JP2017191625A - ALLOY FOR SEED LAYER OF Ni-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM - Google Patents

ALLOY FOR SEED LAYER OF Ni-BASED MAGNETIC RECORDING MEDIUM, SPUTTERING TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM Download PDF

Info

Publication number
JP2017191625A
JP2017191625A JP2016080217A JP2016080217A JP2017191625A JP 2017191625 A JP2017191625 A JP 2017191625A JP 2016080217 A JP2016080217 A JP 2016080217A JP 2016080217 A JP2016080217 A JP 2016080217A JP 2017191625 A JP2017191625 A JP 2017191625A
Authority
JP
Japan
Prior art keywords
magnetic recording
alloy
recording medium
comparative example
seed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016080217A
Other languages
Japanese (ja)
Other versions
JP6431496B2 (en
Inventor
未由紀 井本
Miyuki Imoto
未由紀 井本
慶明 松原
Yoshiaki Matsubara
慶明 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016080217A priority Critical patent/JP6431496B2/en
Priority to CN201780022921.XA priority patent/CN109074824B/en
Priority to SG11201808739XA priority patent/SG11201808739XA/en
Priority to MYPI2018703718A priority patent/MY190813A/en
Priority to PCT/JP2017/014181 priority patent/WO2017179466A1/en
Priority to TW106112400A priority patent/TWI746540B/en
Publication of JP2017191625A publication Critical patent/JP2017191625A/en
Application granted granted Critical
Publication of JP6431496B2 publication Critical patent/JP6431496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Abstract

PROBLEM TO BE SOLVED: To provide an alloy for a seed layer of an Ni-based magnetic recording medium having a small crystal grain size used as the seed layer in a perpendicular magnetic recording medium and to provide a sputtering target material.SOLUTION: There are provided: an alloy for a seed layer of a magnetic recording medium, wherein an Ni-based alloy sputtering target material is composed of an Ni-Fe-Co alloy and the alloy contains, in atomic percent, 2 to 20% of one or two or more elements selected from the group consisting of Au, Ag, Pd, Rh, Ir, Ru, Re and Pt in total as M1 element and the balance Ni, Fe, Co with inevitable impurities and the ratio in atomic percent ratio of the content of Ni, Fe and Co is Ni:Fe:Co=100 to 20:0 to 50:0 to 60; and a sputtering target material.SELECTED DRAWING: None

Description

本発明は、シード層薄膜の微細化を特徴とするNi系合金スパッタリングターゲット材に関するものである。   The present invention relates to a Ni-based alloy sputtering target material characterized by miniaturization of a seed layer thin film.

近年、垂直磁気記録の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来普及していた面内磁気記録媒体により、さらに高記録密度が実現できる垂直磁気記録方式が実用化されている。ここで、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。   In recent years, the progress of perpendicular magnetic recording has been remarkable, and in order to increase the capacity of the drive, the recording density of the magnetic recording medium has been increased. A realizable perpendicular magnetic recording system has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. .

垂直磁気記録方式においては、記録密度を高めた磁気記録膜相と軟磁性膜相とを有する記録媒体が開発されており、このような媒体構造では、軟磁性層と磁気記録層の間にシード層や下地膜層が製膜された記録媒体が開発されている。そして近年、記憶媒体の記録密度を向上させる為に、磁気記録層のさらなる微細化が求められている。この垂直磁気記録方式用のシード層には一般に、例えば特開2009−155722号公報(特許文献1)のように、NiW系の合金が用いられている。また、特開2012−128933号公報(特許文献2)のように、Ni−Fe−Co−M合金において、M元素としてW、Mo、Ta、Cr、V、Nbを含有するシート層用ターゲット材で、高融点を持つbcc系金属の一つであるWを含むことで、シード層に求められる(111)面への配向性を改善かつ、結晶粒の微細化を可能にする発明が提案されている。   In the perpendicular magnetic recording system, a recording medium having a magnetic recording film phase and a soft magnetic film phase with an increased recording density has been developed. In such a medium structure, a seed is interposed between the soft magnetic layer and the magnetic recording layer. A recording medium on which a layer or an underlayer is formed has been developed. In recent years, there has been a demand for further miniaturization of the magnetic recording layer in order to improve the recording density of the storage medium. In general, a NiW-based alloy is used for the seed layer for the perpendicular magnetic recording system as disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-155722 (Patent Document 1). Moreover, as disclosed in JP 2012-128933 A (Patent Document 2), in a Ni-Fe-Co-M alloy, a target material for a sheet layer containing W, Mo, Ta, Cr, V, and Nb as an M element. Thus, an invention has been proposed in which W, which is one of bcc metals having a high melting point, is included, thereby improving the orientation to the (111) plane required for the seed layer and making the crystal grains finer. ing.

特開2009−155722号公報JP 2009-155722 A 特開2012−128933号公報JP 2012-128933 A

しかしながら、上述した特許文献1のような、垂直磁気記録方式用のシード層に、Ni
W系の合金が用いられているものや、特許文献2に記載されている、高融点を持つbcc系金属の一つであるWを含むことで、シード層に求められる(111)面への配向性を改善かつ、結晶粒を微細化させることとしているが、特許文献2のようなNi系シード層用合金ターゲット材からなる高融点金属による微細化には限界がある。
However, Ni as a seed layer for the perpendicular magnetic recording method as in Patent Document 1 described above.
By using W which is one of bcc-based metals having a high melting point as described in Patent Document 2 and using W-based alloys, or to the (111) plane required for the seed layer Although the orientation is improved and the crystal grains are made finer, there is a limit to the use of a refractory metal made of a Ni-based seed layer alloy target material as in Patent Document 2.

上述した問題を解決するために、発明者らは鋭意開発を進めた結果、特許文献2よりもより結晶粒度が小さいシート層用Ni系磁気記録媒体のシード層用合金およびスパッタリングターゲット材を提供するものである。すなわち、高融点を持つbcc系金属の代わりに貴金属(Au,Ag,Pd,Rh,Ir,Ru,Re,Pt)を含有させることで、シード層の(111)面の配向性が改善し、さらに結晶粒度が微細化になることを見出し、発明を完成させるに至った。   In order to solve the above-described problems, the inventors have intensively developed, and as a result, provide an alloy for a seed layer of a Ni-based magnetic recording medium for a sheet layer and a sputtering target material having a crystal grain size smaller than that of Patent Document 2. Is. That is, by including a noble metal (Au, Ag, Pd, Rh, Ir, Ru, Re, Pt) instead of a bcc metal having a high melting point, the orientation of the (111) plane of the seed layer is improved. Furthermore, the inventors have found that the crystal grain size becomes finer and have completed the invention.

その発明の要旨とするところは、
(1)Ni系スパッタリングターゲット材はNi‐Fe‐Co‐M合金からなり、同合金はat.%で、M1元素としてAu,Ag,Pd,Rh,Ir,Ru,Re,Ptから選ばれる1種又は2種以上の元素を合計で2〜20at.%含有し、残部がNi、Fe、Coおよび不可避的不純物からなり、かつNi、Fe、Coの含有量の比率がat.%比でNi:Fe:Co=100〜20:0〜50:0〜60であることを特徴とする磁気記録媒体のシード層用合金。
The gist of the invention is that
(1) The Ni-based sputtering target material is made of a Ni-Fe-Co-M alloy, and the alloy is at. %, And one or more elements selected from Au, Ag, Pd, Rh, Ir, Ru, Re, and Pt as M1 elements in total 2 to 20 at. %, The balance is made of Ni, Fe, Co and unavoidable impurities, and the content ratio of Ni, Fe, Co is at. An alloy for a seed layer of a magnetic recording medium, wherein Ni: Fe: Co = 100 to 20: 0 to 50: 0 to 60 in terms of% ratio.

(2)前記(1)に記載されたNi−Fe−Co−M合金に、更にM2元素としてAl,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Mnから選ばれる1種又は2種以上の元素を合計で0超え〜10at.%含有することを特徴とするNi系スパッタリングターゲット材。   (2) In addition to the Ni—Fe—Co—M alloy described in (1) above, Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C as M2 elements , Mn, one or more elements selected from Mn in total exceeding 0 to 10 at. % Ni-based sputtering target material characterized by containing.

(3)前記(1)または(2)のいずれか1項に記載の磁気記録媒体のシード層用合金を使用してなるスパッタリングターゲット材。
(4)前記(1)または(2)のいずれか1項に記載のシード層用合金を使用してなる磁気記録媒体にある。
(3) A sputtering target material comprising the seed layer alloy for a magnetic recording medium according to any one of (1) and (2).
(4) A magnetic recording medium using the seed layer alloy according to any one of (1) and (2).

本発明により、垂直磁気記録媒体におけるシード層の結晶粒度の微細化を可能にするN
i−Fe−Co−M合金ターゲット材を提供でき、磁気記憶媒体の記録密度の向上にきわめて有効な技術となる。
According to the present invention, N that enables the crystal grain size of the seed layer in the perpendicular magnetic recording medium to be reduced.
An i-Fe-Co-M alloy target material can be provided, which is an extremely effective technique for improving the recording density of a magnetic storage medium.

以下、本発明に係る発明の限定理由を説明する。
上述したように、本発明の最も重要な特徴は、高融点を持つbcc系金属の代わりに貴金属(Au,Ag,Pd,Rh,Ir,Ru,Re,Pt)を含有させることで、シード層の(111)面の配向性が改善し、さらに結晶粒度を微細化にする点にある。
M1元素としてAu,Ag,Pd,Rh,Ir,Ru,Re,Ptから選ばれる1種又は2種以上の元素を合計で2〜20at.%含有とした理由を下記に示す。
The reason for limiting the invention according to the present invention will be described below.
As described above, the most important feature of the present invention is that the seed layer is formed by including a noble metal (Au, Ag, Pd, Rh, Ir, Ru, Re, Pt) instead of the bcc metal having a high melting point. The (111) plane orientation is improved, and the crystal grain size is further refined.
One or two or more elements selected from Au, Ag, Pd, Rh, Ir, Ru, Re, and Pt as M1 elements in total 2 to 20 at. The reason why the content is% is shown below.

Ni−Fe−Co−M合金において、Au,Ag,Pd,Rh,Ir,Ru,Re,Ptを以下M1元素と称とすると、このM1元素は、本発明で規定する成分範囲でfcc構造であるNi−Fe−Co系に添加することにより、そのメカニズムは明確ではないが、シード層に求められる(111)面への配向性を改善させ、かつ結晶粒を微細化させる元素である。このAu,Ag,Pd,Rh,Ir,Ru,Re,Ptの1種または2種以上をat%量で、2〜20%とする。しかし、2%未満ではその効果が十分でなく、シード層用合金としてはfcc単相である事が求められているが、20%を超えるとそのfcc構造が保てなくなる、またはアモルファス化する。よって、その範囲を2〜20%とする。好ましくは5〜15%とする。   In the Ni—Fe—Co—M alloy, when Au, Ag, Pd, Rh, Ir, Ru, Re, and Pt are hereinafter referred to as M1 elements, these M1 elements have an fcc structure within the component range defined in the present invention. Although the mechanism is not clear by adding to a certain Ni—Fe—Co system, it is an element that improves the orientation to the (111) plane required for the seed layer and refines the crystal grains. One type or two or more types of Au, Ag, Pd, Rh, Ir, Ru, Re, and Pt are set to 2 to 20% in the amount of at%. However, if it is less than 2%, the effect is not sufficient, and the alloy for the seed layer is required to be an fcc single phase. However, if it exceeds 20%, the fcc structure cannot be maintained or becomes amorphous. Therefore, the range is made 2 to 20%. Preferably it is 5 to 15%.

Ni、Fe、Coの含有量の比率がat.%比でNi:Fe:Co=100〜20:0〜50:0〜60とした理由を下記に示す。
本発明に係るNi−Fe−Co−M合金において、Ni、Fe、Coの比率である、Ni:Fe:Co=α:β:γとすると、α:100〜20とする。20以上とした理由は、20未満では、上記同様保磁力が高くなる。したがって、その範囲を100〜20とした。好ましくは100〜60とする。
The content ratio of Ni, Fe, and Co is at. The reason why Ni: Fe: Co = 100 to 20: 0 to 50: 0 to 60 in terms of% ratio is shown below.
In the Ni—Fe—Co—M alloy according to the present invention, when Ni: Fe: Co = α: β: γ, which is the ratio of Ni, Fe, and Co, α: 100 to 20 is set. The reason why it is 20 or more is that if it is less than 20, the coercive force is increased as described above. Therefore, the range was set to 100-20. Preferably it is set to 100-60.

at比β:0〜50
Feは、保磁力を低減する元素であり、かつ、膜の配向性を改善する元素でもある。しかし、50を超えると保磁力が高くなることから、その範囲を0〜50とした。好ましくは2〜50%、より好ましくは10〜40とする。
at ratio β: 0 to 50
Fe is an element that reduces the coercive force and also improves the orientation of the film. However, since coercive force will become high when it exceeds 50, the range was made into 0-50. Preferably it is 2 to 50%, more preferably 10 to 40.

at比γ:0〜60
Coは、(111)方向の保磁力を低減する元素である。しかし、60を超えると保磁力が高くなることから、その上限を60とした。好ましくは40以下とする。
また、Ni−Fe−Co−M合金において、Au,Ag,Pd,Rh,Ir,Ru,Re,Ptを以下M1元素と称とすると、このM1元素は、本発明で規定する成分範囲でfccであるNi−Fe−Co系に添加することにより、そのメカニズムは明確ではないが、シード層に求められる(111)面への配向性を改善させ、かつ結晶粒を微細化させる元素である。
at ratio γ: 0 to 60
Co is an element that reduces the coercivity in the (111) direction. However, since the coercive force increases when it exceeds 60, the upper limit is set to 60. Preferably it is 40 or less.
In the Ni—Fe—Co—M alloy, if Au, Ag, Pd, Rh, Ir, Ru, Re, and Pt are hereinafter referred to as M1 elements, the M1 element is fcc within the component range defined in the present invention. Although the mechanism is not clear by adding to the Ni—Fe—Co system, it is an element that improves the orientation to the (111) plane required for the seed layer and refines the crystal grains.

さらに、Al,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C
,Mnとを以下M2元素と称すると、このM2元素は、(111)面を配向させる元素であり、また、結晶粒を微細化する元素である。このAl,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Mnの1種または2種以上をat%量で、0超え〜10%とする。しかし、10%を超えると化合物が生じたり、アモルファス化することから、その上限を10%とする。好ましくは5%とする。また、M1+M2は好ましくは、25at%以下、さらに好ましくは20at%以下とする。
Furthermore, Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C
, Mn is hereinafter referred to as an M2 element, the M2 element is an element that orients the (111) plane and is an element that refines crystal grains. One or two or more of Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, and Mn are set to at least 0 and more than 10%. However, if it exceeds 10%, a compound is formed or becomes amorphous, so the upper limit is made 10%. Preferably it is 5%. M1 + M2 is preferably 25 at% or less, more preferably 20 at% or less.

以下、本発明についてさらに実施例により具体的に説明する。
通常、垂直磁気記録媒体におけるシード層はその成分と同じ成分のスパッタリングターゲット材をスパッタし、ガラス基板などの上に成膜し得られる。ここでスパッタにより成膜された薄膜は急冷されている。本発明での供試材としては、単ロール式の急冷装置にて作製した急冷薄帯を用いる。これは実際にスパッタにより急冷され成膜された薄膜の、成分による諸特性への影響を、簡易的に液体急冷薄帯により評価したものである。
Hereinafter, the present invention will be described more specifically with reference to examples.
Usually, the seed layer in a perpendicular magnetic recording medium can be formed on a glass substrate or the like by sputtering a sputtering target material having the same component as that of the seed layer. Here, the thin film formed by sputtering is rapidly cooled. As a test material in the present invention, a quenched ribbon manufactured by a single roll type quenching apparatus is used. This is a simple evaluation of the influence of the components on various properties of a thin film formed by quenching by sputtering in a simple manner using a liquid quenching ribbon.

急冷薄帯の作製条件としては、表に示す成分組成になるように秤量した原料30gを径10、長さ40mm程度の水冷銅鋳型にて減圧して、Ar中でアーク溶解し、急冷薄帯の溶解母材とした。急冷薄帯の作製条件は、単ロール方式で径15mmの石英缶中にて、この溶解母材をセットし、出湯ノズル径を1mmとし、雰囲気気圧61kPa、噴霧差圧69kPa、銅ロール(径300mm)の回転数3000rpm、銅ロールと出湯ノズルのギャップ0.3mmにて出湯した。出湯温度は各溶解母材の溶け落ち直後とした。このようにして作製した急冷薄帯を供試材とし、以下の項目を評価した。   The conditions for preparing the quenched ribbon are as follows: 30 g of raw material weighed so as to have the composition shown in the table is depressurized with a water-cooled copper mold having a diameter of about 10 and a length of about 40 mm, and arc-melted in Ar. This was a melting base material. The conditions for preparing the quenching ribbon are as follows. This molten base material is set in a quartz can having a diameter of 15 mm by a single roll method, the tap nozzle diameter is 1 mm, the atmospheric pressure is 61 kPa, the spray differential pressure is 69 kPa, the copper roll (diameter is 300 mm). The hot water was discharged at a rotation speed of 3000 rpm and a gap of 0.3 mm between the copper roll and the hot water nozzle. The hot water temperature was set immediately after each molten base material was melted. The following items were evaluated using the thus prepared quenched ribbon as a test material.

急冷薄帯の結晶粒径の評価としては、急冷薄帯の断面ミクロ組織像のロール方向にて、
JIS G0551「鋼・結晶粒度の顕微鏡試験方法」に準じて測定した。P/Ltが1.4以上をI、1.2以上、1.4未満をII、1.2未満をIIIとした。
急冷薄帯の保磁力の評価としては、振動試料型の保磁力メータにて、試料台に両面テープで急冷リボンを張り付け、初期印加磁場144kA/mにて測定した。保磁力が300A/m以下をI、300A/mを超え500A/m以下をII、500A/mを超えるものをIIIとした。
As an evaluation of the crystal grain size of the quenched ribbon, in the roll direction of the cross-sectional microstructure image of the quenched ribbon,
Measured according to JIS G0551 “Microscopic test method for steel and crystal grain size”. P / Lt of 1.4 or more was I, 1.2 or more, less than 1.4 was II, and less than 1.2 was III.
For the evaluation of the coercive force of the rapidly cooled ribbon, a vibration sample type coercive force meter was used, and a quenching ribbon was attached to the sample stage with double-sided tape, and the initial applied magnetic field was 144 kA / m. A coercive force of 300 A / m or less was designated as I, 300 A / m or more and 500 A / m or less as II, and 500 A / m or less as III.

急冷薄帯の飽和磁束密度の評価としては、VSM装置(振動試料型磁力計)にて、印加磁場1200kA/mにて測定した。供試材の重量は15mg程度で、0.2T以上をI、0.2T未満をIIIとして評価した。
急冷薄帯の(111)面配向性評価としては、スパッタにより成膜されるシード層はfcc構造である。シード層は急冷することで(200)が配向する。通常、ランダム配向すれば(111)面と(200)面のX線回折強度がI(200)がI(111)より高くなる。そこで、下記の方法にて(111)面の配向性を評価した。
As the evaluation of the saturation magnetic flux density of the quenched ribbon, it was measured with an applied magnetic field of 1200 kA / m with a VSM apparatus (vibrating sample magnetometer). The weight of the test material was about 15 mg, and 0.2 T or more was evaluated as I, and less than 0.2 T was evaluated as III.
For evaluating the (111) plane orientation of the quenched ribbon, the seed layer formed by sputtering has an fcc structure. The seed layer is rapidly cooled to orient (200). Usually, if random orientation is performed, the X-ray diffraction intensity of the (111) plane and the (200) plane will be higher for I (200) than for I (111). Therefore, the orientation of the (111) plane was evaluated by the following method.

ガラス板に両面テープで供試材を貼り付け、X線回折装置にて回折パターンを得た。こ
のとき、測定面は急冷薄帯の銅ロール接触面となるように供試材を貼り付けた。X線源はCu−α線でスキャンスピード4°/minで測定した。この回折パターンの(111)面で回折したX線の強度I(111)と同じく(200)面の強度I(200)との強度比であるI(111)/I(200)が0.7未満のものをIII、0.7以上のものをIとした。また、化合物が生じるもの、アモルファス化したものについてはIIIとした。
The test material was attached to a glass plate with a double-sided tape, and a diffraction pattern was obtained with an X-ray diffractometer. At this time, the test material was affixed so that a measurement surface might become a copper roll contact surface of a rapidly cooled ribbon. The X-ray source was Cu-α ray and measured at a scan speed of 4 ° / min. I (111) / I (200), which is the intensity ratio between the intensity I (111) of the X-ray diffracted by the (111) plane of this diffraction pattern and the intensity I (200) of the (200) plane, is 0.7. Those less than III were taken as III, and those above 0.7 were taken as I. In addition, those in which a compound was produced and those that were made amorphous were designated III.

表1〜7に示すように、No.1〜107、167〜230は本発明例であり、No.108〜166、231〜236は比較例である。   As shown in Tables 1-7, no. 1-107 and 167-230 are examples of the present invention. Reference numerals 108 to 166 and 231 to 236 are comparative examples.

なお、表1〜7に示す成分組成に記載する、例えば、No.1は、Ruが2at%であ
るので、(Ni2Fe)は100%−2%で98at%であり、この98%を1としたとき、Niは(100−2)、Feは2の比率である。また、Coは含んでいないのでその比率は0に相当する。同様に、No.62であれば、PtとInで計7at%なので、(Ni50Fe)は、100%−7%で93at%であり、この93at%を1としたとき、Niは100−50、Feは50の比、つまりNiとFeはat比で同じ比率であることから93at%の半分ずつの46.5at%ずつであることを意味するものである。
In addition, it describes in the component composition shown to Tables 1-7, for example, No .. Since 1 is Ru at 2 at%, (Ni2Fe) is 100% -2% and 98 at%, and when 98% is 1, Ni is (100-2) and Fe is a ratio of 2. . Further, since Co is not included, the ratio corresponds to zero. Similarly, no. If it is 62, the total amount of Pt and In is 7 at%, so (Ni50Fe) is 93% at 100% -7%. When 93 at% is 1, Ni is 100-50 and Fe is a ratio of 50. In other words, since Ni and Fe have the same ratio in terms of at ratio, this means that they are 46.5 at%, which is half of 93 at%.

比較例No.108〜123、128〜134は、M元素の代わりにWを添加した場合
では、結晶粒径が劣る。比較例No.135は、Mの代わりにCr、Vを添加した場合、結晶粒径が劣る。比較例No.136は、Mの代わりにNb、Vを添加した場合、結晶粒径が劣る。比較例No.137は、Mの代わりにNb、Moを添加した場合、結晶粒径が
劣る。比較例No.138は、Ni単独であることから、保磁力が高く、配向性および
結晶粒径がそれぞれ劣る。比較例No.139は、M元素がないために、配向性および結晶粒径がそれぞれ劣る。比較例No.140は、Fe含有量が高いために、保磁力が高くなる。比較例No.141は、Agの7有量が低く、かつAl含有量が高いために、保磁力がやや高くなり、かつ配向性が劣る。比較例No.142は、Pt含有量が高いために、保磁力の測定困難であり、また、飽和磁束密度および配向性が劣る。
Comparative Example No. 108 to 123 and 128 to 134 are inferior in crystal grain size when W is added instead of the M element. Comparative Example No. No. 135 has inferior crystal grain size when Cr and V are added instead of M. Comparative Example No. 136, when Nb and V are added instead of M, the crystal grain size is inferior. Comparative Example No. In 137, when Nb and Mo are added instead of M, the crystal grain size is inferior. Comparative Example No. Since 138 is Ni alone, it has a high coercive force and is inferior in orientation and crystal grain size. Comparative Example No. 139 is inferior in orientation and crystal grain size because there is no M element. Comparative Example No. Since 140 has a high Fe content, the coercive force is high. Comparative Example No. No. 141 has a low Ag content of 7 and a high Al content, so that the coercive force is slightly high and the orientation is inferior. Comparative Example No. Since 142 has a high Pt content, it is difficult to measure the coercive force, and the saturation magnetic flux density and orientation are inferior.

比較例No.143,144は、Agの含有量が低く、かつZrおよびBの含有量が高
いために、配向性が劣る。比較例No.145は、Niの含有量が低く、Coの含有量が高いために、保磁力が高くなる。比較例No.146は、Niの含有量が低く、Feの含有量が高いために、保磁力が高くなる。比較例No.147は、Reの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.148は、Reの含有量が高いために、全ての特性が劣る。比較例No.149は、Ptの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。
Comparative Example No. Since 143 and 144 have a low Ag content and a high Zr and B content, the orientation is inferior. Comparative Example No. 145 has a low Ni content and a high Co content, so the coercive force is high. Comparative Example No. 146 has a low Ni content and a high Fe content, so the coercive force is high. Comparative Example No. Since 147 has a low Re content, it has a high coercive force and inferior orientation and crystal grain size. Comparative Example No. 148 is inferior in all properties because of the high Re content. Comparative Example No. No. 149 has a high coercive force due to a low Pt content, and is inferior in orientation and crystal grain size.

比較例No.150は、Ptの含有量が高いために、全ての特性が劣る。比較例No.
151は、Rhの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.152は、Rhの含有量が高いために、全ての特性が劣る。比較例No.153は、Irの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.154は、Irの含有量が高いために、全ての特性が劣る。比較例No.155は、Auの含有量が低いために、保磁力が高く、配向性および結晶粒径がそれぞれ劣る。比較例No.156は、Auの含有量が高いために全ての特性が劣る。
Comparative Example No. No. 150 is inferior in all properties because of high Pt content. Comparative Example No.
No. 151 has a low coercive force due to a low content of Rh, and is inferior in orientation and crystal grain size. Comparative Example No. Since 152 has a high content of Rh, all characteristics are inferior. Comparative Example No. Since 153 has a low Ir content, it has a high coercive force and is inferior in orientation and crystal grain size. Comparative Example No. 154 is inferior in all properties because of its high Ir content. Comparative Example No. Since 155 has a low Au content, the coercive force is high, and the orientation and crystal grain size are inferior. Comparative Example No. No. 156 is inferior in all properties due to the high Au content.

比較例No.157は、Gaの含有量が高いために、配向性と結晶粒径が劣る。比較例No.158は、Inの含有量が高いために配向性と結晶粒径が劣る。比較例No159は、Siの含有量が高いために、配向性と結晶粒径が劣る。比較例No.160は、Geの含有量が高いために、配向性と結晶粒径が劣る。比較例No.161は、Snの含有量が高いために、配向性と結晶粒径が劣る。比較例No.162は、Zrの含有量が高いために、配向性と結晶粒径が劣る。比較例No.163は、Tiの含有量が高いために、配向性と結晶粒径が劣る。比較例No.164は、Hfの含有量が高いために、配向性と結晶粒径が劣る。比較例No.165は、Bの含有量が高いために、配向性と結晶粒径が劣る。比較例No.166は、Cuの含有量が高いために、配向性と結晶粒径が劣る。   Comparative Example No. Since 157 has a high Ga content, the orientation and crystal grain size are inferior. Comparative Example No. 158 is inferior in orientation and crystal grain size because of its high In content. Since comparative example No159 has high content of Si, orientation and a crystal grain size are inferior. Comparative Example No. No. 160 is inferior in orientation and crystal grain size because of the high Ge content. Comparative Example No. Since 161 has a high Sn content, the orientation and crystal grain size are inferior. Comparative Example No. Since 162 has a high Zr content, the orientation and the crystal grain size are inferior. Comparative Example No. Since 163 has a high Ti content, the orientation and crystal grain size are inferior. Comparative Example No. Since 164 has a high Hf content, the orientation and crystal grain size are inferior. Comparative Example No. Since 165 has a high B content, the orientation and the crystal grain size are inferior. Comparative Example No. 166 is inferior in orientation and crystal grain size because of high Cu content.

比較例No.231は、Fe+Coの含有量が低いために、保磁力が劣る。比較例No.232は、Fe+Coの含有量が低いために、保磁力が劣る。No.233は、Fe+Coの含有量が低いために、保磁力が劣る。No.234は、Fe+Coの含有量が低いために、保磁力が劣る。No.235は、Fe+Coの含有量が低いために、保磁力が劣る。No.236は、本発明条件内ではあるが、Pt添加量が4.9と5を超えていないため、特性がやや劣る。そのために比較例とした。   Comparative Example No. Since 231 has a low content of Fe + Co, the coercive force is inferior. Comparative Example No. Since 232 has a low content of Fe + Co, the coercive force is inferior. No. Since 233 has a low content of Fe + Co, coercive force is inferior. No. Since 234 has a low content of Fe + Co, the coercive force is inferior. No. Since 235 has a low content of Fe + Co, the coercive force is inferior. No. Although 236 is within the conditions of the present invention, since the Pt addition amount does not exceed 4.9 and 5, the characteristics are slightly inferior. Therefore, it was set as a comparative example.

以上のように、Ni−Fe−Co−M合金において、一定の含有量に規制することによ
り、この領域に規制することで、磁性を有し、かつ、(111)方向の透磁率を高くなることを見出し、Ni系シード層に磁性を付与することにより、磁気ヘッドと軟磁性下地膜との距離を短くすることができるという優れた効果を奏するものである。
As described above, in the Ni-Fe-Co-M alloy, by restricting to a certain content, by restricting to this region, it has magnetism and increases the magnetic permeability in the (111) direction. Thus, by providing magnetism to the Ni-based seed layer, there is an excellent effect that the distance between the magnetic head and the soft magnetic underlayer can be shortened.

次に、スパッタリングターゲット材の製造方法の例を示す。表1の本発明例No.2、
No.10、No.14、No.18、No.25、No.35、No.38、No.55、No.63、No.82、No.91、No.97、No.101、No.107、比較例No.114、比較例No.135、比較例No.136、比較例No140、比較例No.146、比較例No.153、比較例No.162、本発明例No.177、No.188、No194、No.206、No.208、No.211、No.217、No.223、No.229、比較例No.231、比較例No.234組成のものを秤量した溶解原料を、減圧Arガス雰囲気の耐火物坩堝内で誘導加熱溶解した後、坩堝下部の直径8mmのノズルより出湯し、Arガスによりアトマイズした。このガスアトマイズ粉末を原料粉末として、炭素鋼製の直径250mm、長さ100mmのカプセル内に充填、真空脱気封入した。
Next, the example of the manufacturing method of sputtering target material is shown. Invention Example No. 1 in Table 1 2,
No. 10, no. 14, no. 18, no. 25, no. 35, no. 38, no. 55, no. 63, no. 82, no. 91, no. 97, no. 101, no. 107, Comparative Example No. 114, Comparative Example No. 135, Comparative Example No. 136, Comparative Example No. 140, Comparative Example No. 146, Comparative Example No. 153, Comparative Example No. 162, Invention Example No. 177, no. 188, No194, No. 206, no. 208, no. 211, no. 217, no. 223, no. 229, Comparative Example No. 231, Comparative Example No. The melted raw material weighed in the 234 composition was induction-heated and melted in a refractory crucible in a reduced pressure Ar gas atmosphere, then poured out from a nozzle having a diameter of 8 mm at the bottom of the crucible and atomized with Ar gas. This gas atomized powder was used as a raw material powder, filled into a carbon steel capsule having a diameter of 250 mm and a length of 100 mm, and vacuum deaerated and sealed.

上記粉末充填ビレットを成形温度1100℃、成形圧力147MPa、成形時間5時間の条件でHIP成形した。このHIP体を、ワイヤーカット、旋盤加工、平面研磨により、直径180mm、厚さ7mmの円盤状に加工し、スパッタリングターゲット材とした。   The powder-filled billet was HIP molded under the conditions of a molding temperature of 1100 ° C., a molding pressure of 147 MPa, and a molding time of 5 hours. This HIP body was processed into a disk shape having a diameter of 180 mm and a thickness of 7 mm by wire cutting, lathe processing, and planar polishing to obtain a sputtering target material.

これら32種類の成分組成についてスパッタリングターゲット材を用い、ガラス基板上
にスパッタ膜を成膜した。膜のミクロ組織は、本発明例No.2、No.10、No.14、No.18、No.25、No.35、No.38、No.55、No.63、No.82、No.91、No.97、No.101、No.107、No.177、No.188、No194、No.206、No.208、No.211、No.217、No.223、No.229は、いずれにおいても微細な結晶粒径が見られ、比較例No.114、比較例No.135、比較例No.136、比較例No.153、比較例No.162には微細な結晶粒径がみられなかった。
A sputtering target material was used for these 32 kinds of component compositions, and a sputtered film was formed on a glass substrate. The microstructure of the film is the same as that of Example No. of the present invention. 2, no. 10, no. 14, no. 18, no. 25, no. 35, no. 38, no. 55, no. 63, no. 82, no. 91, no. 97, no. 101, no. 107, no. 177, no. 188, No194, No. 206, no. 208, no. 211, no. 217, no. 223, no. No. 229 shows a fine crystal grain size in any of the comparative examples. 114, Comparative Example No. 135, Comparative Example No. 136, Comparative Example No. 153, Comparative Example No. 162 did not have a fine crystal grain size.

X線回折パターンは、本発明例No.2、No.10、No.14、No.18、No
.25、No.35、No.38、No.55、No.63、No.82、No.91、No.97、No.101、No.107、No.177、No.188、No194、No.206、No.208、No.211、No.217、No.223、No.229は、いずれにおいても良好な配向性が見られ、比較例No.153、比較例No.162、には良好な配向性がみられなかった。
The X-ray diffraction pattern is shown in Example No. of the present invention. 2, no. 10, no. 14, no. 18, No
. 25, no. 35, no. 38, no. 55, no. 63, no. 82, no. 91, no. 97, no. 101, no. 107, no. 177, no. 188, No194, No. 206, no. 208, no. 211, no. 217, no. 223, no. 229 shows good orientation in any case, and Comparative Example No. 153, Comparative Example No. 162 did not show good orientation.

また、急冷薄帯と同様に磁気特性の測定を行ったところ、本発明例No.2、No.
10、No.14、No.18、No.25、No.35、No.38、No.55、No.63、No.82、No.91、No.97、No.101、No.107、No.177、No.188、No194、No.206、No.208、No.211、No.217、No.223、No.229は、いずれも良好な磁気特性が見られ、比較例No140、比較例No.146、比較例No.153、比較例No.231、比較例No.234では良好な磁気特性が見られなかった。
Further, when the magnetic properties were measured in the same manner as the quenched ribbon, the present invention example No. 2, no.
10, no. 14, no. 18, no. 25, no. 35, no. 38, no. 55, no. 63, no. 82, no. 91, no. 97, no. 101, no. 107, no. 177, no. 188, No194, No. 206, no. 208, no. 211, no. 217, no. 223, no. No. 229 shows good magnetic properties, and Comparative Examples No. 140 and No. 146, Comparative Example No. 153, Comparative Example No. 231, Comparative Example No. 234 did not show good magnetic properties.

また、X線回折パターンについても、急冷薄帯と同様に測定を行ったところ、急冷薄帯
にて評価した結果と同様のI、II、IIIであった。以上総括すると、急冷薄帯にて評価した結果とスパッタリングターゲット材を用いて成膜したスパッタ膜の評価が同等の傾向であることを確認した。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
Also, the X-ray diffraction pattern was measured in the same manner as the quenched ribbon, and the results were I, II, and III similar to the results evaluated with the quenched ribbon. In summary, it was confirmed that the results of the evaluation with the quenched ribbon and the evaluation of the sputtered film formed using the sputtering target material have the same tendency.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (4)

Ni系スパッタリングターゲット材に用いる合金であって、Ni−Fe−Co−M合金からなり、該合金はat.%で、M1元素としてAu,Ag,Pd,Rh,Ir,Ru,Re,Ptから選ばれる1種又は2種以上の元素を合計で2〜20at.%含有し、残部がNi、Fe、Coおよび不可避的不純物からなり、かつNi、Fe、Coの含有量の比率がat.%比でNi:Fe:Co=100〜20:0〜50:0〜60であることを特徴とする磁気記録媒体のシード層用合金。 An alloy used for a Ni-based sputtering target material, which is made of a Ni—Fe—Co—M alloy. %, And one or more elements selected from Au, Ag, Pd, Rh, Ir, Ru, Re, and Pt as M1 elements in total 2 to 20 at. %, The balance is made of Ni, Fe, Co and unavoidable impurities, and the content ratio of Ni, Fe, Co is at. An alloy for a seed layer of a magnetic recording medium, wherein Ni: Fe: Co = 100 to 20: 0 to 50: 0 to 60 in terms of% ratio. 請求項1に記載されたNi−Fe−Co−M合金に、更にM2元素としてAl,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Mn,Snから選ばれる1種又は2種以上の元素を合計で0超え〜10at.%含有することを特徴とする磁気記録媒体のシード層用合金。 The Ni—Fe—Co—M alloy according to claim 1 further includes Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C, Mn, and Sn as M2 elements. 1 or more elements selected from the group consisting of more than 0 and 10 at. An alloy for a seed layer of a magnetic recording medium, comprising: 請求項1、2のいずれか1項に記載の磁気記録媒体のシード層用合金を使用してなるスパッタリングターゲット材。 A sputtering target material comprising the seed layer alloy of the magnetic recording medium according to claim 1. 請求項1、2のいずれか1項に記載のシード層用合金を使用してなる磁気記録媒体。 A magnetic recording medium using the seed layer alloy according to claim 1.
JP2016080217A 2016-04-13 2016-04-13 Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium Active JP6431496B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016080217A JP6431496B2 (en) 2016-04-13 2016-04-13 Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
CN201780022921.XA CN109074824B (en) 2016-04-13 2017-04-05 Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
SG11201808739XA SG11201808739XA (en) 2016-04-13 2017-04-05 Alloy for seed layers of magnetic recording media, sputtering target material and magnetic recording medium
MYPI2018703718A MY190813A (en) 2016-04-13 2017-04-05 Alloy for seed layers of magnetic recording media, sputtering target material and magnetic recording medium
PCT/JP2017/014181 WO2017179466A1 (en) 2016-04-13 2017-04-05 Alloy for seed layers of magnetic recording media, sputtering target material and magnetic recording medium
TW106112400A TWI746540B (en) 2016-04-13 2017-04-13 Alloy for seed layer of magnetic recording medium, sputtering target material and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080217A JP6431496B2 (en) 2016-04-13 2016-04-13 Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2017191625A true JP2017191625A (en) 2017-10-19
JP6431496B2 JP6431496B2 (en) 2018-11-28

Family

ID=60041503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080217A Active JP6431496B2 (en) 2016-04-13 2016-04-13 Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium

Country Status (6)

Country Link
JP (1) JP6431496B2 (en)
CN (1) CN109074824B (en)
MY (1) MY190813A (en)
SG (1) SG11201808739XA (en)
TW (1) TWI746540B (en)
WO (1) WO2017179466A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892191B2 (en) 2018-08-17 2021-01-12 Toshiba Memory Corporation Method of manufacturing a semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385370B2 (en) * 2019-05-07 2023-11-22 山陽特殊製鋼株式会社 Ni-based sputtering target and magnetic recording medium
JP7274361B2 (en) * 2019-06-19 2023-05-16 山陽特殊製鋼株式会社 Alloy for seed layer of magnetic recording media
CN110423934B (en) * 2019-08-27 2021-03-30 哈尔滨理工大学 High-temperature high-toughness Ni-Co-Mn-Sn-Cu alloy with large magnetocaloric effect, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129163A (en) * 2008-12-01 2010-06-10 Showa Denko Kk Thermally-assisted magnetic recording medium, and magnetic recording and reproducing device
JP2012128933A (en) * 2010-11-22 2012-07-05 Sanyo Special Steel Co Ltd Alloy for seed layer of magnetic recording medium, and sputtering target material
JP2014081981A (en) * 2012-10-17 2014-05-08 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810360B2 (en) * 2006-08-31 2011-11-09 石福金属興業株式会社 Magnetic thin film
JP2008226416A (en) * 2007-03-16 2008-09-25 Fuji Electric Device Technology Co Ltd Perpendicular magnetic recording medium and its manufacturing method
JP5384969B2 (en) * 2009-02-25 2014-01-08 山陽特殊製鋼株式会社 Sputtering target material and thin film produced using the same
JP5370917B2 (en) * 2009-04-20 2013-12-18 日立金属株式会社 Method for producing Fe-Co-Ni alloy sputtering target material
JP6302153B2 (en) * 2011-09-28 2018-03-28 山陽特殊製鋼株式会社 Soft magnetic thin film layer and perpendicular magnetic recording medium in perpendicular magnetic recording medium
JP2015111482A (en) * 2013-12-06 2015-06-18 株式会社東芝 Perpendicular magnetic recording medium and magnetic recording/reproducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010129163A (en) * 2008-12-01 2010-06-10 Showa Denko Kk Thermally-assisted magnetic recording medium, and magnetic recording and reproducing device
JP2012128933A (en) * 2010-11-22 2012-07-05 Sanyo Special Steel Co Ltd Alloy for seed layer of magnetic recording medium, and sputtering target material
JP2014081981A (en) * 2012-10-17 2014-05-08 Hitachi Ltd Perpendicular magnetic recording medium and magnetic storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892191B2 (en) 2018-08-17 2021-01-12 Toshiba Memory Corporation Method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
CN109074824A (en) 2018-12-21
SG11201808739XA (en) 2018-11-29
MY190813A (en) 2022-05-12
CN109074824B (en) 2020-10-09
TWI746540B (en) 2021-11-21
TW201807229A (en) 2018-03-01
JP6431496B2 (en) 2018-11-28
WO2017179466A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP5726615B2 (en) Alloy for seed layer of magnetic recording medium and sputtering target material
JP5698023B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6431496B2 (en) Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
JP2014156639A (en) CoFe-BASED ALLOY FOR SOFT MAGNETIC FILM LAYERS IN PERPENDICULAR MAGNETIC RECORDING MEDIA, AND SPUTTERING TARGET MATERIAL
TWI683008B (en) Sputtering target and method for manufacturing same
JP2008115461A (en) Co-Fe-Zr-BASED ALLOY SPUTTERING TARGET MATERIAL AND PROCESS FOR PRODUCTION THEREOF
JP5714397B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP5631659B2 (en) Soft magnetic alloy and sputtering target material for perpendicular magnetic recording medium, and magnetic recording medium
JP5797398B2 (en) Ni-based alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP6442460B2 (en) CoFe-based alloy and sputtering target material for soft magnetic film layer in perpendicular magnetic recording medium
JP7274361B2 (en) Alloy for seed layer of magnetic recording media
JP7157573B2 (en) Ni-based alloy for seed layer of magnetic recording media
JP2016149170A (en) Fe-Co-Nb BASED ALLOY SPUTTERING TARGET MATERIAL AND SOFT MAGNETIC FILM
JP6998431B2 (en) Co-based alloy for soft magnetic layer of magnetic recording medium
JP6784733B2 (en) Co-based alloy for soft magnetic layer of magnetic recording medium
JP2018085156A (en) Sputtering target for forming soft magnetic film
CN107251139B (en) Alloy for seed layer of Ni-Cu magnetic recording medium, sputtering target material, and magnetic recording medium
JP2020135907A (en) Spattering target for forming soft magnetic layer of perpendicular magnetic recording medium, and perpendicular magnetic recording medium, and soft magnetic layer thereof
WO2017033936A1 (en) Non-magnetic amorphous alloy, and sputtering target material and magnetic recording medium using said alloy
JP2017208147A (en) Sputtering target for forming soft magnetic ground layer and soft magnetic ground layer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180529

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181102

R150 Certificate of patent or registration of utility model

Ref document number: 6431496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250