JP2012129444A - アクティブマトリックス基板、及び液晶装置 - Google Patents

アクティブマトリックス基板、及び液晶装置 Download PDF

Info

Publication number
JP2012129444A
JP2012129444A JP2010281493A JP2010281493A JP2012129444A JP 2012129444 A JP2012129444 A JP 2012129444A JP 2010281493 A JP2010281493 A JP 2010281493A JP 2010281493 A JP2010281493 A JP 2010281493A JP 2012129444 A JP2012129444 A JP 2012129444A
Authority
JP
Japan
Prior art keywords
film
electrode
active matrix
matrix substrate
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010281493A
Other languages
English (en)
Inventor
Shinichi Yano
伸一 矢野
Kazunori Inoue
和式 井上
Nobuaki Ishiga
展昭 石賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010281493A priority Critical patent/JP2012129444A/ja
Publication of JP2012129444A publication Critical patent/JP2012129444A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】TFTの光リーク電流が低減され、かつ、従来よりも少ないフォトリソフォグラフィ工程で製造することが可能なアクティブマトリックス基板を提供する。
【解決手段】アクティブマトリックス基板201は、絶縁性基板1上に、基板1側から、ゲート電極2と、ゲート電極2を覆うゲート絶縁膜6と、互いに離間形成されたドレイン電極9及びソース電極11と、チャネル層を含む少なくとも1層の半導体膜21とが順次形成された薄膜トランジスタ101と、画素電極10とが複数対アレイ状に形成されたものである。ドレイン電極9及びソース電極11は、基板1側から透光性導電膜EM2と非透光性導電膜EM3とが順次積層された積層構造を有し、かつ、ドレイン電極9の透光性導電膜EM2及び/又は非透光性導電膜EM3が延設され、この延設部分により画素電極10が形成されたものである。
【選択図】図2

Description

本発明は、画素スイッチング素子として薄膜トランジスタ(Thin Film Transistor、TFT)を用いたアクティブマトリックス基板、及びこれを用いた液晶装置に関するものである。
液晶表示装置(Liquid Crystal Display、LCD)はその低消費電力及び薄型という特徴を活かして、CRT(Cathode Ray Tube)に変わるフラットパネルディスプレイの一つとして製品への応用が盛んになされている。
LCDとしては、画素スイッチング素子を用いないパッシブマトリックス型LCDと、薄膜トランジスタ(TFT)等の画素スイッチング素子を用いたアクティブマトリックス型LCDがある。携帯性及び表示品位等の点でCRT及びパッシブ型LCDより優れるTFT−LCDが、テレビや、パソコン及び携帯電話等のディスプレイ等に広く実用化されている。
TFT−LCDは、マトリックス状に形成された複数の画素電極と画素スイッチング素子としての複数のTFTとを備えたアクティブマトリックス基板(素子基板)と、カラーフィルタ(CF)とを備えたCF基板(対向基板)とが液晶層を挟持して貼着された液晶セルを基本構造とし、この液晶セルに偏光子等が取り付けられたものである。全透過型LCDでは、液晶セルの視認側と反対側にバックライト(BL)が設けられる。
TFT−LCDとして、CF基板側に対向電極を設けた縦電界駆動方式の視野角を改善するために、TFT基板側に対向電極を設けた横電界駆動方式の1つであるIPS(inplane switching)モードが提案されている。
IPSモードでは、縦電界駆動方式よりも広い視野角が得られる一方、縦電界駆動方式よりも画素表示部の開口率と透過率が低く、明るい表示特性を得ることが難しい。IPS−LCDにおける表示特性の問題は、櫛歯形状の画素電極上において、液晶を駆動させる電界が有効に働かず、櫛歯形状の画素電極上の一部の液晶が良好に動作しないことに起因する。
IPSモードの上記問題を改善するため、横電界駆動方式の1つとして、フリンジ電界駆動方式(fringe field switching:FFS)モードも提案されている(特許文献1等)。
特開2001−56474号公報
特許文献1等に記載の一般的なFFS−LCDのアクティブマトリックス基板は、ゲート電極を形成する工程、画素電極を形成する工程、チャネル層を含む半導体膜を形成する工程、ドレイン・ソース電極を形成する工程、保護絶縁膜にコンタクトホールを開孔する工程、及び櫛歯状の対向電極を形成する工程の少なくとも6回のフォトリソグラフィ工程を経て製造される。
1回のフォトリソグラフィ工程には通常、基板の洗浄工程、フォトレジストの塗布工程、フォトレジストの露光工程、フォトレジストの現像工程、パターニング対象膜のエッチング工程、及びフォトレジスト除去工程と、多数の工程が含まれる。そのため、フォトリソグラフィ工程の回数が多くなる程、パターン欠陥等の不良が多くなって歩留が低下し、それによって生産効率が低下し製造コストが増加する傾向にある。したがって、フォトリソグラフィ工程はなるべく少ないことが好ましい。
図16に、特許文献1の図1に記載の全透過型のFFS−LCD用のアクティブマトリックス基板の断面図を示す。この断面図及び符号は、後記の本発明に係る第1実施形態の図2等に対応している。
図16に示すTFT301及びアクティブマトリックス基板401では、ゲート電極2からはみ出した半導体膜21にバックライト(BL)光が直接入射するため、光リーク電流によってTFT301のオフ電流が増大して、クロストーク及び焼き付き等の表示ムラが発生する恐れがある。
図17に示すTFT302及びアクティブマトリックス基板402のように、半導体膜21をゲート電極2からはみ出さないパターンとしても、BL光がドレイン電極9及びソース電極11の下面で反射されて生成する散乱光BLR(BL反射光)によって光リーク電流が生成して、TFT302のオフ電流が増大し、表示ムラが生じる恐れがある。
半導体膜21に対するBL直接光及びBL反射光の入射を抑制するために、これらを遮蔽する遮光層を設けることが考えられるが、画素開口率が低下してしまう。
BL光に起因する上記の光リーク電流の問題は、半透過半反射型LCDにおいても同様である。また、縦電界駆動方式でも同様である。
本発明は上記事情に鑑みてなされたものであり、画素開口率を低下させることなくTFTの光リーク電流が低減され、かつ、従来よりも少ないフォトリソフォグラフィ工程で製造することが可能なアクティブマトリックス基板、及びこれを用いた液晶装置を提供することを目的とするものである。
本発明のアクティブマトリックス基板は特に、光リーク電流の問題が生じるバックライトを備えた全透過型装置用あるいは半透過半反射型装置用として好適なものであるが、全反射型装置用としても利用できる。
本発明のアクティブマトリックス基板は、
絶縁性基板上に、当該絶縁性基板側から、ゲート電極と、当該ゲート電極を覆うゲート絶縁膜と、互いに離間形成されたドレイン電極及びソース電極と、チャネル層を含む少なくとも1層の半導体膜とが順次形成された画素スイッチング素子である薄膜トランジスタと、画素電極とが複数対アレイ状に形成されたアクティブマトリックス基板であって、
前記ドレイン電極及び前記ソース電極は、前記基板側から透光性導電膜と非透光性導電膜とが順次積層された積層構造を有し、かつ、前記ドレイン電極の前記透光性導電膜及び/又は前記非透光性導電膜が延設され、当該延設部分により前記画素電極が形成されたものである。
本発明のアクティブマトリックス基板は、前記薄膜トランジスタ及び前記画素電極を覆う保護絶縁膜と、当該保護絶縁膜上に形成され前記画素電極と対向する対向電極とを備えた横電界駆動方式用の基板に好ましく適用できる。
本発明の液晶装置は、上記の本発明のアクティブマトリックス基板と対向基板とが液晶層を挟持して対向配置された液晶セルを備えたものである。
本発明によれば、画素開口率を低下させることなくTFTの光リーク電流が低減され、かつ、従来よりも少ないフォトリソフォグラフィ工程で製造することが可能なアクティブマトリックス基板、及びこれを用いた液晶装置を提供することができる。
本発明のアクティブマトリックス基板は特に、光リーク電流の問題が生じるバックライトを備えた全透過型装置用あるいは半透過半反射型装置用として好適なものであるが、全反射型装置用としても利用できる。
第1実施形態のアクティブマトリックス基板の平面図である。 第1実施形態のアクティブマトリックス基板の断面図である。 第1実施形態の設計変更例を示す図である。 第1実施形態の設計変更例を示す図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の製造工程を示す断面図である。 第1実施形態のアクティブマトリックス基板の効果を説明する断面図である。 実施例1−1及び比較例1の評価結果を示すグラフである。 第1実施形態の設計変更例を示す図である。 実施例1−1、実施例1−2、及び比較例1の評価結果を示すグラフである。 第2実施形態のアクティブマトリックス基板の平面図である。 第2実施形態のアクティブマトリックス基板の断面図である。 第3実施形態のアクティブマトリックス基板の平面図である。 第3実施形態のアクティブマトリックス基板の断面図である。 第4実施形態のアクティブマトリックス基板の断面図である。 従来のアクティブマトリックス基板を示す断面図である。 従来の他のアクティブマトリックス基板を示す断面図である。
「第1実施形態」
図面を参照して、本発明に係る第1実施形態のアクティブマトリックス基板について説明する。本実施形態のアクティブマトリックス基板は、アクティブマトリックス型の液晶(表示)装置や有機EL(表示)装置等の電気光学装置に好適に用いられるものである。
本実施形態では、フリンジ電界駆動方式(fringe field switching:FFS)モードの透過型液晶表示装置を例として説明する。
図1は本実施形態のアクティブマトリックス基板の要部平面図であり、図2は要部断面図である。図面上は視認しやすくするため、各構成要素の縮尺や位置等は適宜実際のものとは異ならせてある。図2においては、実際には同じ断面上にない複数の構成要素を同じ断面上に図示してある。具体的には、図2は図1のX−X断面図(画素部)、Y−Y断面図(ゲート端子部)、及びZ−Z断面図(ソース端子部)を同一断面上に示してある。断面図においてはハッチングを省略してある。
本実施形態のアクティブマトリックス基板201は絶縁性基板1上に画素スイッチング素子である薄膜トランジスタ(Thin Film Transistor:TFT)101と画素電極10とが複数対アレイ状に多数形成されたものである。
本実施形態において、絶縁性基板1はガラスやプラスチック等からなる透光性基板である。この基板1上に、第1の電極膜EM1によって、ゲート電極2、ゲート電極2に接続されたゲート配線3、ゲート配線3に接続され、映像の走査信号を入力するためのゲート端子4、及び補助容量共通電極5が形成されている。
上記の第1の電極膜EM1上に、これを覆うように、第1の絶縁膜からなるゲート絶縁膜6が形成されている。
ゲート絶縁膜6上に、透光性導電膜からなる第2の電極膜EM2と非透光性導電膜からなる第3の電極膜EM3の積層電極膜によって、互いに離間したドレイン電極9とソース電極11、ソース電極11に接続されたソース配線12、及びソース配線12に接続され、映像のソース信号が入力されるソース端子13が形成されている。ゲート絶縁膜6上にはまた、第2の電極膜EM2によって透過画素電極10Pからなる画素電極10が形成されている。
本実施形態において、透光性導電膜からなる第2の電極膜EM2は、ITO(インジウム錫酸化物)等からなり、非透光性導電膜からなる第3の電極膜EM3はAl合金等の反射性金属からなる。
ドレイン電極9は、第2の電極膜EM2からなるドレイン電極下層9aと、第3の電極膜EM3からなるドレイン電極上層9bとの積層構造を有している。
ソース電極11は、第2の電極膜EM2からなるソース電極下層11aと、第3の電極膜EM3からなるソース電極上層11bとの積層構造を有している。
ソース配線12は、第2の電極膜EM2からなるソース配線下層12aと、第3の電極膜EM3からなるソース配線上層12bとの積層構造を有している。
ソース端子13は、第2の電極膜EM2からなるソース端子下層13aと、第3の電極膜EM3からなるソース端子上層13bとの積層構造を有している。
透過画素電極10Pは、ドレイン電極下層9aより延設された第2の電極膜EM2の単層構造を有している。
本実施形態では、「背景技術」の項で挙げた特許文献1と異なり、チャネル層を含む半導体膜21が、ドレイン電極9及びソース電極11上、及びこれら電極間のゲート絶縁膜6上に形成されている。半導体膜21は単層構造でも積層構造でもよい。
本実施形態では、半導体膜21が、ドレイン電極9及びソース電極11とゲート電極2の上層に形成されているため、半導体膜21の形成領域に関係なく、バックライト(BL)光がドレイン電極9及びソース電極11とゲート電極2に遮蔽されて、BL光が半導体膜21に直接入射しない。したがって、半導体膜21の形成領域はゲート電極2より大きくても小さくても構わない。本実施形態では、半導体膜21の形成領域に関係なく、TFT101のBL光に起因する光リーク電流が低減された構造になっている。
本実施形態では、半導体膜21はゲート電極2の形成領域内に形成されている。図示する例では、半導体膜21とゲート電極2の形成領域はほぼ一致している。
半導体膜21においてドレイン電極9及びソース電極11に挟まれた領域は、チャネル領域22となっている。
半導体膜21は、ドレイン電極下層9aとドレイン電極上層9bの側面、ソース電極下層11aとソース電極上層11bの側面、ドレイン電極上層9bの表面、及びソース電極上層11bの表面に接して、ドレイン電極9及びソース電極11と電気的に接続されている。
TFT101は、ゲート電極2と、ゲート絶縁膜6と、ドレイン電極9、ソース電極11、及びチャネル層を含む半導体膜21とから構成されている。
半導体膜21が形成された絶縁性基板1上の全体に、第2の絶縁膜により保護絶縁膜(パッシベーション膜)23が形成されている。上述した各種電極や配線パターン等がこの保護絶縁膜23により保護されている。
ゲート端子4上には、ゲート絶縁膜6及び保護絶縁膜23に開孔されたコンタクトホールによってゲート端子開口部24が形成されている。ソース端子13上には、保護絶縁膜23に開孔されたコンタクトホールによってソース端子開口部25が形成されている。
保護絶縁膜23上には、ITO等の透光性導電膜からなる第4の電極膜EM4によって、透過画素電極10Pと対向する対向電極26が形成されている。
第4の電極膜EM4によって、ゲート端子開口部24内及びその近傍の保護絶縁膜23上にゲート端子パッド27が形成され、ソース端子開口部25内及びその近傍の保護絶縁膜23上にソース端子パッド28が形成されている。
対向電極26は平面視、平面電極に複数のスリット26Sが開口された構造を有している。
対向電極26を上記平面視形状とすることで、下層の画素電極10との間で基板面に対して略水平方向(横方向)の電界を発生させることができる。対向電極26は上記平面視形状に限らず、図3に示すストライプ状電極が折り返し部分で繋がって1本の電極をなした構造、あるいは図4に示す櫛歯型構造等、画素電極10との間で横電界を発生できる形状であればよい。
次に、図5A〜図5E及び図6A〜図6Gを参照して、本実施形態のアクティブマトリックス基板201の製造方法について説明する。
はじめに、図5Aに示す工程を実施する。
ガラス基板などの透光性絶縁性基板1を純水などを用いて洗浄し、この基板1上に第1の電極膜EM1として金属薄膜を成膜する。続いて、この第1の電極膜EM1に対して第1回目のフォトリソグラフィ工程を実施してパターニングを行い、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量共通電極5を形成する。
第1の電極膜EM1としては特に制限なく、電気的比抵抗の低いAl、Mo、Cr、及びこれらを主成分とする合金等を用いることが好ましい。
第1の電極膜EM1としては、8族〜10族から群より選ばれる少なくとも1種の元素が添加されたAl合金膜が特に好ましい。詳細については後述するが、第1の電極膜EM1としてかかるAl合金膜を用いることで、配線抵抗を下げることができ、またゲート端子4とITO膜からなるゲート端子パッド27との接触抵抗を下げることができる。
実施例1−1として、まず、公知のArガスを用いたDCマグネトロンスパッタリング法によりAlにNiを約2at%添加したAl−2at%Ni膜を200nmの厚さで成膜した。その後、フォトレジストパターンを形成し、公知のリン酸と硝酸と酢酸とを含むエッチング液を用いてAl−2at%Ni膜をエッチングした後に、フォトレジストパターンを除去して、ゲート電極2、ゲート配線3、ゲート端子4、及び補助容量共通電極5を形成した。
次に、図5Bに示す工程を実施する。
窒化シリコン(Si)等からなる第1の絶縁膜を成膜してゲート絶縁膜6を形成する。
次に、第2の電極膜EM2及び第3の電極膜EM3として透光性導電膜及び非透光性導電膜を続けて成膜する。これら第2の電極膜EM2及び第3の電極膜EM3に対して第2回目のフォトリソグラフィ工程を実施してパターニングを行い、ドレイン電極9(9a、9b)、ドレイン電極下層9aから延在された透過画素電極10P、ソース電極11(11a、11b)、ソース配線12(12a、12b)、及びソース端子13(13a、13b)を形成する。
実施例1−1では、図5Bに示す工程を図6A〜図6Gに示す複数の工程で実施した。
はじめに図6Aに示す工程を実施した。
公知の化学的気相成膜(chemical Vapor Deposition;CVD)法によりゲート絶縁膜6としてSi膜を400nmの厚さで成膜した。
次に、公知のArガスを用いたスパッタリング法により、ターゲットとして酸化インジウム(In)と酸化スズ(SnO)とを混合したITO材を用い、第2の電極膜EM2としてITO膜からなる透光性導電膜を100nmの厚さで成膜した。
次に、公知のArガスを用いたDCマグネトロンスパッタリング法により、第3の電極膜EM3として、Al−2at%Ni膜を200nmの厚さで成膜した。
次に図6Bに示す工程を実施した。
上記の第2の電極膜EM2及び第3の電極膜EM3に対して、第2回目のフォトリソグラフィ工程を実施した。
具体的には、ノボラック樹脂系のポジ型フォトレジスト14をスリットコータもしくはスピンコータにより約1.6μmの厚さで塗布し、120℃で約90秒のプリベークを行った。
次に上記フォトレジスト14に対して、第1の露光部15、第2の露光部16、及び遮光部17を有するフォトマスク18を用いて、複数階調露光を実施した。
ここで、第1の露光部15は、フォトレジスト14が完全に露光されるために必要な露光量が透過する透過率を有している。第2の露光部16は、第1の露光部15の約20〜40%に相当する露光量が透過する透過率を有している。遮光部17は、フォトレジスト14が露光されない透過率を有している。
このようなフォトマスク18としては、ハーフトーンマスクやグレートーンマスクが一般的に知られている。ハーフトーンマスクにおいては、露光に用いる波長領域(通常350〜450nm)の光の透過量を減少させるフィルタ膜が第2の露光部16に形成されている。グレートーンマスクでは、光回折現象を利用しながら露光量を減少させるために、第2の露光部16には解像度以下のスリットパターンが設けられている。
次に図6Cに示す工程を実施した。
フォトレジスト14の上記露光後、有機アルカリ系の現像液を用いてフォトレジスト14を現像した。その後、120℃で約180秒間のポストベークを行った。以上の工程後に図6Cに示す異なる膜厚のフォトレジストパターン19、20が同時に形成された。
フォトレジストパターン19は相対的に厚い厚膜部であり、フォトレジストパターン20は相対的に薄い薄膜部である。
本実施例では、ドレイン電極9、ソース電極11、ソース配線12、及びソース端子13を設ける領域に約1.6μmの厚膜のフォトレジストパターン19を形成し、透過画素電極10Pを設ける領域に約0.4μmの薄膜のフォトレジストパターン20を形成した。
次に図6Dに示す工程を実施した。
フォトレジストパターン19、20をマスクとして第3の電極膜EM3の1回目のウェットエッチングを行った。本実施例では、公知のリン酸と硝酸と酢酸とを含むエッチング液を用い、Al−2at%Ni膜からなる第3の電極膜EM3をエッチングした。
さらに、フォトレジストパターン19、20をマスクとして、第2の電極膜EM2のウェットエッチングを行った。本実施例では、公知の蓚酸を含む溶液を用いて第2の電極膜EM2をエッチングした。
本工程では、第1の露光部15に対応する第2の電極膜EM2及び第3の電極膜EM3がエッチング除去された。
次に図6Eに示す工程を実施した。
酸素プラズマを用いてフォトレジストのアッシングを行った。これにより、薄膜のフォトレジストパターン20が除去され、厚膜のフォトレジストパターン19は薄膜化され、フォトレジストパターン19aとして残存した。
次に図6Fに示す工程を実施した。
フォトレジストパターン19aをマスクとして第3の電極膜EM3の2回目のウェットエッチングを行った。1回目のウェットエッチングと同様に、リン酸と硝酸と酢酸とを含むエッチング液を用いた。これにより、第3の電極膜EM3のフォトレジストパターン20が除去された部分がエッチングされ、この部分の第2の電極膜EM2が露出して、透過画素電極10Pが形成された。
次に図6Gに示す工程を実施した。
フォトレジストパターン19aを剥離除去し、基板1を純水洗浄した。以上の工程後に、ドレイン電極9(9a、9b)、透過画素電極10P、ソース電極11(11a、11b)、ソース配線12(12a、12b)、及びソース端子13(13a、13b)が、1回のフォトリソグラフィ工程で形成された。
以上のようにして図5Bに示す工程を実施した後、図5Cに示す工程を実施する。
図5Bに示した工程後の基板1に半導体膜を成膜し、第3回目のフォトリソグラフィ工程を実施してこれをパターニングして半導体膜21を形成する。
実施例1−1では、半導体膜としてアモルファスシリコン(a−Si)膜をCVD法により厚さ150nm成膜した。その上にフォトレジストパターンを形成した後に、弗素系ガスを用いたドライエッチング法により、アモルファスシリコン膜をエッチングした。その後、フォトレジストパターンを剥離除去し、基板1を純水洗浄した。以上の工程後に、チャネル領域22を有する半導体膜21が形成された。
次に、図5Dに示す工程を実施する。
半導体膜21を形成した基板1の全面に第2の絶縁膜である保護絶縁膜23を成膜した後に、第4回目のフォトリソグラフィ工程を実施してゲート端子開口部24、及びソース端子開口部25を形成した。
実施例1−1では、保護絶縁膜23として、300nm厚さの窒化シリコン膜(Si膜)をCVD法により成膜した。その上にフォトレジストパターンを形成した後に、公知の弗素系ガスを用いたドライエッチングにより保護絶縁膜23をエッチングした。保護絶縁膜23にソース端子13の表面まで貫通するコンタクトホールを開孔して、ソース端子開口部25を形成した。保護絶縁膜23とゲート絶縁膜6にゲート端子4の表面まで貫通するコンタクトホールを開孔して、ゲート端子開口部24を形成した。その後、レジストパターンを剥離除去し、基板1を純水洗浄した。
次に、図5Eに示す工程を実施する。
保護絶縁膜23上に第4の電極膜EM4を成膜した後に、第5回目のフォトリソグラフィ工程を実施して対向電極26、ゲート端子パッド27、及びソース端子パッド28を形成する。
実施例1−1では、ターゲットとして酸化インジウム(In)と酸化スズ(SnO)とを混合したITO材を用い、公知のArガスを用いたスパッタリング法により、第4の電極膜EM4として100nmの厚さでITO膜を成膜した。その上にフォトレジストパターンを形成した後に、蓚酸を含むエッチング液を用いてITO膜をエッチングした。その後、フォトレジストパターンを剥離除去し、基板1を純水洗浄した。以上の工程後に、保護絶縁膜23上に透過画素電極10Pと対向するように対向電極26が形成され、同時に、ゲート端子開口部24内及びその近傍の保護絶縁膜23上にゲート端子パッド27が形成され、ソース端子開口部25内及びその近傍の保護絶縁膜23上にソース端子パッド28が形成された。対向電極26、ゲート端子パッド27、及びソース端子パッド28は透光性導電膜であるITO膜により形成された。
以上の工程により、本実施形態のアクティブマトリックス基板201が完成する。
実施例1−1においては、第1の電極膜EM1及び第3の電極膜EM3として、2at%のNiを添加したAl−2at%Ni膜を用いた。
透光性導電膜である第2の電極膜EM2として、酸化物導電膜であるITO膜を用いる場合、第3の電極膜EM3としてAl膜を適用すると、フォトリソグラフィ工程におけるフォトレジストの有機アルカリ現像液による現像時に、上層のAl膜と下層のITO膜の間で電池反応が生じて下層のITO膜が還元腐食し、その結果、下層のITO膜が黒色化してその透光性が低減したり、下層のITO膜にパターン不良が発生するなどの問題がある。
また、第1の電極膜EM1により形成されるゲート端子4が、ゲート端子開口部24を介してITO膜からなるゲート端子パッド27と電気的に接続される構造では、ゲート端子4にAl膜を用いると、上層のITO膜と下層のAl膜との界面でAlが酸化反応を起こして酸化アルミニウム層が形成され、その結果、界面接続抵抗が高くなって良好な導電特性が得られなくなるという問題がある。
上記の問題を解消するためには、AlにNiを添加したAl−Ni合金膜を用いることが好ましい。添加元素はNiに限ることなく、周期律表の8族、9族、及び10族のから選ばれる1種類以上の元素を用いることができる。これらの中でも特に、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、パラジウム(Pd)、及び白金(Pt)のうち少なくとも1種類以上の元素を添加したAl合金膜を用いることが好ましい。かかるAl合金膜を用いることで、ITO膜との現像液中での電池反応を抑制することができるとともに、Al合金膜とITO膜とを直接接合した場合の接続界面の電気抵抗を低減することができる。
下層のITO膜との現像液中での電池反応を抑制するために、Alに添加する上記元素の量は0.5at%以上であることが好ましい。一方で元素添加量を増やしていくと、Al合金膜の電気的比抵抗が増大する傾向にある。添加量の上限は、適用するLCD用アクティブマトリックス基板に要求される比抵抗値によって決めることができ、例えば比抵抗が小さいことが特長であるAl合金膜を、その特長を損なわずに従来公知の配線材料であるCr膜及びMo膜よりも低い配線抵抗で用いたい場合には、上記元素の添加量は15at%を超えないことが好ましい。添加量を15at%以下に抑えることによって、比抵抗値を20μΩcm以下にすることができ、Cr膜及びMo膜の比抵抗値よりも低くすることができる。
図16に示した特許文献1に記載の構造では、半導体膜21がドレイン電極9とソース電極11の下層に、ゲート電極2のパターンよりもはみ出して形成されている。かかる構造ではBL光が直接半導体膜21に入射するため、光リーク電流によってTFTのオフ電流が増大して、クロストーク及び焼き付き等の表示ムラが発生しやすい。この問題は特に、光励起の電流効果の大きいシリコン系の半導体膜を使用した場合に顕著である。
従来の構成でも、図17に示したように、半導体膜21のパターンをゲート電極2のパターンからはみ出さないようにすることで、半導体膜21にBL光が直接入射するのを防止することができる。しかしながら、このような構成でも半導体膜21には、ゲート電極2から外側にはみ出したドレイン電極9及びソース電極の下面で反射した散乱光BLRが半導体膜21に入射され、光リーク電流による表示ムラを発生させる恐れがある。この問題は、単に半導体膜21をドレイン電極9とソース電極11の上に形成するTFT構成でも避けられない場合がある。
本実施形態では、半導体膜21が、ドレイン電極9及びソース電極11とゲート電極2の上に形成されているため、半導体膜21の形成領域に関係なく、BL光がドレイン電極9及びソース電極11とゲート電極2に遮蔽されて、BL光が半導体膜21に直接入射しない。したがって、図7に示すように、本実施形態では、半導体膜21の形成領域に関係なく、TFT101におけるBL直接光に起因する光リーク電流が低減され、クロストーク及び焼き付き等の表示ムラが低減される。
本実施形態ではさらに、ドレイン電極9及びソース電極11を透光性導電膜の下層9a、11aと非透光性導電膜の上層9b、11bとの積層構造としている。
図7に示すように、本実施形態の構成では、ドレイン電極9及びソース電極11の下面側でのバックライト反射光BLRは透光性導電膜の下層9a、11aで減衰されるため、バックライト反射光BLRによる光リーク電流についても低減され、これに起因するクロストーク及び焼き付き等の表示ムラも低減される。
本実施形態では、半導体膜21に対してBL直接光及びBL反射光の入射がいずれも抑制されているので、これらを遮蔽する遮光層を別途設ける必要がなく、高い画素開口率と透過率を確保できる。
図8に、本発明に係る実施例1−1と、図17に示した構成の比較例1についてのBL光の反射率の実測結果の例を示す。図8の縦軸はBL入射光を100%としたときのドレイン電極9あるいはソース電極11からの反射光の強度を示している。
実施例1−1及び比較例1における主な設計事項を以下に示す。
<実施例1−1>
絶縁性基板1:0.6mm厚のガラス基板、ゲート絶縁膜6:400nm厚のSi膜、ドレイン・ソース電極の下層(透光性導電膜)9a、11a:100nm厚のITO膜、ドレイン・ソース電極の上層(非透光性導電膜)9b、11b:200nm厚のAl−2at%Ni膜。
<比較例1>
絶縁性基板1:0.6mm厚のガラス基板、ゲート絶縁膜6:400nm厚のSi膜、ドレイン・ソース電極9、11:200nm厚のAl−2at%Ni膜。
実施例1−1では、反射光は、比較例1に比べて波長400〜800nmの可視光領域に渡って10%以上低減されていることが分かる。波長550nmでは、比較例1の反射率90%に対して、実施例1−1の反射率は75%にまで低減されている。
上記は、下層透光性導電膜を100nm厚のITO膜で形成し、上層非透光性導電膜を200nm厚のAl−2at%Ni膜で形成した場合の一評価結果を示したものである。下層透光性導電膜あるいは上層透光性導電膜の材質及び/又は膜厚を変更して組み合わせることによって、さらに大きな効果を得ることも可能である。
例えば、上層非透光性導電膜として、光反射率の高いAl系金属膜(一般的に可視光領域で90%以上の反射率を有する。)を用いる代わりに、チタン(Ti)、クロム(Cr)、銅(Cu)、モリブデン(Mo)、タンタル(Ta)、及びタングステン(W)などの金属膜あるいはこれらを主成分とする合金膜を用いてもよい。これらの合金の光反射率は一般的に60%以下と低いため、下層透光性導電膜と合わせて、BL反射光をより一層低減することができる。ただし、これらの金属膜はもともとの反射率が低いために、後述するような全反射型あるいは半透過半反射型のLCDには、明るい画素表示特性を得ることが難しく適用は難しい。全反射型あるいは半透過半反射型のLCDに適用する場合、反射率が低い上記金属膜の上にさらに反射率の高いAl系金属膜を形成して表側から入射する外光の反射率を高くすることが考えられるが、この場合は、用いる金属の種類が増えるためコストが増大し、生産効率も低下してしまう。
用いる金属種を多くすることなく、BL反射光を低減する構成として、図9に示す態様が挙げられる。
図9に示す態様では、第3の電極膜EM3を、基板1側からAl系金属膜に窒素を添加した導電性Al−N膜EM3Xと、Al−Ni膜EM3Yとの積層構造としている。
Al−N膜EM3Xとしては、上層に用いるAl−Ni膜にNを添加したものが特に好ましい。
図9に示す態様では、ドレイン電極9は、ITO膜EM2(第2の電極膜EM2)からなるドレイン電極下層9aと、Al−Ni膜EM3Yからなるドレイン電極上層9bと、Al−N膜EM3Xからなるドレイン電極中間層9cとの積層構造を有している。
ソース電極11は、ITO膜EM2からなるソース電極下層11aと、Al−Ni膜EM3Yからなるからなるソース電極上層11bと、Al−N膜EM3Xからなるソース電極中間層11cの積層構造を有している。
ソース配線12は、ITO膜EM2からなるソース配線下層12aと、Al−Ni膜EM3Yからなるソース配線上層12bと、Al−N膜EM3Xからなるソース配線中間層12cの積層構造を有している。
ソース端子13は、ITO膜EM2からなるソース端子下層13aと、Al−Ni膜EM3Yからなるソース端子上層13bと、Al−N膜EM3Xからなるソース端子中間層13cの積層構造を有している。
実施1−2として、下層の透光性導電膜として100nm厚のITO膜を成膜し、中間層のAl−N膜としてAl−2at%Ni合金に6at%のNを添加したAl−2at%Ni−6at%N膜を50nmの厚さで成膜し、上層のAl合金膜としてAl−2at%Ni膜を200nmの厚さで成膜した。
下層のITO膜及び上層のAl−2at%Ni膜は、公知のArガスを用いたスパッタリング法により成膜した。中間層のAl−2at%Ni−6at%N膜は、ターゲットとして上層と同じAl−2at%Niを用い、Ar+Nガスを用いてスパッタリングすることで成膜した。
中間層として上層と主成分が同じで、それに窒素を添加した金属膜を成膜する場合は、上層と同じターゲットを用い、ArガスにNガスを添加するだけで従来公知のスパッタリング法により成膜することができる。この方法では、Nガス量を変えることによって膜中のN組成を変えることが可能である。かかる方法では、中間層と上層を同一の装置で続けて成膜できるので、コストを増大させたり、生産効率を低下させることがない。さらに、上層は高い反射率を有するAl合金膜で構成されるので、後述するようにドレイン電極9から延在された上層の金属膜を反射画素電極10Rとして用いる全反射型あるいは半透過半反射型のLCD用のアクティブマトリックス基板にも適用可能である。
上層のAl−2at%Ni膜は、膜単体での比抵抗値が5μΩ・cm、光反射率(波長550nmでの値)が93%である。中間層のAl−2at%Ni−5at%N膜は、比抵抗値が27μΩ・cmにまで上昇するものの良好な導電体であり、反射率は74%にまで低下する。このようにAl合金膜にNを添加することによって、導電特性を維持しつつ、膜の光反射率を低下させることができる。
図10に、本発明に係る実施例1−1、実施例1−2、及び比較例1についてのBL光の反射率の実測結果の例を示す。実施例1−1及び比較例1は図8に示したものである。
実施例1−2では、反射光は、実施例1−1に比べて、波長400〜800nmの可視光領域に渡ってさらに約10%低減されていることが分かる。波長550nmでは、比較例1の反射率90%に対して、実施例1−1では75%、さらに実施例1−2では63%にまで低減されていた。図9に示す態様では、BL反射光に起因する光リーク電流がさらに低減され、表示不良の発生がより効果的に抑制されることが示された。
実施例1−2では、中間層としてAl−2at%Ni膜に6at%のNを添加したAl−2at%Ni−6at%N膜を用いたが、これに限ることはない。N元素の添加の目的と効果は上述のように、電気的な導電特性を維持しつつ光反射率を低下させることである。AlにNを添加していくと40at%のN組成までは、比抵抗値は約5μΩ・cmから約250μΩ・cmまで単調に増加し、40at%を超えると、一気に増大して45at%では約2800μΩ・cm、さらに46at%では約10000μΩ・cmにまで跳ね上がる。したがって、N量が40at%以下の組成比の範囲内であれば、下層のITO膜との間の導体特性も良好である。N組成比を0at%から40at%まで添加することによって、膜単体の光反射率値(波長550nmの値)を約90%から約40%にまで連続的に低下させることが可能である。
実施例1−2では中間層及び上層において2at%のNi添加としたが、これに限ることはない。上層のAl合金膜に、Niをはじめとして周期律表の8族、9族、及び10族から選ばれる元素を添加することによって、ITO膜との現像液中での電池反応を防止することができるとともに、ITO膜との界面接続抵抗を低下させることができることを上述した。Nを添加する中間層においても、同様の金属を添加することで、同様の効果が得られる。
実施例1−2では中間層があるため、上層のAl合金膜に、8族、9族、及び10族から選ばれる1種類以上の元素を添加する必要はなく、純Al膜を用いてもよいし、他の元素を添加したAl合金膜を用いてもよい。
周期律表の8族、9族、及び10族から選ばれる1種類以上の元素を添加したAl合金膜からなる中間層は2層以上設けてもよい。かかる中間層を2層以上設けることによって、BL反射光の低減効果は大きくなる。
上層はAl合金膜に限ることはなく、Ti、Cr、Cu、Mo、Ta、及びW等の金属膜またはこれらを主成分とする合金膜を用いてもよい。この場合でも中間層にこれら合金膜に窒素を添加した中間層を設けることによって、上記と同様の効果を得ることが可能である。
以上説明したように、本実施形態及びその設計変更例によれば、画素開口率を低下させることなく半導体膜21への遮光が良好に実現されて、TFT101の光リーク電流が低減され、かつ、従来よりも少ないフォトリソフォグラフィ工程で製造することが可能なアクティブマトリックス基板201を提供することができる。
本実施形態の構成と製造方法によれば、高い開口率を有する横電界駆動方式のLCD用アクティブマトリックス基板201を、従来よりもフォトリソグラフィ工程の回数が少ない5回のフォトリソグラフィ工程で製造することが可能である。
本実施形態のアクティブマトリックス基板201の最表面に配向膜を形成し、このアクティブマトリックス基板201とカラーフィルタ(CF)及び配向膜を形成した対向基板とを液晶層を挟持させて貼着した液晶セルを得、これに偏光子及び位相差補償素子、及びバックライト(BL)等を取り付けることで、全透過型の液晶表示装置が得られる。
本実施形態の液晶表示装置は横電界駆動方式の1つであるFFSモードであるので、縦電界駆動方式よりも広い視野角が得られ、かつ、他の横電界駆動方式であるIPSモードよりも画素表示部の開口率と透過率が大きく確保され、明るい表示特性を得ることが可能である。
「第2実施形態」
図面を参照して、本発明に係る第2実施形態のアクティブマトリックス基板について説明する。本実施形態のアクティブマトリックス基板は、FFSモードの半透過半反射型LCD用のアクティブマトリックス基板である。
図11は本実施形態のアクティブマトリックス基板の要部平面図であり、図12は要部断面図である。これらの図は、第1実施形態の図1及び図2に対応する図である。第1実施形態と同じ要素については同じ参照符号を付して説明を省略する。
本実施形態のTFT102及びアクティブマトリックス基板202の基本構成は第1実施形態と同様であり、画素電極の構成のみが異なっている。
本実施形態では、画素電極10が、反射金属膜からなる第3の電極膜EM3をドレイン電極上層9bから延設した反射画素電極10Rと、透光性導電膜からなる第2の電極膜EM2をドレイン電極下層9aから延設した透過画素電極10Pとから構成されている。反射画素電極10Rの面積は透過画素電極10Pよりも小さく設計されている。
反射画素電極10Rが形成された領域は外光を利用する反射画素部PR、反射画素電極10Rが形成されておらず、透過画素電極10Pのみが形成された領域はBL光を利用する透過画素部PTとなっている。
第1実施形態において第3の電極膜EM3のパターンを変更するだけで、半透過半反射型のLCDに適用できる。
本実施形態のアクティブマトリックス基板202は、第1実施形態と同様の基本構成を有しており、同様の効果を奏する。
本実施形態によっても、画素開口率を低下させることなく半導体膜21への遮光が良好に実現されて、TFT102の光リーク電流が低減され、かつ、従来よりも少ないフォトリソフォグラフィ工程で製造することが可能なアクティブマトリックス基板202を提供することができる。
本実施形態のアクティブマトリックス基板202は、第3の電極膜EM3のパターンを変更するだけであるので、第1実施形態と同様のプロセスで製造でき、従来よりもフォトリソグラフィ工程の回数が少ない5回のフォトリソグラフィ工程で製造することが可能である。
「第3実施形態」
図面を参照して、本発明に係る第3実施形態のアクティブマトリックス基板について説明する。本実施形態のアクティブマトリックス基板は、FFSモードの全反射型LCD用のアクティブマトリックス基板である。
図13は本実施形態のアクティブマトリックス基板の要部平面図であり、図14は要部断面図である。これらの図は、第1実施形態の図1及び図2に対応する図である。第1実施形態と同じ要素については同じ参照符号を付して説明を省略する。
本実施形態のTFT103及びアクティブマトリックス基板203の基本構成は第1実施形態と同様であり、画素電極の構成のみが異なっている。
本実施形態では、画素電極10が、反射金属膜からなる第3の電極膜EM3をドレイン電極上層9bから延設した反射画素電極10Rと、透光性導電膜からなる第2の電極膜EM2をドレイン電極下層9aから延設した透過画素電極10Pとから構成されている。
本実施形態では、画素電極10全体に反射画素電極10Rが形成されており、画素電極10全体が反射画素部となっている。
図示する例では、画素電極10全体に透過画素電極10Pが形成されているが、透過画素電極10Pはなくてもよいし、一部の領域だけあってもよい。
第1実施形態において第3の電極膜EM3のパターンを変更するだけで、全反射型のLCDに適用できる。
本実施形態のアクティブマトリックス基板203は、第1実施形態と同様の基本構成を有しており、同様の効果を奏する。
本実施形態によっても、画素開口率を低下させることなく、半導体膜21への遮光が良好に実現されて、TFT103の光リーク電流が低減され、かつ、従来よりも少ないフォトリソフォグラフィ工程で製造することが可能なアクティブマトリックス基板203を提供することができる。
本実施形態のアクティブマトリックス基板203は、第3の電極膜EM3のパターンを変更するだけであるので、第1実施形態と同様のプロセスで製造でき、従来よりもフォトリソグラフィ工程の回数が少ない5回のフォトリソグラフィ工程で製造することが可能である。
本実施形態では透過画素電極10Pはなくてもよいので、この場合、第2回目のフォトリソグラフィ工程において、複数階調露光による透過画素電極領域形成の工程を省略することができる。
本実施形態ではBL光がないため、従来構成でも光リーク電流の問題は大きくはない。本発明は特に、第1及び第2実施形態に有効である。
「第4実施形態」
図面を参照して、本発明に係る第4実施形態のアクティブマトリックス基板について説明する。本実施形態のアクティブマトリックス基板は、FFSモードの全透過型LCD用のアクティブマトリックス基板である。
図15は本実施形態のアクティブマトリックス基板の要部断面図である。この図は、第1実施形態の図2に対応する図である。第1実施形態と同じ要素については同じ参照符号を付して説明を省略する。
本実施形態のTFT104及びアクティブマトリックス基板204の基本構成は第1実施形態と同様であり、半導体膜21がドレイン電極9及びソース電極11の上層の非透光性導電膜9b、11bの上に形成されるのではなく、下層のITO膜等からなる透光性導電膜9a、11a上に形成されている。
図示する例では、半導体膜21は、下層の透光性導電膜9a、11aの側面と表面、及び上層の非透光性導電膜9b、11bの側面に接している。
半導体膜21は上層の非透光性導電膜9b、11bの側面及び表面に接するように形成してもよい。
本実施形態では、半導体膜21がITO等からなる下層の透光性導電膜9a、11a上に形成されるので、半導体膜21とドレイン電極9及びソース電極11との接続部の電気特性をより向上させることができ、表示特性を向上させることができる。本実施形態の構成は第1実施形態だけでなく、第2〜第3実施形態にも適用可能である。
「その他の設計変更」
本発明は上記実施形態に限らず、本発明の趣旨を逸脱しない範囲内において、設計変更可能である。
上記の実施形態では、半導体膜21にアモルファスシリコン膜を用いる例について説明したが、これに限らず、微結晶あるいは多結晶のシリコン膜、あるいは酸化物及び/又は窒化物を含む化合物半導体膜を用いてもよい。
例えば、酸化亜鉛(ZnO)膜、あるいはこれに酸化ガリウム(Ga)及び/又は酸化インジウム(In)を添加したIGZO系のような酸化物半導体膜を用いると、シリコン膜に比べて移動度が大きく高い性能をもつTFTを得ることができる。かかる酸化物半導体膜は、一般的に酸薬液に対する耐性が小さく、TFTの電極膜として一般公知のAl、Ti、Cr、Cu、Mo、Ta、及びWといった金属膜をウエットエッチング加工するときの酸系薬液で激しく腐食してしまうという問題がある。しかしながら、本発明では、ゲート電極2、及びドレイン・ソース電極9、11の金属膜を形成した後に半導体膜21を形成する構成となっているので、製造工程上、酸化物半導体膜を腐食させることがない。したがって、高い開口率と優れた表示性能を有する横電界駆動方式のLCD用アクティブマトリックス基板を、従来より高い歩留で製造することが可能となる。
本発明は、FFSモード以外のIPSモード等の横電界駆動方式にも適用可能である。本発明は、縦電界駆動方式にも適用可能である。
201〜204 アクティブマトリックス基板
101〜104 TFT
1 絶縁性基板
2 ゲート電極
3 ゲート配線
4 ゲート端子
5 補助容量共通電極
6 ゲート絶縁膜
9 ドレイン電極
9a ドレイン電極下層
9b ドレイン電極上層
9c ドレイン電極中間層
10 画素電極
10P 透過画素電極
10R 反射画素電極
11 ソース電極
11a ソース電極下層
11b ソース電極上層
11c ソース電極中間層
12 ソース配線
12a ソース配線下層
12b ソース配線上層
12c ソース配線中間層
13 ソース端子
13a ソース端子下層
13b ソース端子上層
13c ソース端子中間層
21 半導体膜
22 チャネル領域
23 保護絶縁膜
24 ゲート端子開口部
25 ソース端子開口部
26 対向電極
26S スリット
27 ゲート端子パッド
28 ソース端子パッド
EM1 第1の電極膜
EM2 第2の電極膜
EM3 第3の電極膜
EM4 第4の電極膜

Claims (11)

  1. 絶縁性基板上に、当該絶縁性基板側から、ゲート電極と、当該ゲート電極を覆うゲート絶縁膜と、互いに離間形成されたドレイン電極及びソース電極と、チャネル層を含む少なくとも1層の半導体膜とが順次形成された画素スイッチング素子である薄膜トランジスタと、画素電極とが複数対アレイ状に形成されたアクティブマトリックス基板であって、
    前記ドレイン電極及び前記ソース電極は、前記基板側から透光性導電膜と非透光性導電膜とが順次積層された積層構造を有し、かつ、前記ドレイン電極の前記透光性導電膜及び/又は前記非透光性導電膜が延設され、当該延設部分により前記画素電極が形成されたアクティブマトリックス基板。
  2. 前記少なくとも1層の半導体膜は、前記ドレイン電極及び前記ソース電極を構成する前記透光性導電膜及び前記非透光性導電膜の双方に接している請求項1に記載のアクティブマトリックス基板。
  3. 前記画素電極が前記透光性導電膜からなる全透過型装置用の基板である請求項1又は2に記載のアクティブマトリックス基板。
  4. 前記非透光性導電膜が光反射材料からなり、前記画素電極が当該非透光性導電膜を含む全反射型装置用又は半透過半反射型装置用の基板である請求項1又は2に記載のアクティブマトリックス基板。
  5. 前記薄膜トランジスタ及び前記画素電極を覆う保護絶縁膜と、当該保護絶縁膜上に形成され前記画素電極と対向する対向電極とを備えた横電界駆動方式用の基板である請求項1〜4のいずれかに記載のアクティブマトリックス基板。
  6. 前記対向電極は平面視、ストライプ状電極が折り返し部分で繋がって1本の電極をなした構造、櫛歯型構造、及び平面電極に複数のスリットが開口された構造のうちいずれかの構造を有する請求項5に記載のアクティブマトリックス基板。
  7. 前記非透光性導電膜は、8族〜10族からなる群より選ばれる少なくとも1種の元素が添加されたAl合金膜である請求項1〜6のいずれかに記載のアクティブマトリックス基板。
  8. 前記ゲート電極は、8族〜10族から群より選ばれる少なくとも1種の元素が添加されたAl合金膜である請求項1〜7のいずれかに記載のアクティブマトリックス基板。
  9. 前記ドレイン電極及び前記ソース電極は、前記透光性導電膜と前記非透光性導電膜との間に、窒素を添加した導電膜をさらに備えた請求項1〜8のいずれかに記載のアクティブマトリックス基板。
  10. 請求項1〜9のいずれかに記載のアクティブマトリックス基板と対向基板とが液晶層を挟持して対向配置された液晶セルを備えた液晶装置。
  11. 請求項1〜9のいずれかに記載のアクティブマトリックス基板と対向基板とが液晶層を挟持して対向配置された液晶セルと、バックライトとを備えた全透過型又は半透過半反射型の液晶装置。
JP2010281493A 2010-12-17 2010-12-17 アクティブマトリックス基板、及び液晶装置 Pending JP2012129444A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010281493A JP2012129444A (ja) 2010-12-17 2010-12-17 アクティブマトリックス基板、及び液晶装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281493A JP2012129444A (ja) 2010-12-17 2010-12-17 アクティブマトリックス基板、及び液晶装置

Publications (1)

Publication Number Publication Date
JP2012129444A true JP2012129444A (ja) 2012-07-05

Family

ID=46646157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281493A Pending JP2012129444A (ja) 2010-12-17 2010-12-17 アクティブマトリックス基板、及び液晶装置

Country Status (1)

Country Link
JP (1) JP2012129444A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017364A1 (ja) * 2012-07-25 2014-01-30 シャープ株式会社 液晶表示装置
JP2014215485A (ja) * 2013-04-26 2014-11-17 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
JP2015184602A (ja) * 2014-03-26 2015-10-22 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
WO2016021319A1 (ja) * 2014-08-07 2016-02-11 シャープ株式会社 アクティブマトリクス基板、液晶パネル、および、アクティブマトリクス基板の製造方法
CN111584523A (zh) * 2020-05-25 2020-08-25 成都中电熊猫显示科技有限公司 阵列基板、显示面板以及阵列基板的制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508797A (ja) * 1999-08-24 2003-03-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 表示装置
JP2008227442A (ja) * 2007-02-13 2008-09-25 Mitsubishi Electric Corp 薄膜トランジスタアレイ基板、その製造方法、及び表示装置
JP2009070956A (ja) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp 半導体デバイス、表示装置及び半導体デバイスの製造方法
JP2009111201A (ja) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp 積層導電膜、電気光学表示装置及びその製造方法
JP2010027740A (ja) * 2008-07-16 2010-02-04 Mitsubishi Electric Corp 電子デバイス、及びその製造方法、並びに電子機器
JP2010156960A (ja) * 2008-12-03 2010-07-15 Semiconductor Energy Lab Co Ltd 液晶表示装置
JP2010170110A (ja) * 2008-12-25 2010-08-05 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508797A (ja) * 1999-08-24 2003-03-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 表示装置
JP2008227442A (ja) * 2007-02-13 2008-09-25 Mitsubishi Electric Corp 薄膜トランジスタアレイ基板、その製造方法、及び表示装置
JP2009070956A (ja) * 2007-09-12 2009-04-02 Mitsubishi Electric Corp 半導体デバイス、表示装置及び半導体デバイスの製造方法
JP2009111201A (ja) * 2007-10-31 2009-05-21 Mitsubishi Electric Corp 積層導電膜、電気光学表示装置及びその製造方法
JP2010027740A (ja) * 2008-07-16 2010-02-04 Mitsubishi Electric Corp 電子デバイス、及びその製造方法、並びに電子機器
JP2010156960A (ja) * 2008-12-03 2010-07-15 Semiconductor Energy Lab Co Ltd 液晶表示装置
JP2010170110A (ja) * 2008-12-25 2010-08-05 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017364A1 (ja) * 2012-07-25 2014-01-30 シャープ株式会社 液晶表示装置
JP5878979B2 (ja) * 2012-07-25 2016-03-08 シャープ株式会社 液晶表示装置
JP2014215485A (ja) * 2013-04-26 2014-11-17 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
JP2015184602A (ja) * 2014-03-26 2015-10-22 三菱電機株式会社 薄膜トランジスタ基板およびその製造方法
WO2016021319A1 (ja) * 2014-08-07 2016-02-11 シャープ株式会社 アクティブマトリクス基板、液晶パネル、および、アクティブマトリクス基板の製造方法
JPWO2016021319A1 (ja) * 2014-08-07 2017-05-18 シャープ株式会社 アクティブマトリクス基板、液晶パネル、および、アクティブマトリクス基板の製造方法
CN111584523A (zh) * 2020-05-25 2020-08-25 成都中电熊猫显示科技有限公司 阵列基板、显示面板以及阵列基板的制作方法
CN111584523B (zh) * 2020-05-25 2023-09-12 成都京东方显示科技有限公司 阵列基板、显示面板以及阵列基板的制作方法

Similar Documents

Publication Publication Date Title
US7839475B2 (en) Liquid crystal display device and method for fabricating the same
KR100759282B1 (ko) 액티브 매트릭스 기판 및 그 제조 방법
WO2017031908A1 (zh) 阵列基板及其制作方法和显示装置
KR101274706B1 (ko) 액정표시장치 및 그 제조방법
US20110019144A1 (en) Liquid crystal display and fabricating method thereof
US9082671B2 (en) Array substrate for liquid crystal display device and method of manufacturing the same
TWI487120B (zh) 薄膜電晶體基板與其所組成之顯示裝置
US10546883B2 (en) Display substrate and method of repairing defects thereof
JP2009111201A (ja) 積層導電膜、電気光学表示装置及びその製造方法
KR100802457B1 (ko) 액정표시장치 및 그 제조 방법
US20150028342A1 (en) Array substrate, manufacturing method thereof and display device
KR100832511B1 (ko) 박막 트랜지스터 어레이 기판 및 그 제조방법과, 반투과형액정 표시장치
US7923734B2 (en) Array substrate of liquid crystal display device and method of manufacturing the same
KR20040022938A (ko) 액정표시소자의 제조방법
JP2008026435A (ja) 半透過型液晶表示装置及びその製造方法
JP2012129444A (ja) アクティブマトリックス基板、及び液晶装置
KR20080050679A (ko) 박막 트랜지스터 기판의 제조 방법
CN107908054B (zh) 显示装置、半透半反的阵列基板及其制造方法
JP4782803B2 (ja) 反射型液晶表示装置および半透過型液晶表示装置
JP2010032765A (ja) Tftアレイ基板およびそれを用いた液晶表示装置
KR100417917B1 (ko) 반사투과형 액정표시장치 및 그의 제조방법
WO2018163944A1 (ja) 半導体装置、半導体装置の製造方法、及び、液晶表示装置
KR20070072113A (ko) 액정표시소자 및 그 제조방법
KR101337178B1 (ko) 액정 표시 장치용 어레이 기판 및 그 제조 방법
KR20090043213A (ko) 박막 트랜지스터 기판 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331