JP2012146124A - 出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム - Google Patents

出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム Download PDF

Info

Publication number
JP2012146124A
JP2012146124A JP2011003910A JP2011003910A JP2012146124A JP 2012146124 A JP2012146124 A JP 2012146124A JP 2011003910 A JP2011003910 A JP 2011003910A JP 2011003910 A JP2011003910 A JP 2011003910A JP 2012146124 A JP2012146124 A JP 2012146124A
Authority
JP
Japan
Prior art keywords
rolling
date
cast
steel
plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003910A
Other languages
English (en)
Other versions
JP5454479B2 (ja
Inventor
Junichi Mori
純一 森
Muneyuki Maeda
宗之 前田
Morio Noda
盛夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011003910A priority Critical patent/JP5454479B2/ja
Publication of JP2012146124A publication Critical patent/JP2012146124A/ja
Application granted granted Critical
Publication of JP5454479B2 publication Critical patent/JP5454479B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】 圧延日ベースで製造負荷を平準化することと、納期を遵守することと、製鋼工程における異鋼種継目数を最小化することとを実現する出鋼−圧延計画を立案する。
【解決手段】 全鋼種圧延T/H1100を用いて、キャスト別・圧延計画日別のキャスト数を算出する。これを入力として、異鋼種継目数の最小化と、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守に関する評価が高いほど値が小さく又は大きくなる評価関数JAの最適化計算(1回目の最適化計算)を行う。その最適化計算で得られたキャスト別・鋼種別・圧延計画日別のチャージ数を入力として、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守に関する評価が高いほど値が小さく又は大きくなる評価関数JBの最適化計算(2回目の最適化計算)を行う。2回目の最適化計算の結果から、各注文に、キャストと圧延計画日とを割り当てる。
【選択図】 図3

Description

本発明は、出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラムに関し、特に、未出鋼の注文に対する圧延計画を立案するために用いて好適なものである。
鉄鋼製造業では、製品の規格やサイズ等が極めて多岐に渡る上、顧客側の製品使用予定に合わせた納期遵守と納期短縮の要求が強くなっている。一方、製造業においては、大量生産による生産性向上の観点から、製鋼設備において、製品の化学成分が同一の注文を複数まとめてロット単位で生産することが求められており、また、製鋼設備は基本的に同一成分の鋼の大量生産を目指した設備である。しかしながら、鉄鋼の製造工程は、製鋼、圧延、精整、出荷等の複数の製造設備からなり、製鋼工程でのロットの生産性の追及が他の製造設備の生産性を低下させたり、製鋼設備でのロットまとめが下流工程での製造負荷の集中につながり仕掛増や製造工期増を引き起こしたりすること等から、製造工程間でのトレードオフを考慮した出鋼ロットを作成することが求められる。また、ロットを作るための先作りは余分な製品在庫や、それに応じた工期増を引き起こす。すなわち、各製造工程の負荷の均等化と納期管理を達成しつつ、製鋼設備においてなるべく同一成分の鋼をまとめて鋳造できる出鋼枠配置計画を作成する必要がある。
このような問題に対して、従来は、人による立案がメインであり、例えば納期の近いものから順にロットをまとめたり、精整工程の負荷を均等化してロットを配置したりすることで、計画を作成していた。ところが、計画の大規模・複雑性から、ロットをまとめようとすると精整工程の負荷が均等化できない、逆に精整工程の負荷平準化を図ろうとすると必要以上にロットが小さくなる、といった問題があった。
そこで、特許文献1には、生産計上管理日を基準として各工程間の標準工期によって仮出鋼希望日を逆算し、仮出鋼希望日の早い順に鋼種別にキャスト因子を作成した後、決められた優先順位に従って生産工程に投入することで各生産ラインの稼働率の均等化や納期管理を達成する方法が開示されている。ところが、特許文献1に記載の技術は、仮出鋼希望日の早い順に鋼種別にキャスト因子を作成した後、決められた優先順位に従って生産工程に投入されるというものであるため、ロット集約、工程負荷平準化及び納期の最適化が保証されていないという問題があった。
そこで、特許文献2では、数理計画法を応用することで計画の最適化を図る立案手法が提案されている。特許文献2には、製造仕様が類似した鋼材の品種を1つの製造品種として集約し、製造品種と出鋼要望日とがそれぞれ一致する注文を同一の注文群として集約した注文マトリクスに対して、出鋼要望日のできるだけ近くで出鋼し、異鋼種継目数をできるだけ少なくし、出鋼予定日毎の精整負荷が精整能力以下となるような、出鋼計画を立案する方法が開示されている。これにより、製造ロット拡大、納期遵守、及び製造工程平準化という、互いに相反する要求を同時に満たすように出鋼枠配置計画を立案できるようになる。
特開平5−35748号公報 特開2008−293475号公報
しかしながら、特許文献2に記載のように、出鋼日ベースで精整負荷を平準化しても、出鋼してから圧延されるまでの時間は圧延機前の仕掛量によって大きく異なり、出鋼してから圧延されるまでの時間がばらつく。このため、実際に精整負荷が平準化されているとは限らない。これにより、精整工程の仕掛量が増加し、工期が延びてしまう虞があった。さらに、圧延機前の仕掛量を予測するためには、注文毎の圧延効率(単位時間当たりの圧延重量、いわゆる圧延Ton/Hour)を予測しなければならないが、特許文献2に記載の技術では、出鋼計画が決まらなければ圧延機前の仕掛量を求めることができず、また圧延機前の仕掛量が求まらなければ圧延日ベースで精整負荷を平準化した出鋼計画を求めることができない。
本発明はこのような課題に鑑みてなされたものであり、圧延日ベースで製造負荷を平準化することと、納期を遵守することと、製鋼工程における異鋼種継目数を最小化することとを実現する出鋼−圧延計画を立案できるようにすることを目的とする。
本発明の出鋼圧延計画立案装置は、製鋼工程と、圧延工程と、精整工程とを少なくとも通過して製造される鋼材の複数の注文であって、当該注文の前記精整工程の通過パターンを示す通過工程パターンを含む製造品種と、圧延期限日と、注文量とを少なくとも含む注文のそれぞれに対して、圧延計画日と、当該圧延計画日におけるキャストを識別するキャスト番号とが割り当てられた圧延計画を立案する出鋼圧延計画立案装置であって、前記立案の対象となる注文に含まれる全ての鋼種の単位時間当たりの圧延量の代表値である全鋼種圧延量を取得する全鋼種圧延量取得手段と、キャスト別のチャージ数を取得するチャージ数取得手段と、前記全鋼種圧延量と、前記キャスト別のチャージ数とを用いて、キャスト別・圧延計画日別のチャージ数を算出するチャージ数算出手段と、前記キャスト別・圧延計画日別のチャージ数を少なくとも入力とし、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量を決定変数とする評価関数であって、前記製鋼工程で相互に隣接する異鋼種のチャージの継目の数である異鋼種継目数の最小化と、圧延計画日を基準とした前記精整工程における精整負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第1の評価関数を最適化する第1の最適化計算を行う第1の最適化計算手段と、前記キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量から導出されるキャスト別・鋼種別・圧延計画日別のチャージ数を少なくとも入力とし、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延量を決定変数とする評価関数であって、圧延計画日を基準とした前記精整工程の負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第2の評価関数を最適化する第2の最適化計算を行う第2の最適化計算手段と、前記第2の最適化計算で得られたキャスト別・鋼種別・前記精整工程の通過工程パターン別・圧延期限日別・圧延計画日別圧延量を用いて、前記圧延計画を作成する圧延計画作成手段と、を有することを特徴とする。
本発明の出鋼圧延計画立案方法は、製鋼工程と、圧延工程と、精整工程とを少なくとも通過して製造される鋼材の複数の注文であって、当該注文の前記精整工程の通過パターンを示す通過工程パターンを含む製造品種と、圧延期限日と、注文量とを少なくとも含む注文のそれぞれに対して、圧延計画日と、当該圧延計画日におけるキャストを識別するキャスト番号とが割り当てられた圧延計画を立案する出鋼圧延計画立案方法であって、前記立案の対象となる注文に含まれる全ての鋼種の単位時間当たりの圧延量の代表値である全鋼種圧延量を取得する全鋼種圧延量取得ステップと、キャスト別のチャージ数を取得するチャージ数取得ステップと、前記全鋼種圧延量と、前記キャスト別のチャージ数とを用いて、キャスト別・圧延計画日別のチャージ数を算出するチャージ数算出ステップと、前記キャスト別・圧延計画日別のチャージ数を少なくとも入力とし、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量を決定変数とする評価関数であって、前記製鋼工程で相互に隣接する異鋼種のチャージの継目の数である異鋼種継目数の最小化と、圧延計画日を基準とした前記精整工程の負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第1の評価関数を最適化する第1の最適化計算を行う第1の最適化計算ステップと、前記キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量から導出されるキャスト別・鋼種別・圧延計画日別のチャージ数を少なくとも入力とし、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延量を決定変数とする評価関数であって、圧延計画日を基準とした前記精整工程における精整負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第2の評価関数を最適化する第2の最適化計算を行う第2の最適化計算ステップと、前記第2の最適化計算で得られたキャスト別・鋼種別・前記精整工程の通過工程パターン別・圧延期限日別・圧延計画日別圧延量を用いて、前記圧延計画を作成する圧延計画作成ステップと、を有することを特徴とする。
本発明のコンピュータプログラムは、前記出鋼圧延計画立案方法の各ステップをコンピュータに実行させることを特徴とする。
本発明によれば、全鋼種圧延量を用いて、キャスト別・圧延期限日別のキャスト数を算出する。そして、これを入力として、異鋼種継目数の最小化と、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守に関する評価が高いほど値が小さく又は大きくなる評価関数の最適化計算(1回目の最適化計算)を行う。次に、1回目の最適化計算で得られたキャスト別・鋼種別・圧延計画日別チャージ数を入力として、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守に関する評価が高いほど値が小さく又は大きくなる評価関数の最適化計算(2回目の最適化計算)を行う。この2回目の最適化計算の結果から、各注文に、キャストと圧延計画日とを割り当てる。したがって、圧延日ベースで製造負荷を平準化することと、納期を遵守することと、製鋼工程における異鋼種継目数を最小化することとを実現する出鋼−圧延計画を立案することができる。
本発明の実施形態を示し、厚鋼板(厚板)の製造プロセスの概略構成の一例を示す図である。 本発明の実施形態を示し、出鋼圧延立案装置のハードウェア構成の一例を示す図である。 本発明の実施形態を示し、出鋼圧延計画立案装置の機能的な構成の一例を示す図である。 本発明の実施形態を示し、注文情報の一例を示す図である。 本発明の実施形態を示し、キャストと、チャージと、製造品種との関係を示す図である。 本発明の実施形態を示し、注文マトリクスの一例を示す図である。 本発明の実施形態を示し、製造品種別精整工程発生率の一例を示す図である。 本発明の実施形態を示し、圧延計画日別精整能力上限値の一例を示す図である。 本発明の実施形態を示し、キャスト別チャージ数の一例を示す図である。 本発明の実施形態を示し、ロットサイズの一例を示す図である。 本発明の実施形態を示し、全鋼種圧延T/Hの一例を示す図である。 本発明の実施形態を示し、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」の一例を示す図である。 本発明の実施形態を示し、圧延期限日を遵守するための制約式の一例を説明する図である。 本発明の実施形態を示し、キャスト別・鋼種別・圧延計画日別チャージ数の一例を示す図である。 本発明の実施形態を示し、鋼種別圧延T/Hの一例を示す図である。 本発明の実施形態を示し、キャスト別・鋼種別・圧延計画日別圧延時間の一例を示す図である。 本発明の実施形態を示し、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」の一例を示す図である。 本発明の実施形態を示し、圧延計画の表示画面の一例を示す図である。 本発明の実施形態を示し、出鋼圧延計画立案装置の動作の一例を説明するフローチャートである。 人によって作成されたキャスト別・鋼種別・圧延計画日別チャージ数を示す図である。 異鋼種継目数、圧延期限日遅れ量、圧延期限日超過量、及び正規化精整負荷超過量合計値の結果を示す図である。 本手法(2回目)における正規化精整負荷超過量合計値の推移を示す図である。 比較例における正規化精整負荷超過量合計値の推移を示す図である。 本手法(1回目)における正規化精整負荷超過量合計値の推移を示す図である。
以下、図面を参照しながら、本発明の一実施形態を説明する。
本実施形態では、出鋼圧延計画の対象となる製造プロセスが、鉄鋼業における代表的な製品である厚鋼板(厚板)の製造プロセスである場合を例に挙げて説明する。図1は、厚鋼板(厚板)の製造プロセスの概略構成の一例を示す図である。図1において矢印は仕掛かり品の流れを示す。
転炉10では、高温溶融状態の鉄鋼中間製品(溶鋼)の化学的成分である出鋼成分を、例えば約300ton単位で調整し、溶鋼鍋に出鋼する。この転炉10での出鋼単位をチャージと呼ぶ。
連続鋳造設備20では、転炉10で製造された溶鋼を複数チャージ分連続して鋳造し、その後、鋼片を規定の長さに切断することで、例えば約20ton単位のスラブと呼ばれる板状の中間製品を製造する。この連続鋳造設備20での一連の製造単位をキャストと呼ぶ。製造仕様にもよるが概ね8〜12チャージを1キャストとして製造する。
圧延設備30では、スラブを加熱後、所定の厚みや幅まで成形する。
精整(切断)設備41では、圧延後の鋼板を、注文仕様のサイズに切断する。精整(矯正)設備42では、圧延後の鋼板に対して、形状等の品質を確保するための矯正を行う。精整(手入)設備43では、圧延後の鋼板に対して、品質確保のための手入れを行う。精整(検査)設備44では、圧延後の鋼板に対して、検査を行う。圧延後の鋼板には、精整設備41〜44の全てを通過するものもあれば、精整設備41〜44を一つも通過しないものもあれば、精整設備41〜44の一部だけを通過するものもある。全ての処理を終えた製品(厚板)は倉庫50に配置される。尚、注文仕様のサイズに切断された製品をプレートと呼ぶ。
<出鋼圧延計画立案装置のハードウェア構成>
図2は、出鋼圧延立案装置100のハードウェア構成の一例を示す図である。
図2に示すように、出鋼圧延立案装置100は、CPU(Central Processing Unit)101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、PD(Pointing Device)104と、HD(Hard Disk)105と、表示装置106と、スピーカ107と、通信I/F(Interface)108と、システムバス109とを有している。
CPU101は、出鋼圧延立案装置100における動作を統括的に制御するものであり、システムバス109を介して、出鋼圧延立案装置100の各構成部(102〜108)を制御する。
ROM102は、CPU101の制御プログラムであるBIOS(Basic Input/OutputSystem)やオペレーティングシステムプログラム(OS)、CPU101が後述するフローチャートによる処理を実行するために必要なプログラム等を記憶する。
RAM103は、CPU101の主メモリ、ワークエリア等として機能する。CPU101は、処理の実行に際して、ROM102から必要なコンピュータプログラム等や、HD105から必要な情報等をRAM103にロードし、当該コンピュータプログラム等や当該情報等の処理を実行することで各種の動作を実現する。
PD104は、例えば、マウスやキーボード等からなり、操作者が必要に応じて、出鋼圧延計画立案装置100に対して操作入力を行うための操作入力手段を構成する。
HD105は、各種の情報やデータ、ファイル等を記憶する記憶手段を構成する。
表示装置106は、CPU101の制御に基づいて、各種の情報や画像を表示する表示手段を構成する。
スピーカ107は、CPU101の制御に基づいて、各種の情報に係る音声を出力する音声出力手段を構成する。
通信I/F108は、CPU101の制御に基づいて、外部装置とネットワークを介して各種の情報等の通信を行う。
システムバス109は、CPU101、ROM102、RAM103、PD104、HD105、表示装置106、スピーカ107及び通信I/F108を相互に通信可能に接続するためのバスである。
<出鋼圧延計画立案装置の機能構成>
図3は、出鋼圧延計画立案装置100の機能的な構成の一例を示す図である。
図3に示すように、出鋼圧延計画立案装置100は、その機能として、注文情報入力部201、注文マトリクス作成部202、製造品種別精整工程発生率算出部203、制約条件入力部204、全鋼種圧延T/H入力部205、第1のキャスト別圧延開始時刻算出部206、立案方針入力部207、数理モデル設定部208、出鋼圧延枠作成部209、出鋼圧延枠表示部210、出鋼圧延枠修正有無判定部211、キャスト別鋼種別チャージ数設定部212、鋼種別圧延T/H入力部213、第2のキャスト別圧延開始時刻算出部214、注文充当処理部215、及び圧延計画表示部216を有している。
(注文情報入力部201)
注文情報入力部201は、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて、注文(製品)の属性を示す注文情報を入力して記憶する。
図4は、注文情報400の一例を示す図である。図4に示す例では、注文情報400は、注文番号、仕様A〜C、重量、圧延期限日、鋼種、通過工程パターン、及び製造品種の各情報を含む。
本実施形態では、通過工程パターンとは、注文(圧延後の鋼板)の精整設備41〜44の通過パターンを示す。本実施形態では、通過工程パターンは、4桁の数字で表される。通過工程パターンの最上位の桁(向かって左端の桁)の値は、精整(切断)設備41を通過しやすい注文であれば、「1」となり、通過しづらい注文であれば「0」となる。通過工程パターンの2番目に上位の桁の値は、精整(矯正)設備42を通過しやすい注文であれば、「1」となり、通過しづらい注文であれば「0」となる。通過工程パターンの3番目に上位の桁の値は、精整(手入)設備43を通過しやすい注文であれば、「1」となり、通過しづらい注文であれば「0」となる。通過工程パターンの最下位の桁(向かって右端の桁)の値は、精整(検査)設備44を通過しやすい注文であれば、「1」となり、通過しづらい注文であれば「0」となる。
本実施形態では、このような通過工程パターンと鋼種との組を「製造品種」としている(図4に示す注文情報400の右端の欄を参照)。
図5は、キャスト500と、チャージ510〜590と、製造品種521〜529との関係を示す図である。前述したように、キャスト500は、連続鋳造設備20での一連の製造単位であり、チャージ510〜590は、転炉10での出鋼単位である。本実施形態では、製造品種521〜529が、どのキャストのどのチャージに割り当てられるのかを求めるようにしている。また、同一のキャスト500において相互に隣接する2つのチャージのうち、先行するチャージの最後の鋼種と後行するチャージの最初の鋼種とが異なる鋼種のものである場合、当該2つのチャージの継目は「異鋼種継目」となる。例えば、製造品種529の鋼種と、チャージ530の先頭の製造品種の鋼種とが異なる鋼種である場合、チャージ520、530の継目は異鋼種継目となる。
注文情報入力部201は、例えば、CPU101、ROM102、RAM103、及びPD104(又は通信I/F108)を用いることにより実現される。
(注文マトリクス作成部202)
注文マトリクス作成部202は、注文情報入力部201で入力された注文情報400を、製造仕様が類似している製造品種毎、圧延期限日毎に集約し、製造品種別・圧延期限日別・注文重量である注文マトリクスを作成する。
図6は、注文マトリクス600の一例を示す図である。注文マトリクス600で示されている製造品種別・圧延期限日別・注文重量の単位はtonである。
注文マトリクス作成部202は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(製造品種別精整工程発生率算出部203)
製造品種別精整工程発生率算出部203は、過去の実績データから、製造品種毎、精整工程毎に、各精整工程を通過する確率(製造品種別・精整工程発生率)を算出する。過去の実績データとは、例えば、製造品種と、当該製造品種の重量と、当該製造品種の注文が通過した精整工程(精製設備41〜44)とが少なくとも相互に関連付けられたデータの集合である。
本実施形態では、製造品種別精整工程発生率算出部203は、鋼種毎の厚板一枚当たりの重量(以下の説明では、この重量を必要に応じて「単重」と称する)の情報を予め記憶している。
製造品種別精整工程発生率算出部203は、過去の実績データに含まれる同一の製造品種の総重量を、当該製造品種(鋼種)の単重で割って、過去の実績データに含まれる当該製造品種の総枚数を求める。また、製造品種別精整工程発生率算出部203は、当該製造品種のうち、特定の1つの精整工程を通過した製造品種の総重量を、当該製造品種(鋼種)の単重で割って、当該製造品種のうち当該精整工程を通過するものの総枚数を求める。そして、製造品種別精整工程発生率算出部203は、当該製造品種のうち当該精整工程を通過するものの総枚数を、当該製造品種の総枚数で割って、当該製造品種、当該精整工程における作業発生確率(製造品種別・精整工程別・作業発生確率)を求める。以上のような計算を、過去の実績データに含まれる全ての製造品種、全ての精整工程について行う。
図7は、製造品種別精整工程発生率700の一例を示す図である。
図7において、例えば、鋼種A_0000の製造品種のうち、精整工程(切断)、すなわち精整(切断)設備41を通過した製造品種の総枚数を、鋼種A_0000の製造品種の総枚数で割った値が、鋼種A_0000、精整工程(切断)における作業発生確率(=0.1)となる。
製造品種別精整工程発生率算出部203は、例えば、CPU101、ROM102、RAM103、及びPD104(又は通信I/F108)を用いることにより実現される。
(制約条件入力部204)
制約条件入力部204は、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて、制約条件を入力して記憶する。本実施形態では、制約条件には、圧延計画日別精整能力上限値と、キャスト別チャージ数と、ロットサイズとが含まれる。
本実施形態では、各圧延計画日に、各精整工程(精製設備41〜44)が処理できる鋼板の枚数の上限値を、圧延計画日別精整能力上限値としている。図8は、圧延計画日別精整能力上限値800の一例を示す図である。図8に示す圧延計画日別精整能力上限値の単位は枚である。例えば、精整工程(切断)、すなわち精整(切断)設備41が、3月5日に処理(切断)することができる鋼板の枚数の最大値は350枚になる。
キャスト別チャージ数は、立案の対象となる各キャストに含まれるチャージ数である。図9は、キャスト別チャージ数900の一例を示す図である。図9に示すように、ここでは、16のキャストを立案の対象となる注文のキャストとしている。また、これら16のキャストのうち、先頭のキャストの圧延開始時刻は、計画立案開始時刻となる。その他のキャストの圧延開始時刻は、後述するようにして第1のキャスト別圧延開始時刻算出部206や第2のキャスト別圧延開始時刻算出部214により算出される。図9に示す例では、先頭のキャストの圧延開始時刻は、2010年3月5日午前7時であり、先頭のキャストには12のチャージが含まれている。尚、本実施形態では、午前7時を日付変更時としている。すなわち、例えば、2010年3月5日午前7時00分00秒から2010年3月6日午前6時59分59秒までが2010年3月5日となる。
ロットサイズは、転炉10における溶鋼鍋一杯分の重量である。図10は、ロットサイズ1000の一例を示す図である。図10に示すロットサイズの単位はtonである。
制約条件入力部204は、例えば、CPU101、ROM102、RAM103、及びPD104(又は通信I/F108)を用いることにより実現される。
(全鋼種圧延T/H入力部205)
全鋼種圧延T/H入力部205は、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて、立案の対象となる注文に含まれる全ての鋼種における1時間当たりの圧延重量(ton)の平均である全鋼種圧延T/Hを入力して記憶する。尚、全鋼種圧延T/Hは、立案の対象となる注文に含まれる全ての鋼種の単位時間当たりの圧延量の代表値であれば、必ずしも1時間当たりの圧延重量(ton)の平均をとる必要はない。
全鋼種圧延T/Hは、過去の圧延実績データから求められる。過去の圧延実績データは、例えば、立案の対象となる注文に含まれる全ての鋼種毎の「圧延時間と圧延重量」のデータである。図11は、全鋼種圧延T/H1100の一例を示す図である。図11に示す全鋼種圧延T/H1100の単位は、ton/hourである。
全鋼種圧延T/H入力部205は、例えば、CPU101、ROM102、RAM103、及びPD104(又は通信I/F108)を用いることにより実現される。尚、ここでは、全鋼種圧延T/Hを入力する場合を例に挙げて説明したが、前記過去の実績データから全鋼種圧延T/Hを算出するようにしてもよい。
(第1のキャスト別圧延開始時刻算出部206)
第1のキャスト別圧延開始時刻算出部206は、制約条件入力部204により記憶された「キャスト別チャージ数900及びロットサイズ1000」と、全鋼種圧延T/H入力部205により記憶された全鋼種圧延T/H1100とを読み出して、キャスト別チャージ数900に含まれる各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」を算出する。
図12は、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」の一例を示す図である。
第1のキャスト別圧延開始時刻算出部206は、図9に示すキャスト別チャージ数900より、先頭のキャストの「圧延開始時刻及びチャージ数」を読み出す。次に、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストのチャージ数(=12)に、ロットサイズ1000(=372ton)を掛けた値を全鋼種圧延T/H1100(=242[ton/hour])で割った値(18.45hour=12×372÷242)を、先頭のキャストの圧延時間として算出する。
次に、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストの圧延計画日を、当該先頭のキャストの圧延開始時刻の属する日(3月5日)に設定する。次に、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストのキャスト番号として、圧延計画日における最初のキャストであることを示す「1」を設定する。このように本実施形態では、キャスト番号は、各圧延期限日毎のキャストの順番を表すものである。
次に、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストの何%を圧延計画日に圧延できるかを示す当日比率を算出する。先頭のキャストの圧延時間は、18.45hourであり、24時間未満であるので、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストの当日比率として100%を設定する。次に、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストの何%が圧延計画日の翌日に圧延されるかを示す翌日比率を算出する。翌日比率は、100から当日比率を減ずることにより算出される。先頭のキャストの当日比率は100%であるので、第1のキャスト別圧延開始時刻算出部206は、先頭のキャストの翌日比率として0%を設定する。以上で、先頭のキャストに対する設定が終了する。
次に、第1のキャスト別圧延開始時刻算出部206は、2番目のキャストの圧延開始時刻として、先頭のキャストの圧延開始時刻(2010年3月5日午前7時00分)に、先頭のキャストの圧延時間(18.45hour)を加算した時刻(2010年3月6日午前1時26分)を算出する。そして、先頭のキャストと同様に、圧延時間、圧延計画日、キャスト番号、当日比率、及び翌日比率を算出する。
次に、第1のキャスト別圧延開始時刻算出部206は、3番目のキャストの圧延開始時刻として、2番目のキャストの圧延開始時刻(2010年3月6日午前1時26分)に、2番目のキャストの圧延時間(4.61hour)を加算した時刻(2010年3月6日午前6時3分)を算出する。そして、先頭のキャスト、2番目のキャストと同様に、圧延時間、圧延計画日、キャスト番号、当日比率、及び翌日比率を算出する。3番目のキャストの圧延時間は、3番目のキャストのチャージ数(=12)に、ロットサイズ1000(=372ton)を掛けた値を全鋼種圧延T/H1100(=242ton/hour)で割った値(18.45hour)となる。前述したように日付変更時を午前7時としている。3番目のキャストの圧延開始時刻は、2010年3月6日午前6時3分であり、3月5日の残り時間(3月6日午前7時までの残り時間)は0.95hour(=57min)である。よって、第1のキャスト別圧延開始時刻算出部206は、3番目のキャストの当日比率として、3番目のキャストの圧延計画日(3月5日)の残り時間(=0.95hour)を、3番目のキャストの圧延時間(=18.45hour]で割った値に100を掛けた値(5.1%=0.95÷18.45×100)を、3番目のキャストの当日比率として算出する。また、第1のキャスト別圧延開始時刻算出部206は、3番目のキャストの翌日比率として94.9%(=100−5.1)を設定する。
以降、前述したのと同様に、図9に示すキャスト別チャージ数900に含まれる全てのキャストについて、図9に示すものの上から順番に、圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、及び翌日比率を導出する。尚、当日比率と翌日比率は必ずしも求める必要はなく、例えば、キャストの属する圧延日に当該キャストの全てが圧延されるとして、圧延計画日kの圧延量を計算してもよい。
図12に示す、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」により、圧延機前の仕掛量が予測される。
第1のキャスト別圧延開始時刻算出部206は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(立案方針入力部207)
立案方針入力部207は、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて、立案条件設定値を取得して記憶する。立案条件設定値は、後述するようにして出鋼圧延枠作成部209により、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量(x[c][i][j][t][k])等を算出する際の重み係数である。本実施形態では、以下のものを立案条件設定値としている。
異鋼種継目数最小化に対する重み係数(w1
精整処理能力上限値制約に対する重み係数(w2
圧延期限日遵守に対する重み係数(w3
また、立案方針入力部207は、後述する最適化計算の最適化計算時間の情報と最適化計算収束条件の情報も、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて取得して記憶する。
立案方針入力部207は、例えば、CPU101、ROM102、RAM103、及びPD104(又は通信I/F108)を用いることにより実現される。
(数理モデル記憶部208)
数理モデル記憶部208は、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて、圧延計画日を基準として各精整設備41〜44の負荷(各精整設備41〜44が処理する鋼材の量であり、その単位は、例えば、枚数であっても重量であってもよい)を平準化することと、圧延期限日のできるだけ近くで圧延されることと、異鋼種継目数をできるだけ小さくすることとを実現する数理最適化計算を行うための数理モデルを記憶する。後述するように本実施形態では、2回の数理最適化計算を行うようにしている(出鋼圧延枠作成部209及び注文充当処理部215の記載を参照)。以下の説明では、必要に応じて、1回目の数理最適化計算に使用する数理モデルを「第1の数理モデル」、2回目の数理最適化計算に使用する数理モデルを「第2の数理モデル」、1回目及び2回目の双方の数理最適化計算に使用する数理モデルを単に「数理モデル」と称する。
数理モデル(数理最適化計算)におけるインデックスは以下の通りである。
t=(1,2,・・・,T):圧延期限日
注文情報400に含まれる圧延期限日の最初の日を「1」で表し、最後の日を「T」で表す。
k=(1,2,・・・,K):圧延計画日
立案対象の最初の日を「1」で表し、最後の日を「k」で表す。
l=(1,2,・・・,L):精整工程
精整工程のうち最初の工程を「1」で表し、最後の工程を「L」で表す。本実施形態では、「L」は「4」であり、切断工程(精整(切断)設備41の工程)を「1」、矯正工程(精整(矯正)設備42の工程)を「2」、手入工程(精整(手入)設備43の工程)を「3」、検査工程(精整(検査)設備44の工程)を「4」でそれぞれ表す。
c=(1,2,・・・,C[k]):キャスト番号
圧延計画日kの先頭のキャストを「1」で表し、最後のキャストを「C[k]」で表す。
i=(1,2,・・・,I);鋼種
「I」は、計画対象の鋼種の総数である。同じ鋼種であれば鋼種iには同じ値が与えられ、異なる鋼種であれば鋼種iには異なる値が与えられる。
j=(1,2,・・・,J[i]);通過工程パターン
「J[i]」は、鋼種iにおける通過工程パターンの総数である。鋼種i毎に通過工程パターンが与えられる。
数理モデル(数理最適化計算)における決定変数は以下の通りである。
x[c][i][j][t][k]:キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量
Charge[c][i][k]:キャスト別・鋼種別・圧延計画日別圧延重量
Yozai[c][i][k]:キャスト別・鋼種別・圧延計画日別余材量
δ[c][i][k]:キャスト別・鋼種別・圧延計画日別圧延フラグ
Charge_num[c][i][k]:キャスト別・鋼種別・圧延計画日別チャージ数
load[l][k]:精整工程別・圧延計画日別精整負荷
load_dp[l][k]:精整工程別・圧延計画日別精整負荷超過量
load_dm[l][k]:精整工程別・圧延計画日別精整負荷未達量
尚、第2の数理モデル(2回目の最適化計算)では、1回目の最適化計算で得られたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を使用するので、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]は決定変数にならない。
キャスト別・鋼種別・圧延計画日別圧延フラグδ[c][i][k]は、圧延計画日kにキャストcの鋼種iのスラブを圧延するなら「1」となり、しないなら「0」となる1-0変数である。
本実施形態では、圧延した日に精整工程が行われるとしている。よって、精整工程別・圧延計画日別・精整負荷load[l][k]は、各精整工程lの各精整処理日における負荷であるということもできる。
精整工程別・圧延計画日別・精整負荷超過量load_dp[l][k]は、各精整工程lに対応する精整設備41〜44の負荷から、当該精整設備41〜44の負荷の上限値を減じた値である。精整工程別・圧延計画日別・精整負荷未達量load_dm[l][k]は、各精整工程lに対応する精整設備41〜44の負荷の上限値から、当該精整設備41〜44の負荷を減じた値である。
数理最適化計算では、以上の決定変数のうち、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]が算出される。その他の決定変数は、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を用いることにより算出される中間変数となる。
数理モデル(数理最適化計算)に入力される定数は以下の通りである。
LOT_SIZE:1チャージ当たりの重量
Charge_frame[c][k]:キャスト別・圧延計画日別チャージ数
day_rate[c][k]:当日比率
Next_rate[c][k]:翌日比率
load_rate[i][j][l]:鋼種別・通過工程パターン別精整工程発生率
load_max[k][l]:圧延計画日別精整能力上限値
OrderMatrix[i][j][t]:注文マトリクス
尚、第2の数理モデル(2回目の最適化計算)では、1回目の最適化計算で得られたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を使用するので、キャスト別・圧延計画日別チャージ数Charge_frame[c][k]は、入力されない。
1チャージ当たりの重量LOT_SIZEの一例は、図10に示したロットサイズ1000である。第1の数理モデルにおけるキャスト別・圧延計画日別チャージ数の一例は、Charge_frame[c][k]は、図12に示したチャージ数から得られる。第1の数理モデルにおける当日比率Day_rate[c][k]の一例は、図12に示した当日比率である。第1の数理モデルにおける翌日比率Next_rate[c][k]の一例は、図12に示した翌日比率である。ただし、当日比率Day_rate[c][k]と翌日比率Next_rate[c][k]は無次元の値である。尚、当日比率Day_rate[c][k]と翌日比率Next_rate[c][k]は必ずしも必要ではなく、例えば、キャストの属する圧延日に当該キャストの全てが圧延されるとしてもよい。すなわち以降ではDay_rate[c][k]=1、Next_rate[c][k]=0としてもよい。鋼種別・通過工程パターン別精整工程発生率load_rate[i][j][l]の一例は、図7に示した製造品種別精整工程発生率700である。圧延計画日別精整能力上限値Load_max[k][l]の一例は、図8に示した圧延計画日別精整能力上限値800である。注文マトリクスOrderMatrix[i][j][t]の一例は、図6に示した注文マトリクス600である。第2の数理モデルにおけるキャスト別・圧延計画日別チャージ数charge_frame[c][k]、当日比率Day_rate[c][k]、及び翌日比率Next_rate[c][k]の具体例については後述する(図17)を参照。
尚、以上の変数及び定数は、0(ゼロ)以上の値である。
数理モデル(数理最適化計算)における変数間の関係式は以下の(1)式〜(6)式の通りである。
圧延量と余材量との関係として、以下の(1)式が設定される。
Figure 2012146124
(1)式の左辺のキャスト別・鋼種別・圧延計画日別圧延重量Charge[c][i][k]は、ロットサイズLOT_SIZEの倍数となる。スラブは溶鋼鍋の単位で製造されるからである(後述する(4)式を参照)。(1)式の右辺の第1項は、キャスト別・鋼種別・圧延計画日別の注文重量である。よって、(1)式の右辺の第2項は、キャスト別・鋼種別・圧延計画日別に、圧延重量から注文重量を減じた値である。よって、(1)式の右辺の第2項(キャスト別・鋼種別・圧延計画日別余材量Yozai[c][i][k])は0(ゼロ)であることが好ましい、以上のように(1)式は、キャスト別・鋼種別・圧延計画日別の圧延重量は、キャスト別・鋼種別・圧延計画日別の「注文重量」に、キャスト別・鋼種別・圧延計画日別の「圧延で余った重量(余材量)」を加算した値に等しいことを表す。
圧延計画日kに、キャスト番号c、鋼種iのスラブを圧延するか否かを、以下の(2)式で表す。ここで、Mは、Charge[c][i][k]のとり得る最大値である。すなわち、(2)式は、(3)式を定式化したものである。
Figure 2012146124
(2)式より、圧延計画日kに圧延される「同一のキャストc内の鋼種i」の数が、キャスト別・鋼種別・圧延計画日別圧延フラグδ[c][i][k]に対応する。したがって、キャスト別・鋼種別・圧延計画日別圧延フラグδ[c][i][k]の値が小さい方が異鋼種継目数は小さくなる。
チャージ数と圧延重量との関係は、以下の(4)式で表される。
Figure 2012146124
前述したように、キャスト別・鋼種別・圧延計画日別圧延重量Charge[c][i][k]は、ロットサイズLOT_SIZEの倍数となる。(4)式は、キャスト別・鋼種別・圧延計画日別圧延重量Charge[c][i][k]は、ロットサイズLOT_SIZEに、キャスト別・鋼種別・圧延計画日別チャージ数を掛けた値に等しくなることを表す。
キャスト別・圧延計画日別チャージ数は、以下の(5)式で表される。
Figure 2012146124
(5)式の左辺は、キャスト別・圧延計画日別チャージ数を表し、これが、図12に示したチャージ数から得られるキャスト別・圧延計画日別チャージ数Charge_frame[c][k]と等しくなることを表す。
精整負荷予測値は、以下の(6)式で表される。
Figure 2012146124
(6)式の右辺の(ΣΣ[Σx[c][i][j][t][k])×load_rate[i][j][l]])は、キャストc別・圧延計画日k別の精整工程lの負荷を表し、これに当日比率day_rate[c][k]を掛けることにより、キャストc別・圧延計画日k別の精整工程lの「当日分の負荷」を表す。よって、(6)式の右辺の第1項は、各圧延計画日kにおける精整工程lの「当日分の負荷」を表す。同様に、(6)式の右辺の第2項は、各圧延計画日kにおける精整工程lの「当日に組み込まれる前日分の負荷」を表す。以上のように(6)式は、各圧延計画日における各精整工程の負荷(の予測値)は、当該圧延計画日における当該精整工程の「当日分の負荷と、当日に組み込まれる前日分の負荷」を加算した値に等しいことを表す。
数理モデル(数理最適化計算)における評価関数、及び評価関数に含まれる変数を定義する関係式は、以下の(7)式〜(10)式の通りである。
異鋼種継目数を表現する評価関数は、以下の(7)式で表される。
Figure 2012146124
前述したように、キャスト別・鋼種別・圧延計画日別圧延フラグδ[c][i][k]の値が小さい方が異鋼種継目数は小さくなる。よって、(7)式のキャスト別・鋼種別・圧延計画日別圧延フラグδ[c][i][k]の総和を小さくすれば、異鋼種継目数を最小化することができる。
(7)式は、第1の数理モデル(1回目の数理最適化計算)における評価関数であり、第2の数理モデル(2回目の数理最適化計算)における評価関数には含まれない。前述したように、1回目の数理最適化計算で、キャスト別・鋼種別・圧延計画日別チャージ数が求められ、この値を固定値とすることにより、異鋼種継目数が決まるからである。
精整処理能力の上限値に対する超過量を表現する評価関数は以下の(9)式で表され、評価関数に含まれるload_dp[l][k]を定義する関係式は以下の(8)式で表される。
Figure 2012146124
(8)式の左辺の第1項は、圧延計画日kからその2日後までの精整工程lの負荷の和である。また、(8)式の右辺は、圧延計画日kからその2日後までの精整工程lの負荷の上限値の和である。よって、(8)式では、圧延計画日kからその2日後までの精整工程lの負荷の和が、圧延計画日kからその2日後までの精整工程lの負荷の上限値の和よりも大きくなる場合には、圧延計画日kにおける精整工程lの精整負荷超過量が正の値となる。一方、圧延計画日kからその2日後までの精整工程lの負荷の和が、圧延計画日kからその2日後までの精整工程lの負荷の上限値の和よりも小さくなる場合には、圧延計画日kにおける精整工程lの精整負荷未達量が正の値となる。そして、圧延計画日kからその2日後までの精整工程lの負荷の和が、圧延計画日kからその2日後までの精整工程lの負荷の上限値の和と等しくなる場合には、圧延計画日kにおける精整工程lの「精整負荷超過量と精整負荷未達量」がそれぞれ0(ゼロ)になる。
(9)式の精整負荷の超過量の総和を小さくすれば、精整負荷の超過量を最小化することができる。
以上の(8)式及び(9)式では、圧延計画日kからその2日後までの3日間の単位で各精整工程lの負荷が平準化されている(当該3日間の移動平均で平準化されている)ことが望ましいことを表す。
(8)式及び(9)式は、第1の数理モデル(1回目の数理最適化計算)と第2の数理モデル(2回目の数理最適化計算)の双方の評価関数、及び評価関数に含まれる変数を定義する関係式となる。
圧延期限日を遵守するための評価関数は、以下の(10)式で表される。
Figure 2012146124
図13は、圧延期限日を遵守するための評価関数の一例を説明する図である。図13において横軸は圧延計画日kを表し、縦軸は、圧延重量の累積値である。図13において、OrderRef[i][j][t][k]は、圧延期限日がtである「鋼種i、通過工程パターンjのスラブ」が、圧延計画日kにどのくらい圧延されていなければならないかを示すものである。図13に示すように、圧延期限日がtである「鋼種i、通過工程パターンjのスラブ」は、圧延計画日kに全て圧延されることが望まれる。したがって、OrderRef[i][j][t][k]は、(10)式の2番目と3番目の式(図13に示すグラフ)のようになる。そして、圧延期限日がtである「鋼種i、通過工程パターンjのスラブ」の圧延計画日kまでの圧延総重量が(10)式の1番目の式のΣΣx[c][i][j][t][k´]で表される。圧延計画日kが圧延期限日tよりも前である場合(t>kの場合)には、「鋼種i、通過工程パターンjのスラブ」の圧延計画日kまでの圧延総重量は0(ゼロ)であることが望ましい。よって、図13(a)に示すΣΣx[c][i][j][t][k´]を0(ゼロ)に近づけることが望ましい。一方、圧延計画日kが圧延期限日tである場合及び圧延計画日kが圧延期限日tよりも後である場合(t≦kの場合)には、「鋼種i、通過工程パターンjのスラブ」の圧延計画日kまでの圧延総重量は、注文マトリクスOrderMatrix[i][j][t]で定められる重量であることが望ましい。
以上のように、(10)式は、圧延計画日kが圧延期限日tよりも前である場合(t>kの場合)には、圧延期限日がtであるスラブの圧延計画日kまでの圧延総重量が、0(ゼロ)であることが望ましく、圧延計画日kが圧延期限日tである場合及び圧延計画日kが圧延期限日tよりも後である場合(t≦kの場合)には、圧延期限日がtであるスラブの圧延計画日kまでの圧延総重量が、注文マトリクスOrderMatrix[i][j][t]で定められる重量であることが望ましいことを表す。すなわち、(10)式は、圧延期限日tのスラブは当該圧延期限日tに全て圧延することが望ましいことを表す。これにより、圧延期限日を遵守するようにする。
(10)式の評価関数は、第1の数理モデル(1回目の数理最適化計算)と第2の数理モデル(2回目の数理最適化計算)の双方の評価関数となる。
第1の数理モデルの評価関数JAは、以下の(11)式で表される。
Minimize JA=w1×J1+w2×J2+w3×J3 ・・・(11)
(11)式において、w1、w2、w3は、それぞれ、異鋼種継目数最小化に対する重み係数(w1)、精整処理能力上限値制約に対する重み係数(w2)、圧延期限日遵守に対する重み係数(w3)であり、立案方針入力部207に記憶されているものである。また、J1、J2、J3は、それぞれ(7)式(J1)、(9)式(J2)、(10)式(J3)で表されるものである。ここでは、J1、J2、J3の重み付き線形和を第1の数理モデルの評価関数JAとしたが、第1の数理モデルの評価関数JAはこれに限定されるものではなく、例えば、J1とJ2がある値を超過しない制約式を設け、J3のみを第1の数理モデルの評価関数JAとしてもよい。
第2の数理モデルでは、第1の数理モデルにおける(5)式を、以下の(12)式に置き換える。
Charge_num [c][i][k]=Charge_num_fixed[c][i][k] ・・・(12)
ここで、Charge_num_fixed[c][i][k]は、第1の数理モデル(1回目の数理最適化計算)で得られたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]である。
また、前述したように、(7)式は、第2の数理モデル(2回目の数理最適化計算)における評価関数には含まれない。よって、第2の数理モデル評価関数JBは、以下の(13)式で表される。
B=w2×J2+w3×J3 ・・・(13)
ここでは、J2、J3の重み付き線形和を第2の数理モデルの評価関数JBとしたが、第2の数理モデルの評価関数JAはこれに限定されるものではなく、例えば、J2がある値を超過しない制約式を設け、J3のみを第2の数理モデルの評価関数JBとしてもよい。
数理モデル記憶部208は、以上の(1)式〜(13)式を記憶する。
数理モデル記憶部208は、例えば、HD105を用いることにより実現される。
(出鋼圧延枠作成部209)
出鋼圧延枠作成部209は、注文マトリクス作成部202で作成された注文マトリクスOrderMatrix[i][j][t]と、製造品種別精整工程発生率算出部203で算出された鋼種別・通過工程パターン別精整工程発生率load_rate[i][j][l]と、第1のキャスト別圧延開始時刻算出部206で算出された「キャスト別・圧延計画日別チャージ数Charge_frame[c][k]、当日比率Day_rate[c][k]、及び翌日比率Next_rate[c][k]」と、制約条件入力部204に記憶された「圧延計画日別精整能力上限値Load_max[k][l]及び1チャージ当たりの重量(ロットサイズ)LOT_SIZE」と、立案方針入力部207に記憶された重み係数w1、w2、w3と、を用いて、(1)式〜(6)式の変数間の関係式と、(7)式〜(10)式の評価関数、及び評価関数に含まれる変数を定義する関係式と、(11)式の評価関数を設定し、多目的混合整数計画法により最適化計算を行い、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を算出し、算出したキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]と、定数(1チャージ当たりの重量LOT_SIZEと、キャスト別・圧延計画日別チャージ数Charge_frame[c][k])とから、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を導出する。
尚、混合整数計画法による最適化計算は、市販の数理計画法のソルバー等を適宜用いればよい。
出鋼圧延枠作成部209は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(出鋼圧延枠表示部210)
出鋼圧延枠表示部210は、出鋼圧延枠作成部209で算出されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を表示する。
図14は、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]の一例を示す図である。
出鋼圧延枠表示部210は、例えば、CPU101、ROM102、RAM103、及び表示装置106を用いることにより実現される。
(出鋼圧延枠修正有無判定部211)
出鋼圧延枠修正有無判定部211は、出鋼圧延枠表示部210により表示されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作がなされた上で、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を承認する操作がなされたか、それとも、当該変更する操作がなされずに当該承認する操作がなされたかを判定する。尚、この操作は、例えば、オペレータがPD104を用いることにより行われる。
出鋼圧延枠修正有無判定部211は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(キャスト別鋼種別チャージ数設定部212)
キャスト別鋼種別チャージ数設定部212は、出鋼圧延枠表示部210により表示されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を承認する操作があると、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を、その操作があったときの(最新の)キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]に更新する(更新後のキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]が、Charge_num_fixed[c][i][k]となる)。
一方、出鋼圧延枠表示部210により表示されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を修正するための操作がなされずに承認するための操作がなされた場合には、出鋼圧延枠作成部209で算出されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]がそのまま採用される(Charge_num_fixed[c][i][k]となる)。
以下では、図14に示したキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]が、Charge_num_fixed[c][i][k]となったものとして説明を行う。
キャスト別鋼種別チャージ数設定部212は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(鋼種別圧延T/H入力部213)
鋼種別圧延T/H入力部213は、オペレータによるPD104の操作入力、又は外部装置とのネットワークを介した通信に基づいて、1時間当たりの圧延重量(ton)の鋼種別の平均である鋼種別圧延T/Hを入力して記憶する。尚、単位時間当たりの圧延量の鋼種別の代表値であれば、必ずしも1時間当たりの圧延重量(ton)の鋼種別の平均をとる必要はない。
鋼種別圧延T/Hは、過去の圧延実績データから求められる。過去の圧延実績データは、例えば、立案の対象となる注文に含まれる全ての鋼種毎の「圧延時間と圧延重量」のデータである。図15は、鋼種別圧延T/H1500の一例を示す図である。図15に示す鋼種別圧延T/H1500の単位はton/hourである。
鋼種別圧延T/H入力部213は、例えば、CPU101、ROM102、RAM103、及びPD104(又は通信I/F108)を用いることにより実現される。尚、ここでは、鋼種別圧延T/Hを入力する場合を例に挙げて説明したが、前記過去の実績データから鋼種別圧延T/Hを算出するようにしてもよい。
(第2のキャスト別圧延開始時刻算出部214)
第2のキャスト別圧延開始時刻算出部214は、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」を導出する。
まず、第2のキャスト別圧延開始時刻算出部214は、キャスト別鋼種別チャージ数設定部212により記憶されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k](図14を参照)と、鋼種別圧延T/H入力部213により記憶された鋼種別圧延T/H1500(図15を参照)と、制約条件入力部204に記憶されたロットサイズ1000(図10を参照)を読み出す。第2のキャスト別圧延開始時刻算出部214は、読み出した情報を用いて、キャスト別・鋼種別・圧延計画日別圧延時間を算出する。
次に、第2のキャスト別圧延開始時刻算出部214は、キャスト別・鋼種別・圧延計画日別チャージ数に、ロットサイズ1000を掛けて、キャスト別・鋼種別・圧延計画日別圧延重量を求める。次に、第2のキャスト別圧延開始時刻算出部214は、キャスト別・鋼種別・圧延計画日別圧延重量を鋼種別圧延T/H1500で割って、キャスト別・鋼種別・圧延計画日別圧延時間を算出する。
図16は、キャスト別・鋼種別・圧延計画日別圧延時間1600の一例を示す図である。尚、図16に示すキャスト別・鋼種別・圧延計画日別圧延時間1600の単位はhourである。
図14より、圧延計画日3月5日の鋼種Jのチャージ数は「12」であり、ロットサイズ1000が「372」である。また、図15より、鋼種Jの鋼種別圧延T/H1500は「254」である。よって、図16において、3月5日の1番目のキャストの鋼種Jの圧延時間は、17.57(=12×372/254)となる。
このようにしてキャスト別・鋼種別・圧延計画日別圧延時間1600を算出した後、第2のキャスト別圧延開始時刻算出部214は、各キャストの「圧延開始時刻、圧延計画日、キャスト番号、当日比率、翌日比率」を算出する。これらの算出方法は、図12に示した、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」を算出する方法と同じである。よって、ここでは、その詳細な説明を省略する。
図17は、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」の一例を示す図である。図12に示したものは、全鋼種圧延T/H1100から算出されたものである。これに対し、1回目の最適化計算で、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k](図14を参照)が得られているので、図17に示すように、鋼種別圧延T/H1500から、各キャストの「圧延開始時刻、圧延時間、圧延計画日、キャスト番号、当日比率、翌日比率」を算出することができる。よって、圧延機前の仕掛量の予測の精度を向上させることができる。
第2のキャスト別圧延開始時刻算出部214は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(注文充当処理部215)
注文充当処理部215は、注文マトリクス作成部202で作成された注文マトリクスOrderMatrix[i][j][t]と、製造品種別精整工程発生率算出部203で算出された鋼種別・通過工程パターン別精整工程発生率load_rate[i][j][l]と、第2のキャスト別圧延開始時刻算出部214で算出された「キャスト別・圧延計画日別チャージ数Charge_frame[c][k]、当日比率Day_rate[c][k]、及び翌日比率Next_rate[c][k]」と、キャスト別鋼種別チャージ数設定部212で設定された「キャスト別・鋼種別・圧延計画日別チャージ数Charge_num_fixed[c][i][k](Charge_num[c][i][k])」と、制約条件入力部204に記憶された「圧延計画日別精整能力上限値Load_max[k][l]及び1チャージ当たりの重量(ロットサイズ)LOT_SIZE」と、立案方針入力部207に記憶された重み係数w1、w2、w3と、を用いて、(1)式〜(4)式、(6)式、(12)式の変数間の関係式と、(7)式〜(10)式の評価関数、及び評価関数に含まれる変数を定義する関係式と、(13)式の評価関数を設定し、多目的混合整数計画法により最適化計算を行い、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を算出し、算出したキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を用いて前述した決定変数を算出する。
注文充当処理部215は、例えば、注文情報400(図4を参照)に含まれる注文番号の小さいものから順に、注文を抽出する。次に、注文充当処理部215は、抽出した注文と「鋼種i、通過工程パターンj、圧延期限日t」が一致するキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を抽出する。次に、注文充当処理部215は、抽出したキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]に含まれる「圧延計画日kとキャスト番号c」を抽出する。そして、注文充当処理部215は、抽出した「圧延計画日kとキャスト番号c」を当該注文の圧延計画とする。尚、ここでは、注文情報400(図4を参照)に含まれる注文番号の小さいものから順に、注文を抽出するようにしたが、必ずしもこのようにする必要はない。例えば、ランダムに注文を抽出してもよい。
注文充当処理部215は、例えば、CPU101、ROM102、及びRAM103を用いることにより実現される。
(圧延計画表示部216)
圧延計画表示部216は、注文充当処理部215で導出された「各注文(注文番号)における『圧延計画日kとキャスト番号c』」を圧延計画として表示する。
図18は、圧延計画1800の一例を示す図である。図18に示す例では、注文番号と、鋼種iと、圧延計画日kと、キャスト番号cとを圧延計画として表示している。例えば、注文番号が「00001」の注文は、圧延計画日kが3月5日であり、キャスト番号が「1」のキャストに充当されることを表している。
圧延計画表示部216は、例えば、CPU101、ROM102、RAM103、及び表示装置106を用いることにより実現される。
尚、オペレータ(立案者)が、表示された圧延計画の内容では好ましくないと判断し、その旨の操作と、立案方針入力部207に記憶された重み係数の変更の操作とが行われると、変更後の重み係数を用いて最適化計算を再度行うようにすることもできる。
<出鋼圧延計画立案装置の動作フローチャート>
次に、図19のフローチャートを参照しながら、出鋼圧延計画立案装置100の動作の一例を説明する。
まず、ステップS1において、注文マトリクス作成部202は、注文情報入力部201で入力された注文情報400を、製造仕様が類似している製造品種毎、圧延期限日毎に集約し、製造品種別・圧延期限日別・注文重量である注文マトリクスOrderMatrix[i][j][t]を作成する。
次に、ステップS2において、製造品種別精整工程発生率算出部203は、過去の実績データから、製造品種別・精整工程発生率、すなわち鋼種別・通過工程パターン別精整工程発生率load_rate[i][j][l]を算出する。
次に、ステップS3において、第1のキャスト別圧延開始時刻算出部206は、各キャストの圧延時間から、その次のキャストの圧延開始時刻を算出する(図12を参照)。ここでは、全鋼種圧延T/H1100を用いて、各キャストの圧延時間が求められる。
次に、ステップS4において、第1のキャスト別圧延開始時刻算出部206は、各キャストの圧延開始時刻の属する日を圧延計画日とし、キャスト別・圧延計画日別チャージ数Charge_frame[c][k]を算出すると共に、各キャストの圧延時間及び圧延開始時刻に基づいて各キャストの当日比率day_rate[c][k]及び翌日比率Next_rate[c][k]を算出する(図12を参照)。
次に、ステップS5において、出鋼圧延枠作成部209は、(1)式〜(6)式の変数間の関係式と、(7)式〜(10)式の評価関数、及び評価関数に含まれる変数を定義する関係式と、(11)式の評価関数を設定し、多目的混合整数計画法により最適化計算を行い、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を算出する。そして、出鋼圧延枠作成部209は、算出したキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を用いて、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を導出する。
次に、ステップS6において、出鋼圧延枠表示部210は、ステップS5で導出されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を表示する。
次に、ステップS7において、出鋼圧延枠修正有無判定部211は、ステップS6で表示されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作がなされた上で、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を承認する操作がなされたか、それとも、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作がなされずに、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を承認する操作がなされたかを判定する。この判定の結果、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作がなされた上で、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を承認する操作がなされた場合には、ステップS8に進む。
ステップS8に進むと、キャスト別鋼種別チャージ数設定部212は、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作の内容に従って、ステップS5で算出されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を更新する。そして、ステップS9に進む。
一方、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作がなされずに、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を承認する操作がなされた場合には、ステップS8を省略してステップS9に進む。
ステップS9に進むと、第2のキャスト別圧延開始時刻算出部214は、キャスト別・鋼種別・圧延計画日別圧延時間1600(図16を参照)から、各キャストの圧延開始時刻を算出する(図17を参照)。ここでは、鋼種別圧延T/H1500を用いて、各キャストの圧延時間が求められる。
次に、ステップS10において、第2のキャスト別圧延開始時刻算出部214は、各キャストの圧延開始時刻の属する日を圧延計画日とし、各キャストの圧延時間及び圧延開始時刻に基づいて各キャストの当日比率day_rate[c][k]及び翌日比率Next_rate[c][k]を算出する(図17を参照)。
次に、ステップS11において、注文充当処理部215は、(1)式〜(4)式、(6)式、(12)式の変数間の関係式と、(7)式〜(10)式の評価関数、及び評価関数に含まれる変数を定義する関係式と、(13)式の評価関数を設定し、混合整数計画法により最適化計算を行い、キャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を算出する。
次に、ステップS13において、注文充当処理部215は、ステップS11で算出されたキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]に基づいて、各注文の「圧延計画日kとキャスト番号c」を圧延計画として導出する。
次に、ステップS14において、圧延計画表示部216は、ステップS13で導出された圧延計画を表示する。そして、図19のフローチャートによる処理を終了する。
<本実施形態の効果>
次に、以上の本実施形態の効果を説明する。
図20は、人によって(立案者が有するノウハウに基づいて手作業で)作成されたキャスト別・鋼種別・圧延計画日別チャージ数Charge_num_fixed[c][i][k]を示す図である。図20は、図14に対応するものである。図21は、異鋼種継目数、圧延期限日遅れ量、圧延期限日超過量、及び正規化精整負荷超過量合計値の結果を示す図である。
図21において、比較例は、図20に示すキャスト別・鋼種別・圧延計画日別チャージ数Charge_num_fixed[c][i][k]を注文充当処理部212に与えて、2回目の最適化計算で得られたキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を用いて圧延計画を作成したものである。また、本手法(1回目)は、1回目の最適化計算で得られたキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を用いて圧延計画を作成したものである。そして、本手法(2回目)は、本実施形態のように2回の最適化計算で得られたキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延重量x[c][i][j][t][k]を用いて圧延計画を作成したものである。比較例と、本手法(1回目)と、本手法(2回目)のその他の条件や値は同じ(本実施形態で説明したのと同じ)である。
また、圧延期限日遅れ量は、圧延期限日に対する圧延計画日kの遅れ日数に、その遅れた分の圧延重量を掛けた値を注文毎に算出し、その値を全注文で合計した値である。また、圧延期限日先行量は、圧延期限日に対する圧延計画日kの先行日数に、その先行した分の圧延重量を掛けた値を注文毎に算出し、その値を全注文で合計した値である。また、正規化精整負荷超過量合計値は、精整負荷load[l][k]の3日間の移動平均値を、圧延計画日別精整能力上限値load_max[k][l]で割った値を、各圧延計画日kについて算出し、当該求めた値が1を超えた数の合計値である。
図21に示すように、本手法(2回目)、すなわち本実施形態では、比較例に比べて、異鋼種継目数が少なく、且つ、圧延期限日に対する遅れ量も先行量も少なくなることが分かる。また、本手法(2回目)、すなわち本実施形態では、比較例に比べて、正規化精整負荷超過量合計値が大幅に小さいので、精整負荷の平準化を達成できていることが分かる。
また、本手法(2回目)、すなわち本実施形態では、本手法(1回目)に比べて、圧延期限日遅れ量は殆ど差がない。また、本手法(2回目)における圧延期限日先行量は、本手法(1回目)に比べて大きくなっているが、納期遵守の観点から問題になる値ではない。そして、本手法(2回目)では、本手法(1回目)に比べて、正規化精整負荷超過量合計値が大幅に小さいので、精整負荷の平準化を達成できていることが分かる。
図22は、本手法(2回目)における正規化精整負荷超過量合計値の推移を示す図であり、図23は、比較例における正規化精整負荷超過量合計値の推移を示す図であり、図24は、本手法(1回目)における正規化精整負荷超過量合計値の推移を示す図である。
前述したように、正規化精整負荷超過量合計値は1以下であることが望ましい。図22に示すように、本手法(2回目)では、正規化精整負荷超過量合計値が1を超えているのが1つであり、最も精整負荷の平準化が達成されていることが分かる。
以上のように本実施形態では、全鋼種圧延T/H1100を用いて、キャスト別・圧延計画日別のキャスト数を算出する。そして、これを入力として、異鋼種継目数の最小化と、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守に関する評価が高いほど値が小さく又は大きくなる評価関数JAを最適化する最適化計算(1回目の最適化計算)を行う。その最適化計算で得られたキャスト別・鋼種別・圧延計画日別のチャージ数を入力として、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守に関する評価が高いほど値が小さく又は大きくなる評価関数JBを最適化する最適化計算(2回目の最適化計算)を行う。この2回目の最適化計算の結果から、各注文に、キャストと圧延計画日とを割り当てる。このように、異鋼種継目数の最小化と、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守とを実現する評価関数を最適化するに際し、1回目の最適化計算で、キャスト別・鋼種別・圧延計画日別チャージ数を得て、当該キャスト別・鋼種別・圧延計画日別チャージ数を固定して、2回目の最適化計算を行うことによって、異鋼種継目数の最小化と、圧延計画日を基準とした各精整工程における精整負荷の平準化と、圧延期限日の遵守とを実現する圧延計画の精度を向上させることができる。よって、圧延日ベースで製造負荷を平準化することと、納期を遵守することと、製造ロットを拡大することとを実現する出鋼−圧延計画を立案することができる。
本実施形態では、評価関数JA、JBの値が小さいほど、評価関数JA、JBの評価が高くなるようにしたが、これとは逆に、評価関数JA、JBの値が大きいほど、評価関数JA、JBの評価が高くなるようにしてもよい。
また、本実施形態では、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する操作がなされた場合には、第2のキャスト別圧延開始時刻算出部214と、注文充当処理部215は、変更後のキャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を入力として計算を行うようにした場合を例に挙げて説明した。しかしながら、必ずしもこのようにする必要はなく、キャスト別・鋼種別・圧延計画日別チャージ数Charge_num[c][i][k]を変更する処理を省略するようにしてもよい。
また、精整設備41〜44の数や内容は、前述したものに限定されるものではない。例えば、精整設備41〜43だけで精整工程を行うようにしてもよい。
尚、以上説明した本発明の実施形態は、コンピュータがプログラムを実行することによって実現することができる。また、プログラムをコンピュータに供給するための手段、例えばかかるプログラムを記録したCD−ROM等のコンピュータ読み取り可能な記録媒体、又はかかるプログラムを伝送する伝送媒体も本発明の実施の形態として適用することができる。また、前記プログラムを記録したコンピュータ読み取り可能な記録媒体などのプログラムプロダクトも本発明の実施の形態として適用することができる。前記のプログラム、コンピュータ読み取り可能な記録媒体、伝送媒体及びプログラムプロダクトは、本発明の範疇に含まれる。
また、以上説明した本発明の実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
(請求項との対応)
本実施形態では、注文は、例えば、図4に示す注文情報により実現される、圧延計画は、例えば、図18に示す圧延計画1800により実現される、出鋼計画立案装置は、例えば、図2、図3に示す出鋼計画立案装置100により実現される。
全鋼種圧延量取得手段は、例えば、全鋼種圧延T/H入力部205により実現され、全鋼種圧延量取得ステップは、例えば、全鋼種圧延T/H入力部205が、全鋼種圧延T/H1100を入力して記憶することにより実現される。
圧延計画日別精整能力上限値取得手段は、例えば、制約条件入力部204により実現され、圧延計画日別精整能力上限値取得ステップは、例えば、制約条件入力部204が、圧延計画日別精整能力上限値800を入力して記憶することにより実現される。
キャスト別チャージ数取得手段は、例えば、制約条件入力部204により実現され、キャスト別チャージ数取得ステップは、例えば、制約条件入力部204が、キャスト別チャージ数900を入力して記憶することにより実現される。
ロットサイズ取得手段は、例えば、制約条件入力部204により実現され、ロットサイズ取得ステップは、例えば、制約条件入力部204が、ロットサイズ1000を入力して記憶することにより実現される。
注文マトリクス作成手段は、例えば、注文マトリクス作成部202により実現され、注文マトリクス作成ステップは、例えば、注文マトリクス作成部202が、注文マトリクス600を作成することにより実現される。
製造品種別精整工程発生率取得手段は、例えば、製造品種別精整工程発生率算出部203により実現され、製造品種別精整工程発生率取得ステップは、例えば、製造品種別精整工程発生率算出部203が、製造品種別精整工程発生率700を算出することにより実現される。
第1のキャスト別・圧延計画日算出手段は、例えば、第1のキャスト別圧延開始時刻算出部206により実現され、第1のキャスト別・圧延計画日算出ステップは、例えば、第1のキャスト別圧延開始時刻算出部206が、図12に示す圧延計画日を算出することにより実現される。
第1の最適化計算手段は、例えば、出鋼圧延枠作成部209により実現され、第1の最適化計算ステップは、例えば、出鋼圧延枠作成部209が、(1)式〜(6)式、(8)式の変数間の関係式と、(7)式、(9)式〜(10)式の評価関数と、その重み付き線形和である(11)式の評価関数とを設定し、多目的混合整数計画法により最適化計算を行うことにより実現される。第1の評価関数は、例えば、(11)式の評価関数JAにより実現される。
鋼種別圧延量取得手段は、例えば、鋼種別圧延T/H入力部213により実現され、鋼種別圧延量取得ステップは、例えば、鋼種別圧延T/H入力部213が、鋼種別圧延T/H1500を入力して記憶することにより実現される。
第2のキャスト別・圧延計画日算出手段は、例えば、第2のキャスト別圧延開始時刻算出部214により実現され、第2のキャスト別・圧延計画日算出ステップは、例えば、第2のキャスト別圧延開始時刻算出部214が、図17に示す圧延計画日を算出することにより実現される。
第2の最適化計算手段は、例えば、注文充当処理部215により実現され、第2の最適化計算ステップは、例えば、注文充当処理部215が、(1)式〜(4)式、(6)式、(8)式、(12)式の変数間の関係式と、(7)式、(10)式の評価関数と、その重み付き線形和である(13)式の評価関数とを設定し、多目的混合整数計画法により最適化計算を行うことにより実現される。第2の評価関数は、例えば、(13)式の評価関数JBにより実現される。
圧延計画作成手段は、例えば、注文充当処理部215により実現され、圧延計画作成ステップは、例えば、注文充当処理部215が、各注文に、圧延計画日kとキャスト番号cとを割り当てることにより実現される。
第1の比率算出手段は、例えば、第1のキャスト別圧延開始時刻算出部206により実現され、第1の比率算出ステップは、例えば、第1のキャスト別圧延開始時刻算出部206が、図12に示す当日比率、翌日比率を算出することにより実現される。ここで、圧延計画日別の前記それぞれの精整工程の負荷は、例えば、(6)式の精整負荷予測値load[l][k]により実現される。
第2の比率算出手段は、例えば、第2のキャスト別圧延開始時刻算出部214により実現され、第2の比率算出ステップは、例えば、第2のキャスト別圧延開始時刻算出部214が、図17に示す当日比率、翌日比率を算出することにより実現される。ここで、圧延計画日別の前記それぞれの精整工程の負荷は、例えば、(6)式の精整負荷予測値load[l][k]により実現される。
圧延計画日から当該圧延計画日のn日後(nは正の整数)までの期間単位での、前記精整工程における精整負荷の移動平均の平準化は、例えば、(8)式及び(9)式における、圧延計画日kからその2日後までの3日間の単位で各精整工程lの負荷の平準化により実現される。nは2に限定されないことは勿論である。また、圧延計画日単位(1日単位)で精整工程の負荷の平準化を行うようにしてもよい。
最適化計算結果修正有無判定手段は、例えば、出鋼圧延枠修正有無判定部211により実現され、最適化計算結果修正有無判定ステップは、例えば、出鋼圧延枠修正有無判定部211が、図19のステップS7の処理を実行することにより実現される。
最適化計算結果修正手段は、例えば、キャスト別鋼種別チャージ数設定部212により実現され、最適化計算結果修正ステップは、例えば、キャスト別鋼種別チャージ数設定部212が、図19のステップS8の処理を実行することにより実現される。
100 出鋼圧延計画立案装置
201 注文情報入力部
202 注文マトリクス作成部
203 製造品種別精整工程発生率算出部
204 制約条件入力部
205 全鋼種圧延T/H入力部
206 第1のキャスト別圧延開始時刻算出部
207 立案方針入力部
208 数理モデル設定部
209 出鋼圧延枠作成部
210 出鋼圧延枠表示部
211 出鋼圧延枠修正有無判定部
212 キャスト別鋼種別チャージ数設定部
213 鋼種別圧延T/H入力部
214 第2のキャスト別圧延開始時刻算出部
215 注文充当処理部
216 圧延計画表示部

Claims (11)

  1. 製鋼工程と、圧延工程とを少なくとも通過して製造される鋼材の複数の注文であって、当該注文の鋼材が、前記圧延工程後に、複数の精整工程のうちのそれぞれの精整工程を通過予定であるかどうかを示す情報である通過工程パターンと、鋼種と、圧延期限日と、注文量と、を少なくとも含む注文のそれぞれに対して、圧延計画日と、当該圧延計画日におけるキャストを識別するキャスト番号とが割り当てられた圧延計画を立案する出鋼圧延計画立案装置であって、
    前記立案の対象となる注文に含まれる全ての鋼種の単位時間当たりの圧延量の代表値である全鋼種圧延量を取得する全鋼種圧延量取得手段と、
    前記圧延計画日別の前記それぞれの精整工程における処理能力の上限値である圧延計画日別精整能力上限値を取得する圧延計画日別精整能力上限値取得手段と、
    前記立案の対象である各キャストに含まれるチャージ数を取得するキャスト別チャージ数取得手段と、
    1チャージ当たりの重量であるロットサイズを取得するロットサイズ取得手段と、
    前記注文から、前記鋼種と前記通過工程パターンとの組合せである製造品種別・前記圧延期限日別の注文量である注文マトリクスを作成する注文マトリクス作成手段と、
    前記製造品種別の前記精整工程の通過確率である製造品種別・精整工程発生率を取得する製造品種別精整工程発生率取得手段と、
    前記全鋼種圧延量と、前記キャスト別のチャージ数とを用いて、鋼種による単位時間当たりの圧延量の違いを区別しないキャスト別の圧延計画日である第1のキャスト別・圧延計画日を算出する第1のキャスト別・圧延計画日算出手段と、
    前記第1のキャスト別・圧延計画日と前記キャスト別チャージ数とを少なくとも入力とし、鋼種による単位時間当たりの圧延量の違いを区別しない第1のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量を決定変数とする評価関数であって、前記製鋼工程で相互に隣接する異鋼種のチャージの継目の数である異鋼種継目数の最小化と、圧延計画日を基準とした前記精整工程における精整負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第1の評価関数を最適化する第1の最適化計算を行う第1の最適化計算手段と、
    前記立案の対象となる注文に含まれる鋼種の単位時間当たりの圧延量を鋼種別に表す鋼種別圧延量を取得する鋼種別圧延量取得手段と、
    前記鋼種別圧延量と、前記第1のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量から導出されるキャスト別・鋼種別のチャージ数とを用いて、鋼種による単位時間当たりの圧延量の違いを区別したキャスト別の圧延計画日である第2のキャスト別・圧延計画日を算出する第2のキャスト別・圧延計画日算出手段と、
    前記キャスト別・鋼種別のチャージ数と、前記第2のキャスト別・圧延計画日とを少なくとも入力とし、鋼種による単位時間当たりの圧延量の違いを区別した第2のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量を決定変数とする評価関数であって、圧延計画日を基準とした前記精整工程の負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第2の評価関数を最適化する第2の最適化計算を行う第2の最適化計算手段と、
    前記第2の最適化計算で得られた第2のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延量を用いて、前記圧延計画を作成する圧延計画作成手段と、を有することを特徴とする出鋼圧延計画立案装置。
  2. 前記全鋼種圧延量と、前記第1のキャスト別・圧延計画日と、前記キャスト別のチャージ数と、前記ロットサイズとを用いて、圧延計画日当日に圧延する割合である第1の当日比率と、その翌日に圧延する割合である第1の翌日比率とを各キャストのそれぞれについて算出する第1の比率算出手段と、
    前記鋼種別圧延量と、前記第2のキャスト別・圧延計画日と、前記キャスト別・鋼種別のチャージ数と、前記ロットサイズとを用いて、圧延計画日当日に圧延する割合である第2の当日比率と、その翌日に圧延する割合である第2の翌日比率とを各キャストのそれぞれについて算出する第2の比率算出手段と、を更に有し、
    前記第1の当日比率と、前記第1の翌日比率とを用いて計算した圧延計画日別の前記それぞれの精整工程の負荷を用いて前記第1の評価関数の値を計算し、
    前記第2の当日比率と、前記第2の翌日比率とを用いて計算した圧延計画日別の前記それぞれの精整工程の負荷を用いて前記第2の評価関数の値を計算することを特徴とする請求項1に記載の出鋼圧延計画立案装置。
  3. 前記圧延計画日を基準とした前記精整工程の負荷の平準化とは、前記圧延計画日から当該圧延計画日のn日後(nは正の整数)までの期間単位での、前記精整工程の負荷の移動平均の平準化であることを特徴とする請求項1又は2に記載の出鋼圧延計画立案装置。
  4. 前記第1の評価関数は、前記異鋼種継目数の最小化に関する項と、前記圧延計画日を基準とした前記精整工程の負荷の平準化に関する項と、前記圧延期限日の遵守に関する項との重み付き線形和で表され、
    前記第2の評価関数は、前記圧延計画日を基準とした前記精整工程の負荷の平準化に関する項と、前記圧延期限日の遵守に関する項との重み付き線形和で表されることを特徴とする請求項1〜3の何れか1項に記載の出鋼圧延計画立案装置。
  5. 前記第1の最適化計算手段により行われた第1の最適化計算の結果を修正するか否かを、オペレータによる修正指示入力の有無により判定する最適化計算結果修正有無判定手段と、
    前記最適化計算結果修正有無判定手段により、前記第1の最適化計算の結果を修正すると判定されると、当該第1の最適化計算の結果をオペレータによる修正指示入力に基づくものに修正する最適化計算結果修正手段と、を有し、
    前記第2のキャスト別・圧延計画日算出手段と、前記第2の最適化計算手段は、前記最適化計算結果修正手段により修正された第1の最適化計算の結果である、キャスト別・鋼種別のチャージ数を用いて計算を行うことを特徴とする請求項1〜4の何れか1項に記載の出鋼圧延計画立案装置。
  6. 製鋼工程と、圧延工程とを少なくとも通過して製造される鋼材の複数の注文であって、当該注文の鋼材が、前記圧延工程後に、複数の精整工程のうちのそれぞれの精整工程を通過予定であるかどうかを示す情報である通過工程パターンと、鋼種と、圧延期限日と、注文量と、を少なくとも含む注文のそれぞれに対して、圧延計画日と、当該圧延計画日におけるキャストを識別するキャスト番号とが割り当てられた圧延計画を立案する出鋼圧延計画立案方法であって、
    前記立案の対象となる注文に含まれる全ての鋼種の単位時間当たりの圧延量の代表値である全鋼種圧延量を取得する全鋼種圧延量取得ステップと、
    前記圧延計画日別の前記それぞれの精整工程における処理能力の上限値である圧延計画日別精整能力上限値を取得する圧延計画日別精整能力上限値取得ステップと、
    前記立案の対象である各キャストに含まれるチャージ数を取得するキャスト別チャージ数取得ステップと、
    1チャージ当たりの重量であるロットサイズを取得するロットサイズ取得ステップと、
    前記注文から、前記鋼種と前記通過工程パターンとの組合せである製造品種別・前記圧延期限日別の注文量である注文マトリクスを作成する注文マトリクス作成ステップと、
    前記製造品種別の前記精整工程の通過確率である製造品種別・精整工程発生率を取得する製造品種別精整工程発生率取得ステップと、
    前記全鋼種圧延量と、前記キャスト別のチャージ数とを用いて、鋼種による単位時間当たりの圧延量の違いを区別しないキャスト別の圧延計画日である第1のキャスト別・圧延計画日を算出する第1のキャスト別・圧延計画日算出ステップと、
    前記第1のキャスト別・圧延計画日と前記キャスト別チャージ数とを少なくとも入力とし、鋼種による単位時間当たりの圧延量の違いを区別しない第1のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量を決定変数とする評価関数であって、前記製鋼工程で相互に隣接する異鋼種のチャージの継目の数である異鋼種継目数の最小化と、圧延計画日を基準とした前記精整工程における精整負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第1の評価関数を最適化する第1の最適化計算を行う第1の最適化計算ステップと、
    前記立案の対象となる注文に含まれる鋼種の単位時間当たりの圧延量を鋼種別に表す鋼種別圧延量を取得する鋼種別圧延量取得ステップと、
    前記鋼種別圧延量と、前記第1のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量から導出されるキャスト別・鋼種別のチャージ数とを用いて、鋼種による単位時間当たりの圧延量の違いを区別したキャスト別の圧延計画日である第2のキャスト別・圧延計画日を算出する第2のキャスト別・圧延計画日算出ステップと、
    前記キャスト別・鋼種別のチャージ数と、前記第2のキャスト別・圧延計画日とを少なくとも入力とし、鋼種による単位時間当たりの圧延量の違いを区別した第2のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別の圧延量を決定変数とする評価関数であって、圧延計画日を基準とした前記精整工程の負荷の平準化と、圧延期限日の遵守とに関する評価が高いほど値が小さく又は大きくなる第2の評価関数を最適化する第2の最適化計算を行う第2の最適化計算ステップと、
    前記第2の最適化計算で得られた第2のキャスト別・鋼種別・通過工程パターン別・圧延期限日別・圧延計画日別圧延量を用いて、前記圧延計画を作成する圧延計画作成ステップと、を有することを特徴とする出鋼圧延計画立案方法。
  7. 前記全鋼種圧延量と、前記第1のキャスト別・圧延計画日と、前記キャスト別のチャージ数と、前記ロットサイズとを用いて、圧延計画日当日に圧延する割合である第1の当日比率と、その翌日に圧延する割合である第1の翌日比率とを各キャストのそれぞれについて算出する第1の比率算出ステップと、
    前記鋼種別圧延量と、前記第2のキャスト別・圧延計画日と、前記キャスト別・鋼種別のチャージ数と、前記ロットサイズとを用いて、圧延計画日当日に圧延する割合である第2の当日比率と、その翌日に圧延する割合である第2の翌日比率とを各キャストのそれぞれについて算出する第2の比率算出ステップと、を更に有し、
    前記第1の当日比率と、前記第1の翌日比率とを用いて計算した圧延計画日別の前記それぞれの精整工程の負荷を用いて前記第1の評価関数の値を計算し、
    前記第2の当日比率と、前記第2の翌日比率とを用いて計算した圧延計画日別の前記それぞれの精整工程の負荷を用いて前記第2の評価関数の値を計算することを特徴とする請求項6に記載の出鋼圧延計画立案方法。
  8. 前記圧延計画日を基準とした前記精整工程の負荷の平準化とは、前記圧延計画日から当該圧延計画日のn日後(nは正の整数)までの期間単位での、前記精整工程の負荷の移動平均の平準化であることを特徴とする請求項6又は7に記載の出鋼圧延計画立案方法。
  9. 前記第1の評価関数は、前記異鋼種継目数の最小化に関する項と、前記圧延計画日を基準とした前記精整工程の負荷の平準化に関する項と、前記圧延期限日の遵守に関する項との重み付き線形和で表され、
    前記第2の評価関数は、前記圧延計画日を基準とした前記精整工程の負荷の平準化に関する項と、前記圧延期限日の遵守に関する項との重み付き線形和で表されることを特徴とする請求項6〜8の何れか1項に記載の出鋼圧延計画立案方法。
  10. 前記第1の最適化計算ステップにより行われた第1の最適化計算の結果を修正するか否かを、オペレータによる修正指示入力の有無により判定する最適化計算結果修正有無判定ステップと、
    前記最適化計算結果修正有無判定ステップにより、前記第1の最適化計算の結果を修正すると判定されると、当該第1の最適化計算の結果をオペレータによる修正指示入力に基づくものに修正する最適化計算結果修正ステップと、を有し、
    前記第2のキャスト別・圧延計画日算出ステップと、前記第2の最適化計算ステップは、前記最適化計算結果修正ステップにより修正された第1の最適化計算の結果である、キャスト別・鋼種別のチャージ数を用いて計算を行うことを特徴とする請求項6〜9の何れか1項に記載の出鋼圧延計画立案方法。
  11. 請求項6〜10の何れか1項に記載の出鋼圧延計画立案方法の各ステップをコンピュータに実行させることを特徴とするコンピュータプログラム。
JP2011003910A 2011-01-12 2011-01-12 出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム Expired - Fee Related JP5454479B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003910A JP5454479B2 (ja) 2011-01-12 2011-01-12 出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003910A JP5454479B2 (ja) 2011-01-12 2011-01-12 出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2012146124A true JP2012146124A (ja) 2012-08-02
JP5454479B2 JP5454479B2 (ja) 2014-03-26

Family

ID=46789628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003910A Expired - Fee Related JP5454479B2 (ja) 2011-01-12 2011-01-12 出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム

Country Status (1)

Country Link
JP (1) JP5454479B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161962A (ja) * 2015-02-26 2016-09-05 新日鐵住金株式会社 チャージ編成装置、チャージ編成方法、およびプログラム
JP2017068788A (ja) * 2015-10-02 2017-04-06 新日鐵住金株式会社 製鋼圧延計画立案装置、製鋼圧延計画立案方法、およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161962A (ja) * 2015-02-26 2016-09-05 新日鐵住金株式会社 チャージ編成装置、チャージ編成方法、およびプログラム
JP2017068788A (ja) * 2015-10-02 2017-04-06 新日鐵住金株式会社 製鋼圧延計画立案装置、製鋼圧延計画立案方法、およびプログラム

Also Published As

Publication number Publication date
JP5454479B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2017088674A1 (zh) 一种面向全流程生产的炼钢组批与排产方法
JP6299155B2 (ja) キャスト計画立案装置、方法及びプログラム
JP5000547B2 (ja) 出鋼枠配置計画立案装置、方法、プログラム及びコンピュータ読み取り可能な記憶媒体
JP5114673B2 (ja) 処理時間予測装置、方法、プログラム、及びコンピュータ読み取り可能な記憶媒体
JP6593080B2 (ja) 製鋼圧延計画立案装置、製鋼圧延計画立案方法、およびプログラム
JP5885637B2 (ja) スケジューリング方法及びスケジューリングプログラム、並びにスケジューリング装置
JP2009282740A (ja) 製品品質予測および制御方法
US20110258087A1 (en) Analytics for setting up strategic inventory systems to handle small lot orders in the steel industry
JP6428375B2 (ja) チャージ編成装置、チャージ編成方法、およびプログラム
JP5454479B2 (ja) 出鋼圧延計画立案装置、出鋼圧延計画立案方法、及びコンピュータプログラム
CN109358581B (zh) 两流异宽的炼钢-连铸过程批量计划优化方法
JP5000369B2 (ja) 納期調整支援装置、納期交渉支援装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
Lü et al. Multiproduct and multistage integrated production planning model and algorithm based on an available production capacity network
JP5652069B2 (ja) 最適チャ−ジ編成装置及び最適チャージ編成方法
JP2007115169A (ja) 生産計画作成装置及び生産計画作成方法、並びにプログラム
JP2011215873A (ja) 製造ロット作成方法、装置及びシステム
JP7156024B2 (ja) 計画作成装置、計画作成方法、及びプログラム
JP6477309B2 (ja) 製鋼生産スケジュール作成装置、製鋼生産スケジュール作成方法、操業方法、及び製鋼製品の製造方法
JP4349087B2 (ja) 鉄鋼製品の製造工程における注文に対する現品の充当方法
JP2006178920A (ja) 生産配分シミュレーション方法及び装置並びに生産方法
JP5007630B2 (ja) 製品品質の制御方法及び制御装置
JP5402621B2 (ja) 製造負荷予測装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2005216074A (ja) 生産計画作成システム、生産計画作成方法及びプログラム
JP5114682B2 (ja) 注文割り当て装置、方法、コンピュータプログラム及びコンピュータ読み取り可能な記憶媒体
JP2011233061A (ja) 生産対象範囲設定装置および生産対象範囲設定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R151 Written notification of patent or utility model registration

Ref document number: 5454479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees