよい。
DC/DCコンバータ15、出力電流検出部23、負荷電流検出部25、および低電圧蓄電部電圧検出回路27は制御部29と信号系配線により電気的に接続される。制御部29はマイクロコンピュータと周辺回路(いずれも図示せず)で構成され、出力電流Io、負荷電流If、および蓄電部電圧Vbを読み込むとともに、DC/DCコンバータ15を制御するための制御信号contを出力する機能を有する。なお、制御部29は図示しない車両制御部とも信号系配線で接続され、様々な情報をデータ信号dataにより送受信している。
次に、図2を用いて車両用電源装置の動作を説明する。ここで、低電圧蓄電部19は、その充電量SOC(state of charge)が100%であるとする。なお、充電量SOCは低電圧蓄電部19に入出力される電流の時間積分で求められる。ここでは、制御部29が出力電流Ioと負荷電流Ifを検出することで低電圧蓄電部19の入出力電流の時間積分を行なっている。
まず、時刻t0において、図2(a)に示すように低電圧負荷21が消費する低電圧負荷要求電流Ifdが電流I3であるとする。この時、低電圧蓄電部19の充電量SOCは100%であるので、低電圧蓄電部19には充電されない。従って、DC/DCコンバータ15からの出力電流Ioはほぼ全てが低電圧負荷21に供給される。よって、時刻t0では低電圧負荷要求電流Ifdが出力電流Ioと等しくなる。ゆえに、図2(b)に示すように、時刻t0における出力電流Ioは電流I3となる。
この時の電流I3(=出力電流Io)は既定出力電流Iokよりも大きい。ここで、既定出力電流Iokとは、出力電流Ioが小さくなるとDC/DCコンバータ15の効率が低下することから、DC/DCコンバータ15が最大効率となる出力電流Ioであると定義する。なお、ここでは最大効率を測定するための誤差や周囲温度等による外乱変動の変化を含めて最大効率としている。従って、ここで定義した既定出力電流Iokには誤差マージンを含んで決定されている。また、既定出力電流Iokは上記のようにして予め決定され、制御部29に内蔵したメモリ(図示せず)に記憶されている。
時刻t0から時刻t1では出力電流Ioが既定出力電流Iokよりも大きいので、制御部29はDC/DCコンバータ15を連続運転する。この時、制御部29は蓄電部電圧Vbが既定蓄電部電圧Vbkを維持するようにDC/DCコンバータ15を駆動する。ここで、既定蓄電部電圧Vbkとは低電圧蓄電部19の定格電圧(ここでは12V)であると定義する。従って、低電圧蓄電部19の充電量SOCが低下し、蓄電部電圧Vbが前記定格電圧を下回ると、低電圧蓄電部19には蓄電部電圧Vbよりも高い既定蓄電部電圧Vbkが印加されるので、低電圧蓄電部19が充電される。このように制御することで、DC/DCコンバータ15は低電圧蓄電部19の充電と低電圧負荷21への電力供給を同時に行なうことができる。なお、ここでは充電量SOCが100%であるので、蓄電部電圧Vbは既定蓄電部電圧Vbkとほぼ等しくなる。ゆえに、実質的にはDC/DCコンバータ15は低電圧負荷21に連続的に電力を供給することになる。
なお、既定蓄電部電圧Vbkは低電圧蓄電部19の定格電圧に限定されるものではなく、定格電圧の誤差範囲や変動要因を含めてマージンを持たせて決定してもよい。この既定蓄電部電圧Vbkは既定出力電流Iokと同様に予めメモリに記憶されている。
その後、時刻t1で低電圧負荷21の消費電流が増え、低電圧負荷要求電流Ifdが図2(a)のように電流I4に増える。この時も、時刻t0から時刻t1と同様に、低電圧蓄電部19は充電が行なわれないので、出力電流Ioはほぼ全てが低電圧負荷21に供給される。ゆえに、図2(b)に示すように、時刻t1における出力電流Ioは電流I4となる。また、DC/DCコンバータ15は連続運転を継続する。
次に、時刻t2で図2(a)に示すように、低電圧負荷21の一部が動作を停止するなどにより軽負荷となると、低電圧負荷要求電流Ifdが電流I1まで低下する。この時、本来であれば、DC/DCコンバータ15は出力電流Ioが電流I1となって引き続き低電圧負荷21に電力を供給し続けるように動作するところであるが、電流I1(=出力電流Io)が既定出力電流Iok以下であるので、制御部29はDC/DCコンバータ15を最大効率で動作させるために、以下に説明する間欠運転を行なう。
まず、時刻t2で制御部29は低電圧負荷要求電流Ifdが電流I1まで低下したことを負荷電流検出部25からの負荷電流Ifで検出する。そして、負荷電流If(=低電圧負荷要求電流Ifd)が既定出力電流Iok以下であると判断すると、制御部29はDC/DCコンバータ15を停止する。その結果、低電圧負荷21へは低電圧蓄電部19の電力が供給されることになる。この時、制御部29は負荷電流検出部25で検出される負荷電流Ifに基づいて低電圧蓄電部19から放電される放電電荷量Qdを求める。具体的には、負荷電流Ifが変化する場合、放電電荷量Qdは負荷電流Ifを時間積分することで求めているが、ここでは図2(a)に示すように、時刻t2から時刻t3までは低電圧負荷要求電流Ifdが電流I1で一定であるため、単純に電流I1に経過時間を乗じることで放電電荷量Qdを求めている。
次に、制御部29は放電電荷量Qdが既定放電電荷量Qdkに至ったか否かを判断する。ここで、既定放電電荷量Qdkとは、DC/DCコンバータ15を停止している間に低電圧蓄電部19が放電してもよい電荷量のことである。すなわち、DC/DCコンバータ15の停止期間が長いほどDC/DCコンバータ15の損失が少なくなるが、低電圧蓄電部19が放電しすぎると、低電圧蓄電部19を再充電して充電量SOCを100%にするまでに長期間がかかる上、低電圧蓄電部19の寿命が短くなる可能性もある。従って、充電期間や低電圧蓄電部19の寿命を考慮して、例えば充電量SOCが95%に至るまでは放電すると予め決定する。すなわち、充電量SOCが95%であれば、充電期間が短くて済み、低電圧蓄電部19の寿命にもほとんど影響しない。そこで、低電圧蓄電部19の充電量SOCが100%から95%になるまでの電荷量を既定放電電荷量Qdkとして決定する。
なお、既定放電電荷量Qdkは充電量SOCが100%から95%に至る電荷量に限定されるものではなく、例えば低電圧蓄電部19がキャパシタで構成されていれば大電流充電が可能なため、放電を許容する充電量SOC(=既定放電電荷量Qdk)をもっと低い値に設定しても充電期間が短くて済む。また、キャパシタは充放電による寿命が鉛バッテリに比べ格段に長いので、寿命を考慮しても既定放電電荷量Qdkを大きく決定できる。このように、既定放電電荷量Qdkは、使用する低電圧蓄電部19の特性に応じて適宜決定すればよい。
このような動作により、時刻t2から時刻t3まではDC/DCコンバータ15が停止しているので、図2(b)に示すように出力電流Ioは0となる。また、その間は低電圧蓄電部19から低電圧負荷21に電力供給されるので、低電圧蓄電部19は図2(a)に示す低電圧負荷要求電流Ifd(ここでは電流I1)を負荷電流Ifとして流し続ける。ゆえに、DC/DCコンバータ15が停止していても低電圧負荷21は継続して動作する。
次に、時刻t3で放電電荷量Qdが既定放電電荷量Qdkに至ると、制御部29は出力端子17に既定出力電流Iokが流れるように制御信号contをDC/DCコンバータ15に出力する。これを受け、DC/DCコンバータ15は既定出力電流Iokが流れるように定電流制御を行なう。それと同時に、制御部29はDC/DCコンバータ15の駆動期間tcを以下のようにして求める。
まず、時刻t2から時刻t3までのDC/DCコンバータ15の停止期間において、低電圧蓄電部19が低電圧負荷21に供給した放電電荷量Qdは、上記したように低電圧負荷要求電流Ifdが電流I1で一定であるので、放電電荷量Qdは図2(a)の時刻t2から時刻t3に示した細斜線の面積に相当する。ゆえに、放電電荷量Qdは電流I1に停止期間(=時刻t3−時刻t2)を乗じることで求められる。なお、停止期間中に低電圧負荷要求電流Ifdが変化する場合は、上記した時間積分により放電電荷量Qdを求める。
この放電電荷量QdがDC/DCコンバータ15の停止期間中に低電圧蓄電部19から放電されるので、その分を次のDC/DCコンバータ15の駆動期間tc中に充電する。さらにこの駆動期間tc中にも低電圧負荷21を継続して動作させるために、その分の電力もDC/DCコンバータ15から供給する必要がある。ここで、駆動期間tc中の低電圧負荷21が消費する低電圧負荷要求電流Ifdは図2(a)の時刻t3において電流I1(=負荷電流If)で一定であるので、駆動期間tcに亘り低電圧負荷21に供給される低電圧負荷電荷量Qfは負荷電流Ifに駆動期間tcを乗じることで得られる。すなわち、低電圧負荷電荷量Qfは図2(a)の時刻t3から時刻t4までに示される太斜線の面積に相当する。
従って、DC/DCコンバータ15は上記の放電電荷量Qdと低電圧負荷電荷量Qf(両者の合計を出力電荷量Qoという)を駆動期間tcに亘って出力すればよいのであるが、この際に制御部29はDC/DCコンバータ15の損失を低減するために既定出力電流Iokを流すように制御する。これにより、DC/DCコンバータ15は駆動期間tcにおいても高効率に動作することができる上に、DC/DCコンバータ15の停止期間も加味すると、全体的に間欠運転により効率を高めることができる。
これらのことより、駆動期間tcは次のようにして求められる。時刻t3で放電電荷量Qdは既定放電電荷量Qdkに至っているので、放電電荷量Qdは既知である。また、低電圧負荷電荷量Qfは上記した方法で求められる。なお、低電圧負荷電荷量Qfは、
Qf=If・tc (1)
である。
一方、制御部29は出力電流Ioが既定出力電流IokとなるようにDC/DCコンバータ15を定電流制御するので、駆動期間tcの間に出力される出力電荷量Qoは、
Qo=Iok・tc (2)
となる。
従って、駆動期間tcは、
Qo=Qdk+Qf (3)
に(1)式と(2)式を代入することで決定される。すなわち、
Iok・tc=Qdk+If・tc (4)
となるので、駆動期間tcは、
tc=Qdk/(Iok−If) (5)
となる。ここで、既定出力電流Iokと負荷電流Ifとの差を電流差ΔIと呼ぶ。従って、(5)式は、
tc=Qdk/ΔI (6)
となる。ゆえに、駆動期間tcは既定放電電荷量Qdkを電流差ΔIで除することで得られる。
制御部29は時刻t3の時点で上記計算を行い駆動期間tcを求める。その後、駆動期間tcに亘り、既定出力電流Iokが流れるようにDC/DCコンバータ15を制御する。これにより、低電圧負荷21には負荷電流Ifが流れ、低電圧蓄電部19は電流差ΔIの電流により充電が行なわれる。この際、DC/DCコンバータ15は定電流制御を行なうので、出力端子17の電圧は既定出力電流Iokを流すために、自動的に低電圧蓄電部19の定格電圧より少し高い電圧が印加されることになる。これにより、低電圧蓄電部19が充電される。
なお、駆動期間tcの間に低電圧負荷要求電流Ifdが変化すると、それに応じて時刻t3の時点で決定した駆動期間tcも変更する必要がある。この場合は、制御部29が駆動期間tc中に負荷電流Ifを監視し、変化があれば、その時点での負荷電流Ifと、その時点までに低電圧蓄電部19に充電された電荷量を既定放電電荷量Qdkから差し引いた値と、を求めて、再度、駆動期間tcを求める動作を繰り返すようにすればよい。その際、低電圧負荷要求電流Ifdが既定出力電流Iokを超えた場合は、制御部29が直ちに時刻t2までで説明したDC/DCコンバータ15の連続運転に切り替えればよい。なお、連続運転に切り替える動作は、具体的には出力電流Ioが既定出力電流Iokとなるようにする定電流制御から、時刻t2までで説明したように蓄電部電圧Vbが既定蓄電部電圧Vbkを維持する定電圧制御へ、DC/DCコンバータ15を切り替える動作である。
このような動作により、軽負荷で出力電流Ioが小さい場合の間欠運転中では、DC/DCコンバータ15が停止中にはスイッチング損失がなくなり、動作中には既定出力電流IokをDC/DCコンバータ15の最大効率になるように設定しているので、スイッチング損失を減らすことができる。従って、低電圧負荷要求電流Ifdが大きくなるまでは間欠運転を行なうことにより高効率を実現できるとともに、低電圧負荷要求電流Ifdが大きくなればDC/DCコンバータ15を連続運転に切り替えることで、低電圧負荷21の安定動作を実現できる。
次に、図2(a)に示すように、時刻t3から時刻t4まで低電圧負荷要求電流Ifdが電流I1で一定であったとする。従って、制御部29は(6)式で求めた駆動期間tcに亘ってDC/DCコンバータ15が既定出力電流Iokの定電流を出力するよう制御する。これにより、駆動期間tcが経過した時刻t4において、DC/DCコンバータ15から出力される出力電荷量Qoは、図2(b)の時刻t3から時刻t4に示す細斜線と太斜線の合計面積に相当する。これは図2(a)の時刻t2から時刻t3までの細斜線の面積と時刻t3から時刻t4までの太斜線の面積との合計と、測定誤差や演算誤差の範囲内で等しくなる。その結果、時刻t4で低電圧蓄電部19は充電量SOCが100%まで戻ったことになる。
従って、時刻t4で制御部29は、時刻t2と同様にして、DC/DCコンバータ15を停止する制御を行う。そして、時刻t5で放電電荷量Qdが既定放電電荷量Qdkに至れば、時刻t3と同様にして駆動期間tcを求め、DC/DCコンバータ15が既定出力電流Iokの定電流を出力するよう駆動する。
以下、このような動作を繰り返すことにより、出力電流Ioが既定出力電流Iok以下である間はDC/DCコンバータ15を間欠運転するので、その間は高効率化が図れる。
次に、時刻t6で駆動期間tcが終了し、DC/DCコンバータ15が停止すると同時に、図2(a)に示すように、低電圧負荷要求電流Ifdが電流I1の2倍である電流I2に増えるとする。なお、電流I2は既定出力電流Iokより小さい。この場合、既定放電電荷量Qdkは一定値であるので、低電圧蓄電部19から低電圧負荷21に放電される放電電荷量Qdが既定放電電荷量Qdkに至るまでの期間、すなわち時刻t6から時刻t7までの期間は、低電圧負荷要求電流Ifdが電流I1の場合の期間、すなわち時刻t2から時刻t3までの期間の半分となる。従って、低電圧負荷要求電流Ifdが増えると、DC/DCコンバータ15の停止期間が短くなる。
次に、時刻t7で、時刻t3で述べたようにしてDC/DCコンバータ15を動作させる駆動期間tcを求めるのであるが、低電圧負荷要求電流Ifdが増加しているので、その分、多くの電力を低電圧負荷21に供給する必要がある。ゆえに、駆動期間tcは長くなる。すなわち、図2(b)に示すように、時刻t3から時刻t4までの駆動期間tcに比べ、時刻t7から時刻t8までの駆動期間tcが長くなる。
このように、低電圧負荷要求電流Ifdが電流I2である間は、制御部29は時刻t6から時刻t7までの停止期間と、時刻t7から時刻t8までの駆動期間tcを繰り返す動作を行う。従って、時刻t8から時刻t10までの動作は、時刻t6から時刻t8までの動作と同じである。
次に、図2(b)に示すように、DC/DCコンバータ15の停止期間中である時刻t11で、図2(a)に示すように、低電圧負荷要求電流Ifdが電流I3まで増える。これにより、制御部29は出力電流Ioが既定出力電流Iokより大きくなったことを検出し、直ちにDC/DCコンバータ15を時刻t0で説明した連続運転に切り替える。なお、連続運転に切り替える詳細動作は、上記した通りである。
この時刻t11の状態は時刻t0と同じであるので、以下、同様の動作を繰り返すことにより、DC/DCコンバータ15の連続運転と間欠運転を切り替える。
以上の構成、動作により、負荷電流Ifが既定出力電流Iok以下の軽負荷時となりDC/DCコンバータ15の損失が大きい場合は間欠運転を行ない、さらに間欠運転時のDC/DCコンバータ15の動作時は最大効率となるように制御されるので、高効率化を図ることが可能な車両用電源装置を得ることができる。
(実施の形態2)
本実施の形態2における車両用電源装置の構成は図1と同じであるので、詳細な説明を省略する。すなわち、本実施の形態2における特徴となる動作は以下の通りである。
制御部29は、出力電流Ioが既定出力電流Iok以下となった時、すなわちDC/DCコンバータ15の間欠運転を行なう時であって、例えば図2(b)の時刻t3で駆動期間tcを求めて、出力端子17に既定出力電流Iokが流れるように駆動期間tcに亘りDC/DCコンバータ15を駆動する際に、次の計算を行なう。
まず、制御部29は低電圧蓄電部19の第1充電損失Wb1を求める。ここで、第1充電損失Wb1は低電圧蓄電部19を充電する際の、低電圧蓄電部19で発生する損失のことで、低電圧蓄電部19の内部抵抗値Rと電流差ΔIとの積から求められる。ここで、内部抵抗値Rは車両のイグニションをオンにしたときに、大電流を消費する低電圧負荷21(例えばウインドウデフォガ)を車両制御部が動作させ、その瞬間の蓄電部電圧Vbの落ち込みを低電圧蓄電部電圧検出回路27で検出することによって求められる。但し、内部抵抗値Rの求め方は上記した方法に限定されるものではなく、充電量SOCの総変化から統計的に内部抵抗値Rを推定するなど公知の方法を適用してもよい。また、内部抵抗値Rの精度を上げるために、周囲温度による補正を加えて求めてもよい。
次に、制御部29はDC/DCコンバータ15の第1駆動損失Wd1を求める。これは、出力電流IoとDC/DCコンバータ15の損失との相関関係を予め求めてメモリに記憶しておくことにより得ることができる。なお、出力電流Ioは間欠運転時には既定出力電流Iokとなるので、基本的には第1駆動損失Wd1が一定値となり、その値を用いてもよいが、本実施の形態2では誤差を考慮して出力電流Ioの実測値から第1駆動損失Wd1を求めるようにしている。
次に、制御部29は第1充電損失Wb1と第1駆動損失Wd1とを加算することで間欠動作時損失W1を得る。従って、間欠動作時損失W1は、間欠運転時におけるDC/DCコンバータ15と低電圧蓄電部19による総損失である。
次に、制御部29は出力電流Ioが既定出力電流Iok以下となっても間欠運転を行なわずに、そのまま連続運転を行なった場合の連続動作時損失W2を求める。具体的には、制御部29は出力電流Ioが既定出力電流Iok以下となった時の出力電流Ioと負荷電流Ifを検出し、両者の差と上記した内部抵抗値Rとから低電圧蓄電部19の第2充電損失Wb2を求める。さらに、上記した出力電流IoとDC/DCコンバータ15の損失との相関関係を用いて、出力電流Ioが既定出力電流Iok以下となった時の出力電流Ioと前記相関関係からDC/DCコンバータ15の第2駆動損失Wd2を求める。
次に、制御部29は第2充電損失Wb2と第2駆動損失Wd2とを加算することで連続動作時損失W2を得る。従って、連続動作時損失W2は、出力電流Ioを流し続ける連続運転時におけるDC/DCコンバータ15と低電圧蓄電部19による総損失である。
次に、制御部29は間欠動作時損失W1と連続動作時損失W2とを比較し、間欠動作時損失W1が連続動作時損失W2より大きければ、間欠運転を行う方が総損失が大きいことになるので、この場合は間欠運転を行なわずに連続運転を行なうよう制御する。すなわち、制御部29は蓄電部電圧Vbが既定蓄電部電圧Vbkを維持するようにDC/DCコンバータ15を定電圧駆動する動作を優先する。これにより、実施の形態1に比べ、さらに細かく間欠運転と連続運転とを切り替えられるので、不要な間欠運転による総損失の増大を抑制でき、高効率化を図ることが可能となる。
なお、間欠動作時損失W1が連続動作時損失W2より大きい場合としては、低電圧蓄電部19の内部抵抗値Rが周囲温度の変化や劣化進行に伴って増大する場合が挙げられる。この内部抵抗値Rの増大時には、間欠動作時における第1充電損失Wb1が第2充電損失Wb2より大きくなることがある。さらに、周囲温度の変化によってはDC/DCコンバータ15の効率が温度特性を有するために、第1駆動損失Wd1が第2駆動損失Wd2より大きくなることがある。従って、条件によっては総損失である間欠動作時損失W1が連続動作時損失W2より大きくなる。
また、間欠運転中であって、駆動期間tcに亘りDC/DCコンバータ15を駆動する際であれば、間欠動作時損失W1と連続動作時損失W2とを求める動作を繰り返し、間欠動作時損失W1が連続動作時損失W2より大きければ、たとえ駆動期間tcの途中であっても間欠運転と連続運転とを切り替えるようにしてもよい。この場合は、即時的に切替が可能となるので、その分、少しでも損失を低減でき、一層の高効率化を図ることが可能となる。
以上の構成、動作により、間欠動作時損失W1と連続動作時損失W2とを求めて、間欠運転と連続運転とを切り替えるので、さらに高効率化を図ることが可能な車両用電源装置を得ることができる。
なお、実施の形態1、2において、低電圧蓄電部19の充電量SOCは連続運転時に100%になっているものとして説明したが、これは、充電量SOCが100%未満の場合であっても95%以上であれば、制御部29が間欠運転への切替判断を行うようにしてもよい。この場合、間欠運転に切り替えると、現在の充電量SOCと、放電終了時の充電量SOCである95%とから既定放電電荷量Qdkを求めて設定する必要がある。このように動作すると、間欠運転を行う可能性が高まるので、さらなる高効率化が可能となる。
しかし、上記の動作では既定放電電荷量Qdkを求める動作が追加され複雑になるので、既定放電電荷量Qdkを一定値としておき、充電量SOCが100%でなければ間欠運転への切替判断を禁止する構成としてもよい。この場合は動作を簡略化できる。
本発明にかかる車両用電源装置は、軽負荷時であっても高効率に電力供給ができるので、高電圧蓄電部から低電圧蓄電部に電力を供給する車両用電源装置等として有用である。
11 高電圧蓄電部
13 入力端子
15 DC/DCコンバータ
17 出力端子
19 低電圧蓄電部
21 低電圧負荷
23 出力電流検出部
25 負荷電流検出部
27 低電圧蓄電部電圧検出回路
29 制御部

Claims (2)

  1. 高電圧蓄電部と、
    前記高電圧蓄電部と入力端子を介して電気的に接続されるDC/DCコンバータと、
    前記DC/DCコンバータの出力端子と電気的に接続される低電圧蓄電部と、
    前記低電圧蓄電部と電気的に接続される低電圧負荷と、
    前記DC/DCコンバータの前記出力端子に流れる出力電流(Io)を検出する出力電流検出部と、
    前記低電圧負荷に流れる負荷電流(If)を検出する負荷電流検出部と、
    前記低電圧蓄電部と電気的に接続され、前記低電圧蓄電部の蓄電部電圧(Vb)を検出する低電圧蓄電部電圧検出回路と、
    前記DC/DCコンバータ、出力電流検出部、負荷電流検出部、および低電圧蓄電部電圧検出回路と電気的に接続される制御部と、を備え、
    前記制御部は、前記出力電流(Io)が既定出力電流(Iok)よりも大きい場合は前記蓄電部電圧(Vb)が既定蓄電部電圧(Vbk)を維持するように前記DC/DCコンバータを駆動し、
    前記出力電流(Io)が前記既定出力電流(Iok)以下である間は、
    前記負荷電流(If)に基づいて求められる前記低電圧蓄電部の放電電荷量(Qd)が、既定放電電荷量(Qdk)に至るまで、前記DC/DCコンバータを停止する動作と、
    前記放電電荷量(Qd)が前記既定放電電荷量(Qdk)に至れば、前記既定放電電荷量(Qdk)を、前記既定出力電流(Iok)と前記負荷電流(If)との電流差(ΔI)で除して得られる駆動期間(tc)に亘り、前記出力端子に前記既定出力電流(Iok)が流れるように前記DC/DCコンバータを駆動する動作と、を繰り返すようにした車両用電源装置。
  2. 前記制御部は、前記出力電流(Io)が前記既定出力電流(Iok)以下となった時に、
    前記出力端子に前記既定出力電流(Iok)が流れるように前記駆動期間(tc)に亘り前記DC/DCコンバータを駆動する際の、前記低電圧蓄電部の第1充電損失(Wb1)と前記DC/DCコンバータの第1駆動損失(Wd1)とを求めて加算することで得られる間欠動作時損失(W1)と、
    前記出力電流(Io)を流し続ける際の、前記低電圧蓄電部の第2充電損失(Wb2)と、前記DC/DCコンバータの第2駆動損失(Wd2)とを求めて加算することで得られる連続動作時損失(W2)と、から、
    前記間欠動作時損失(W1)が前記連続動作時損失(W2)より大きければ、前記蓄電部電圧(Vb)が既定蓄電部電圧(Vbk)を維持するように前記DC/DCコンバータを駆動する動作を優先するようにした請求項1に記載の車両用電源装置。
JP2011002682A 2011-01-11 2011-01-11 車両用電源装置 Pending JP2012147538A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002682A JP2012147538A (ja) 2011-01-11 2011-01-11 車両用電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002682A JP2012147538A (ja) 2011-01-11 2011-01-11 車両用電源装置

Publications (1)

Publication Number Publication Date
JP2012147538A true JP2012147538A (ja) 2012-08-02

Family

ID=46790533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002682A Pending JP2012147538A (ja) 2011-01-11 2011-01-11 車両用電源装置

Country Status (1)

Country Link
JP (1) JP2012147538A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068016A1 (en) * 2013-11-08 2015-05-14 Toyota Jidosha Kabushiki Kaisha Vehicle and electric power supply device for vehicle
WO2015097994A1 (en) * 2013-12-24 2015-07-02 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
WO2015104744A1 (en) * 2014-01-09 2015-07-16 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
WO2015107584A1 (en) * 2014-01-15 2015-07-23 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
CN106004446A (zh) * 2016-05-31 2016-10-12 北京现代汽车有限公司 电动汽车低压蓄电池的充电控制方法、系统及整车控制器
US20160332529A1 (en) * 2014-01-22 2016-11-17 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
JP2017011798A (ja) * 2015-06-17 2017-01-12 株式会社椿本チエイン 電力変換装置、コンピュータプログラム及び電力変換方法
WO2017094247A1 (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 電源装置、電源装置の制御方法、および電源装置制御プログラム
KR101774655B1 (ko) * 2015-11-02 2017-09-04 현대자동차주식회사 친환경 차량의 ldc 제어 장치 및 그 방법
CN112477598A (zh) * 2020-12-07 2021-03-12 安徽江淮汽车集团股份有限公司 电动汽车低压系统控制方法、装置、设备及存储介质

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705369A (zh) * 2013-11-08 2016-06-22 丰田自动车株式会社 车辆和车辆的电源装置
CN105705369B (zh) * 2013-11-08 2018-03-09 丰田自动车株式会社 车辆和车辆的电源装置
US9623757B2 (en) 2013-11-08 2017-04-18 Toyota Jidosha Kabushiki Kaisha Vehicle and electric power supply device for vehicle
WO2015068016A1 (en) * 2013-11-08 2015-05-14 Toyota Jidosha Kabushiki Kaisha Vehicle and electric power supply device for vehicle
WO2015097994A1 (en) * 2013-12-24 2015-07-02 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
JP2015122874A (ja) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 車両の電源装置
JP2015133770A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両の電源装置
CN105899394B (zh) * 2014-01-09 2017-11-17 丰田自动车株式会社 车辆的电源装置
WO2015104744A1 (en) * 2014-01-09 2015-07-16 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
CN105899394A (zh) * 2014-01-09 2016-08-24 丰田自动车株式会社 车辆的电源装置
WO2015107584A1 (en) * 2014-01-15 2015-07-23 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
US10166878B2 (en) * 2014-01-22 2019-01-01 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
US20160332529A1 (en) * 2014-01-22 2016-11-17 Toyota Jidosha Kabushiki Kaisha Power supply apparatus of vehicle
JP2017011798A (ja) * 2015-06-17 2017-01-12 株式会社椿本チエイン 電力変換装置、コンピュータプログラム及び電力変換方法
KR101774655B1 (ko) * 2015-11-02 2017-09-04 현대자동차주식회사 친환경 차량의 ldc 제어 장치 및 그 방법
WO2017094247A1 (ja) * 2015-11-30 2017-06-08 パナソニックIpマネジメント株式会社 電源装置、電源装置の制御方法、および電源装置制御プログラム
CN108292889A (zh) * 2015-11-30 2018-07-17 松下知识产权经营株式会社 电源装置、电源装置的控制方法以及电源装置控制程序
CN106004446B (zh) * 2016-05-31 2018-07-10 北京现代汽车有限公司 电动汽车低压蓄电池的充电控制方法、系统及整车控制器
CN106004446A (zh) * 2016-05-31 2016-10-12 北京现代汽车有限公司 电动汽车低压蓄电池的充电控制方法、系统及整车控制器
CN112477598A (zh) * 2020-12-07 2021-03-12 安徽江淮汽车集团股份有限公司 电动汽车低压系统控制方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
JP2012147538A (ja) 車両用電源装置
CN102574470B (zh) 车辆的充电系统及包含该车辆的充电系统的电动车辆
JP5605320B2 (ja) 車両用電源装置
US9577458B2 (en) Electrical storage system
WO2015015743A1 (ja) 車両用電源システム
US9731619B2 (en) Vehicle and control method for vehicle
US20120299545A1 (en) Rechargeable battery power supply starter and cell balancing apparatus
JP5924418B2 (ja) 蓄電システム
JP2013205257A (ja) 電源装置、及びこの電源装置を備える車両並びに蓄電装置
CN110970885A (zh) 用于维护电源的系统和方法
US10498154B2 (en) Electric power system
KR101487560B1 (ko) 산업 차량용 전원 공급 장치 및 그 제어 방법
CN112140888A (zh) 车载电源装置的控制装置
JP5381360B2 (ja) 電源装置
WO2018012302A1 (ja) 電力供給装置
JP2014079121A (ja) 蓄電システム
JP2008236910A (ja) 蓄電デバイスの制御装置
JP6402698B2 (ja) 車両用電源システム
JP4735523B2 (ja) 蓄電装置
CN213228372U (zh) 一种车辆控制系统和车辆
JP2012165580A (ja) 蓄電装置の制御装置
JP2012244864A (ja) 車両用電源装置
JP5772615B2 (ja) 蓄電システム
CN108698548B (zh) 车载电源用的充电率监视装置以及车载电源系统
JP5381399B2 (ja) 電源装置