JP2016145394A - Nickel based target material excellent in sputtering property - Google Patents

Nickel based target material excellent in sputtering property Download PDF

Info

Publication number
JP2016145394A
JP2016145394A JP2015023101A JP2015023101A JP2016145394A JP 2016145394 A JP2016145394 A JP 2016145394A JP 2015023101 A JP2015023101 A JP 2015023101A JP 2015023101 A JP2015023101 A JP 2015023101A JP 2016145394 A JP2016145394 A JP 2016145394A
Authority
JP
Japan
Prior art keywords
target material
phase
alloy
powder
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023101A
Other languages
Japanese (ja)
Other versions
JP6581780B2 (en
Inventor
未由紀 宇野
Miyuki UNO
未由紀 宇野
長谷川 浩之
Hiroyuki Hasegawa
浩之 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015023101A priority Critical patent/JP6581780B2/en
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to PCT/JP2016/053350 priority patent/WO2016129492A1/en
Priority to SG11201706370SA priority patent/SG11201706370SA/en
Priority to SG10201906538UA priority patent/SG10201906538UA/en
Priority to CN201680006203.9A priority patent/CN107250424A/en
Priority to MYPI2017702870A priority patent/MY188184A/en
Priority to TW105104154A priority patent/TW201700742A/en
Publication of JP2016145394A publication Critical patent/JP2016145394A/en
Application granted granted Critical
Publication of JP6581780B2 publication Critical patent/JP6581780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7379Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel based alloy sputtering target material capable of obtaining a strong leakage magnetic flux, low in permeability and high in use efficiency.SOLUTION: The nickel based sputtering target material consists of (Ni-Fe-Co)-Malloy, where M1 elements are one kind or two kinds or more of elements selected from W, Mo, Ta, Cr, V and Nb; the total amount W of the M1 elements is 2-20 at.% in terms of at.%; the remainder consists of Ni, Fe, Co and inevitable impurities; the items of Ni, Fe and Co contents are 20≤X≤98, 0≤Y≤50 and 0≤Z≤60; and in the micro structure, a matrix phase is a Ni-M phase, and an Fe phase and/or a Co phase are dispersed in the matrix phase.SELECTED DRAWING: None

Description

本発明は、強い漏洩磁束が得られる透磁率が低く使用効率が高いNi系合金スパッタリングターゲット材に関するものである。   The present invention relates to a Ni-based alloy sputtering target material having a low magnetic permeability and a high use efficiency that can provide a strong leakage magnetic flux.

近年、垂直磁気記録の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められており、従来普及していた面内磁気記録媒体により、さらに高記録密度が実現できる垂直磁気記録方式が実用化されている。ここで、垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中の媒体面に対して磁化容易軸が垂直方向に配向するように形成したものであり、高記録密度に適した方法である。   In recent years, the progress of perpendicular magnetic recording has been remarkable, and in order to increase the capacity of the drive, the recording density of the magnetic recording medium has been increased. A realizable perpendicular magnetic recording system has been put into practical use. Here, the perpendicular magnetic recording method is a method suitable for high recording density, in which the easy axis of magnetization is oriented perpendicularly to the medium surface in the magnetic film of the perpendicular magnetic recording medium. .

そして、垂直磁気記録方式においては、記録密度を高めた磁気記録膜相と軟磁性膜相とを有する記録媒体が開発されており、このような媒体構造では、軟磁性層と磁気記録層の間にシード層や下地膜層が製膜された記録媒体が開発されている。この垂直磁気記録方式用のシード層には一般に、NiW系の合金が用いられている。   In the perpendicular magnetic recording system, a recording medium having a magnetic recording film phase and a soft magnetic film phase with an increased recording density has been developed. In such a medium structure, a recording medium between the soft magnetic layer and the magnetic recording layer has been developed. In addition, a recording medium on which a seed layer and a base film layer are formed has been developed. In general, a NiW-based alloy is used for the seed layer for the perpendicular magnetic recording system.

一方、ハードディスクドライブの磁気記録特性を改善する一つの手法として、シード層に磁性を持たせる方法が提案されており、例えば、特開2012−128933号(特許文献1)に開示されているように、磁性を有するVIII族の元素であるFe,Coを添加することで、磁性を持ったシード層が提案されている。   On the other hand, as one method for improving the magnetic recording characteristics of a hard disk drive, a method of imparting magnetism to a seed layer has been proposed. For example, as disclosed in Japanese Patent Application Laid-Open No. 2012-128933 (Patent Document 1). A seed layer having magnetism has been proposed by adding Fe, Co, which is a group VIII element having magnetism.

特開2012−128933号公報JP 2012-128933 A 特開2010−59540号公報JP 2010-59540 A

上述したシード層の成膜には、一般にマグネトロンスパッタリング法が用いられている。このマグネトロンスパッタリング法とは、ターゲット材の背後に磁石を配置し、ターゲット材の表面に磁束を漏洩させて、その漏洩磁束領域にプラズマを収束させることにより高速成膜を可能とするスパッタリング法である。このマグネトロンスパッタリング法はターゲット材のスパッタ表面に磁束を漏洩させることに特徴があるため、ターゲット材自身の透磁率が高い場合にはターゲット材のスパッタ表面にマグネトロンスパッタリング法に必要十分な漏洩磁束を形成するのが難しくなる。そこで、ターゲット材自身の透磁率を極力低減しなければならない。しかしながら、上述でのターゲット材では透磁率が高いため漏洩磁束が低く、スパッタ性に乏しい点が課題である。   Magnetron sputtering is generally used for the formation of the seed layer described above. This magnetron sputtering method is a sputtering method that enables high-speed film formation by placing a magnet behind the target material, leaking magnetic flux to the surface of the target material, and converging the plasma in the leakage magnetic flux region. . This magnetron sputtering method is characterized by leakage of magnetic flux to the sputtering surface of the target material. Therefore, if the magnetic permeability of the target material itself is high, sufficient magnetic flux leakage necessary for the magnetron sputtering method is formed on the sputtering surface of the target material. It becomes difficult to do. Therefore, the permeability of the target material itself must be reduced as much as possible. However, the above-described target material has a problem that the magnetic permeability is high, the leakage magnetic flux is low, and the sputtering property is poor.

一方、透磁率を低減する手法の一例として、特開2010−59540号(特許文献2)のように、純Coスパッタリングターゲット材において、原料に純Co粉末を用いることで透磁率を低くする方法がある。しかし、特許文献2の方法は軟磁性相用Co−Fe系合金ターゲット材にのみ適応でき、シード層用Ni系合金ターゲット材などには対応していない。さらに、Fe源には合金を使用しており、純Fe粉末を用いた粉末焼結法の検討は行われていない。   On the other hand, as an example of a technique for reducing the magnetic permeability, there is a method of reducing the magnetic permeability by using pure Co powder as a raw material in a pure Co sputtering target material as disclosed in JP 2010-59540 A (Patent Document 2). is there. However, the method of Patent Document 2 can be applied only to the Co—Fe based alloy target material for the soft magnetic phase, and does not correspond to the Ni based alloy target material for the seed layer. Furthermore, an alloy is used as the Fe source, and a powder sintering method using pure Fe powder has not been studied.

そこで、本発明では原料粉末としてNi−M系合金粉末、純Fe粉末、純Co粉末を用いて、シード層用Ni−Co−Fe系合金ターゲット材の製造方法を検討した結果、強い漏洩磁束が得られるNi−Co−Fe系合金ターゲット材を見出した。   Therefore, in the present invention, as a result of studying a method for producing a Ni-Co-Fe alloy target material for a seed layer using Ni-M alloy powder, pure Fe powder, and pure Co powder as raw material powder, strong leakage magnetic flux is found. The obtained Ni—Co—Fe alloy target material was found.

(1)Ni系スパッタリングターゲット材は(Nix −FeY −CoZ100-W −MW合金からなり、同合金はat.%で、M1元素はW、Mo、Ta、Cr、V、Nbから選ばれる1種又は2種以上の元素であり、M1元素の合計量Wは2〜20at.%であり。残部がNi、Fe、Coおよび不可避的不純物からなり、かつNi、Fe、Coの含有量の内訳は20≦X≦98、0≦Y≦50、0≦Z≦60であって、かつミクロ組織はマトリックス相がNi−M相でマトリックス相中にFe相および/またはCo相が分散していることを特徴とするNi系スパッタリングターゲット材。 (1) Ni-based sputtering target material is made of (Nix -Fe Y -Co Z) 100 -W -M W alloy, the alloy at. %, The M1 element is one or more elements selected from W, Mo, Ta, Cr, V, and Nb, and the total amount W of the M1 element is 2 to 20 at. %. The balance is Ni, Fe, Co and inevitable impurities, and the breakdown of the contents of Ni, Fe, Co is 20 ≦ X ≦ 98, 0 ≦ Y ≦ 50, 0 ≦ Z ≦ 60, and the microstructure Is a Ni-type sputtering target material characterized in that the matrix phase is Ni-M phase and the Fe phase and / or Co phase is dispersed in the matrix phase.

(2)前記(1)に記載されたNi−Fe−Co−M合金で、FeとCoの合計量が1.5at%以上含有すること特徴とするNi系スパッタリングターゲット材。
(3)前記(1)または(2)に記載されたNi−Fe−Co−M合金に、更にM2元素としてAl,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Ruから選ばれる1種又は2種以上の元素を合計で0超え〜10at.%含有することを特徴とするNi系スパッタリングターゲット材。
(2) The Ni-Fe-Co-M alloy described in (1) above, wherein the total amount of Fe and Co is 1.5 at% or more.
(3) In addition to the Ni—Fe—Co—M alloy described in (1) or (2) above, Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu as M2 elements , P, C, Ru selected from a total of more than 0 to 10 at. % Ni-based sputtering target material characterized by containing.

(4)fccまたはhcp相のCoを含むことを特徴とする前記(1)〜(3)のいずれか1に記載のNi系スパッタリングターゲット材。
(5)fccまたはbcc相のFeを含むことを特徴とする前記(1)〜(3)のいずれか1に記載のNi系スパッタリングターゲット材。
(6)漏洩磁束が10%以上であることを特徴とする前記(1)〜(3)のいずれか1に記載のNi系スパッタリングターゲット材にある。
(4) The Ni-based sputtering target material according to any one of (1) to (3), wherein the Ni-based sputtering target material contains Co of fcc or hcp phase.
(5) The Ni-based sputtering target material according to any one of (1) to (3), wherein the Ni-based sputtering target material contains fcc or bcc phase Fe.
(6) The Ni-based sputtering target material according to any one of (1) to (3), wherein the leakage magnetic flux is 10% or more.

本発明によれば、効率よくマグネトロンスパッタリングが行えるNi−Fe−Co−M系合金スパッタリングターゲット材を提供でき、垂直磁気記録媒体のようにNi−Fe−Co系合金のシード層を必要とする工業製品を製造する上で極めて有効な技術となる。   INDUSTRIAL APPLICABILITY According to the present invention, an Ni—Fe—Co—M alloy sputtering target material capable of efficiently performing magnetron sputtering can be provided, and an industry that requires a Ni—Fe—Co alloy seed layer as in a perpendicular magnetic recording medium. This is an extremely effective technology for manufacturing products.

以下、本発明について詳細に説明する。
上述したように、本発明の最も重要な特徴は、シード層用スパッタリングターゲット材において、原料粉末としてNi−M系合金粉末、純Fe粉末、純Co粉末を用いて混合し、成形することで、磁性が弱い、または磁性を持たないNi系合金中に、磁性を有するFeやCoを切り離して混在させた点にある。
Hereinafter, the present invention will be described in detail.
As described above, the most important feature of the present invention is that, in the sputtering target material for the seed layer, Ni-M alloy powder, pure Fe powder, and pure Co powder are mixed and molded as a raw material powder, This is in that Fe or Co having magnetism is separated and mixed in a Ni-based alloy having weak magnetism or no magnetism.

また、Ni−Fe−Co−M合金において、W,Mo,Ta,Cr,V,Nbを以下M1元素と称すると、このM1元素は、高融点を持つbcc系金属であり、本発明で規定する成分範囲でfccであるNi−Fe−Co系に添加することにより、そのメカニズムは明確ではないが、シード層に求められる(111)面への配向性を改善させ、かつ結晶粒を微細化させる元素である。このW,Mo,Ta,Cr,V,Nbの1種または2種以上をat%量で、2〜20%とする。しかし、2%未満ではその効果が十分でなく、また、20%を超えると化合物が析出するか、アモルファス化する。シード層用合金としてはfcc単相である事が求められることから、その範囲を2〜20%とする。好ましくは5〜15%とする。   In the Ni—Fe—Co—M alloy, when W, Mo, Ta, Cr, V, and Nb are hereinafter referred to as M1 elements, these M1 elements are bcc metals having a high melting point, and are defined by the present invention. Although the mechanism is not clear by adding to the Ni-Fe-Co system which is fcc in the component range to be improved, the orientation to the (111) plane required for the seed layer is improved and the crystal grains are made finer It is an element to be made. One or two or more of W, Mo, Ta, Cr, V, and Nb is 2% to 20% in terms of at%. However, if it is less than 2%, the effect is not sufficient, and if it exceeds 20%, the compound precipitates or becomes amorphous. Since the alloy for the seed layer is required to be an fcc single phase, its range is made 2 to 20%. Preferably it is 5 to 15%.

本発明に係るNi−Fe−Co−M合金において、Ni、Fe、Coの比率である、Ni:Fe:Co=α:β:γとすると、α:98〜20とする。98以下とした理由は、β+γが1.5未満では保磁力が高くなる。また、20以上とした理由は、20未満では、上記同様保磁力が高くなる。したがって、その範囲を98〜20とした。好ましくは98〜60とする。   In the Ni—Fe—Co—M alloy according to the present invention, when Ni: Fe: Co = α: β: γ, which is the ratio of Ni, Fe, and Co, α: 98-20. The reason why it is 98 or less is that when β + γ is less than 1.5, the coercive force becomes high. Moreover, if it is 20 or more, if it is less than 20, the coercive force is increased as described above. Therefore, the range was set to 98-20. Preferably it is set to 98-60.

at比β:0〜50
Feは、保磁力を低減する元素であり、かつ、膜の配向性を改善する元素でもある。しかし、50を超えると保磁力が高くなることから、その範囲を0〜50とした。好ましくは2〜50%、より好ましくは10〜40とする。
at比γ:0〜60
Coは、(111)方向の保磁力を低減する元素である。しかし、60を超えると保磁力が高くなることから、その上限を60とした。好ましくは40以下とする。
at ratio β: 0 to 50
Fe is an element that reduces the coercive force and also improves the orientation of the film. However, since coercive force will become high when it exceeds 50, the range was made into 0-50. Preferably it is 2 to 50%, more preferably 10 to 40.
at ratio γ: 0 to 60
Co is an element that reduces the coercivity in the (111) direction. However, since the coercive force increases when it exceeds 60, the upper limit is set to 60. Preferably it is 40 or less.

磁性を有するFe相および/またはCo相が、磁性が弱い、または磁性を持たないNi−M相中に、分散することで、母材の磁性を低減させ、透磁率を低下させる。透磁率の低下により、強い漏洩磁束が得られ、スパッタリング性が向上する。FeとCoの合計量が1.5at%より少ない場合では、Ni系中間層に十分な磁性を持たせることができない。したがって、FeとCoの含有合計量を1.5at%以上とした。   The Fe phase and / or Co phase having magnetism are dispersed in the Ni-M phase having weak magnetism or no magnetism, thereby reducing the magnetism of the base material and lowering the magnetic permeability. Due to the decrease in the magnetic permeability, a strong leakage magnetic flux is obtained and the sputtering property is improved. When the total amount of Fe and Co is less than 1.5 at%, the Ni-based intermediate layer cannot have sufficient magnetism. Therefore, the total content of Fe and Co is set to 1.5 at% or more.

M2元素は、(111)面を配向させる元素であり、また、結晶粒を微細化する元素である。このM2元素の1種または2種以上をat%量で、0〜10%とする。しかし、10%を超えると化合物が生じたり、アモルファス化することから、その上限を10%とする。好ましくは5%とする。また、M1+M2は好ましくは、25at%以下、さらに好ましくは20at%以下とする。   The M2 element is an element that orients the (111) plane and is an element that refines crystal grains. One or two or more of these M2 elements are made at 0% to 10% in the amount of at%. However, if it exceeds 10%, a compound is formed or becomes amorphous, so the upper limit is made 10%. Preferably it is 5%. M1 + M2 is preferably 25 at% or less, more preferably 20 at% or less.

Coは、マトリックス相であるNi−M系合金と合金化せずに、fccまたはhcp相の単一で存在することで、透磁率の低いスパッタリング性に優れたターゲット材となる。Feは、マトリックス相であるNi−M系合金と合金化せずに、fccまたはhcp相の単一で存在することで、透磁率の低いスパッタ性に優れたターゲット材となる。
磁性が弱い、または磁性を持たないNiW系合金中に、磁性を有するFeやCoを切り離して混在させ、10%以上の漏洩磁束を得ることで、スパッタ性に優れたターゲット材となる。
Co does not form an alloy with a Ni-M alloy that is a matrix phase, but exists as a single fcc or hcp phase, and thus becomes a target material with low permeability and excellent sputtering properties. Fe does not form an alloy with the Ni-M alloy that is the matrix phase, but exists as a single fcc or hcp phase, so that it becomes a target material with low permeability and excellent sputterability.
A NiW-based alloy having weak magnetism or no magnetism is mixed with Fe and Co having magnetism separately to obtain a leakage magnetic flux of 10% or more, thereby obtaining a target material having excellent sputterability.

本発明においては、Ni−Fe−Co−M合金スパッタリングターゲット材において、Ni−M合金溶湯を急冷凝固処理した粉末と純Fe、純Co粉末を所定の組成比率に混合し成形し機械加工することで、透磁率の低くスパッタ性に優れたNi系ターゲットの製造方法を見出した。   In the present invention, in a Ni—Fe—Co—M alloy sputtering target material, a powder obtained by rapidly solidifying a Ni—M alloy molten metal and pure Fe and pure Co powder are mixed in a predetermined composition ratio and molded and machined. Thus, a method for producing a Ni-based target having low magnetic permeability and excellent sputterability was found.

本発明に係る純Coについては、fccまたはhcp構造を形成しており、また、純F
eはfccまたはbcc構造を形成している。したがって、本発明のように、Ni−M系合金粉末、純Fe粉末、純Co粉末を用いて混合し、作製したターゲット材では、fccまたはhcp相の純Coやfccまたはbcc相の純Feが存在していることがX線回折より明確に観測することができる。一方、合金化したFeやCoではこれらのピークは観測しないことが判明した。
The pure Co according to the present invention has an fcc or hcp structure, and is pure F
e forms an fcc or bcc structure. Therefore, as in the present invention, the target material prepared by mixing using Ni-M alloy powder, pure Fe powder, and pure Co powder has fcc or hcp phase pure Co or fcc or bcc phase pure Fe. The existence can be clearly observed from X-ray diffraction. On the other hand, it has been found that these peaks are not observed in alloyed Fe and Co.

作製した合金粉末は500μm以下に分級した粉末が好ましい。粉末の作製は、ガスア
トマイズ法、水アトマイズ法や回転ディスク式アトマイズ法などを適用することができる。作製したターゲット材の漏洩磁束(Pass−Through−Flux、以下PTFと記す)の測定に当たっては、ターゲット材の裏面に永久磁石を配置し、ターゲット材表面に漏洩する磁束を測定した。この方法は、マグネトロンスパッタ装置に近い状態の漏洩磁束を定量的に測定できる。実際の測定はASTM F2806−01(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets Method2)に基づいて行い、次式よりPTFを求めた。(PTF)=100×(ターゲット材を置いた状態での磁束の強さ)÷(ターゲット材を置かない状態での磁束の強さ)(%)
The produced alloy powder is preferably a powder classified to 500 μm or less. For the production of the powder, a gas atomizing method, a water atomizing method, a rotating disk atomizing method, or the like can be applied. In measuring the leakage magnetic flux (Pass-Through-Flux, hereinafter referred to as PTF) of the produced target material, a permanent magnet was disposed on the back surface of the target material, and the magnetic flux leaking to the target material surface was measured. This method can quantitatively measure the leakage magnetic flux in a state close to a magnetron sputtering apparatus. Actual measurement was performed based on ASTM F2806-01 (Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets Method 2), and PTF was obtained from the following equation. (PTF) = 100 × (Magnetic strength with target material placed) ÷ (Magnetic strength with no target material placed) (%)

以下、本発明についてさらに実施例により具体的に説明する。
原料粉末において、純Fe粉末、純Co粉末、Ni−M系合金粉末は、ガスアトマイズ法によって作製した。ガスアトマイズ法の条件は、ガス種類がアルゴンガス、ノズル径が6mm、ガス圧が5MPaの条件で行った。
Hereinafter, the present invention will be described more specifically with reference to examples.
In the raw material powder, pure Fe powder, pure Co powder, and Ni-M alloy powder were produced by a gas atomization method. The gas atomization method was performed under the conditions that the gas type was argon gas, the nozzle diameter was 6 mm, and the gas pressure was 5 MPa.

上述したNi−M系合金粉末に対して、純Fe粉末、純Co粉末の各混合粉末をSC材質からなる封入缶に充填し、到達真空度10-1Pa以上で脱気真空封入した後、加圧焼結方法にて、温度1100K、147MPa、保持時間5時間の条件、ないしは温度950K、147MPa、保持時間5時間の条件で、成形体を作製し、次いで機械加工により最終形状として外径180mm、厚み7mmのターゲット材を得た。混合粉末は、純Fe粉末、純Co粉末、Ni−M系合金粉末をV型混合機により1時間攪拌したものを使用した。また、混合粉末の加圧焼結方法としては、ホットプレス、熱間静水圧プレス、通電加圧焼結、熱間押し出しなどを適用することができる。 After filling the above-mentioned Ni-M alloy powder with a mixed powder of pure Fe powder and pure Co powder in a sealed can made of SC material, and after deaeration vacuum sealing at an ultimate vacuum of 10 -1 Pa or higher, A compact is produced by pressure sintering at a temperature of 1100 K, 147 MPa and a holding time of 5 hours, or a temperature of 950 K, 147 MPa and a holding time of 5 hours, and then machined to obtain a final shape with an outer diameter of 180 mm. A target material having a thickness of 7 mm was obtained. As the mixed powder, pure Fe powder, pure Co powder, and Ni-M alloy powder were stirred for 1 hour with a V-type mixer. Moreover, as a pressure sintering method of the mixed powder, hot pressing, hot isostatic pressing, energizing pressure sintering, hot extrusion, and the like can be applied.

得られたターゲット材の特性についての測定、評価について述べる。
[透磁率]
作製したターゲット材の透磁率の測定に当たっては、外径15mm、内径10mm、高さ5mmのリング試験片を製作し、BHトレーサーを用いて、8kA/mの印加磁場にて最大透磁率を測定した。最大透磁率が1000以下を○、1000を超えるものを×とした。
Measurement and evaluation of the characteristics of the obtained target material will be described.
[Permeability]
In measuring the permeability of the prepared target material, a ring test piece having an outer diameter of 15 mm, an inner diameter of 10 mm, and a height of 5 mm was manufactured, and the maximum permeability was measured with a BH tracer in an applied magnetic field of 8 kA / m. . The maximum magnetic permeability was 1000 or less, and the case where the maximum permeability exceeded 1000 was rated as x.

[PTF]
作製したターゲット材のPTFの測定に当たっては、ターゲット材の裏面に永久磁石を配置し、ターゲット材表面に漏洩する磁束を測定した。比較例のターゲット材のPTFは10%以下であったが、本発明の実施例のターゲット材はいずれも10%以上のPTFを示した。
[PTF]
In measuring the PTF of the produced target material, a permanent magnet was placed on the back surface of the target material, and the magnetic flux leaking to the target material surface was measured. The PTF of the target material of the comparative example was 10% or less, but all of the target materials of the examples of the present invention showed 10% or more of PTF.

[Fe相、Co相]
作製したターゲット材のCo相やFe相の観測に当たっては、幅10mm、長さ20mm、厚み5mmの試験片を製作し、X線回折装置にて回折パターンを得た。X源はCu−α線でスキャンスピード4°/minで測定した。実施例のターゲット材のXRDパターンでは、メインピークと共にfccまたはhcpのCo相や、fccまたはbccのFe相に起因するピークを観測した。XRDによりfccまたはhcpのCo相や、fccまたはbccのFe相を観測したものを○、観測しなかったものを×とする。
[Fe phase, Co phase]
In observing the Co phase and Fe phase of the prepared target material, a test piece having a width of 10 mm, a length of 20 mm, and a thickness of 5 mm was produced, and a diffraction pattern was obtained using an X-ray diffractometer. The X source was Cu-α ray and measured at a scan speed of 4 ° / min. In the XRD pattern of the target material of the example, a peak due to the fcc or hcp Co phase or the fcc or bcc Fe phase was observed together with the main peak. The case where the Co phase of fcc or hcp or the Fe phase of fcc or bcc was observed by XRD is indicated by ◯, and the case where the fcc or bcc Fe phase is not observed is indicated by ×.

[成分偏析]
作製したターゲット材の成分分布測定に当たっては、幅10mm、長さ20mm、厚み5mmの試験片を製作し、EPMA(電子ブローブマイクロアナライザ)より各主成分の分布を観測した。比較例のターゲット材において、Fe、Coが均一に存在していたが、実施例のターゲット材においては、Fe、Co成分の分布に偏りがあり、Ni−M系中にFe、Coの単一相が切り離された状態で混在していることを観測した。EPMAよりFe、Co成分の分布に偏りがあるものを○、Fe、Coが均一に存在しているものを×と示した。
[Component segregation]
In measuring the component distribution of the prepared target material, a test piece having a width of 10 mm, a length of 20 mm, and a thickness of 5 mm was manufactured, and the distribution of each main component was observed with an EPMA (electronic probe microanalyzer). In the target material of the comparative example, Fe and Co existed uniformly, but in the target material of the example, the distribution of Fe and Co components was uneven, and the single Fe and Co in the Ni-M system. It was observed that the phases were separated and separated. The case where the distribution of Fe and Co components is biased from EPMA is indicated by ◯, and the case where Fe and Co are uniformly present is indicated by ×.

Figure 2016145394
Figure 2016145394

Figure 2016145394
表1に示すように、No.1〜30は本発明例、No.31〜41は比較例である。
Figure 2016145394
As shown in Table 1, no. 1-30 are examples of the present invention, No. Reference numerals 31 to 41 are comparative examples.

表2に示すように、比較例31〜41は、磁性を有するNi系シード層用合金ターゲッ
ト材の原料として、単にFe源やCo源に合金のみを用いることで、磁性を持つFe、Coが均一に存在するため、1000μmを超える透磁率を観測し、PTFは10%未満であった。また、FeやCoは合金の状態で存在しており、XRDによるそれぞれ固有のピークは観測しなかった。
As shown in Table 2, in Comparative Examples 31 to 41, as a raw material for the alloy target material for the Ni-based seed layer having magnetism, Fe and Co having magnetism can be obtained simply by using an alloy for the Fe source and Co source. Since it exists uniformly, the magnetic permeability exceeding 1000 micrometers was observed and PTF was less than 10%. Fe and Co existed in an alloy state, and no unique peak was observed by XRD.

これに対し、本発明例No.1〜30においては、いずれも原料粉末としてNi−M系合金粉末、純Fe粉末、純Co粉末を用いて混合し、成形することで、磁性が弱い、または磁性を持たないNi系合金中に、磁性を有するFeやCoを切り離して混在しているため、1000μm以下の透磁率を示し、10%以上のPTFを示した。また、FeやCoは単体で存在しており、X線回折よりfccまたはhcp相のCoやfccまたはbcc相のFeを観測した。この結果、本発明についてのNo.1〜30のいずれも純Fe粉末、純Co粉末を成形に使用し、Ni−M系中にFe、Coの単一相が切り離された状態で混在しているスパッタリングターゲット材は、透磁率の低下していることがわかる。   On the other hand, the present invention example No. 1 to 30, all are mixed using Ni-M alloy powder, pure Fe powder, and pure Co powder as raw material powders, and formed into a Ni-based alloy that is weak or non-magnetic. Since Fe and Co having magnetism are separated and mixed, the magnetic permeability is 1000 μm or less, and the PTF is 10% or more. Fe and Co exist alone, and fcc or hcp phase Co or fcc or bcc phase Fe was observed by X-ray diffraction. As a result, no. 1 to 30 use pure Fe powder and pure Co powder for molding, and the sputtering target material in which a single phase of Fe and Co is separated in the Ni-M system is magnetic permeability. It turns out that it has fallen.

以上述べたように、本発明では、Ni−Fe−Co−M合金であって、Ni、Fe、Coの比率がat%で、Ni:Fe:Co=98〜20:0〜50:0〜60、Fe+Co≧1.5であり、かつ、M元素としてW,Mo,Ta,Cr,V,Nbの1種または2種以上を2〜20at%含有するスパッタリングターゲット材であって、Ni−M系中にFe、Coの単一相が切り離された状態で混在することで、漏洩磁束が強くスパッタ性に優れたNi系合金スパッタリングターゲット材が得られ、優れた結果を奏するものである。
特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, in the present invention, the Ni—Fe—Co—M alloy has a ratio of Ni, Fe, and Co of at%, and Ni: Fe: Co = 98 to 20: 0 to 50: 0 to 60, Fe + Co ≧ 1.5, and a sputtering target material containing 2 to 20 at% of one or more of W, Mo, Ta, Cr, V, and Nb as M element, By mixing Fe and Co in a state where a single phase of Fe and Co is separated in the system, a Ni-based alloy sputtering target material having a strong leakage magnetic flux and excellent sputterability can be obtained, and an excellent result can be obtained.
Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (6)

Ni系スパッタリングターゲット材は(Nix −FeY −CoZ100-W −MW 合金からなり、同合金はat.%で、M1元素はW、Mo、Ta、Cr、V、Nbから選ばれる1種又は2種以上の元素であり、M1元素の合計量Wは2〜20at.%であり。残部がNi、Fe、Coおよび不可避的不純物からなり、かつNi、Fe、Coの含有量の内訳は20≦X≦98、0≦Y≦50、0≦Z≦60であって、かつミクロ組織はマトリックス相がNi−M相でマトリックス相中にFe相および/またはCo相が分散していることを特徴とするNi系スパッタリングターゲット材。 Ni-based sputtering target material is made of (Nix -Fe Y -Co Z) 100 -W -M W alloy, the alloy at. %, The M1 element is one or more elements selected from W, Mo, Ta, Cr, V, and Nb, and the total amount W of the M1 element is 2 to 20 at. %. The balance is Ni, Fe, Co and inevitable impurities, and the breakdown of the contents of Ni, Fe, Co is 20 ≦ X ≦ 98, 0 ≦ Y ≦ 50, 0 ≦ Z ≦ 60, and the microstructure Is a Ni-type sputtering target material characterized in that the matrix phase is Ni-M phase and the Fe phase and / or Co phase is dispersed in the matrix phase. 請求項1に記載されたNi−Fe−Co−M合金で、FeとCoの合計量が1.5at%以上含有すること特徴とするNi系スパッタリングターゲット材。 The Ni-Fe-Co-M alloy according to claim 1, wherein the total amount of Fe and Co is 1.5 at% or more. 請求項1または請求項2に記載されたNi−Fe−Co−M合金に、更にM2元素としてAl,Ga,In,Si,Ge,Sn,Zr,Ti,Hf,B,Cu,P,C,Ruから選ばれる1種又は2種以上の元素を合計で0超え〜10at.%含有することを特徴とするNi系スパッタリングターゲット材。 The Ni—Fe—Co—M alloy according to claim 1 or claim 2 further includes Al, Ga, In, Si, Ge, Sn, Zr, Ti, Hf, B, Cu, P, C as M2 elements. , Ru selected from one or two or more elements in total exceeding 0 to 10 at. % Ni-based sputtering target material characterized by containing. fccまたはhcp相のCoを含むことを特徴とする請求項1〜3のいずれか1項に記載のNi系スパッタリングターゲット材。 4. The Ni-based sputtering target material according to claim 1, comprising Co in fcc or hcp phase. fccまたはbcc相のFeを含むことを特徴とする請求項1〜3のいずれか1項に記載のNi系スパッタリングターゲット材。 The Ni-based sputtering target material according to any one of claims 1 to 3, wherein the Ni-based sputtering target material contains fcc or bcc phase Fe. 漏洩磁束が10%以上であることを特徴とする請求項1〜3のいずれか1項に記載のNi系スパッタリングターゲット材。 Leakage magnetic flux is 10% or more, The Ni type sputtering target material of any one of Claims 1-3 characterized by the above-mentioned.
JP2015023101A 2015-02-09 2015-02-09 Ni-based target material with excellent sputtering properties Active JP6581780B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015023101A JP6581780B2 (en) 2015-02-09 2015-02-09 Ni-based target material with excellent sputtering properties
SG11201706370SA SG11201706370SA (en) 2015-02-09 2016-02-04 Ni-BASED TARGET MATERIAL EXCELLENT IN SPUTTERING PROPERTY
SG10201906538UA SG10201906538UA (en) 2015-02-09 2016-02-04 Ni-BASED TARGET MATERIAL EXCELLENT IN SPUTTERING PROPERTY
CN201680006203.9A CN107250424A (en) 2015-02-09 2016-02-04 The excellent Ni series target materials of sputtering
PCT/JP2016/053350 WO2016129492A1 (en) 2015-02-09 2016-02-04 Ni BASED TARGET MATERIAL WITH EXCELLENT SPUTTERING PROPERTIES
MYPI2017702870A MY188184A (en) 2015-02-09 2016-02-04 Ni-based target material excellent in sputtering property
TW105104154A TW201700742A (en) 2015-02-09 2016-02-05 Ni based target material with excellent sputtering properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023101A JP6581780B2 (en) 2015-02-09 2015-02-09 Ni-based target material with excellent sputtering properties

Publications (2)

Publication Number Publication Date
JP2016145394A true JP2016145394A (en) 2016-08-12
JP6581780B2 JP6581780B2 (en) 2019-09-25

Family

ID=56614649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023101A Active JP6581780B2 (en) 2015-02-09 2015-02-09 Ni-based target material with excellent sputtering properties

Country Status (6)

Country Link
JP (1) JP6581780B2 (en)
CN (1) CN107250424A (en)
MY (1) MY188184A (en)
SG (2) SG10201906538UA (en)
TW (1) TW201700742A (en)
WO (1) WO2016129492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054136A1 (en) * 2019-09-19 2021-03-25 日立金属株式会社 Target

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7385370B2 (en) * 2019-05-07 2023-11-22 山陽特殊製鋼株式会社 Ni-based sputtering target and magnetic recording medium
CN115161603B (en) * 2022-05-17 2023-02-21 广东欧莱高新材料股份有限公司 Production process of high-purity multi-element alloy rotary sputtering target for high-definition liquid crystal display of high generation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297636A (en) * 1987-11-25 1990-04-10 Hitachi Metals Ltd Sintered target member and its manufacture
JP2005530925A (en) * 2002-06-07 2005-10-13 ヘラエウス インコーポレーテッド High PTF sputtering target and manufacturing method thereof
JP2010095794A (en) * 2008-09-22 2010-04-30 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2010248603A (en) * 2009-04-20 2010-11-04 Hitachi Metals Ltd METHOD FOR PRODUCING Fe-Co-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2012128933A (en) * 2010-11-22 2012-07-05 Sanyo Special Steel Co Ltd Alloy for seed layer of magnetic recording medium, and sputtering target material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751093B2 (en) * 2011-08-24 2015-07-22 新日鐵住金株式会社 Surface-treated hot-dip galvanized steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297636A (en) * 1987-11-25 1990-04-10 Hitachi Metals Ltd Sintered target member and its manufacture
JP2005530925A (en) * 2002-06-07 2005-10-13 ヘラエウス インコーポレーテッド High PTF sputtering target and manufacturing method thereof
JP2010095794A (en) * 2008-09-22 2010-04-30 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2010248603A (en) * 2009-04-20 2010-11-04 Hitachi Metals Ltd METHOD FOR PRODUCING Fe-Co-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2012128933A (en) * 2010-11-22 2012-07-05 Sanyo Special Steel Co Ltd Alloy for seed layer of magnetic recording medium, and sputtering target material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054136A1 (en) * 2019-09-19 2021-03-25 日立金属株式会社 Target
JP7552604B2 (en) 2019-09-19 2024-09-18 株式会社プロテリアル target

Also Published As

Publication number Publication date
JP6581780B2 (en) 2019-09-25
SG10201906538UA (en) 2019-08-27
MY188184A (en) 2021-11-24
TW201700742A (en) 2017-01-01
WO2016129492A1 (en) 2016-08-18
CN107250424A (en) 2017-10-13
SG11201706370SA (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP5037036B2 (en) FeCo-based target material
JP4016399B2 (en) Method for producing Fe-Co-B alloy target material
JP5726615B2 (en) Alloy for seed layer of magnetic recording medium and sputtering target material
JP2007284741A (en) Soft magnetic target material
JP2008189996A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
TW200831686A (en) Co-Fe-Zr based alloy sputtering target material and process for production thereof
JP2008127588A (en) (CoFe)ZrNb/Ta/Hf-BASED TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2010018884A (en) Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP4953082B2 (en) Co-Fe-Zr alloy sputtering target material and method for producing the same
JP4907259B2 (en) FeCoB-based target material with Cr added
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
JP6581780B2 (en) Ni-based target material with excellent sputtering properties
JP4699194B2 (en) Method for producing FeCoB-based sputtering target material
JP6431496B2 (en) Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
JP6254295B2 (en) Ni-based sputtering target material and magnetic recording medium
JP5397755B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP7385370B2 (en) Ni-based sputtering target and magnetic recording medium
TW201816155A (en) Sputtering target material
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP5418897B2 (en) Method for producing Co-Fe alloy sputtering target material
JP7552604B2 (en) target
JP2014177675A (en) Sputtering target for rare earth magnet and production method thereof
JP5037542B2 (en) Soft magnetic target material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6581780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250