JP2004022138A - Vertical magnetic recording medium and its manufacturing method - Google Patents

Vertical magnetic recording medium and its manufacturing method Download PDF

Info

Publication number
JP2004022138A
JP2004022138A JP2002179085A JP2002179085A JP2004022138A JP 2004022138 A JP2004022138 A JP 2004022138A JP 2002179085 A JP2002179085 A JP 2002179085A JP 2002179085 A JP2002179085 A JP 2002179085A JP 2004022138 A JP2004022138 A JP 2004022138A
Authority
JP
Japan
Prior art keywords
magnetic recording
layer
underlayer
recording medium
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002179085A
Other languages
Japanese (ja)
Other versions
JP4224804B2 (en
Inventor
Sadayuki Watanabe
渡辺 貞幸
Yasushi Sakai
酒井 泰志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002179085A priority Critical patent/JP4224804B2/en
Publication of JP2004022138A publication Critical patent/JP2004022138A/en
Application granted granted Critical
Publication of JP4224804B2 publication Critical patent/JP4224804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform recording with a steeper magnetic field of a head by reducing the thickness of an underlayer to obtain a favorable magnetic characteristic, and reducing the gap between a magnetic head and a soft magnetic layer. <P>SOLUTION: The vertical magnetic recording medium has a structure in which at least the underlayer 2, a magnetic recording layer 3, and a protective film 4 are formed in order on a non-magnetic substrate 1. The magnetic recording layer 3 comprises crystal grains having ferromagnetism and a non-magnetic crystal grain field of oxides or nitrides surrounding them, and the surface layer part is formed at a higher gas pressure than the initial layer part by varying the gas pressure when forming the underlayer. As for a method for forming the underlayer 2, the initial layer part is deposited at a low gas pressure, and the surface layer is deposited at a higher gas pressure than the initial layer part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、垂直磁気記録媒体及びその製造方法に関し、より詳細には、各種磁気記録装置に搭載される垂直磁気記録媒体及びその製造方法に関する。
【0002】
【従来の技術】
近年、磁気記録の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、記録磁化が記録媒体の面内方向に垂直な垂直磁気記録方式が注目されつつある。垂直磁気記録媒体は主に、硬質磁性材料の磁気記録層と、この磁気記録層を目的の方向に配向させるための下地層と、磁気記録層の表面を保護する保護膜と、そしてこの磁気記録層への記録に用いられる磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性材料の裏打ち層とから構成されている。
【0003】
軟磁性裏打ち層を有する方が媒体の性能は高くなるが、無くても記録は可能なため、除いた構成となる場合もある。このような軟磁性裏打ち層が無いものを単層垂直磁気記録媒体、あるものを二層垂直磁気記録媒体と呼んでいる。垂直磁気記録媒体においても、長手磁気記録媒体と同様、高記録密度化のためには、高熱安定性と低ノイズ化の両立が必須である。
【0004】
従来の長手磁気記録媒体では、これまでにさまざまな磁気記録層の組成、構造及び非磁性下地層の材料等が提案され実用化されている。磁気記録層は、CoCrからなる合金(以下、CoCrという)を用い、結晶粒界にCrを偏析させることにより、孤立した磁性粒子を得ている。その他の磁気記録層材料としては、グラニュラー磁気記録層と呼ばれる粒界相として、例えば、酸化物や窒化物などの非磁性非金属の物質を用いた磁性層が提案されている。
【0005】
CoCrでは成膜時の基板温度を200℃以上に上昇させることがCrの十分な偏析に必要不可欠なのに対し、グラニュラー磁気記録層の場合は加熱なしでの成膜においても、その非磁性非金属の物質は偏析を生じるという特徴を有する。前述したCoCrあるいはグラニュラー磁気記録層も、例えば、下地層により結晶配向を制御する方法等を用い、垂直異方性を出現させることにより、垂直磁気記録媒体にも適用することが可能である。
【0006】
【発明が解決しようとする課題】
発明者らのこれまでの検討においては、垂直磁気記録媒体の磁気記録層にグラニュラー磁気記録層を用いた場合は、前述したCoCrに比べ偏析構造を取り易く、その結果、粒間の磁気的相互作用が小さくなるため、低ノイズであることが判明している。
【0007】
また、グラニュラー磁気記録層の成膜前に、基体をO或いはN雰囲気中で暴露する手法を見出し、これにより磁気記録層の初期層から強磁性粒子の分離構造を形成し、さらなる媒体ノイズの低減とともに、磁気記録層の薄膜化が可能になった。
【0008】
この効果は、O或いはNが下地層表面の結晶粒界に付着し、そこを核として非磁性非金属が優先的に形成される作用によってもたらされる。従って、下地層の表面が極めて緻密な構造で、結晶粒界幅が小さい場合には、O或いはNが付着しにくく、その効果が現れにくい。
【0009】
一般に、このような結晶粒界幅の増加は、膜厚増加に伴う結晶成長によりもたらされ、通常膜厚数十nm以上から、表面に分離構造をとる。薄くても分離構造をとる手法として、成膜時のガス圧を高ガス圧にして成膜する手法があるが、結晶配向が悪化するため、本来の役割を果たさなくなってしまう。
【0010】
前述した軟磁性裏打ち層を備えた二層垂直磁気記録媒体では、磁気ヘッドと軟磁性層間の距離が小さいほどより急峻なヘッド磁界で記録できるため、磁性層膜厚とともに、磁性層と軟磁性層の間に設けられる非磁性下地層膜厚も、なるべく薄くすることが媒体の特性向上のために必要である。また、コスト面からも下地層の膜厚は薄い方が好ましく、これが高記録密度化及び低コスト化の課題となっていた。
【0011】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、下地層の膜厚を薄くしても良好な磁気特性が得るようにするとともに、磁気ヘッドと軟磁性層間の距離を小さくし、より急峻なヘッド磁界で記録することを可能にした垂直磁気記録媒体及びその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、非磁性基体上に少なくとも下地層と磁気記録層と保護膜及び液体潤滑材層が順次積層されてなる垂直磁気記録媒体の製造方法において、前記磁気記録層は、強磁性を有する結晶粒とそれを取り巻く酸化物或いは窒化物の非磁性結晶粒界からなり、かつ前記下地層の形成時のガス圧を変化させ、表面層部分を初期層部分よりも高ガス圧で形成することを特徴とする。
【0013】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記下地層の初期層部分の形成時のガス圧が30mTorr以下であることを特徴とする。
【0014】
また、請求項3に記載の発明は、非磁性基体上に少なくとも下地層と磁気記録層と保護膜及び液体潤滑材層が順次積層されてなる垂直磁気記録媒体の製造方法において、前記磁気記録層は、強磁性を有する結晶粒とそれを取り巻く酸化物或いは窒化物の非磁性結晶粒界からなり、かつ前記下地層の形成時、少なくとも表面層である磁気記録層との界面層を希ガスにO或いはNを添加した混合ガスを用いて形成することを特徴とする。
【0015】
また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記下地層の成膜後、前記磁気記録層の成膜前に基体をO或いはN雰囲気か若しくは希ガスにO或いはNを添加した混合ガス雰囲気中に暴露した後に、前記磁気記録層を形成することを特徴とする。
【0016】
また、請求項5に記載の発明は、請求項1乃至4のいずれかに記載の発明において、前記下地層が、Ru或いはRuW、RuTi、RuAl、RuCu、RuSi、RuC、RuB、RuCoCrなどの少なくともRuを含む合金であることを特徴とする。
【0017】
また、請求項6に記載の発明は、請求項1乃至5のいずれかに記載の発明において、前記下地層の直下に、NiFe、NiFeNb、NiFeSi、NiFeB、NiFeNbB、NiFeCrなどのNi基合金であるシート層を設けることを特徴とする。
【0018】
また、請求項7に記載の発明は、請求項1乃至6のいずれかに記載の製造方法によって製造されたことを特徴とする垂直磁気記録媒体である。
【0019】
このように本発明は、2つの解決手段を提案するものである。まず、1つ目は、分離構造を作り易い高ガス圧成膜を最初から用いず、表面層部分にのみ適用することにより、下地層が薄くとも結晶性を保ち、表面層のみ適度に粒間が分離している構造をつくる手段である。2つ目は、下地層の表面結晶粒界に微量のO或いはNを含ませることにより、表面が分離構造を取らなくとも、磁気記録層の非磁性非金属の形成サイトをつくる方法である。具体的には以下の2つの方法を用いている。
(1)下地層の成膜プロセスを段階的に行い、下地層の初期層部分は低ガス圧で形成し、表面部分は初期層部分よりも高いガス圧で成膜する方法を用いる。すなわち、初期層では緻密な構造で結晶性・配向性を確保し、表面層は初期層よりも疎な構造を作り、気体分子が吸着しやすくなるよう結晶粒界幅が大きい構造を作る。
(2)下地層の成膜を希ガスに微量のO或いはNを添加した雰囲気中で行うことにより、O或いはNを下地層の結晶粒界に偏析させ、磁気記録層の結晶粒界となる非磁性非金属の形成サイトとする。この場合は、下地層にO或いはNと反応性が小さく、結晶配向が悪化しないような材料を用いることが重要である。
【0020】
また、下地層の直下にシード層を設ける場合は、シード層にも同様にO或いはNと反応性の小さい材料を用いるのが好ましいが、シード層がO或いはNと反応性が大きい時、下地層のエピタキシャル成長が妨げられる場合がある。一方、O或いはNが結晶粒界に存在するのは磁気記録層との界面だけでよい。従って、下地層の初期層部分は希ガスのみを用いて成膜し、表面層部分の成膜時にO或いはN添加を行えば、シード層はO或いはNとの反応性を考慮する必要がなく、材料選択の幅を広げることができる。
【0021】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
図1は、本発明の垂直磁気記録媒体の一実施例を示す断面模式図で、図中符号1は非磁性基体、2は下地層、2aは高ガス圧成膜、2bは低ガス圧成膜、3は磁気記録層、4は保護膜、5は液体潤滑材層を示している。この垂直磁気記録媒体は、非磁性基体1上に少なくとも、下地層2と磁気記録層3と及び保護膜4が順に形成された構造を有しており、さらにその上に液体潤滑材層5が形成されている。
【0022】
非磁性基体1としては、通常の磁気記録媒体用に用いられる、NiPメッキを施したAl合金や強化ガラス、結晶化ガラス等を用いることができる。また、基板加熱温度を100℃以内に抑える場合は、ポリカーボネイト、ポリオレフィン等の樹脂からなるプラスチック基板を用いることもできる。
【0023】
下地層2としては、例えば、六方細密充填構造をとる金属或いはその合金材料であるものか、若しくは、面心立方格子構造をとる金属或いはその合金材料が好ましく用いられる。前述した六方細密充填構造をとる金属としては、例えば、Ti、Zr、Ru、Zn、Tc、Re等、面心立方格子構造をとる金属としては、Cu、Rh、Pd、Ag、Ir、Pt、Au、Ni、Co等が例として挙げられる。後述する軟磁性裏打ち層を設ける場合は、磁気ヘッドと軟磁性層間の距離はなるべく小さくする必要があるため、下地層の膜厚はなるべく小さい方が好ましい。
【0024】
下地層2の形成方法としては、図1に示すように、初期層部分は低ガス圧で成膜し、表面層は初期層部分よりも高ガス圧で成膜する方法がある。圧力の大きさは、下地層材料や磁気記録層組成により最適値は異なるが、初期層成膜時のガス圧は30mTorr以下とすることが好ましい。
【0025】
保護膜4は、例えば、カーボンを主体とする薄膜が用いられる。また、液体潤滑材層5は、例えば、パーフルオロポリエーテル系の潤滑剤を用いることができる。
【0026】
図2は、本発明の垂直磁気記録媒体の他の実施例を示す断面模式図で、図中符号12は下地層、12aはO或いはN添加ガス成膜、12bはArガス成膜を示している。なお、図1と同じ機能を有する構成要素は同一の符号を付してある。
【0027】
この実施例における下地層12の形成方法は、図2に示すように、下地層を成膜する際、希ガスにO或いはNを含む混合ガスを用いる方法である。OとNは、磁気記録層の非磁性非金属に合わせて選択することが好ましい。下地層の直下にシード層を設ける場合で、シード層材料がO或いはNとの反応性が大きいと、初期層から混合ガスで成膜した時にシード層表面がO或いはNと反応し、下地層のエピタキシャル成長が妨げられる場合がある。シード層材料の選択枝を広げるためには、下地層の初期層は希ガスのみで成膜し、表面層の成膜時にO或いはNを含む混合ガスを用いる方法を取ればよい。
【0028】
上述した2種類の下地層の形成方法においては、いずれも初期層と表面層の膜厚比は特に限定されないが、初期層では十分に結晶成長を行うことが重要であることから、この領域は2nm以上であることが好ましい。
【0029】
図3及び図4は、本発明の垂直磁気記録媒体のさらに他の実施例を示す断面模式図で、図中符号21は軟磁性裏打ち層、22はシード層を示している。なお、図1及び図2と同じ機能を有する構成要素は同一の符号を付してある。
【0030】
下地層2,12の配向性を向上させるために、下地層2,12の直下にシード層22を設けることができる。材料は下地層2,12で列挙したものと同様な材料を用いることができる。非磁性でもかまわないが、シード層は二層垂直媒体とする場合は、軟磁性層の一部としての働きを担うよう軟磁気特性を示すような材料が好ましい。軟磁気特性を示すシード層22の例としては、NiFe、NiFeNb、NiFeSi、NiFeB、NiFeCr、NiFeNbBなどのNi基合金が挙げられる。
【0031】
二層垂直磁気記録媒体とする場合には、下地層2,12より下層に、シード層22を設ける場合は、その下層に磁気ヘッドが発生する磁束を集中させる役割を担う軟磁性裏打ち層21を設けることができる。軟磁性裏打ち層21としては、例えば、結晶のNiFe合金、センダスト(FeSiAl)合金等、微結晶のFeTaCやCoTaZr、非晶質のCo合金であるCoZrNbなどを用いることができる。軟磁性裏打ち層21の膜厚は、記録に使用する磁気ヘッドの構造や特性によって最適値が変化するが、おおむね10nm以上500nm以下程度であることが、生産性との兼ね合いから望ましい。
【0032】
磁気記録層3は、強磁性を有する結晶粒とそれを取り巻く非磁性の粒界を持つ構造を取り、その非磁性粒界が非磁性金属であるグラニュラー磁気記録層を用いる。強磁性を有する結晶としては、例えば、CoPtやFePt合金、及びそれらにCr、Ni、Nb、Ta、B等の元素を添加した合金が好ましい。
【0033】
非磁性粒界の非磁性非金属としては、酸化物若しくは窒化物が好ましく、例えば、Cr、Co、Si、Al、Ti、Ta、Hf、Zr、Y、Ceの酸化物若しくは窒化物が好ましく用いられる。なお、垂直磁気記録媒体として用いるためには、強磁性の結晶粒は膜面に対して垂直異方性を持つことが必要である。
【0034】
さらなる特性向上のために、図3及び図4に示すように、上述した磁気記録層3の形成前の基体表面、すなわち下地層2の表面を、O或いはN雰囲気か、若しくは希ガスにO或いはNを添加した混合ガス雰囲気中に暴露する方法を用いることができる。その後、磁気記録層3を形成することにより、初期層から強磁性の結晶粒と非磁性非金属の粒界が形成され、良好な偏析構造をもつ磁気記録層を形成することができる。
【0035】
以下に本発明の具体的な実施例について説明する。なお、本発明はそれらの実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更することができる。
【0036】
[実施例1]
非磁性基体として表面が平滑な化学強化ガラス基板(例えば、HOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、非磁性のNi基合金であるNi58Fe15Cr27ターゲットを用い、Arガス圧5mTorr下でNiFeCrシード層を15nm成膜した。
【0037】
続いてRuターゲットを用い、Ru下地層を成膜するが、初期層5nmは、Arガス圧30mTorr下で成膜し、表面層5nmは、80mTorr下で成膜し、合計膜厚は10nmとした。その後、92(Co75Cr10Pt15)−8SiOターゲットを用いてCoCrPt−SiO磁気記録層をArガス圧30mTorr下で20nm成膜した。
【0038】
最後にカーボンターゲットを用いてカーボンからなる保護膜6nmを成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをデイップ法により形成して単層垂直磁気記録媒体とした。磁気記録層の成膜にはRFスパッタリングを用い、それ以外の各層は全てDCマグネトロンスパッタリング法により行った。
【0039】
[実施例2]
Ru下地層を成膜後、CoCrPt−SiO磁気記録層成膜前に、Arに5%のOを添加した雰囲気中で10sec暴露する以外は全て実施例1と同様にして単層垂直磁気記録媒体とした。このときのAr+Oの圧力は5mTorrで流量は60sccmとした。
【0040】
[実施例3]
Ru下地層を形成する際、初期層は、5nmはArガス30mTorr下で成膜し、表面層5nmは、Arに0.5%のOを添加した混合ガスを用いてガス圧10mTorr下で成膜すること以外は全て実施例1と同様にして単層垂直磁気記録媒体とした。
【0041】
[実施例4]
Ru下地層を成膜後、CoCrPt−SiO磁気記録層成膜前に、Arに5%のOを添加した雰囲気中で10sec暴露する以外は全て実施例3と同様にして単層垂直磁気記録媒体とした。このときのAr+Oの圧力は5mTorrで流量は60sccmとした。
【0042】
[比較例1]
実施例1及び3の比較例として、Ru成膜時のArガス圧を30mTorr一定として成膜し、膜厚を10nm若しくは20nmとすること以外は全て実施例1と同様にして単層垂直磁気記録媒体を2種類作製した。
【0043】
[比較例2]
実施例2及び4の比較例として、Ru下地層を成膜後、CoCrPt−SiO磁気記録層成膜前に、Arに5%のOを添加した雰囲気中で10sec暴露する以外は全て比較例1と同様にして単層垂直磁気記録媒体を2種類作製した。このときのAr+Oの圧力は5mTorrで流量は60sccmとした。
【0044】
[実施例5]
非磁性基体として表面が平滑な化学強化ガラス基板(例えば、HOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、Co86ZrNbターゲットを用いてArガス圧5mTorr下でCoZrNbを300nm形成した後、軟磁性のNi基合金であるNi80Fe12Nbターゲットを用い、Arガス圧5mTorr下でNiFeNbB軟磁性シード層を30nm成膜した。
【0045】
さらにRuターゲットを用い、RuをArガス圧10mTorr下で初期層を6nm形成した後、Arガス圧80mTorr下で2nm表面層を形成することにより合計8nm成膜した。引き続いて、Arに5%のOを添加した雰囲気中で10sec暴露した。このときのAr+Oの圧力は、5mTorrで流量は60sccmとした。その後、92(Co75Cr10Pt15)−8SiOターゲットを用いてCoCrPt−SiO磁気記録層をArガス圧30mTorr下で12nm成膜した。
【0046】
最後にカーボンターゲットを用いてカーボンからなる保護膜6nmを成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成して二層垂直磁気記録媒体とした。磁気記録層の成膜にはRFスパッタリングを用い、それ以外の各層は全てDCマグネトロンスパッタ法により行った。
【0047】
[実施例6]
Ru下地層を形成する際、初期層6nmは、Arガス10mTorr下で成膜し、表面層2nmは、Arに0.5%のOを添加したガスを用いてガス圧10mTorrで成膜すること以外は全て実施例5と同様にして二層垂直磁気記録媒体とした。
【0048】
[実施例7]
非磁性基体として表面が平滑な化学強化ガラス基板(例えば、HOYA社製N−5ガラス基板)を用い、これを洗浄後スパッタ装置内に導入し、Co92TaZrターゲットを用いてArガス圧5mTorr下でCoTaZrを300nm形成した後、軟磁性のNi基合金であるNi80Fe12Nbターゲットを用い、Arガス圧5mTorr下でNiFeNbシード層を30nm成膜した。
【0049】
さらにRu7525ターゲットを用い、RuW下地層をArガス圧10mTorr下で初期層を6nm形成した後、Arガス圧80mTorr下で2nm表面層を形成することにより合計8nm成膜した。引き続いて、3%のNを添加したAr雰囲気中で10sec暴露した。このときのAr+Nの圧力は5mTorrで流量は60sccmとした。その後、92(Co73Cr10Pt17)−8SiNターゲットを用いてCoCrPt−SiN磁気記録層をArガス圧30mTorr下で、12nm成膜した。
【0050】
最後にカーボンターゲットを用いてカーボンからなる保護膜6nmを成膜後、真空装置から取り出した。その後、パーフルオロポリエーテルからなる液体潤滑材層2nmをディップ法により形成して二層垂直磁気記録媒体とした。磁気記録層の成膜にはRFスパッタリングを用い、それ以外の各層は全てDCマグネトロンスパッタリング法により行った。
【0051】
[実施例8]
RuW下地層を形成する際、初期層6nmは、Arガス10mTorr下で成膜し、表面層2nmは、Arに0.5%のNを添加した混合ガスを用いてガス圧10mTorr下で成膜すること以外は全て実施例7と同様にして二層垂直磁気記録媒体とした。
【0052】
[比較例3]
実施例5及び6の比較例として、Ru成膜時のArガス圧を30mTorr一定としてRu下地層を成膜すること以外は全て実施例5と同様にして二層垂直磁気記録媒体とした。この時、Ru膜厚を8nm、20nmとした2種類を作製した。
【0053】
[比較例4]
実施例7及び8の比較例として、RuW成膜時のArガス圧を30mTorr一定としてRuW下地層を成膜すること以外は全て実施例7と同様にして二層垂直磁気記録媒体とした。この時、RuW膜厚を8nm、20nmとした2種類を作製した。
【0054】
まず、本発明における実施例1〜4及び比較例1〜2について説明する。各実施例及び比較例について行った磁気特性測定結果を図5に示す。磁気特性評価はVSMを用いて行い、得られたM−Hループより保磁力Hc及び磁化曲線の傾きαを求めた。αは、H=Hcにおける(dM/dH)に4πを乗じた値で、この値が大きいほど磁気記録層の磁化反転単位は大きく、逆に、小さくなり1に近づくほど磁気記録層の磁化反転単位が小さいと考えてよい。磁化反転単位が小さいほど小さなビットが書き込めるようになるため、高密度化することができる。
【0055】
RuをArガス圧30mTorr一定で成膜した比較例1及び2の中で比べると、Ru膜厚が小さいと、Hcは小さくなり、αも大きい。また、Ru膜厚が大きいほどAr+O暴露の効果、すなわち、Hcの増加及びαの低下が顕著に観られる。実施例1及び3を比較例1と比較すると、同じRu膜厚10nmで比較すると、Hcが大きくなり、αが低減しており、比較例1のRu膜厚20nmと比べても、実施例1ではほぼ同等の特性、実施例3ではそれを超える特性が得られている。
【0056】
Ar+O暴露を行った実施例2及び4を比較例2と比較すると、同じRu膜厚10nmで比較すると、Hcが大きくなり、αが低減しており、比較例2のRu膜厚20nmと比べても、実施例2ではそれを超える特性が得られ、実施例4でもほぼ同等の特性が得られている。
【0057】
以上のことから、本発明による下地層の構造を用いれば、下地層の膜厚が薄くとも磁気記録層の偏析構造を促進することが可能で、Hcの増加と共にαの低減が実現される。
【0058】
次に、本発明における実施例5〜8及び実施例3〜4について説明する。各実施例及び比較例について行った磁気特性評価結果及び電磁変換特性評価結果を図6に示す。なお、保磁力Hcの値はKerr効果測定のヒステリシスループから求めた。
【0059】
電磁変換特性評価のSNR(信号対雑音比)は、スピンスタンドテスターにて、作成した磁気記録媒体を、磁気ヘッドに対する相対速度が、14m/secになるように回転させ、記録トラック幅が0.6μmの単磁極ヘッドで記録し、その記録信号を再生トラック幅0.4μmのGMRヘッドで再生して得た。なお、図6の表に示したSNRの値は、線記録密度400KFCIでの値である。
【0060】
実施例5及び6と比較例3は、磁気記録層の非磁性非金属をSiOとし、磁気記録層成膜前にAr+O暴露を行ったものであるが、これらを比べると、実施例5及び6は、比較例3に比してHc及びSNRが大きく、優れた特性を示した。比較例3でRu膜厚が8nmのものは、実施例5及び6に比べ、Hcが大幅に低下しているため、SNRも低下している。比較例3でRu膜厚を20nmとしたものは、Hcは実施例5及び6と同等であるが、SNRは小さい。これは、比較例3では、実施例5及び6に比べ、磁気ヘッドと軟磁性層間の距離が大きく、磁気ヘッドの磁界勾配が大きくなった分書き込まれたビット間の遷移幅が広がり、その結果ノイズが増加したためである。
【0061】
実施例7及び8と比較例4は、磁気記録層の非磁性非金属をSiNとし、磁気記録層成膜前にAr+N暴露を行ったものであるが、これらを比べると実施例7及び8は比較例4に比してHc及びSNRが大きく、優れた特性を示した。比較例4でRu膜厚が8nmのものは、実施例7及び8に比べ、Hcが大幅に低下しているため、SNRも低下している。比較例4でRu膜厚を20nmとしたものは、Hcは実施例7及び8と同等であるが、SNRは小さい。これは、比較例4では、実施例7及び8に比べ、磁気ヘッドと軟磁性層間の距離が大きく、磁気ヘッドの磁界勾配が大きくなった分書き込まれたビット間の遷移幅が広がり、その結果ノイズが増加したためである。
【0062】
【発明の効果】
以上説明したように本発明によれば、非磁性基体上に少なくとも下地層と磁気記録層と保護膜及び液体潤滑材層が順次積層されてなる垂直磁気記録媒体の製造方法において、磁気記録層は、強磁性を有する結晶粒とそれを取り巻く酸化物或いは窒化物の非磁性結晶粒界からなり、かつ下地層の形成時のガス圧を変化させ、表面層部分を初期層部分よりも高ガス圧で形成したので、下地層膜厚が薄くとも良好な磁気特性を得ることができる。下地層が薄膜化された結果、磁気ヘッドと軟磁性層間の距離が小さくなる。このため、より急峻なヘッド磁界で記録することが可能となり、ノイズが低減する。従って高SNRが得られ、垂直磁気記録媒体の高記録密度化が実現できる。また、下地層膜厚を薄くする分低コスト化も可能となる。
【図面の簡単な説明】
【図1】本発明の垂直磁気記録媒体の一実施例を示す断面模式図である。
【図2】本発明の垂直磁気記録媒体の他の実施例を示す断面模式図である。
【図3】本発明の垂直磁気記録媒体のさらに他の実施例を示す断面模式図である。
【図4】本発明の垂直磁気記録媒体のさらに他の実施例を示す断面模式図である。
【図5】実施例1〜4及び比較例1〜2に係る、磁気特性評価より求めた保磁力Hc及び磁化曲線の傾きαについて示した図である。
【図6】実施例5〜8及び比較例3〜4に係る、磁気特性評価より求めた保磁力Hc及び電磁変換特性評価から求めたSNRについて示した図である。
【符号の説明】
1 非磁性基体
2 下地層
2a 高ガス圧成膜
2b 低ガス圧成膜
3 磁気記録層
4 保護膜
5 液体潤滑材層
12 下地層
12a O或いはN添加ガス成膜
12b Arガス成膜
21 軟磁性裏打ち層
22 シード層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a perpendicular magnetic recording medium and a manufacturing method thereof, and more particularly to a perpendicular magnetic recording medium mounted on various magnetic recording apparatuses and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, a perpendicular magnetic recording method in which the recording magnetization is perpendicular to the in-plane direction of the recording medium is attracting attention as a technique for realizing high density magnetic recording instead of the conventional longitudinal magnetic recording method. A perpendicular magnetic recording medium mainly includes a magnetic recording layer of a hard magnetic material, an underlayer for orienting the magnetic recording layer in a target direction, a protective film for protecting the surface of the magnetic recording layer, and the magnetic recording It is composed of a backing layer of a soft magnetic material that plays a role of concentrating a magnetic flux generated by a magnetic head used for recording on the layer.
[0003]
A medium having a soft magnetic backing layer improves the performance of the medium, but recording is possible without it, so the structure may be omitted. Those without such a soft magnetic underlayer are called single-layer perpendicular magnetic recording media, and those with two layers are called double-layer perpendicular magnetic recording media. In the perpendicular magnetic recording medium as well as the longitudinal magnetic recording medium, it is essential to achieve both high thermal stability and low noise in order to increase the recording density.
[0004]
In conventional longitudinal magnetic recording media, various magnetic recording layer compositions, structures, and nonmagnetic underlayer materials have been proposed and put to practical use. The magnetic recording layer uses an alloy made of CoCr (hereinafter referred to as CoCr) and segregates Cr at the crystal grain boundaries to obtain isolated magnetic particles. As other magnetic recording layer materials, magnetic layers using non-magnetic non-metallic substances such as oxides and nitrides as grain boundary phases called granular magnetic recording layers have been proposed.
[0005]
In CoCr, raising the substrate temperature at the time of film formation to 200 ° C. or more is indispensable for sufficient segregation of Cr. On the other hand, in the case of a granular magnetic recording layer, the nonmagnetic and nonmetallic properties of the film can be formed even without heating. Substances have the characteristic of causing segregation. The above-described CoCr or granular magnetic recording layer can also be applied to a perpendicular magnetic recording medium by causing perpendicular anisotropy by using, for example, a method of controlling crystal orientation with an underlayer.
[0006]
[Problems to be solved by the invention]
In the studies conducted by the inventors so far, when a granular magnetic recording layer is used as the magnetic recording layer of the perpendicular magnetic recording medium, it is easier to obtain a segregation structure than the CoCr described above, and as a result, the magnetic interaction between grains is reduced. It has been found to be low noise because of its reduced effect.
[0007]
In addition, before the formation of the granular magnetic recording layer, the substrate is O 2 Or N 2 A method of exposing in the atmosphere has been found, thereby forming a separation structure of ferromagnetic particles from the initial layer of the magnetic recording layer, and further reducing the medium noise and making the magnetic recording layer thinner.
[0008]
This effect is 2 Or N 2 Is attached to the crystal grain boundary on the surface of the underlayer, and the nonmagnetic nonmetal is preferentially formed by using it as a nucleus. Therefore, when the surface of the underlayer has a very dense structure and the grain boundary width is small, O 2 Or N 2 Is less likely to adhere and its effect is less likely to appear.
[0009]
In general, such an increase in the grain boundary width is caused by crystal growth accompanying an increase in film thickness, and usually has a separation structure on the surface from a film thickness of several tens of nm or more. Although there is a method of forming a film with a high gas pressure at the time of film formation as a method of taking a separation structure even if it is thin, the film does not fulfill its original role because the crystal orientation deteriorates.
[0010]
In the above-described double-layered perpendicular magnetic recording medium having a soft magnetic underlayer, recording can be performed with a steeper head magnetic field as the distance between the magnetic head and the soft magnetic layer becomes smaller. In order to improve the characteristics of the medium, it is necessary to reduce the thickness of the nonmagnetic underlayer provided between the layers as much as possible. Also, from the viewpoint of cost, it is preferable that the film thickness of the underlayer is thin, and this has been a problem of high recording density and low cost.
[0011]
The present invention has been made in view of such a problem, and an object of the present invention is to obtain good magnetic characteristics even when the thickness of the underlayer is reduced and to obtain a magnetic head and a soft magnetic layer. Is a perpendicular magnetic recording medium capable of recording with a steeper head magnetic field and a method for manufacturing the same.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the invention according to claim 1 is a vertical structure in which at least an underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate. In the method of manufacturing a magnetic recording medium, the magnetic recording layer is composed of ferromagnetic crystal grains and oxide or nitride nonmagnetic crystal boundaries surrounding the ferromagnetic grains, and changes the gas pressure when forming the underlayer. The surface layer portion is formed at a higher gas pressure than the initial layer portion.
[0013]
According to a second aspect of the present invention, in the first aspect of the present invention, the gas pressure at the time of forming the initial layer portion of the underlayer is 30 mTorr or less.
[0014]
According to a third aspect of the present invention, there is provided a method for manufacturing a perpendicular magnetic recording medium in which at least an underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate. Is composed of crystal grains having ferromagnetism and nonmagnetic crystal grain boundaries surrounding oxide or nitride, and at the time of forming the underlayer, at least the interface layer with the magnetic recording layer, which is the surface layer, is used as a rare gas. O 2 Or N 2 It is formed using a mixed gas to which is added.
[0015]
According to a fourth aspect of the present invention, in the first, second, or third aspect of the present invention, the substrate is placed after the underlayer is formed and before the magnetic recording layer is formed. 2 Or N 2 O in atmosphere or noble gas 2 Or N 2 The magnetic recording layer is formed after exposure to a mixed gas atmosphere to which is added.
[0016]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the underlayer is made of at least Ru or RuW, RuTi, RuAl, RuCu, RuSi, RuC, RuB, RuCoCr, or the like. It is an alloy containing Ru.
[0017]
The invention according to claim 6 is the Ni-based alloy of NiFe, NiFeNb, NiFeSi, NiFeB, NiFeNbB, NiFeCr or the like directly under the underlayer in the invention according to any one of claims 1 to 5. A sheet layer is provided.
[0018]
The invention according to claim 7 is a perpendicular magnetic recording medium manufactured by the manufacturing method according to any one of claims 1 to 6.
[0019]
Thus, the present invention proposes two solutions. First, the high gas pressure film formation that makes it easy to create a separation structure is not used from the beginning, but it is applied only to the surface layer portion, so that the crystallinity is maintained even when the underlayer is thin, and only the surface layer is moderately intergranular. Is a means of creating a separate structure. Second, a small amount of O is present at the surface grain boundary of the underlayer. 2 Or N 2 In this case, a nonmagnetic nonmetallic formation site of the magnetic recording layer is formed even if the surface does not have a separation structure. Specifically, the following two methods are used.
(1) A method is used in which the film formation process of the underlayer is performed stepwise, the initial layer portion of the underlayer is formed at a low gas pressure, and the surface portion is formed at a gas pressure higher than that of the initial layer portion. That is, the initial layer has a dense structure to ensure crystallinity and orientation, the surface layer has a sparser structure than the initial layer, and a structure having a large grain boundary width so that gas molecules are easily adsorbed.
(2) A small amount of O in a rare gas for the formation of the underlayer 2 Or N 2 Is performed in an atmosphere to which O is added. 2 Or N 2 Are segregated to the crystal grain boundaries of the underlayer to form nonmagnetic non-metal formation sites that become the crystal grain boundaries of the magnetic recording layer. In this case, O 2 Or N 2 It is important to use a material that has low reactivity and does not deteriorate crystal orientation.
[0020]
When a seed layer is provided directly under the underlayer, the seed layer is similarly O 2 Or N 2 It is preferable to use a material having low reactivity with the seed layer. 2 Or N 2 When the reactivity is high, epitaxial growth of the underlayer may be hindered. On the other hand, O 2 Or N 2 Is present only at the interface with the magnetic recording layer. Therefore, the initial layer portion of the underlayer is formed using only a rare gas, and O 2 is formed when the surface layer portion is formed. 2 Or N 2 If added, the seed layer is O 2 Or N 2 Therefore, the range of material selection can be expanded.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an embodiment of the perpendicular magnetic recording medium of the present invention. In the figure, reference numeral 1 denotes a nonmagnetic substrate, 2 denotes an underlayer, 2a denotes high gas pressure film formation, and 2b denotes low gas pressure formation. A film 3, a magnetic recording layer 4, a protective film 4, and a liquid lubricant layer 5. This perpendicular magnetic recording medium has a structure in which at least an underlayer 2, a magnetic recording layer 3, and a protective film 4 are sequentially formed on a nonmagnetic substrate 1, and a liquid lubricant layer 5 is further formed thereon. Is formed.
[0022]
As the nonmagnetic substrate 1, there can be used Al alloy plated with NiP, tempered glass, crystallized glass, etc., which are used for ordinary magnetic recording media. When the substrate heating temperature is suppressed to 100 ° C. or less, a plastic substrate made of a resin such as polycarbonate or polyolefin can be used.
[0023]
As the underlayer 2, for example, a metal having a hexagonal close packed structure or an alloy material thereof, or a metal having a face-centered cubic lattice structure or an alloy material thereof is preferably used. Examples of the metal having the hexagonal close packed structure described above include Ti, Zr, Ru, Zn, Tc, Re, and the like, and examples of the metal having a face-centered cubic lattice structure include Cu, Rh, Pd, Ag, Ir, Pt, Examples include Au, Ni, Co and the like. In the case of providing a soft magnetic backing layer, which will be described later, the distance between the magnetic head and the soft magnetic layer needs to be as small as possible. Therefore, the film thickness of the underlayer is preferably as small as possible.
[0024]
As a method for forming the underlayer 2, as shown in FIG. 1, there is a method in which the initial layer portion is formed at a lower gas pressure and the surface layer is formed at a higher gas pressure than the initial layer portion. The optimum value of the pressure varies depending on the underlayer material and the magnetic recording layer composition, but the gas pressure during the initial layer deposition is preferably 30 mTorr or less.
[0025]
For example, a thin film mainly composed of carbon is used as the protective film 4. In addition, the liquid lubricant layer 5 can use, for example, a perfluoropolyether lubricant.
[0026]
FIG. 2 is a schematic cross-sectional view showing another embodiment of the perpendicular magnetic recording medium of the present invention, in which reference numeral 12 denotes an underlayer and 12a denotes O. 2 Or N 2 Additional gas film formation, 12b shows Ar gas film formation. In addition, the component which has the same function as FIG. 1 is attached | subjected the same code | symbol.
[0027]
In this embodiment, as shown in FIG. 2, the underlayer 12 is formed by using a rare gas with O 2 when forming the underlayer. 2 Or N 2 Is a method using a mixed gas containing. O 2 And N 2 Is preferably selected according to the nonmagnetic nonmetal of the magnetic recording layer. When the seed layer is provided directly under the underlayer, the seed layer material is O 2 Or N 2 If the reactivity of the seed layer is large, the surface of the seed layer becomes O when the mixed layer is formed from the initial layer. 2 Or N 2 May interfere with the epitaxial growth of the underlayer. In order to broaden the choice of seed layer material, the initial layer of the underlayer is formed only with a rare gas and O during the formation of the surface layer. 2 Or N 2 What is necessary is just to take the method using the mixed gas containing.
[0028]
In both of the above-described methods for forming the underlying layer, the film thickness ratio between the initial layer and the surface layer is not particularly limited. However, since it is important to sufficiently perform crystal growth in the initial layer, this region is It is preferable that it is 2 nm or more.
[0029]
3 and 4 are schematic cross-sectional views showing still another embodiment of the perpendicular magnetic recording medium of the present invention, in which reference numeral 21 denotes a soft magnetic backing layer and 22 denotes a seed layer. In addition, the component which has the same function as FIG.1 and FIG.2 is attached | subjected the same code | symbol.
[0030]
In order to improve the orientation of the underlayers 2 and 12, the seed layer 22 can be provided immediately below the underlayers 2 and 12. Materials similar to those listed for the underlayers 2 and 12 can be used. A non-magnetic material may be used, but when the seed layer is a two-layer perpendicular medium, a material that exhibits soft magnetic properties so as to function as a part of the soft magnetic layer is preferable. Examples of the seed layer 22 exhibiting soft magnetic properties include Ni-based alloys such as NiFe, NiFeNb, NiFeSi, NiFeB, NiFeCr, and NiFeNbB.
[0031]
In the case of providing a dual-layer perpendicular magnetic recording medium, when the seed layer 22 is provided below the underlayers 2 and 12, the soft magnetic backing layer 21 that plays a role of concentrating the magnetic flux generated by the magnetic head is provided below the seed layer 22. Can be provided. As the soft magnetic backing layer 21, for example, crystalline NiFe alloy, Sendust (FeSiAl) alloy, or the like, microcrystalline FeTaC or CoTaZr, amorphous Co alloy CoZrNb, or the like can be used. The optimum value of the film thickness of the soft magnetic backing layer 21 varies depending on the structure and characteristics of the magnetic head used for recording, but is preferably about 10 nm or more and 500 nm or less in view of productivity.
[0032]
The magnetic recording layer 3 has a structure having crystal grains having ferromagnetism and a nonmagnetic grain boundary surrounding the crystal grain, and a granular magnetic recording layer in which the nonmagnetic grain boundary is a nonmagnetic metal is used. As the crystals having ferromagnetism, for example, CoPt and FePt alloys, and alloys obtained by adding elements such as Cr, Ni, Nb, Ta, and B to them are preferable.
[0033]
As the nonmagnetic nonmetal of the nonmagnetic grain boundary, an oxide or nitride is preferable. For example, an oxide or nitride of Cr, Co, Si, Al, Ti, Ta, Hf, Zr, Y, or Ce is preferably used. It is done. For use as a perpendicular magnetic recording medium, the ferromagnetic crystal grains must have perpendicular anisotropy with respect to the film surface.
[0034]
In order to further improve the characteristics, as shown in FIGS. 3 and 4, the surface of the substrate before the formation of the magnetic recording layer 3, that is, the surface of the underlayer 2 is changed to O 2. 2 Or N 2 O in atmosphere or noble gas 2 Or N 2 A method of exposing in a mixed gas atmosphere to which is added can be used. Thereafter, by forming the magnetic recording layer 3, ferromagnetic crystal grains and nonmagnetic nonmetallic grain boundaries are formed from the initial layer, and a magnetic recording layer having a good segregation structure can be formed.
[0035]
Specific examples of the present invention will be described below. In addition, this invention is not limited to those Examples, It can change variously in the range which does not deviate from the summary of this invention.
[0036]
[Example 1]
A chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface is used as a nonmagnetic substrate, which is introduced into a sputtering apparatus after cleaning, and Ni which is a nonmagnetic Ni-based alloy. 58 Fe 15 Cr 27 Using a target, a NiFeCr seed layer having a thickness of 15 nm was formed under an Ar gas pressure of 5 mTorr.
[0037]
Subsequently, a Ru underlayer is formed using a Ru target. The initial layer 5 nm is formed under an Ar gas pressure of 30 mTorr, the surface layer 5 nm is formed under 80 mTorr, and the total film thickness is 10 nm. . Then 92 (Co 75 Cr 10 Pt 15 ) -8SiO 2 CoCrPt-SiO with target 2 A magnetic recording layer was formed to a thickness of 20 nm under an Ar gas pressure of 30 mTorr.
[0038]
Finally, a protective film 6 nm made of carbon was formed using a carbon target, and then taken out from the vacuum apparatus. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dip method to obtain a single layer perpendicular magnetic recording medium. RF sputtering was used to form the magnetic recording layer, and all other layers were formed by DC magnetron sputtering.
[0039]
[Example 2]
After forming the Ru underlayer, CoCrPt-SiO 2 Before film formation of the magnetic recording layer, 5% O in Ar 2 A single-layer perpendicular magnetic recording medium was obtained in the same manner as in Example 1 except that the exposure was performed in an atmosphere containing 10 seconds. Ar + O at this time 2 The pressure was 5 mTorr and the flow rate was 60 sccm.
[0040]
[Example 3]
When the Ru underlayer is formed, the initial layer is formed with a thickness of 5 nm under Ar gas of 30 mTorr, and the surface layer of 5 nm is formed with 0.5% O in Ar. 2 A single-layer perpendicular magnetic recording medium was obtained in the same manner as in Example 1 except that a film was formed using a mixed gas to which a gas was added under a gas pressure of 10 mTorr.
[0041]
[Example 4]
After forming the Ru underlayer, CoCrPt-SiO 2 Before film formation of the magnetic recording layer, 5% O in Ar 2 A single-layer perpendicular magnetic recording medium was obtained in the same manner as in Example 3 except that the exposure was performed in an atmosphere containing 10 seconds. Ar + O at this time 2 The pressure was 5 mTorr and the flow rate was 60 sccm.
[0042]
[Comparative Example 1]
As a comparative example of Examples 1 and 3, single-layer perpendicular magnetic recording was performed in the same manner as Example 1 except that the Ar gas pressure during Ru film formation was constant at 30 mTorr and the film thickness was 10 nm or 20 nm. Two types of media were produced.
[0043]
[Comparative Example 2]
As a comparative example of Examples 2 and 4, after forming a Ru underlayer, CoCrPt-SiO 2 Before film formation of the magnetic recording layer, 5% O in Ar 2 Two types of single-layer perpendicular magnetic recording media were produced in the same manner as in Comparative Example 1 except that the exposure was performed in an atmosphere containing 10 seconds. Ar + O at this time 2 The pressure was 5 mTorr and the flow rate was 60 sccm.
[0044]
[Example 5]
A chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface is used as a nonmagnetic substrate, and this is introduced into a sputtering apparatus after cleaning. 86 Zr 5 Nb 9 After forming 300 nm of CoZrNb under an Ar gas pressure of 5 mTorr using a target, Ni is a soft magnetic Ni-based alloy. 80 Fe 12 Nb 3 B 5 Using a target, a NiFeNbB soft magnetic seed layer was formed to a thickness of 30 nm under an Ar gas pressure of 5 mTorr.
[0045]
Further, using a Ru target, an initial layer of 6 nm was formed under an Ar gas pressure of 10 mTorr, and then a 2 nm surface layer was formed under an Ar gas pressure of 80 mTorr to form a total of 8 nm. Subsequently, 5% O in Ar 2 For 10 seconds in an atmosphere containing Ar + O at this time 2 The pressure was 5 mTorr and the flow rate was 60 sccm. Then 92 (Co 75 Cr 10 Pt 15 ) -8SiO 2 CoCrPt-SiO with target 2 A magnetic recording layer was formed to a thickness of 12 nm under an Ar gas pressure of 30 mTorr.
[0046]
Finally, a protective film 6 nm made of carbon was formed using a carbon target, and then taken out from the vacuum apparatus. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dipping method to obtain a two-layer perpendicular magnetic recording medium. RF sputtering was used to form the magnetic recording layer, and all other layers were formed by DC magnetron sputtering.
[0047]
[Example 6]
When the Ru underlayer is formed, the initial layer 6 nm is formed under Ar gas 10 mTorr, and the surface layer 2 nm is formed with 0.5% O in Ar. 2 A double-layered perpendicular magnetic recording medium was obtained in the same manner as in Example 5 except that a film with a gas added was used to form a film at a gas pressure of 10 mTorr.
[0048]
[Example 7]
A chemically strengthened glass substrate (for example, N-5 glass substrate manufactured by HOYA) having a smooth surface is used as a nonmagnetic substrate, and this is introduced into a sputtering apparatus after cleaning. 92 Ta 3 Zr 5 After forming 300 nm of CoTaZr under an Ar gas pressure of 5 mTorr using a target, Ni is a soft magnetic Ni-based alloy. 80 Fe 12 Nb 8 Using a target, an NiFeNb seed layer was formed to a thickness of 30 nm under an Ar gas pressure of 5 mTorr.
[0049]
Ru 75 W 25 Using a target, a RuW underlayer was formed with an initial layer of 6 nm under an Ar gas pressure of 10 mTorr, and then a 2 nm surface layer was formed under an Ar gas pressure of 80 mTorr to form a total of 8 nm. Subsequently, 3% N 2 For 10 seconds in an Ar atmosphere to which was added. Ar + N at this time 2 The pressure was 5 mTorr and the flow rate was 60 sccm. Then 92 (Co 73 Cr 10 Pt 17 ) A CoCrPt-SiN magnetic recording layer was formed to a thickness of 12 nm under an Ar gas pressure of 30 mTorr using a -8 SiN target.
[0050]
Finally, a protective film 6 nm made of carbon was formed using a carbon target, and then taken out from the vacuum apparatus. Thereafter, a liquid lubricant layer 2 nm made of perfluoropolyether was formed by a dipping method to obtain a two-layer perpendicular magnetic recording medium. RF sputtering was used to form the magnetic recording layer, and all other layers were formed by DC magnetron sputtering.
[0051]
[Example 8]
When the RuW underlayer is formed, the initial layer 6 nm is formed under Ar gas 10 mTorr, and the surface layer 2 nm is 0.5% N in Ar. 2 A double-layered perpendicular magnetic recording medium was obtained in the same manner as in Example 7 except that the film was formed under a gas pressure of 10 mTorr using a mixed gas to which was added.
[0052]
[Comparative Example 3]
As a comparative example of Examples 5 and 6, a dual-layer perpendicular magnetic recording medium was obtained in the same manner as Example 5 except that the Ru underlayer was formed with the Ar gas pressure during Ru film formation being constant at 30 mTorr. At this time, two types with a Ru film thickness of 8 nm and 20 nm were prepared.
[0053]
[Comparative Example 4]
As a comparative example of Examples 7 and 8, a dual-layer perpendicular magnetic recording medium was obtained in the same manner as in Example 7 except that the RuW underlayer was formed with the Ar gas pressure during RuW film formation being constant at 30 mTorr. At this time, two types with a RuW film thickness of 8 nm and 20 nm were produced.
[0054]
First, Examples 1-4 and Comparative Examples 1-2 in the present invention will be described. FIG. 5 shows the magnetic property measurement results performed for each example and comparative example. Magnetic property evaluation was performed using VSM, and the coercive force Hc and the inclination α of the magnetization curve were obtained from the obtained MH loop. α is a value obtained by multiplying (dM / dH) by 4π at H = Hc. The larger the value, the larger the magnetization reversal unit of the magnetic recording layer. You may think that the unit is small. Since the smaller the magnetization reversal unit, the smaller bits can be written, the density can be increased.
[0055]
Compared with Comparative Examples 1 and 2 in which Ru is formed at a constant Ar gas pressure of 30 mTorr, Hc decreases and α also increases when the Ru film thickness is small. Further, the larger the Ru film thickness, the more Ar + O. 2 The effect of exposure, ie, an increase in Hc and a decrease in α, is noticeable. Comparing Examples 1 and 3 with Comparative Example 1, when compared with the same Ru film thickness of 10 nm, Hc increases and α decreases, and even when compared with the Comparative Example 1 Ru film thickness of 20 nm, Example 1 In Example 3, substantially the same characteristics are obtained, and in Example 3, characteristics exceeding the same are obtained.
[0056]
Ar + O 2 Comparing the exposed Examples 2 and 4 with Comparative Example 2, when compared with the same Ru film thickness of 10 nm, Hc increases and α decreases, and even when compared with the Ru film thickness of Comparative Example 2 of 20 nm. In the second embodiment, characteristics exceeding the above are obtained, and in the fourth embodiment, substantially the same characteristics are obtained.
[0057]
From the above, if the underlayer structure according to the present invention is used, it is possible to promote the segregation structure of the magnetic recording layer even if the underlayer thickness is thin, and a reduction in α is realized with an increase in Hc.
[0058]
Next, Examples 5 to 8 and Examples 3 to 4 in the present invention will be described. FIG. 6 shows the magnetic property evaluation results and electromagnetic conversion property evaluation results performed for each example and comparative example. The value of the coercive force Hc was obtained from the hysteresis loop of the Kerr effect measurement.
[0059]
The SNR (signal-to-noise ratio) in the electromagnetic conversion characteristic evaluation is such that the magnetic recording medium produced is rotated by a spin stand tester so that the relative speed with respect to the magnetic head is 14 m / sec, and the recording track width is 0. Recording was performed with a 6 μm single magnetic pole head, and the recorded signal was reproduced by a GMR head having a reproduction track width of 0.4 μm. Note that the values of SNR shown in the table of FIG. 6 are values at a linear recording density of 400 KLCI.
[0060]
In Examples 5 and 6 and Comparative Example 3, the nonmagnetic nonmetal of the magnetic recording layer is made of SiO. 2 Ar + O before forming the magnetic recording layer 2 Although these were exposed, when these were compared, Examples 5 and 6 had higher Hc and SNR than Comparative Example 3, and exhibited excellent characteristics. In Comparative Example 3, the Ru film thickness is 8 nm, since the Hc is significantly reduced as compared with Examples 5 and 6, the SNR is also reduced. In Comparative Example 3 where the Ru film thickness was 20 nm, Hc was the same as in Examples 5 and 6, but the SNR was small. This is because the distance between the magnetic head and the soft magnetic layer is larger in Comparative Example 3 than in Examples 5 and 6, and the transition width between the written bits is widened as the magnetic field gradient of the magnetic head is increased. This is because noise increased.
[0061]
In Examples 7 and 8 and Comparative Example 4, the nonmagnetic nonmetal of the magnetic recording layer was SiN, and Ar + N was formed before the magnetic recording layer was formed. 2 As a result of exposure, Examples 7 and 8 compared with Comparative Example 4 had higher Hc and SNR and showed excellent characteristics. In Comparative Example 4, the Ru film thickness is 8 nm, since the Hc is significantly reduced as compared with Examples 7 and 8, the SNR is also reduced. In Comparative Example 4 where the Ru film thickness is 20 nm, Hc is the same as in Examples 7 and 8, but the SNR is small. This is because in Comparative Example 4, the distance between the magnetic head and the soft magnetic layer is larger than in Examples 7 and 8, and the transition width between the written bits is widened as the magnetic field gradient of the magnetic head is increased. This is because noise increased.
[0062]
【The invention's effect】
As described above, according to the present invention, in the method of manufacturing a perpendicular magnetic recording medium in which at least an underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate, the magnetic recording layer is The surface layer portion is made to have a higher gas pressure than the initial layer portion by changing the gas pressure during the formation of the underlayer, which is composed of crystal grains having ferromagnetism and nonmagnetic crystal grain boundaries of oxide or nitride surrounding it. Therefore, good magnetic properties can be obtained even if the underlayer thickness is small. As a result of thinning the underlayer, the distance between the magnetic head and the soft magnetic layer is reduced. For this reason, recording can be performed with a steeper head magnetic field, and noise is reduced. Therefore, a high SNR can be obtained and a high recording density of the perpendicular magnetic recording medium can be realized. Further, the cost can be reduced by reducing the thickness of the underlayer.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a perpendicular magnetic recording medium of the present invention.
FIG. 2 is a schematic cross-sectional view showing another embodiment of the perpendicular magnetic recording medium of the present invention.
FIG. 3 is a schematic cross-sectional view showing still another embodiment of the perpendicular magnetic recording medium of the present invention.
FIG. 4 is a schematic cross-sectional view showing still another embodiment of the perpendicular magnetic recording medium of the present invention.
5 is a diagram showing coercive force Hc and magnetization curve slope α obtained by magnetic characteristic evaluation according to Examples 1 to 4 and Comparative Examples 1 and 2. FIG.
6 is a diagram showing coercive force Hc obtained from magnetic characteristic evaluation and SNR obtained from electromagnetic conversion characteristic evaluation according to Examples 5 to 8 and Comparative Examples 3 to 4. FIG.
[Explanation of symbols]
1 Non-magnetic substrate
2 Underlayer
2a High gas pressure film formation
2b Low gas pressure film formation
3 Magnetic recording layer
4 Protective film
5 Liquid lubricant layer
12 Underlayer
12a O 2 Or N 2 Additive gas deposition
12b Ar gas deposition
21 Soft magnetic underlayer
22 Seed layer

Claims (7)

非磁性基体上に少なくとも下地層と磁気記録層と保護膜及び液体潤滑材層が順次積層されてなる垂直磁気記録媒体の製造方法において、前記磁気記録層は、強磁性を有する結晶粒とそれを取り巻く酸化物或いは窒化物の非磁性結晶粒界からなり、かつ前記下地層の形成時のガス圧を変化させ、表面層部分を初期層部分よりも高ガス圧で形成することを特徴とする垂直磁気記録媒体の製造方法。In a method for manufacturing a perpendicular magnetic recording medium in which at least an underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate, the magnetic recording layer comprises ferromagnetic crystal grains and The vertical layer is characterized by comprising non-magnetic crystal grain boundaries of surrounding oxide or nitride and changing the gas pressure at the time of forming the underlayer to form the surface layer portion at a higher gas pressure than the initial layer portion. A method of manufacturing a magnetic recording medium. 前記下地層の初期層部分の形成時のガス圧が30mTorr以下であることを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法。2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein a gas pressure at the time of forming the initial layer portion of the underlayer is 30 mTorr or less. 非磁性基体上に少なくとも下地層と磁気記録層と保護膜及び液体潤滑材層が順次積層されてなる垂直磁気記録媒体の製造方法において、前記磁気記録層は、強磁性を有する結晶粒とそれを取り巻く酸化物或いは窒化物の非磁性結晶粒界からなり、かつ前記下地層の形成時、少なくとも表面層である磁気記録層との界面層を希ガスにO或いはNを添加した混合ガスを用いて形成することを特徴とする垂直磁気記録媒体の製造方法。In a method of manufacturing a perpendicular magnetic recording medium in which at least an underlayer, a magnetic recording layer, a protective film, and a liquid lubricant layer are sequentially laminated on a nonmagnetic substrate, the magnetic recording layer comprises ferromagnetic crystal grains and A mixed gas in which O 2 or N 2 is added to a rare gas at the interface layer with the magnetic recording layer, which is the surface layer, is formed of the surrounding oxide or nitride nonmagnetic crystal grain boundary and at the time of forming the underlayer. A method of manufacturing a perpendicular magnetic recording medium, characterized by being used. 前記下地層の成膜後、前記磁気記録層の成膜前に基体をO或いはN雰囲気か若しくは希ガスにO或いはNを添加した混合ガス雰囲気中に暴露した後に、前記磁気記録層を形成することを特徴とする請求項1,2又は3に記載の垂直磁気記録媒体の製造方法。After the formation of the underlayer, before the formation of the magnetic recording layer, the substrate is exposed to an O 2 or N 2 atmosphere or a mixed gas atmosphere in which O 2 or N 2 is added to a rare gas, and then the magnetic recording is performed. 4. The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein a layer is formed. 前記下地層が、Ru或いはRuW、RuTi、RuAl、RuCu、RuSi、RuC、RuB、RuCoCrなどの少なくともRuを含む合金であることを特徴とする請求項1乃至4のいずれかに記載の垂直磁気記録媒体の製造方法。5. The perpendicular magnetic recording according to claim 1, wherein the underlayer is made of Ru or an alloy containing at least Ru, such as RuW, RuTi, RuAl, RuCu, RuSi, RuC, RuB, and RuCoCr. A method for manufacturing a medium. 前記下地層の直下に、NiFe、NiFeNb、NiFeSi、NiFeB、NiFeNbB、NiFeCrなどのNi基合金であるシート層を設けることを特徴とする請求項1乃至5のいずれかに記載の垂直磁気記録媒体の製造方法。6. The perpendicular magnetic recording medium according to claim 1, wherein a sheet layer made of a Ni-based alloy such as NiFe, NiFeNb, NiFeSi, NiFeB, NiFeNbB, or NiFeCr is provided immediately below the underlayer. Production method. 請求項1乃至6のいずれかに記載の製造方法によって製造されたことを特徴とする垂直磁気記録媒体。A perpendicular magnetic recording medium manufactured by the manufacturing method according to claim 1.
JP2002179085A 2002-06-19 2002-06-19 Method for manufacturing perpendicular magnetic recording medium Expired - Lifetime JP4224804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002179085A JP4224804B2 (en) 2002-06-19 2002-06-19 Method for manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002179085A JP4224804B2 (en) 2002-06-19 2002-06-19 Method for manufacturing perpendicular magnetic recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008264555A Division JP4487272B2 (en) 2008-10-10 2008-10-10 Perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2004022138A true JP2004022138A (en) 2004-01-22
JP4224804B2 JP4224804B2 (en) 2009-02-18

Family

ID=31176618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002179085A Expired - Lifetime JP4224804B2 (en) 2002-06-19 2002-06-19 Method for manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4224804B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276364A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device using the same
JP2005276366A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device using the same
JP2005353256A (en) * 2004-05-13 2005-12-22 Fujitsu Ltd Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
JP2006048904A (en) * 2004-07-07 2006-02-16 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium, method of manufacturing the same and magnetic recording device
JP2006309919A (en) * 2005-03-30 2006-11-09 Fujitsu Ltd Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2007052852A (en) * 2005-08-17 2007-03-01 Toshiba Corp Perpendicular magnetic recording medium, and magnetic recording and reproducing device
JP2007172704A (en) * 2005-12-20 2007-07-05 Toshiba Corp Magnetic recording medium and magnetic recording and reproducing device
JP2008084479A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Perpendicular magnetic recording medium and its manufacturing method
WO2009028621A1 (en) * 2007-08-31 2009-03-05 Showa Denko K.K. Perpendicular magnetic recording medium, method for producing the same, and magnetic recording/reproducing device
JP2009099162A (en) * 2007-10-12 2009-05-07 Hoya Corp Perpendicular magnetic recording medium
JP2009099161A (en) * 2007-10-12 2009-05-07 Hoya Corp Perpendicular magnetic recording medium
US7651795B2 (en) 2004-09-14 2010-01-26 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and manufacturing of the same
US7701667B2 (en) 2006-01-10 2010-04-20 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US7732070B2 (en) 2006-03-31 2010-06-08 Showa Denko K.K. Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic storage unit
JP2010272179A (en) * 2009-05-22 2010-12-02 Toshiba Corp Perpendicular magnetic recording medium and magnetic recording and playback device
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
JP2011076682A (en) * 2009-09-30 2011-04-14 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium
JP2011146126A (en) * 2011-04-26 2011-07-28 Toshiba Corp Method for manufacturing perpendicular magnetic recording medium
JPWO2010026861A1 (en) * 2008-09-02 2012-02-02 日本電気株式会社 Magnetic memory and manufacturing method thereof
JP2012128933A (en) * 2010-11-22 2012-07-05 Sanyo Special Steel Co Ltd Alloy for seed layer of magnetic recording medium, and sputtering target material
JP2014010852A (en) * 2012-06-28 2014-01-20 Showa Denko Kk Magnetic recording medium, and magnetic storage device
US8647755B2 (en) 2007-04-26 2014-02-11 HGST Netherlands B. V. Perpendicular magnetic recording medium and manufacturing method thereof
JP2014232560A (en) * 2013-05-28 2014-12-11 エイチジーエスティーネザーランドビーブイ Perpendicular magnetic recording media having novel magnetic under-layer structure
US9127365B2 (en) 2008-02-16 2015-09-08 HGST Netherlands B.V. Generation of multilayer structures in a single sputtering module of a multi-station magnetic recording media fabrication tool
US9449632B2 (en) 2011-03-30 2016-09-20 Showa Denko K.K. Method for manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177256B2 (en) 2011-06-03 2013-04-03 富士電機株式会社 Perpendicular magnetic recording medium and manufacturing method thereof

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276364A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium, method for manufacturing the same, and magnetic recording/reproducing device using the same
JP2005276366A (en) * 2004-03-25 2005-10-06 Toshiba Corp Magnetic recording medium and magnetic recording/reproducing device using the same
JP4585214B2 (en) * 2004-03-25 2010-11-24 株式会社東芝 Magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP2005353256A (en) * 2004-05-13 2005-12-22 Fujitsu Ltd Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
US7767322B2 (en) 2004-05-13 2010-08-03 Showa Denko K.K. Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
JP4682721B2 (en) * 2004-07-07 2011-05-11 富士電機デバイステクノロジー株式会社 Method for manufacturing perpendicular magnetic recording medium
JP2011081903A (en) * 2004-07-07 2011-04-21 Fuji Electric Device Technology Co Ltd Method for manufacturing perpendicular magnetic recording medium
JP2011076713A (en) * 2004-07-07 2011-04-14 Fuji Electric Device Technology Co Ltd Method for manufacturing perpendicular magnetic recording medium
JP2006048904A (en) * 2004-07-07 2006-02-16 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium, method of manufacturing the same and magnetic recording device
US7651795B2 (en) 2004-09-14 2010-01-26 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and manufacturing of the same
JP2006309919A (en) * 2005-03-30 2006-11-09 Fujitsu Ltd Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2007052852A (en) * 2005-08-17 2007-03-01 Toshiba Corp Perpendicular magnetic recording medium, and magnetic recording and reproducing device
JP4557838B2 (en) * 2005-08-17 2010-10-06 株式会社東芝 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2007172704A (en) * 2005-12-20 2007-07-05 Toshiba Corp Magnetic recording medium and magnetic recording and reproducing device
JP4557880B2 (en) * 2005-12-20 2010-10-06 株式会社東芝 Magnetic recording medium and magnetic recording / reproducing apparatus
US7862915B2 (en) 2005-12-20 2011-01-04 Tohoku University Magnetic recording medium and magnetic recording/reproducing apparatus
US7701667B2 (en) 2006-01-10 2010-04-20 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US7732070B2 (en) 2006-03-31 2010-06-08 Showa Denko K.K. Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic storage unit
JP2008084479A (en) * 2006-09-28 2008-04-10 Fujitsu Ltd Perpendicular magnetic recording medium and its manufacturing method
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media
US8647755B2 (en) 2007-04-26 2014-02-11 HGST Netherlands B. V. Perpendicular magnetic recording medium and manufacturing method thereof
JP2009059433A (en) * 2007-08-31 2009-03-19 Showa Denko Kk Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
US8512884B2 (en) 2007-08-31 2013-08-20 Showa Denko K.K. Perpendicular magnetic recording medium, method for producing the same, and magnetic recording/reproducing device
WO2009028621A1 (en) * 2007-08-31 2009-03-05 Showa Denko K.K. Perpendicular magnetic recording medium, method for producing the same, and magnetic recording/reproducing device
JP2009099161A (en) * 2007-10-12 2009-05-07 Hoya Corp Perpendicular magnetic recording medium
JP2009099162A (en) * 2007-10-12 2009-05-07 Hoya Corp Perpendicular magnetic recording medium
US9127365B2 (en) 2008-02-16 2015-09-08 HGST Netherlands B.V. Generation of multilayer structures in a single sputtering module of a multi-station magnetic recording media fabrication tool
US8787076B2 (en) 2008-09-02 2014-07-22 Nec Corporation Magnetic memory and method of manufacturing the same
JPWO2010026861A1 (en) * 2008-09-02 2012-02-02 日本電気株式会社 Magnetic memory and manufacturing method thereof
JP5532436B2 (en) * 2008-09-02 2014-06-25 日本電気株式会社 Magnetic memory and manufacturing method thereof
JP4745421B2 (en) * 2009-05-22 2011-08-10 株式会社東芝 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP2010272179A (en) * 2009-05-22 2010-12-02 Toshiba Corp Perpendicular magnetic recording medium and magnetic recording and playback device
JP2011076682A (en) * 2009-09-30 2011-04-14 Wd Media Singapore Pte Ltd Perpendicular magnetic recording medium
JP2012128933A (en) * 2010-11-22 2012-07-05 Sanyo Special Steel Co Ltd Alloy for seed layer of magnetic recording medium, and sputtering target material
US9449632B2 (en) 2011-03-30 2016-09-20 Showa Denko K.K. Method for manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2011146126A (en) * 2011-04-26 2011-07-28 Toshiba Corp Method for manufacturing perpendicular magnetic recording medium
JP2014010852A (en) * 2012-06-28 2014-01-20 Showa Denko Kk Magnetic recording medium, and magnetic storage device
JP2014232560A (en) * 2013-05-28 2014-12-11 エイチジーエスティーネザーランドビーブイ Perpendicular magnetic recording media having novel magnetic under-layer structure
US9472228B2 (en) 2013-05-28 2016-10-18 HGST Netherlands B.V. Perpendicular magnetic recording media having novel magnetic under-layer structure

Also Published As

Publication number Publication date
JP4224804B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4224804B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4812254B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4582978B2 (en) Method for manufacturing perpendicular magnetic recording medium
US7150895B2 (en) Method of producing a magnetic recording medium and a magnetic recording medium formed thereby
JP4332832B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4379817B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording apparatus
JP3755449B2 (en) Perpendicular magnetic recording medium
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP2009211781A (en) Method of manufacturing perpendicular magnetic recording medium
JP2006120231A (en) Perpendicular magnetic recording medium
JP4211436B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3900999B2 (en) Perpendicular magnetic recording medium
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5782819B2 (en) Perpendicular magnetic recording medium
JP4123008B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4214472B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4697337B2 (en) Perpendicular magnetic recording medium
JP4487272B2 (en) Perpendicular magnetic recording medium
JP4066845B2 (en) Magnetic recording medium and method for manufacturing the same
JP4348673B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5426409B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2006004527A (en) Perpendicular magnetic recording medium and manufacturing method therefor
JP4535666B2 (en) Perpendicular magnetic recording medium
JP4072753B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP3952379B2 (en) Perpendicular magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4224804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term