JP2012128933A - Alloy for seed layer of magnetic recording medium, and sputtering target material - Google Patents

Alloy for seed layer of magnetic recording medium, and sputtering target material Download PDF

Info

Publication number
JP2012128933A
JP2012128933A JP2011094594A JP2011094594A JP2012128933A JP 2012128933 A JP2012128933 A JP 2012128933A JP 2011094594 A JP2011094594 A JP 2011094594A JP 2011094594 A JP2011094594 A JP 2011094594A JP 2012128933 A JP2012128933 A JP 2012128933A
Authority
JP
Japan
Prior art keywords
seed layer
alloy
magnetic recording
recording medium
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011094594A
Other languages
Japanese (ja)
Other versions
JP5726615B2 (en
Inventor
Hiroyuki Hasegawa
浩之 長谷川
Yoshiaki Matsubara
慶明 松原
Yuko Shimizu
悠子 清水
Toshiyuki Sawada
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011094594A priority Critical patent/JP5726615B2/en
Priority to CN201180055776.8A priority patent/CN103221999B/en
Priority to MYPI2013700827A priority patent/MY159936A/en
Priority to PCT/JP2011/076529 priority patent/WO2012070464A1/en
Priority to SG2013039078A priority patent/SG190358A1/en
Priority to TW100142726A priority patent/TWI512113B/en
Publication of JP2012128933A publication Critical patent/JP2012128933A/en
Application granted granted Critical
Publication of JP5726615B2 publication Critical patent/JP5726615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alloy for a seed layer of an Ni-Fe-Co-based magnetic recording medium used as a seed layer for a perpendicular magnetic recording medium, and a sputtering target material.SOLUTION: There are provided the alloy for the seed layer of the magnetic recording medium characterized in being an Ni-Fe-Co-M alloy, in Ni:Fe:Co=98-20:0-50:0-60 as an at% ratio of Ni, F, and Co and Fe+Co≥2, and in containing one kind or two or more kind among W, Mo, Ta, Cr, V, and Nb as M elements by 2-20 at%; and the sputtering target material.

Description

本発明は、垂直磁気記録媒体におけるシード層として用いるNi−Fe−Co系磁気記録媒体のシード層用合金およびスパッタリングターゲット材に関するものである。   The present invention relates to an alloy for a seed layer of a Ni—Fe—Co magnetic recording medium used as a seed layer in a perpendicular magnetic recording medium and a sputtering target material.

近年、垂直磁気記録の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来普及していた面内磁気記録媒体により、さらに高記録密度が実現できる、垂直磁気記録方式が実用化されている。ここで、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。   In recent years, the progress of perpendicular magnetic recording has been remarkable, and in order to increase the capacity of the drive, the recording density of the magnetic recording medium has been increased. A realizable perpendicular magnetic recording system has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. .

そして、垂直磁気記録方式においては、記録密度を高めた磁気記録膜層と軟磁性膜層とを有する記録媒体が開発されており、このような媒体構造では、軟磁性層と磁気記録層の間にシード層や下地膜層が製膜された記録媒体が開発されている。垂直磁気記録方式用のシード層には、例えば特開2009−155722号公報(特許文献1)に開示されているように、Ni−W系の合金が提案されている。   In the perpendicular magnetic recording system, a recording medium having a magnetic recording film layer and a soft magnetic film layer with an increased recording density has been developed, and in such a medium structure, a space between the soft magnetic layer and the magnetic recording layer has been developed. In addition, a recording medium on which a seed layer and a base film layer are formed has been developed. As a seed layer for the perpendicular magnetic recording system, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-155722 (Patent Document 1), a Ni—W alloy has been proposed.

この特許文献1に記載のNi−W系合金は、磁性を有するVIII族を添加せずに、非磁性元素のIVa族(Ti,Zr,Hf)、Va族(V,Nb,Ta),VIa族(Cr,Mo,W)、VIIa族(Mn,Tc,Re)、IIIb族(B,Al,Ga,In,Tl)、IVb族(C,Si,Ge,Sn,Pb)を添加しており、結果的に非磁性となっていた。ここでシード層に求められる特性の一つは、その名が示すように、シード層の上に形成される層の配向性を制御し、磁気情報を記録する磁性膜の磁化容易軸が媒体面に対して垂直に配向させる為に、シード層自身は単独のfcc構造を有すると共に、媒体面と平行な面が(111)面に配向する事である。また記録密度を向上させる為に磁性膜の結晶粒度を出来るだけ小さくさせる必要があり、その為にはシード層の結晶粒度よりも小さい方が望ましい。
特開2009−155722号公報
The Ni-W alloy described in Patent Document 1 is a nonmagnetic element group IVa (Ti, Zr, Hf), group Va (V, Nb, Ta), VIa without adding a group VIII having magnetism. Group (Cr, Mo, W), Group VIIa (Mn, Tc, Re), Group IIIb (B, Al, Ga, In, Tl), Group IVb (C, Si, Ge, Sn, Pb) As a result, it was non-magnetic. One of the characteristics required for the seed layer is, as the name suggests, the orientation of the layer formed on the seed layer is controlled, and the easy axis of the magnetic film for recording magnetic information is Therefore, the seed layer itself has a single fcc structure and a plane parallel to the medium surface is oriented in the (111) plane. In order to improve the recording density, it is necessary to make the crystal grain size of the magnetic film as small as possible. For this purpose, it is desirable that the crystal grain size of the seed layer is smaller.
JP 2009-155722 A

一方、近年、ハードディスクドライブの磁気記録特性を改善する一つの手法として、シード層に磁性を持たせる方法が検討されるようになってきた。しかし、上述したように、特許文献1に記載のシード層用合金は非磁性であり、磁性を持たせるシード層用合金として適当とは言えない。そのため上述のようにシード層用合金として求められる特性を備えると共に、磁性を有するシード層用合金の開発が求められていた。なお、軟磁性層とシード層の大きな違いとして、軟磁性層ではノイズ低減のためにアモルファスであることが求められるが、シード層ではシード層の上に形成される層の配向を制御する作用が要求されており、非晶質であるアモルファスとは反対に高い結晶性を有することが求められる。   On the other hand, in recent years, as a technique for improving the magnetic recording characteristics of a hard disk drive, a method of imparting magnetism to a seed layer has been studied. However, as described above, the seed layer alloy described in Patent Document 1 is non-magnetic and cannot be said to be suitable as a seed layer alloy having magnetism. Therefore, as described above, there has been a demand for the development of a seed layer alloy having the characteristics required for a seed layer alloy and having magnetism. As a major difference between the soft magnetic layer and the seed layer, the soft magnetic layer is required to be amorphous to reduce noise, but the seed layer has an effect of controlling the orientation of the layer formed on the seed layer. It is required and has high crystallinity as opposed to amorphous which is amorphous.

上述のような要求を十分達成するために、発明者らは鋭意開発を進めた結果、磁性を有するVIII族の元素であるFe,Coを添加することで、シード層に磁性を持たせ、かつ(111)面方向の保磁力を低下させることで、透磁率が高くなることを見出し、発明を完成させるに至った。   In order to sufficiently achieve the above requirements, the inventors have made extensive developments, and as a result, by adding Fe, Co, which is a group VIII element having magnetism, the seed layer is made magnetic, and By reducing the coercive force in the (111) plane direction, it was found that the magnetic permeability was increased, and the present invention was completed.

その発明の要旨とするところは、
(1)Ni−Fe−Co−M合金であって、Ni、Fe、Coの比率がat%で、Ni:Fe:Co=98〜20:0〜50:0〜60、Fe+Co≧1.5であり、かつ、M元素としてW,Mo,Ta,Cr,V,Nbの1種または2種以上を2〜20at%含有することを特徴とする磁気記録媒体のシード層用合金。
The gist of the invention is that
(1) Ni—Fe—Co—M alloy, in which the ratio of Ni, Fe, Co is at%, Ni: Fe: Co = 98-20: 0-50: 0-60, Fe + Co ≧ 1.5 And an alloy for a seed layer of a magnetic recording medium, containing 2 to 20 at% of one or more of W, Mo, Ta, Cr, V, and Nb as M elements.

(2)Ni−Fe−Co−M合金であって、Ni、Fe、Coの比率がat%で、Ni:Fe:Co=98〜20:2〜50:0〜60であり、かつ、M元素としてW,Mo,Ta,Cr,V,Nbの1種または2種以上を2〜20at%含有することを特徴とする磁気記録媒体のシード層用合金。   (2) Ni—Fe—Co—M alloy, the ratio of Ni, Fe, Co is at%, Ni: Fe: Co = 98-20: 2-50: 0-60, and M An alloy for a seed layer of a magnetic recording medium, containing 2 to 20 at% of one or more of W, Mo, Ta, Cr, V, and Nb as elements.

(3)前記(1)または(2)に記載のM元素のうち、W,Moの1種または2種を含有することを特徴とする磁気記録媒体のシード層用合金。
(4)前記(1)〜(3)のいずれか1項に記載のM元素のうち、Crを5%超含有することを特徴とする磁気記録媒体のシード層用合金。
(5)前記(1)〜(4)のいずれか1項に記載のM元素に加えて、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Ruの1種または2種以上を0〜10at%含有することを特徴とする磁気記録媒体のシード層用合金。
(3) An alloy for a seed layer of a magnetic recording medium, comprising one or two of W and Mo among the M elements described in (1) or (2).
(4) An alloy for a seed layer of a magnetic recording medium, comprising more than 5% of Cr among the M elements according to any one of (1) to (3).
(5) In addition to the M element described in any one of (1) to (4), Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C An alloy for a seed layer of a magnetic recording medium, containing one or more of Ru, 0 to 10 at%.

(6)前記(1)〜(5)のいずれか1項に記載の磁気記録媒体のシード層用合金を使用してなるスパッタリングターゲット材。
(7)前記(1)〜(5)のいずれか1項に記載のシード層用合金を使用してなる磁気記録媒体にある。
(6) A sputtering target material comprising the seed layer alloy for a magnetic recording medium according to any one of (1) to (5).
(7) A magnetic recording medium using the seed layer alloy according to any one of (1) to (5).

以上述べたように、Ni−M系合金に磁性を有するVIII族の元素であるFe,Coを添加することで、軟磁性下地膜(SUL)の上にあるNi系中間層に磁性を持たせ、かつ(111)面方向の保磁力を低下させることで、透磁率が高くすることを可能とした磁気記録媒体のシード層用合金およびそれを使用したスパッタリングターゲット材を提供することにある。   As described above, the Ni-based intermediate layer on the soft magnetic underlayer (SUL) is made magnetic by adding Fe and Co, which are Group VIII elements having magnetism, to the Ni-M alloy. Another object of the present invention is to provide an alloy for a seed layer of a magnetic recording medium and a sputtering target material using the same, which can increase the magnetic permeability by reducing the coercive force in the (111) plane direction.

以下、本発明に係る発明の限定理由を説明する。
本発明に係るNi−Fe−Co−M合金において、Ni、Fe、Coの比率である、Ni:Fe:Co=α:β:γとすると、α:98.5〜20とする。98.5以下とした理由は、β+γが1.5未満では保磁力が高くなる。また、20以上とした理由は、20未満では、上記同様保磁力が高くなる。したがって、その範囲を98.5〜20とした。好ましくは98.5〜60とする。
The reason for limiting the invention according to the present invention will be described below.
In the Ni—Fe—Co—M alloy according to the present invention, when Ni: Fe: Co = α: β: γ, which is the ratio of Ni, Fe, and Co, α: 98.5-20. The reason for setting it to 98.5 or less is that when β + γ is less than 1.5, the coercive force is high. Moreover, if it is 20 or more, if it is less than 20, the coercive force is increased as described above. Therefore, the range was set to 98.5-20. Preferably it is set to 98.5-60.

at比β:0〜50
Feは、保磁力を低減する元素であり、かつ、膜の配向性を改善する元素でもある。しかし、50を超えると保磁力が高くなることから、その範囲を0〜50とした。好ましくは2〜50%、より好ましくは10〜40とする。
at比γ:0〜60
Coは、(111)方向の保磁力を低減する元素である。しかし、60を超えると保磁力が高くなることら、その上限を60とした。好ましくは40以下とする。
at ratio β: 0 to 50
Fe is an element that reduces the coercive force and also improves the orientation of the film. However, since coercive force will become high when it exceeds 50, the range was made into 0-50. Preferably it is 2 to 50%, more preferably 10 to 40.
at ratio γ: 0 to 60
Co is an element that reduces the coercivity in the (111) direction. However, if the value exceeds 60, the coercive force increases, so the upper limit is set to 60. Preferably it is 40 or less.

また、Ni−Fe−Co−M合金において、W,Mo,Ta,Cr,V,Nbを以下M1元素と称とすると、このM1元素は、高融点を持つbcc系金属であり、本発明で規定する成分範囲でfccであるNi−Fe−Co系に添加することにより、そのメカニズムは明確ではないが、シード層に求められる(111)面への配向性を改善させ、かつ結晶粒をを微細化させる元素である。このW,Mo,Ta,Cr,V,Nbの1種または2種以上をat%量で、2〜20%とする。しかし、2%未満ではその効果が十分でなく、また、20%を超えると化合物が析出するか、アモルファス化する。シード層用合金としてはfcc単相である事が求められることから、その範囲を2〜20%とする。好ましくは5〜15%とする。   In the Ni—Fe—Co—M alloy, when W, Mo, Ta, Cr, V, and Nb are hereinafter referred to as M1 elements, these M1 elements are bcc metals having a high melting point. Although the mechanism is not clear by adding to the Ni-Fe-Co system which is fcc within the specified component range, the orientation to the (111) plane required for the seed layer is improved, and the crystal grains are added. Element to be refined. One or two or more of W, Mo, Ta, Cr, V, and Nb is 2% to 20% in terms of at%. However, if it is less than 2%, the effect is not sufficient, and if it exceeds 20%, the compound precipitates or becomes amorphous. Since the seed layer alloy is required to be an fcc single phase, its range is set to 2 to 20%. Preferably it is 5 to 15%.

また、(111)面の配向に効果が高いのはW,Moで、望ましくはW,Moの1種または2種を必須とし、Cr,Ta,V,Nbはこれに添加してもよい。その理由は、Niと高融点bcc金属の組合せで、Mo,WはCrに比べ融点が高く有利である。また、Ta,V,Nb添加はW、Moに比べ、添加する事でアモルファス性を高めることにも作用し、シード層に求められるfcc相形成に不利である。Crは望ましくは5%超え添加した場合に配向性の点で有利となる。   Further, W and Mo are highly effective for the orientation of the (111) plane, and desirably one or two of W and Mo are essential, and Cr, Ta, V, and Nb may be added thereto. The reason for this is a combination of Ni and a high melting point bcc metal. Mo and W are advantageous because they have a higher melting point than Cr. Further, the addition of Ta, V, and Nb also acts to enhance the amorphous property by adding them compared to W and Mo, and is disadvantageous for the fcc phase formation required for the seed layer. When Cr is desirably added in excess of 5%, it is advantageous in terms of orientation.

さらに、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Ruとを以下M2元素と称すると、このM2元素は、(111)面を配向させる元素であり、また、結晶粒を微細化する元素である。このAl,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Ruの1種または2種以上をat%量で、0〜10%とする。しかし、10%を超えると化合物が生じたり、アモルファス化することから、その上限を10%とする。好ましくは5%とする。また、M1+M2は好ましくは、25at%以下、さらに好ましくは20at%以下とする。   Furthermore, when Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, and Ru are hereinafter referred to as M2 elements, the M2 elements orient the (111) plane. It is an element and an element that refines crystal grains. One or two or more of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, and Ru are used in an amount of 0% to 10%. However, if it exceeds 10%, a compound is formed or becomes amorphous, so the upper limit is made 10%. Preferably it is 5%. M1 + M2 is preferably 25 at% or less, more preferably 20 at% or less.

以下、本発明について実施例によって具体的に説明する。
通常、垂直磁気記録媒体におけるシード層はその成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜し得られる。ここでスパッタにより成膜された薄膜は急冷されている。本発明での供試材としては、単ロール式の急冷装置にて作製した急冷薄帯を用いる。これは実際にスパッタにより急冷され成膜された薄膜の、成分による諸特性への影響を、簡易的に液体急冷薄帯により評価したものである。
Hereinafter, the present invention will be specifically described with reference to examples.
Usually, the seed layer in a perpendicular magnetic recording medium can be formed on a glass substrate or the like by sputtering a sputtering target material having the same component as that of the seed layer. Here, the thin film formed by sputtering is rapidly cooled. As a test material in the present invention, a quenched ribbon manufactured by a single roll type quenching apparatus is used. This is a simple evaluation of the influence of the components on various properties of a thin film formed by quenching by sputtering in a simple manner using a liquid quenching ribbon.

急冷薄帯の作製条件としては、表1の成分に秤量した原料30gを径10、長さ40mm程度の水冷銅鋳型にて減圧して、Ar中でアーク溶解し、急冷薄帯の溶解母材とした。急冷薄帯の作製条件は、単ロール方式で径15mmの石英缶中にて、この溶解母材をセットし、出湯ノズル径を1mmとし、雰囲気気圧61kPa、噴霧差圧69kPa、銅ロール(径300mm)の回転数3000rpm、銅ロールと出湯ノズルのギャップ0.3mmにて出湯した。出湯温度は各溶解母材の溶け落ち直後とした。このようにして作製した急冷薄帯を供試材とし、以下の項目を評価した。   The conditions for preparation of the quenched ribbon are as follows: 30 g of raw materials weighed in the components shown in Table 1 are decompressed with a water-cooled copper mold having a diameter of about 10 and a length of about 40 mm, arc-melted in Ar, and the quenched ribbon is melted. It was. The conditions for preparing the quenching ribbon are as follows. This molten base material is set in a quartz can having a diameter of 15 mm by a single roll method, the tap nozzle diameter is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, the copper roll (diameter is 300 mm). The hot water was discharged at a rotation speed of 3000 rpm and a gap of 0.3 mm between the copper roll and the hot water nozzle. The hot water temperature was set immediately after each molten base material was melted. The following items were evaluated using the thus prepared quenched ribbon as a test material.

急冷薄帯の保磁力の評価としては、振動試料型の保磁力メータにて、試料台に両面テープで急冷リボンを張り付け、初期印加磁場144kA/mにて測定した。保磁力が300A/m以下を○、300A/mを超え500A/m以下を△、500A/mを超えるものを×とした。   For the evaluation of the coercive force of the rapidly cooled ribbon, a vibration sample type coercive force meter was used, and a quenching ribbon was attached to the sample stage with double-sided tape, and the initial applied magnetic field was 144 kA / m. A coercive force of 300 A / m or less was evaluated as ◯, a coercive force exceeding 300 A / m and 500 A / m or less as Δ, and a coercive force exceeding 500 A / m as x.

急冷薄帯の飽和磁束密度の評価としては、VSM装置(振動試料型磁力計)にて、印加磁場1200kA/mにて測定した。供試材の重量は15mg程度で、0.2T以上を○、0.2T未満を×として評価した。   As the evaluation of the saturation magnetic flux density of the quenched ribbon, it was measured with an applied magnetic field of 1200 kA / m with a VSM apparatus (vibrating sample magnetometer). The weight of the test material was about 15 mg, and 0.2 T or more was evaluated as O, and less than 0.2 T was evaluated as X.

急冷薄帯の(111)面配向性評価としては、スパッタにより成膜されるシード層はfcc構造である。シード層は急冷することで(200)が配向する。通常、ランダム配向すれば(111)面と(200)面のX線回折強度がI(200)がI(111)より高くなる。そこで、下記の方法にて(111)面の配向性評価した。   For evaluating the (111) plane orientation of the quenched ribbon, the seed layer formed by sputtering has an fcc structure. The seed layer is rapidly cooled to orient (200). Usually, if random orientation is performed, the X-ray diffraction intensity of the (111) plane and the (200) plane will be higher for I (200) than I (111). Therefore, the orientation of the (111) plane was evaluated by the following method.

ガラス板に両面テープで供試材を貼り付け、X線回折装置にて回折パターンを得た。このとき、測定面は急冷薄帯の銅ロール接触面となるように供試材を貼り付けた。X線源はCu−α線でスキャンスピード4°/minで測定した。この回折パターンの(111)面で回折したX線の強度I(111)と同じく(200)面の強度I(200)との強度比であるI(111)/I(200)が0.7未満のものを×、0.7以上のものを○とした。また、化合物が生じるもの、アモルファス化したものについては×とした。   The test material was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed so that a measurement surface might become a copper roll contact surface of a rapidly cooled ribbon. The X-ray source was Cu-α ray and measured at a scan speed of 4 ° / min. I (111) / I (200), which is the intensity ratio between the intensity I (111) of the X-ray diffracted by the (111) plane of this diffraction pattern and the intensity I (200) of the (200) plane, is 0.7. Those with less than were marked with x, and those with 0.7 or more were marked with ◯. Moreover, what produced a compound and what made it amorphous were set to x.

急冷薄帯の結晶粒径の評価としては、急冷薄帯の断面ミクロ組織像のロール方向にて、JIS G0551「鋼・結晶粒度の顕微鏡試験方法」に準じて測定した。P/Ltが1.0以上を○、0.5以上、1.0未満を△、0.5未満を×とした。   The crystal grain size of the quenched ribbon was evaluated in the roll direction of the cross-sectional microstructure image of the quenched ribbon in accordance with JIS G0551 “Microscopic test method for steel and crystal grain size”. When P / Lt is 1.0 or more, ○, 0.5 or more, less than 1.0 is Δ, and less than 0.5 is ×.

Figure 2012128933
Figure 2012128933

Figure 2012128933
Figure 2012128933

Figure 2012128933
Figure 2012128933

Figure 2012128933
Figure 2012128933

Figure 2012128933
Figure 2012128933

Figure 2012128933
Figure 2012128933

Figure 2012128933
Figure 2012128933

Figure 2012128933
表1〜8に示すように、No.1〜95、125〜188は本発明例であり、No.96〜124、189〜194は比較例である。
Figure 2012128933
As shown in Tables 1-8, no. 1-95 and 125-188 are examples of the present invention. Reference numerals 96 to 124 and 189 to 194 are comparative examples.

なお、表1〜8に示す成分組成に記載する、例えば、No.1は、Wが2at%であるので、(Ni2Fe)は100%−2%で98at%であり、この98%を1としたとき、Niは(100−2)、Feは2の比率である。また、Coは含んでいないのでその比率は0に相当する。同様に、No.50であれば、WとInで計7at%なので、(Ni50Fe)は、100%−7%で93at%であり、この93at%を1としたとき、Niは100−50、Feは50の比、つまりNiとFeはat比で同じ比率であることから、93at%の半分ずつの46.5at%ずつであることを意味するものである。   In addition, it describes in the component composition shown to Tables 1-8, for example, No. Since 1 is W at 2 at%, (Ni 2 Fe) is 100% -2% and 98 at%, and when 98% is 1, Ni is (100-2) and Fe is a ratio of 2. . Further, since Co is not included, the ratio corresponds to zero. Similarly, no. If it is 50, since it is 7 at% in total for W and In, (Ni50Fe) is 93% at 100% -7%. When 93 at% is 1, Ni is a ratio of 100-50 and Fe is 50. In other words, since Ni and Fe have the same ratio in terms of at ratio, this means that they are 46.5 at%, which is half of 93 at%.

比較例No.96は、Ni単独であることから、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.97は、M元素がないために、配向性および結晶粒径がそれぞれ劣る。比較例No.98は、Fe含有量が高いために、保磁力が高くなる。比較例No.99は、Wの含有量が低く、かつAl含有量が高いために、保磁力がやや高くなり、かつ配向性が劣る。比較例No.100は、W含有量が高いために、保磁力の測定困難であり、また、飽和磁束密度および配向性が劣る。   Comparative Example No. Since 96 is Ni alone, it has a high coercive force and is inferior in orientation and crystal grain size. Comparative Example No. 97 is inferior in orientation and crystal grain size because there is no M element. Comparative Example No. No. 98 has a high coercive force due to its high Fe content. Comparative Example No. No. 99 has a low W content and a high Al content, so the coercive force is slightly high and the orientation is poor. Comparative Example No. Since 100 has a high W content, it is difficult to measure the coercive force, and the saturation magnetic flux density and orientation are inferior.

比較例No.101,102は、Wの含有量が低く、かつZrおよびBの含有量が高いために、配向性が劣る。比較例No.103は、Niの含有量が低く、Feの含有量が高いために、保磁力が高くなる。比較例No.104は、Niの含有量が低く、Feの含有量が高いために、保磁力が高くなる。比較例No.105は、Crの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.106は、Crの含有量が高いために、全ての特性が劣る。比較例No.107は、Moの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。   Comparative Example No. Since 101 and 102 have low W content and high Zr and B content, the orientation is inferior. Comparative Example No. Since No. 103 has a low Ni content and a high Fe content, the coercive force is high. Comparative Example No. No. 104 has a low Ni content and a high Fe content, so the coercive force is high. Comparative Example No. Since No. 105 has a low Cr content, the coercive force is high, and the orientation and crystal grain size are inferior. Comparative Example No. No. 106 is inferior in all properties due to the high Cr content. Comparative Example No. No. 107 has a low Mo content, and thus has a high coercive force and is inferior in orientation and crystal grain size.

比較例No.108は、Moの含有量が高いために、全ての特性が劣る。比較例No.109は、Taの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.110は、Taの含有量が高いために、全ての特性が劣る。比較例No.111は、Vの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.112は、Vの含有量が高いために、全ての特性が劣る。比較例No.113は、Nbの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。   Comparative Example No. No. 108 is inferior in all properties because of its high Mo content. Comparative Example No. Since No. 109 has a low Ta content, the coercive force is high, and the orientation and crystal grain size are inferior. Comparative Example No. No. 110 is inferior in all properties because of the high Ta content. Comparative Example No. 111 has a low coercive force due to a low content of V, and is inferior in orientation and crystal grain size. Comparative Example No. No. 112 is inferior in all characteristics because of high V content. Comparative Example No. Since No. 113 has a low Nb content, the coercive force is high, and the orientation and crystal grain size are inferior.

比較例No.114は、Nbの含有量が高いために、全ての特性が劣る。比較例No.115は、Caの含有量が高いために、配構成と結晶粒径が劣る。比較例No.116は、Inの含有量が高いために、配構成と結晶粒径が劣る。比較例No.117は、Siの含有量が高いために、配構成と結晶粒径が劣る。比較例No.118は、Geの含有量が高いために、配構成と結晶粒径が劣る。比較例No.119は、Tiの含有量が高いために、配構成と結晶粒径が劣る。   Comparative Example No. No. 114 is inferior in all properties because of the high Nb content. Comparative Example No. No. 115 is inferior in configuration and crystal grain size because of high Ca content. Comparative Example No. 116 is inferior in configuration and crystal grain size because of its high In content. Comparative Example No. 117 is inferior in configuration and crystal grain size because of high Si content. Comparative Example No. No. 118 is inferior in configuration and crystal grain size because of the high Ge content. Comparative Example No. 119 is inferior in configuration and crystal grain size because of the high Ti content.

比較例No.120は、Hfの含有量が高いために、配構成と結晶粒径が劣る。比較例No.121は、Cuの含有量が高いために、配構成と結晶粒径が劣る。比較例No.122は、Pの含有量が高いために、配構成と結晶粒径が劣る。比較例No.123は、Cの含有量が高いために、配構成と結晶粒径が劣る。比較例No.124は、Ruの含有量が高いために、配構成と結晶粒径が劣る。   Comparative Example No. No. 120 is inferior in configuration and crystal grain size because of high Hf content. Comparative Example No. No. 121 is inferior in configuration and crystal grain size because of high Cu content. Comparative Example No. Since 122 has a high P content, the configuration and crystal grain size are inferior. Comparative Example No. Since 123 has a high C content, the configuration and the crystal grain size are inferior. Comparative Example No. No. 124 is inferior in configuration and crystal grain size because of the high Ru content.

表8の比較例No.189は、Fe+Coの含有量が低いために、保磁力が劣る。比較例No.190は、Fe+Coの含有量が低いために、保磁力が劣る。No.191は、Fe+Coの含有量が低いために、保磁力が劣る。No.192は、Fe+Coの含有量が低いために、保磁力が劣る。No.193は、Fe+Coの含有量が低いために、保磁力が劣る。No.194は、本発明条件内ではあるが、Cr添加量が4.9と5を超えていないため、特性がやや劣る。そのために比較例とした。   Comparative Example No. 189 is inferior in coercive force due to the low content of Fe + Co. Comparative Example No. Since 190 has a low content of Fe + Co, the coercive force is inferior. No. Since 191 has a low content of Fe + Co, the coercive force is inferior. No. Since 192 has a low content of Fe + Co, the coercive force is inferior. No. Since 193 has a low content of Fe + Co, the coercive force is inferior. No. Although 194 is within the conditions of the present invention, since the Cr addition amount does not exceed 4.9 and 5, the characteristics are slightly inferior. Therefore, it was set as a comparative example.

以上のように、Ni−Fe−Co−M合金において、一定の含有量に規制することにより、この領域に規制することで、磁性を有し、かつ、(111)方向の透磁率を高くなることを見出し、Ni系シード層に磁性を付与することにより、磁気ヘッドと軟磁性下地膜との距離を短くすることができるという優れた効果を奏するものである。   As described above, in the Ni-Fe-Co-M alloy, by restricting to a certain content, by restricting to this region, it has magnetism and increases the magnetic permeability in the (111) direction. Thus, by providing magnetism to the Ni-based seed layer, there is an excellent effect that the distance between the magnetic head and the soft magnetic underlayer can be shortened.

次に、スパッタリングターゲット材の製造方法の例を示す。表1の本発明例No.2、No.10、No.14、No.18、No.25および表2のNo.35、No.38、No.43、表3のNo.51、No.70、表4のNo.79、No.85、No.89、No.95、表5のNo.102、No.117、No.118、No122、表6のNo.128、No.135、No.144、表7のNo.159、No.170、No176、表8のNo.188、比較例No.190、比較例No.193に示す成分組成のものを秤量した溶解原料を、減圧Arガス雰囲気の耐火物坩堝内で誘導加熱溶解した後、坩堝下部の直径8mmのノズルより出湯し、Arガスによりアトマイズした。このガスアトマイズ粉末を原料粉末として、炭素鋼製の直径250mm、長さ100mmのカプセル内に充填、真空脱気封入した。   Next, the example of the manufacturing method of sputtering target material is shown. Invention Example No. 1 in Table 1 2, no. 10, no. 14, no. 18, no. 25 and No. 2 in Table 2. 35, no. 38, no. 43, No. 3 in Table 3. 51, no. 70, No. 4 in Table 4. 79, no. 85, no. 89, no. 95, No. 5 in Table 5. 102, no. 117, no. 118, No. 122, No. 1 in Table 6. 128, no. 135, no. 144, No. 7 in Table 7. 159, no. 170, No. 176, No. 8 in Table 8. 188, Comparative Example No. 190, Comparative Example No. The melted raw materials weighed in the component composition shown in 193 were induction-heated and melted in a refractory crucible in a reduced pressure Ar gas atmosphere, and then discharged from a nozzle with a diameter of 8 mm at the bottom of the crucible and atomized with Ar gas. This gas atomized powder was used as a raw material powder, filled into a carbon steel capsule having a diameter of 250 mm and a length of 100 mm, and vacuum deaerated and sealed.

上記粉末充填ブレットを、表1のNo.2、No.10、No.14、No.18、No.25、表3のNo.51、No.70、は成形温度1000℃、成形圧力147MPa、成形時間1時間、表2のNo.35、No.38、No.43、表4のNo.79、No.85、No.89、No.95は成形温度1100℃、成形圧力147MPa、成形時間3時間、表5のNo.102、No.117、No.118、No.122、表6のNo.128、No.135、No.144、表7のNo.159、No.170、No176、表8のNo.188、比較例No.190、比較例No.193は成形温度950℃、成形圧力147MPa、成形時間5時間の条件でHIP成形した。このHIP体を、ワイヤーカット、旋盤加工、平面研磨により、直径180mm、厚さ7mmの円盤状に加工し、スパッタリングターゲット材とした。   The powder filled bullets were prepared as No. 1 in Table 1. 2, no. 10, no. 14, no. 18, no. 25, No. 3 in Table 3. 51, no. 70, a molding temperature of 1000 ° C., a molding pressure of 147 MPa, a molding time of 1 hour, No. 35, no. 38, no. 43, No. 4 in Table 4. 79, no. 85, no. 89, no. No. 95 is a molding temperature of 1100 ° C., a molding pressure of 147 MPa, a molding time of 3 hours, No. 5 in Table 5. 102, no. 117, no. 118, no. 122, no. 128, no. 135, no. 144, No. 7 in Table 7. 159, no. 170, No. 176, No. 8 in Table 8. 188, Comparative Example No. 190, Comparative Example No. No. 193 was HIP molded under conditions of a molding temperature of 950 ° C., a molding pressure of 147 MPa, and a molding time of 5 hours. This HIP body was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.

これら27種類の成分組成についてスパッタリングターゲット材を用い、ガラス基板上にスパッタ膜を成膜した。X線回折パターンは、本発明例No.2、No.10、No.14、No.18、No.25、No.35、No.38、No.43、No.51、No.70、No.79、No.85、No.89、No.95、No.128、No.135、No.144、No.159、No.170、No.176、No.186、はいずれにおいても良好な配向性が見られ、比較例No.102、No.117、No.118、No.122、には良好な配向性がみられなかった。   Sputtering films were formed on glass substrates using sputtering target materials for these 27 kinds of component compositions. The X-ray diffraction pattern is shown in Example No. of the present invention. 2, no. 10, no. 14, no. 18, no. 25, no. 35, no. 38, no. 43, no. 51, no. 70, no. 79, no. 85, no. 89, no. 95, no. 128, no. 135, no. 144, no. 159, no. 170, no. 176, no. No. 186 shows good orientation in any case, and Comparative Example No. 102, no. 117, no. 118, no. No good orientation was observed in 122.

また、急冷薄帯と同様に磁気特性の測定を行ったところ、本発明例No.2、No.10、No.14、No.18、No.25、No.35、No.38、No.43、No.51、No.70、No.79、No.85、No.89、No.95、No.128、No.135、No.144、No.159、No.170、No.176、No.186、はいずれも良好な磁気特性が見られ、比較例No.189、比較例No.190、比較例No.193では良好な磁気特性が見られなかった。X線回折パターンについても、急冷薄帯と同様に測定を行ったところ、急冷薄帯にて評価した結果と同様の○、△、×であった。以上総括すると、急冷薄帯にて評価した結果とスパッタリングターゲット材を用いて成膜したスパッタ膜の評価とが同等の傾向であることを確認した。

特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
Further, when the magnetic properties were measured in the same manner as the quenched ribbon, the present invention example No. 2, no. 10, no. 14, no. 18, no. 25, no. 35, no. 38, no. 43, no. 51, no. 70, no. 79, no. 85, no. 89, no. 95, no. 128, no. 135, no. 144, no. 159, no. 170, no. 176, no. No. 186 shows good magnetic properties. 189, Comparative Example No. 190, Comparative Example No. In 193, good magnetic properties were not observed. The X-ray diffraction pattern was also measured in the same manner as the quenched ribbon, and was the same as the results evaluated with the quenched ribbon, ○, Δ, ×. In summary, it was confirmed that the results of the evaluation with the quenched ribbon and the evaluation of the sputtered film formed using the sputtering target material had the same tendency.

Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (7)

Ni−Fe−Co−M合金であって、Ni、Fe、Coの比率がat%で、Ni:Fe:Co=98〜20:0〜50:0〜60、Fe+Co≧1.5であり、かつ、M元素としてW,Mo,Ta,Cr,V,Nbの1種または2種以上を2〜20at%含有することを特徴とする磁気記録媒体のシード層用合金。 Ni-Fe-Co-M alloy, the ratio of Ni, Fe, Co is at%, Ni: Fe: Co = 98-20: 0-50: 0-60, Fe + Co ≧ 1.5, An alloy for a seed layer of a magnetic recording medium, comprising 2 to 20 at% of one or more of W, Mo, Ta, Cr, V, and Nb as M element. Ni−Fe−Co−M合金であって、Ni、Fe、Coの比率がat%で、Ni:Fe:Co=98〜20:2〜50:0〜60であり、かつ、M元素としてW,Mo,Ta,Cr,V,Nbの1種または2種以上を2〜20at%含有することを特徴とする磁気記録媒体のシード層用合金。 Ni-Fe-Co-M alloy, the ratio of Ni, Fe, Co is at%, Ni: Fe: Co = 98-20: 2-50: 0-60, and W as the M element , Mo, Ta, Cr, V, Nb, containing 2 to 20 at% of one or more of the following: an alloy for a seed layer of a magnetic recording medium. 請求項1または2に記載のM元素のうち、W,Moの1種または2種を含有することを特徴とする磁気記録媒体のシード層用合金。 3. An alloy for a seed layer of a magnetic recording medium comprising one or two of W and Mo among the M elements according to claim 1. 請求項1〜3のいずれか1項に記載のM元素のうち、Crを5%超含有することを特徴とする磁気記録媒体のシード層用合金。 An alloy for a seed layer of a magnetic recording medium, comprising more than 5% of Cr among the M element according to any one of claims 1 to 3. 請求項1〜4のいずれか1項に記載のM元素に加えて、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Ruの1種または2種以上を0〜10at%含有することを特徴とする磁気記録媒体のシード層用合金。 In addition to the M element according to any one of claims 1 to 4, one kind of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Ru, or An alloy for a seed layer of a magnetic recording medium, containing 2 to 10 at% of two or more. 請求項1〜5のいずれか1項に記載の磁気記録媒体のシード層用合金を使用してなるスパッタリングターゲット材。 The sputtering target material formed using the alloy for seed layers of the magnetic-recording medium of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載のシード層用合金を使用してなる磁気記録媒体。 A magnetic recording medium using the seed layer alloy according to claim 1.
JP2011094594A 2010-11-22 2011-04-21 Alloy for seed layer of magnetic recording medium and sputtering target material Active JP5726615B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011094594A JP5726615B2 (en) 2010-11-22 2011-04-21 Alloy for seed layer of magnetic recording medium and sputtering target material
CN201180055776.8A CN103221999B (en) 2010-11-22 2011-11-17 The inculating crystal layer alloy of magnetic recording media and sputtering target material
MYPI2013700827A MY159936A (en) 2010-11-22 2011-11-17 Alloy for seed layer in magnetic recording medium, and sputtering target material
PCT/JP2011/076529 WO2012070464A1 (en) 2010-11-22 2011-11-17 Alloy for seed layer of magnetic recording medium, and sputtering target material
SG2013039078A SG190358A1 (en) 2010-11-22 2011-11-17 Alloy for seed layer in magnetic recording medium, and sputtering target material
TW100142726A TWI512113B (en) 2010-11-22 2011-11-22 An alloy for a seed layer of a magnetic recording medium, and a sputtering target

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010259713 2010-11-22
JP2010259713 2010-11-22
JP2011094594A JP5726615B2 (en) 2010-11-22 2011-04-21 Alloy for seed layer of magnetic recording medium and sputtering target material

Publications (2)

Publication Number Publication Date
JP2012128933A true JP2012128933A (en) 2012-07-05
JP5726615B2 JP5726615B2 (en) 2015-06-03

Family

ID=46145808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094594A Active JP5726615B2 (en) 2010-11-22 2011-04-21 Alloy for seed layer of magnetic recording medium and sputtering target material

Country Status (6)

Country Link
JP (1) JP5726615B2 (en)
CN (1) CN103221999B (en)
MY (1) MY159936A (en)
SG (1) SG190358A1 (en)
TW (1) TWI512113B (en)
WO (1) WO2012070464A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145394A (en) * 2015-02-09 2016-08-12 山陽特殊製鋼株式会社 Nickel based target material excellent in sputtering property
WO2016143858A1 (en) * 2015-03-12 2016-09-15 山陽特殊製鋼株式会社 Ni-BASED SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
JP2017191625A (en) * 2016-04-13 2017-10-19 山陽特殊製鋼株式会社 ALLOY FOR SEED LAYER OF Ni-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
WO2020009095A1 (en) * 2018-07-04 2020-01-09 山陽特殊製鋼株式会社 Ni-based alloy for seed layer in magnetic recording medium

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050050B2 (en) * 2012-08-14 2016-12-21 山陽特殊製鋼株式会社 Fe-Co alloy sputtering target material and method for producing the same
CN104651788B (en) * 2013-11-21 2017-03-15 安泰科技股份有限公司 Ni Fe W alloys targets and its manufacture method
CN103938030B (en) * 2014-04-29 2015-12-09 深圳市天瑞科技有限公司 A kind of preparation method of Ni-based soft magnetic materials
CN105420678B (en) * 2014-09-15 2018-03-09 安泰科技股份有限公司 A kind of Al addition Ni W alloys targets and its manufacture method
US9685184B1 (en) * 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
JP6502672B2 (en) * 2015-01-09 2019-04-17 山陽特殊製鋼株式会社 Alloy for seed layer of Ni-Cu based magnetic recording medium, sputtering target material and magnetic recording medium
JP2018053280A (en) * 2016-09-27 2018-04-05 山陽特殊製鋼株式会社 NiTa-BASED ALLOY, TARGET MATERIAL AND MAGNETIC RECORDING MEDIA
JP7274361B2 (en) * 2019-06-19 2023-05-16 山陽特殊製鋼株式会社 Alloy for seed layer of magnetic recording media
CN113948265A (en) * 2021-10-20 2022-01-18 泉州天智合金材料科技有限公司 Iron-based amorphous soft magnetic alloy powder and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022138A (en) * 2002-06-19 2004-01-22 Fuji Electric Holdings Co Ltd Vertical magnetic recording medium and its manufacturing method
JP2005196898A (en) * 2004-01-08 2005-07-21 Fuji Electric Holdings Co Ltd Vertical magnetic recording medium and its manufacturing method
JP2009116952A (en) * 2007-11-06 2009-05-28 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium, and magnetic memory using the same
JP2010086651A (en) * 2010-01-18 2010-04-15 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253103A1 (en) * 2006-04-27 2007-11-01 Heraeus, Inc. Soft magnetic underlayer in magnetic media and soft magnetic alloy based sputter target
WO2009035075A1 (en) * 2007-09-14 2009-03-19 Fuji Electric Device Technology Co., Ltd. Magnetic recording medium
JP4993296B2 (en) * 2007-11-29 2012-08-08 富士電機株式会社 Perpendicular magnetic recording medium
JP5337451B2 (en) * 2008-11-06 2013-11-06 エイチジーエスティーネザーランドビーブイ Perpendicular magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022138A (en) * 2002-06-19 2004-01-22 Fuji Electric Holdings Co Ltd Vertical magnetic recording medium and its manufacturing method
JP2005196898A (en) * 2004-01-08 2005-07-21 Fuji Electric Holdings Co Ltd Vertical magnetic recording medium and its manufacturing method
JP2009116952A (en) * 2007-11-06 2009-05-28 Hitachi Global Storage Technologies Netherlands Bv Perpendicular magnetic recording medium, and magnetic memory using the same
JP2010086651A (en) * 2010-01-18 2010-04-15 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145394A (en) * 2015-02-09 2016-08-12 山陽特殊製鋼株式会社 Nickel based target material excellent in sputtering property
WO2016129492A1 (en) * 2015-02-09 2016-08-18 山陽特殊製鋼株式会社 Ni BASED TARGET MATERIAL WITH EXCELLENT SPUTTERING PROPERTIES
WO2016143858A1 (en) * 2015-03-12 2016-09-15 山陽特殊製鋼株式会社 Ni-BASED SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
JPWO2016143858A1 (en) * 2015-03-12 2017-04-27 山陽特殊製鋼株式会社 Ni-based sputtering target material and magnetic recording medium
CN107408397A (en) * 2015-03-12 2017-11-28 山阳特殊制钢株式会社 Ni base sputtering targets material and magnetic recording media
CN107408397B (en) * 2015-03-12 2019-07-05 山阳特殊制钢株式会社 Ni base sputtering target material and magnetic recording media
JP2017191625A (en) * 2016-04-13 2017-10-19 山陽特殊製鋼株式会社 ALLOY FOR SEED LAYER OF Ni-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
WO2020009095A1 (en) * 2018-07-04 2020-01-09 山陽特殊製鋼株式会社 Ni-based alloy for seed layer in magnetic recording medium
JP2020009510A (en) * 2018-07-04 2020-01-16 山陽特殊製鋼株式会社 Ni-based alloy for seed layer of magnetic recording medium
JP7157573B2 (en) 2018-07-04 2022-10-20 山陽特殊製鋼株式会社 Ni-based alloy for seed layer of magnetic recording media

Also Published As

Publication number Publication date
JP5726615B2 (en) 2015-06-03
TWI512113B (en) 2015-12-11
SG190358A1 (en) 2013-06-28
CN103221999B (en) 2016-10-19
MY159936A (en) 2017-02-15
TW201233814A (en) 2012-08-16
CN103221999A (en) 2013-07-24
WO2012070464A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5726615B2 (en) Alloy for seed layer of magnetic recording medium and sputtering target material
JP5698023B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6431496B2 (en) Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
TWI478183B (en) A magneto-magnetic recording medium for magnetic recording and a sputtering target, and a magnetic recording medium
JP2008115461A (en) Co-Fe-Zr-BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5714397B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6581780B2 (en) Ni-based target material with excellent sputtering properties
JP5425530B2 (en) CoFeNi alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
WO2016143858A1 (en) Ni-BASED SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
JP2012128912A (en) Ni-BASED ALLOY FOR MAGNETIC RECORDING, SPUTTERING TARGET MATERIAL, AND MAGNETIC RECORDING MEDIUM
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP2020027677A (en) Soft magnetic film of heat-assisted magnetic recording medium and sputtering target for forming soft magnetic film of heat-assisted magnetic recording medium
TWI823989B (en) Sputtering targets for soft magnetic layers of magnetic recording media and magnetic recording media
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM
JP2018085156A (en) Sputtering target for forming soft magnetic film
CN107251139B (en) Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium
WO2017033936A1 (en) Non-magnetic amorphous alloy, and sputtering target material and magnetic recording medium using said alloy
JPWO2016157922A1 (en) Soft magnetic film and sputtering target for forming soft magnetic film
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250