JP2010018884A - Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME - Google Patents

Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2010018884A
JP2010018884A JP2009137623A JP2009137623A JP2010018884A JP 2010018884 A JP2010018884 A JP 2010018884A JP 2009137623 A JP2009137623 A JP 2009137623A JP 2009137623 A JP2009137623 A JP 2009137623A JP 2010018884 A JP2010018884 A JP 2010018884A
Authority
JP
Japan
Prior art keywords
target material
sputtering target
alloy
intermetallic compound
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009137623A
Other languages
Japanese (ja)
Other versions
JP5472688B2 (en
Inventor
Atsushi Fukuoka
淳 福岡
Tomonori Ueno
友典 上野
Hiroshi Takashima
洋 高島
Suguru Ueno
英 上野
Mitsuharu Fujimoto
光晴 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009137623A priority Critical patent/JP5472688B2/en
Publication of JP2010018884A publication Critical patent/JP2010018884A/en
Application granted granted Critical
Publication of JP5472688B2 publication Critical patent/JP5472688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe-Co-based alloy target material which can obtain strong magnetic flux leakage, and has low permeability and high using efficiency, and to provide a method for producing the same. <P>SOLUTION: Disclosed is an Fe-Co-based alloy sputtering target material in which compositional formula in atomic ratio is expressed by (Fe<SB>X</SB>-Co<SB>100-X</SB>)<SB>100-Y</SB>M<SB>Y</SB>; wherein 20≤X≤80 and 4≤Y≤25 are satisfied, and the M element denotes Nb and/or Ta. The microstructure of the sputtering target material includes a metallic structure composed of an intermetallic compound phase comprising a BCC phase and/or an FCC phase essentially consisting of Fe and Co and the M element, and in which the diameter of the maximum inscribed circle drawn on the intermetallic compound phase comprising the M element in the microstructure is ≤10 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軟磁性膜を形成するためのFe−Co系合金スパッタリングターゲット材およびその製造方法に関するものである。   The present invention relates to an Fe—Co alloy sputtering target material for forming a soft magnetic film and a method for producing the same.

近年、高度情報化社会により磁気記録の高密度化が強く望まれている。この高密度化を実現する技術として、従来の面内磁気記録方式に代わり垂直磁気記録方式が実用化されている。   In recent years, high recording density has been strongly demanded by an advanced information society. As a technique for realizing this high density, a perpendicular magnetic recording system has been put into practical use instead of the conventional in-plane magnetic recording system.

垂直磁気記録方式とは、磁気記録層の磁化容易軸を媒体面に対して垂直に向けて記録するものであり、記録再生特性の低下が少ない高記録密度化に適した方式である。垂直磁気記録媒体は、基板/軟磁性裏打ち層/Ru中間層/CoPtCr−SiO磁性層/保護層からなる多層構造が一般的である(例えば、非特許文献1参照)。 The perpendicular magnetic recording method is a method in which the easy magnetization axis of the magnetic recording layer is recorded perpendicularly to the medium surface, and is a method suitable for increasing the recording density with little deterioration in recording / reproducing characteristics. A perpendicular magnetic recording medium generally has a multilayer structure including a substrate / soft magnetic backing layer / Ru intermediate layer / CoPtCr—SiO 2 magnetic layer / protective layer (see, for example, Non-Patent Document 1).

垂直記録媒体の軟磁性裏打ち層には優れた軟磁気特性が要求されることから、アモルファス軟磁性合金が採用されている。代表的な軟磁性裏打ち層用アモルファス合金として、Co−Ta−Zr合金膜(例えば、特許文献1参照)やCo−Zr−Nb合金膜(例えば、非特許文献2参照)などが既に実用化されている。しかしながら、Co−Ta−Zr合金膜やCo−Zr−Nb合金膜において、Ta、Zr、Nbの量が少ない場合には耐食性が低くなり、Ta、Zr、Nbの量が多い場合には飽和磁束密度が低くなる問題が指摘されている。そこで上記合金膜の代替候補として、飽和磁束密度と耐食性が共に高く、軟磁気特性に優れたFe−Co系合金膜が提案されている(例えば、特許文献2参照)。   An amorphous soft magnetic alloy is used because the soft magnetic backing layer of the perpendicular recording medium is required to have excellent soft magnetic characteristics. Co-Ta-Zr alloy films (for example, see Patent Document 1) and Co-Zr-Nb alloy films (for example, see Non-Patent Document 2) have already been put to practical use as typical amorphous alloys for soft magnetic backing layers. ing. However, in a Co—Ta—Zr alloy film or a Co—Zr—Nb alloy film, the corrosion resistance is low when the amount of Ta, Zr, Nb is small, and the saturation magnetic flux is high when the amount of Ta, Zr, Nb is large. The problem of low density has been pointed out. Therefore, as an alternative candidate for the above-described alloy film, an Fe—Co-based alloy film having high saturation magnetic flux density and corrosion resistance and excellent soft magnetic properties has been proposed (for example, see Patent Document 2).

一般的に、軟磁性裏打ち層の成膜にはマグネトロンスパッタリング法が用いられる。マグネトロンスパッタリング法とは、ターゲット材と呼ばれる母材の背面に永久磁石を配置し、ターゲット材の表面に磁束を漏洩させて、漏洩磁束領域にプラズマを収束し、高速成膜を可能とする方法である。
しかしながら、マグネトロンスパッタリング法では、プラズマが収束する部分が集中的に侵食されるため、ごく一部しか消費されないままターゲット材を交換することになる。特に、Fe−Co系合金のような強磁性体からなるターゲット材では、ターゲット材の背面に設置した磁石から発生する磁束の大半がターゲット材内部に侵入し、ターゲット材の表面には僅かな磁束しか発生しないため、局部的に深く消耗し、ターゲット材の寿命が極端に短くなるという問題がある。
In general, a magnetron sputtering method is used to form a soft magnetic backing layer. The magnetron sputtering method is a method in which a permanent magnet is placed on the back of a base material called a target material, magnetic flux is leaked to the surface of the target material, plasma is focused on the leakage magnetic flux region, and high-speed film formation is possible. is there.
However, in the magnetron sputtering method, since the portion where the plasma converges is eroded intensively, the target material is replaced while only a small portion is consumed. In particular, in a target material made of a ferromagnetic material such as an Fe-Co alloy, most of the magnetic flux generated from a magnet installed on the back surface of the target material penetrates into the target material, and a small amount of magnetic flux is generated on the surface of the target material. However, since it occurs only locally, there is a problem that it is locally consumed and the life of the target material becomes extremely short.

とりわけ、膜厚が150〜200nmと極端に厚い垂直磁気記録媒体の軟磁性裏打ち層の形成に際しては、ターゲット材寿命が極端に短いことは深刻な問題となっており、ターゲット材の交換頻度を減らすために、出来る限りターゲット材の厚さを厚く設定しつつ十分な漏洩磁束を得るという矛盾した要求を満たさなければならない。   In particular, when a soft magnetic backing layer of a perpendicular magnetic recording medium having an extremely thick film thickness of 150 to 200 nm is formed, the extremely short target material life is a serious problem, and the frequency of replacement of the target material is reduced. Therefore, it is necessary to satisfy the contradictory requirement of obtaining a sufficient leakage magnetic flux while setting the thickness of the target material as thick as possible.

特開2004−206805号公報JP 2004-206805 A 特開2007−109378号公報JP 2007-109378 A

竹野入俊司 富士時報 Vol.77 No.2 2004年 p.121Toshiji Takeno Fuji Times Vol. 77 No. 2 2004 p. 121 D.H.Hong,S.H.Park and T.D.Lee,“Effects of CoZrNb Surface Morphology on Magnetic Properties and Grain Isolation of CoCrPt Perpendicular Recording Media”,IEEE Trans.Magn.,Vol.41,No.10,P.3148−3150,Oct.,2005D. H. Hong, S .; H. Park and T.W. D. Lee, “Effects of CoZrNb Surface Morphology on Magnetic Properties and Grain Isolation of CoCrPt Perpendicular Recording Media”, IEEE Trans. Magn. , Vol. 41, no. 10, P.I. 3148-3150, Oct. , 2005

前記Fe−Co系合金ターゲット材は、一般的に溶解鋳造法で製造されているが、ターゲット材の透磁率が高く、十分な漏洩磁束が得られない問題が指摘されていた。
本発明の目的は、強い漏洩磁束が得られる透磁率が低く使用効率が高いFe−Co系合金ターゲット材およびその製造方法を提供することである。
Although the Fe—Co based alloy target material is generally manufactured by a melt casting method, a problem has been pointed out that the magnetic permeability of the target material is high and sufficient leakage magnetic flux cannot be obtained.
An object of the present invention is to provide an Fe—Co-based alloy target material having a low magnetic permeability and a high use efficiency that provides a strong leakage magnetic flux, and a method for producing the same.

本発明者は、Fe−Co系合金スパッタリングターゲット材の透磁率を低減するために種々の検討を行った結果、Fe−Co系合金スパッタリングターゲット材の組織をFeとCoを主体とするBCC相および/またはFCC相とM元素を含有する金属間化合物相とからなる組織とし、該M元素を含有する金属間化合物相に描ける最大内接円の直径を10μm以下にすることにより、ターゲット材の透磁率を低減でき、強い漏洩磁束が得られることを見出し本発明に到達した。
すなわち、原子比における組成式が(Fe−Co100−X100−Y、20≦X≦80、4≦Y≦25で表され、前記組成式のM元素がNbおよび/あるいはTaであるスパッタリングターゲット材であって、該スパッタリングターゲット材のミクロ組織がFeとCoを主体とするBCC相および/またはFCC相とM元素を含有する金属間化合物相とからなる金属組織を有し、ミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下であることを特徴とするFe−Co系合金スパッタリングターゲット材である。
As a result of various studies to reduce the magnetic permeability of the Fe—Co based alloy sputtering target material, the present inventor has found that the structure of the Fe—Co based alloy sputtering target material has a BCC phase mainly composed of Fe and Co, and By forming a structure composed of an FCC phase and an intermetallic compound phase containing M element and making the diameter of the maximum inscribed circle drawn in the intermetallic compound phase containing M element 10 μm or less, It has been found that the magnetic susceptibility can be reduced and a strong leakage magnetic flux can be obtained.
That is, the composition formula in atomic ratio is represented by (Fe X -Co 100-X) 100-Y M Y, 20 ≦ X ≦ 80,4 ≦ Y ≦ 25, M elements of the compositional formula Nb and / or Ta A sputtering target material, wherein the microstructure of the sputtering target material has a metal structure composed of a BCC phase mainly composed of Fe and Co and / or an FCC phase and an intermetallic compound phase containing an M element, A Fe—Co alloy sputtering target material having a maximum inscribed circle diameter of 10 μm or less drawn in an intermetallic compound phase containing an M element in a microstructure.

本発明のスパッタリングターゲット材においては、Feの一部を10原子%以下のNiで置換することが好ましい。また、本発明のスパッタリングターゲット材においては、M元素としてBを10原子%以下含有することが好ましい。   In the sputtering target material of the present invention, it is preferable to replace a part of Fe with 10 atomic% or less of Ni. Moreover, in the sputtering target material of this invention, it is preferable to contain B as 10 atomic% or less as M element.

前記Fe−Co系合金スパッタリングターゲット材は、合金化処理したFe−Co系合金粉末を加圧焼結することで製造することが好ましい。また、合金化処理は、合金溶湯を急冷凝固処理することが好ましい。
また、前記Fe−Co系合金粉末の平均粒径は、250μm以下であることが好ましい。
The Fe—Co alloy sputtering target material is preferably manufactured by pressure sintering the alloyed Fe—Co alloy powder. Further, the alloying treatment is preferably performed by rapidly solidifying the molten alloy.
The average particle diameter of the Fe—Co alloy powder is preferably 250 μm or less.

本発明は、安定したマグネトロンスパッタリングが行える軟磁性膜形成用のFe−Co系合金ターゲット材を提供でき、垂直磁気記録媒体のようにFe−Co系合金の軟磁性膜を必要とする工業製品を製造する上で極めて有効な技術となる。   INDUSTRIAL APPLICABILITY The present invention can provide an Fe-Co alloy target material for forming a soft magnetic film capable of stable magnetron sputtering, and an industrial product that requires an Fe-Co alloy soft magnetic film such as a perpendicular magnetic recording medium. This is an extremely effective technique for manufacturing.

本発明例(試料No.1)のミクロ組織の走査型電子顕微鏡像である。It is a scanning electron microscope image of the microstructure of an example of the present invention (sample No. 1). 本発明例(試料No.1)のX線回折パターンである。It is an X-ray diffraction pattern of an example of the present invention (sample No. 1). 比較例(試料No.2)のミクロ組織の走査型電子顕微鏡像である。It is a scanning electron microscope image of the microstructure of a comparative example (sample No. 2). 比較例(試料No.2)のX線回折パターンである。It is an X-ray-diffraction pattern of a comparative example (sample No. 2). ターゲット材のミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径測定方法を示す模式図である。It is a schematic diagram which shows the diameter measuring method of the largest inscribed circle which can be drawn in the intermetallic compound phase containing M element in the microstructure of a target material. 本発明例(試料No.3)のミクロ組織の走査型電子顕微鏡像である。It is a scanning electron microscope image of the microstructure of an example of the present invention (sample No. 3). 本発明例(試料No.4)のミクロ組織の走査型電子顕微鏡像である。It is a scanning electron microscope image of the microstructure of an example of the present invention (sample No. 4).

上述したように、本発明の最も重要な特徴は、原子比における組成式が(Fe−Co100−X100−Y、20≦X≦80、4≦Y≦25で表され、前記組成式のM元素がNbおよび/あるいはTaであるスパッタリングターゲット材の透磁率を低減するために、そのミクロ組織を制御した点にある。すなわち、ターゲット材のミクロ組織において、FeとCoを主体とするBCC相および/またはFCC相とM元素の金属間化合物相とからなる金属組織を有し、M元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下になるように制御する点にある。 As described above, the most important feature of the present invention, a composition formula in atomic ratio is represented by (Fe X -Co 100-X) 100-Y M Y, 20 ≦ X ≦ 80,4 ≦ Y ≦ 25, In order to reduce the magnetic permeability of the sputtering target material in which the M element in the composition formula is Nb and / or Ta, the microstructure is controlled. In other words, the microstructure of the target material has a metal structure composed of a BCC phase mainly composed of Fe and Co and / or an FCC phase and an intermetallic compound phase of M element, and an intermetallic compound phase containing M element. The maximum inscribed circle that can be drawn is controlled to be 10 μm or less.

Fe−Co−M合金の一般的な溶解凝固組織において、M元素はFeやCoと金属間化合物相を形成してマトリックス中に存在する。この金属間化合物相の形態や分散はターゲット材の製造方法によって変化し、ターゲット材の磁気特性に大きく影響する。具体的には金属間化合物相を微細に分散させることにより磁化過程における磁化回転を妨げられ、透磁率が低下して漏洩磁束が増加する。特に、M元素を含有する金属間化合物相をFeMやCoMの金属間化合物相として存在させることにより本来強磁性であるFeやCoの磁気モーメントをも大幅に低減させることが可能となる。したがって、M元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下になる程度に金属間化合物相をマトリックスに微細に分散するターゲット材とすることで透磁率を低減でき、強い漏洩磁束を得ることができる。より好ましくは、M元素を含有する金属間化合物相に描ける最大内接円の直径は5μm以下である。 In a general melt-solidified structure of an Fe—Co—M alloy, the M element exists in the matrix by forming an intermetallic compound phase with Fe or Co. The form and dispersion of the intermetallic compound phase varies depending on the method of manufacturing the target material, and greatly affects the magnetic properties of the target material. Specifically, by finely dispersing the intermetallic compound phase, the magnetization rotation in the magnetization process is hindered, the magnetic permeability is lowered, and the leakage magnetic flux is increased. In particular, the presence of an intermetallic compound phase containing M element as an intermetallic compound phase of Fe 2 M or Co 2 M makes it possible to significantly reduce the magnetic moment of Fe or Co, which is essentially ferromagnetic. Become. Therefore, the magnetic permeability can be reduced by using a target material that finely disperses the intermetallic compound phase in the matrix so that the diameter of the maximum inscribed circle that can be drawn in the intermetallic compound phase containing the M element is 10 μm or less. Leakage magnetic flux can be obtained. More preferably, the diameter of the maximum inscribed circle that can be drawn in the intermetallic compound phase containing the M element is 5 μm or less.

なお、本発明において、M元素を含有する金属間化合物とは、化学式がFeMやCoMであらわされるラーベス相からなり、ターゲット材の使用温度領域である室温以上で強磁性を示さない金属間化合物である。このような性質をもったFeM、CoMとしては、例えば、常磁性であるFeNb、FeTa、CoNb、CoTaを例示できる。なお、金属間化合物の存在は、例えば、X線回折法によって判定できる。 In the present invention, an intermetallic compound containing an M element is composed of a Laves phase whose chemical formula is represented by Fe 2 M or Co 2 M, and does not exhibit ferromagnetism at room temperature or higher, which is the operating temperature range of the target material. It is an intermetallic compound. Examples of Fe 2 M and Co 2 M having such properties include paramagnetic Fe 2 Nb, Fe 2 Ta, Co 2 Nb, and Co 2 Ta. The presence of an intermetallic compound can be determined by, for example, an X-ray diffraction method.

本発明のスパッタリングターゲット材の化学組成は、原子比における組成式が(Fe−Co100−X100−Y、20≦X≦80、4≦Y≦25で表され、前記組成式のM元素がNbおよび/またはTaからなるものである。
FeとCoとの組成比Xを20≦X≦80としたのは、飽和磁気モーメントが遷移金属合金中最高となることが知られるFe−Co二元系合金膜において、原子比でFe:Co=65:35の組成比付近で飽和磁気モーメントが最大となるため、Fe含有量を原子比で20〜80%にすることで高い飽和磁化を持ち軟磁気特性に優れた薄膜を生成できるためである。
Chemical composition of the sputtering target material of the present invention, a composition formula in atomic ratio is represented by (Fe X -Co 100-X) 100-Y M Y, 20 ≦ X ≦ 80,4 ≦ Y ≦ 25, the composition formula The M element consists of Nb and / or Ta.
The reason why the composition ratio X of Fe and Co is set to 20 ≦ X ≦ 80 is that in the Fe—Co binary alloy film known to have the highest saturation magnetic moment in the transition metal alloy, the atomic ratio of Fe: Co Since the saturation magnetic moment becomes maximum near the composition ratio of 65:35, a thin film having high saturation magnetization and excellent soft magnetic characteristics can be generated by setting the Fe content to 20 to 80% by atomic ratio. is there.

M元素をNbおよび/またはTaとし、その添加量Yを4≦Y≦25としたのは、M元素をこの範囲で添加することで、薄膜のアモルファス化を促進させる効果や耐食性を向上させる効果があるためである。M元素の添加量が4%未満であると薄膜が結晶化するため優れた軟磁気特性が得られ難く、さらに耐食性が低下するという問題が生じる。また、25%を超えると薄膜の飽和磁束密度が低下するという問題が生じる。
他方、M元素はFeやCoとの間で常磁性の金属間化合物を形成する元素であるため、M元素の添加によりターゲット全体の磁気モーメントを低減することが可能である。よって、ターゲット材の特性においてもM元素の添加は効果がある。
The reason why the element M is Nb and / or Ta and the addition amount Y is 4 ≦ Y ≦ 25 is that the addition of the element M in this range promotes the effect of promoting the amorphization of the thin film and the corrosion resistance. Because there is. If the amount of M element added is less than 4%, the thin film is crystallized, so that it is difficult to obtain excellent soft magnetic properties, and the corrosion resistance is further deteriorated. Moreover, when it exceeds 25%, the problem that the saturation magnetic flux density of a thin film falls arises.
On the other hand, since the M element is an element that forms a paramagnetic intermetallic compound with Fe and Co, the magnetic moment of the entire target can be reduced by adding the M element. Therefore, addition of M element is also effective in the characteristics of the target material.

また、本発明のスパッタリングターゲット材の化学組成は、Feの一部を10原子%以下のNiで置換することが好ましい。
Feの一部をNiで置換することで、飽和磁化を大きく低減させることなく磁歪が低減でき、薄膜の軟磁気特性を向上させる効果があるためであり、Niの含有量が10原子%を超えると飽和磁化の低下が大きくなる。なお、Niは、Feと置換され、本発明のFe−Co系合金スパッタリングターゲットのBCC相またはFCC相中に固溶して存在するか、M元素と金属間化合物相を形成して存在する。
Moreover, as for the chemical composition of the sputtering target material of this invention, it is preferable to substitute a part of Fe with 10 atomic% or less of Ni.
By substituting a part of Fe with Ni, magnetostriction can be reduced without significantly reducing the saturation magnetization, and the soft magnetic properties of the thin film are improved. The Ni content exceeds 10 atomic%. And the fall of saturation magnetization becomes large. Note that Ni is substituted for Fe and exists as a solid solution in the BCC phase or FCC phase of the Fe—Co alloy sputtering target of the present invention, or exists as an intermetallic compound phase with the M element.

また、本発明のスパッタリングターゲット材の化学組成は、M元素としてBを10原子%以下含有することが好ましい。
BはFe−Co系合金薄膜のアモルファス化を促進させることが知られている。本発明のFe−Co系合金スパッタリングターゲットにおいて、BをNbおよび/あるいはTaと複合的に含有させることで、スパッタにより成膜されるFe−Co系合金薄膜のアモルファス化をさらに促進させることが可能となる。なお、Bの含有量が10原子%を超えるとFe−Co系合金薄膜の飽和磁化の低下が大きくなるため、Bの含有量の上限を10原子%とする。また、BはTaやNbと同様にFeやCoと金属間化合物を形成する元素であり、Fe−Co系合金スパッタリングターゲットのミクロ組織中に金属間化合物相を形成する。
Moreover, it is preferable that the chemical composition of the sputtering target material of this invention contains B as 10 atomic% or less as M element.
B is known to promote the amorphization of Fe-Co alloy thin films. In the Fe—Co alloy sputtering target of the present invention, it is possible to further promote the amorphization of the Fe—Co alloy thin film formed by sputtering by containing B in combination with Nb and / or Ta. It becomes. In addition, since the fall of the saturation magnetization of a Fe-Co type alloy thin film will become large when B content exceeds 10 atomic%, the upper limit of B content shall be 10 atomic%. B, like Ta and Nb, is an element that forms an intermetallic compound with Fe or Co, and forms an intermetallic compound phase in the microstructure of the Fe—Co alloy sputtering target.

上述の本発明のターゲット材は、ミクロ組織の制御が可能であれば、溶解鋳造法、粉末焼結法のいずれも適用可能である。なお、ミクロ組織において、M元素を含有する金属間化合物相に描ける最大内接円の直径を10μm以下に制御するためには、溶解鋳造法を適用する場合、例えば、合金溶湯を水冷等により冷却した鋳型に鋳造して一般的な鋳造に比べて凝固速度を速めることが望ましい。さらに、望ましくは、所定の組成比に調整したFe−Co系合金の溶融を急冷凝固処理して粉末とし、作製した粉末を加圧焼結する粉末焼結法である。溶湯の急冷凝固処理により、金属間化合物相の粗大化を抑制でき、金属間化合物相が均一微細に分散した組織を持つ粉末が容易に得られるためである。この粉末を加圧焼結することで、金属間化合物相が微細に分散した組織のターゲット材を得ることができる。   As long as the target material of the present invention can control the microstructure, either the melt casting method or the powder sintering method can be applied. In the microstructure, in order to control the diameter of the maximum inscribed circle in the intermetallic compound phase containing M element to 10 μm or less, when applying the melting casting method, for example, the molten alloy is cooled by water cooling or the like. It is desirable to increase the solidification rate by casting into a molded mold as compared with general casting. Furthermore, it is desirable to employ a powder sintering method in which melting of the Fe—Co alloy adjusted to a predetermined composition ratio is rapidly solidified to form a powder, and the produced powder is pressure sintered. This is because the rapid solidification treatment of the molten metal can suppress the coarsening of the intermetallic compound phase and easily obtain a powder having a structure in which the intermetallic compound phase is uniformly and finely dispersed. By subjecting this powder to pressure sintering, a target material having a structure in which the intermetallic compound phase is finely dispersed can be obtained.

また、本発明のFe−Co系合金粉末は、組織の粗大化を抑制するために平均粒径250μm以下とすることが好ましい。さらに粉末の充填率を高くし、焼結性を向上されるために、さらに好ましくは150μm以下である。なお、本発明におけるFe−Co系合金粉末の平均粒径とは、レーザー回折・散乱法で測定される粉末の50%累積粒径(D50)とする。   In addition, the Fe—Co alloy powder of the present invention preferably has an average particle size of 250 μm or less in order to suppress coarsening of the structure. Further, in order to increase the filling rate of the powder and improve the sinterability, it is more preferably 150 μm or less. In addition, let the average particle diameter of the Fe-Co type alloy powder in this invention be 50% cumulative particle diameter (D50) of the powder measured by a laser diffraction and a scattering method.

また、本発明の急冷凝固処理方法としては、不純物の混入が少なく、充填率が高く焼結に適した球状粉末が得られるガスアトマイズ法が好ましい。また、酸化を抑制するには、アトマイズガスとして不活性ガスであるアルゴンガスもしくは窒素ガスを用いると良い。   Further, as the rapid solidification treatment method of the present invention, a gas atomizing method is preferred, in which a spherical powder with a small filling ratio and a high filling rate and suitable for sintering is obtained. Moreover, in order to suppress oxidation, it is good to use argon gas or nitrogen gas which is inert gas as atomizing gas.

また、粉末の加圧焼結方法としては、ホットプレス、熱間静水圧プレス、通電加圧焼結、熱間押し出しなどの方法を適用することができる。中でも熱間静水圧プレスは加圧圧力が高く、最高温度を低く抑えて金属間化合物相の粗大化を抑制しても、緻密な焼結体が得られるため、特に好ましい。
なお、加圧焼結時の最高温度は800℃以上、1200℃以下の温度に設定することが好ましい。この理由は焼結温度が800℃を下回ると、緻密な焼結体が得られ難く、1200℃を超えると焼結中に合金粉末が溶解する場合があるためである。さらに、最高温度が高過ぎると、金属間化合物が粗大化するため、さらに好ましくは900℃から1100℃の範囲に設定すると良い。
また、加圧焼結時の最高圧力は20MPa以上に設定することが好ましい。その理由は最高圧力が20MPaを下回ると緻密な焼結体が得られないためである。
Moreover, methods such as hot pressing, hot isostatic pressing, energizing pressure sintering, hot extrusion, etc. can be applied as the pressure sintering method of the powder. Among them, the hot isostatic press is particularly preferable because the pressurization pressure is high and a dense sintered body can be obtained even if the maximum temperature is kept low to suppress the coarsening of the intermetallic compound phase.
The maximum temperature during pressure sintering is preferably set to a temperature of 800 ° C. or higher and 1200 ° C. or lower. This is because when the sintering temperature is below 800 ° C., a dense sintered body is difficult to obtain, and when it exceeds 1200 ° C., the alloy powder may be dissolved during sintering. Furthermore, since the intermetallic compound becomes coarse when the maximum temperature is too high, the temperature is preferably set in the range of 900 ° C. to 1100 ° C.
The maximum pressure during pressure sintering is preferably set to 20 MPa or more. The reason is that if the maximum pressure is less than 20 MPa, a dense sintered body cannot be obtained.

以下の実施例で本発明をさらに詳しく説明する。
Arガスを用いたガスアトマイズ法によって合金化処理した(Fe65−Co3588−Ta12(原子%)粉末を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。分級後のアトマイズ粉末をMICROTRAC社製MT3200によるレーザー回折・散乱法で測定し、平均粒径(D50)は250μm以下であることを確認した。作製したアトマイズ粉末を軟鋼カプセルに充填して脱気封止した。次いで、圧力122MPa、温度950℃、保持時間1時間の条件で熱間静水圧プレス法により焼結体を作製し、機械加工により直径190mm、厚さ5mmのFe−Co系合金ターゲット材を得た。
比較例として同一組成の合金溶湯をCu製定盤上に外径280mm、内径200mm、高さ25mmの鋳鉄製リングを設置した鋳型に鋳造し、インゴットを作製した。そして、機械加工を施して直径190mm、厚さ5mmのFe−Co系合金ターゲット材を得た。
The following examples further illustrate the present invention.
(Fe 65 -Co 35 ) 88 -Ta 12 (atomic%) powder alloyed by a gas atomization method using Ar gas was produced, and the obtained atomized powder was classified with a 250 μm sieve. The atomized powder after classification was measured by a laser diffraction / scattering method using MT3200 manufactured by MICROTRAC, and it was confirmed that the average particle size (D50) was 250 μm or less. The produced atomized powder was filled in a mild steel capsule and deaerated and sealed. Next, a sintered body was produced by hot isostatic pressing under conditions of a pressure of 122 MPa, a temperature of 950 ° C., and a holding time of 1 hour, and an Fe—Co alloy target material having a diameter of 190 mm and a thickness of 5 mm was obtained by machining. .
As a comparative example, a molten alloy of the same composition was cast on a mold having a cast iron ring having an outer diameter of 280 mm, an inner diameter of 200 mm, and a height of 25 mm on a Cu surface plate to produce an ingot. Then, machining was performed to obtain an Fe—Co alloy target material having a diameter of 190 mm and a thickness of 5 mm.

ターゲット材の端材から10mm×10mmの試験片を2個採取しバフ研磨を施した後、一つの試験片はArガスを用いたフラットミリングを施し、走査型電子顕微鏡を用いてミクロ組織観察を行った。もう一つの試験片はX線回折測定による相同定を行った。なお、X線回折測定には(株)リガク製X線回折装置RINT2500Vを使用し、線源にCoを用いて測定を行った。   After collecting 10 mm x 10 mm test pieces from the end material of the target material and buffing them, one test piece was subjected to flat milling using Ar gas, and the microstructure was observed using a scanning electron microscope. went. Another test piece was subjected to phase identification by X-ray diffraction measurement. For X-ray diffraction measurement, Rigaku X-ray diffractometer RINT2500V was used, and Co was used as the radiation source.

図1に本発明例のFe−Co系合金ターゲット材の走査型電子顕微鏡像を、図2に本発明例のFe−Co系合金ターゲット材のX線回折パターンを示す。図1から本発明のミクロ組織は、アトマイズにおける急冷凝固工程で形成されたデンドライト組織を反映した薄灰色の初晶部と濃灰色の共晶部からなる組織を呈していることがわかる。また、図2から本発明例のX線回折パターンは、FeとCoを主体とするBCC相であるBCC−CoFe相、M元素を含有する金属間化合物であるFeTaに近い相をそれぞれ反映したピークを呈していることから、ミクロ組織中の初晶部はFeTa金属間化合物相であり、共晶部は、BCC−CoFe相と金属間化合物相からなると同定できる。
また、図3に比較例のFe−Co系合金ターゲット材の走査型電子顕微鏡像を、図4に比較例のFe−Co系合金ターゲット材のX線回折パターンを示す。図3から比較例のミクロ組織は典型的な溶解鋳造組織を示し、薄灰色の初晶部と濃灰色の共晶部からなることがわかる。さらに、図4に示す比較例のX線回折パターンは、FeとCoを主体とするBCC相であるBCC−CoFe相とM元素を含有する金属間化合物であるFeTaに近い相をそれぞれ反映したピークを呈していることから、ミクロ組織の初晶部はFeTa金属間化合物相であり、同じく共晶部はBCC−CoFe相と金属間化合物相とからなると同定できる。
FIG. 1 shows a scanning electron microscope image of the Fe—Co alloy target material of the present invention example, and FIG. 2 shows an X-ray diffraction pattern of the Fe—Co alloy target material of the present invention example. 1 that the microstructure of the present invention exhibits a structure composed of a light gray primary crystal part and a dark gray eutectic part reflecting the dendrite structure formed in the rapid solidification process in atomization. Further, from FIG. 2, the X-ray diffraction patterns of the examples of the present invention reflect the BCC-CoFe phase, which is a BCC phase mainly composed of Fe and Co, and the phase close to Fe 2 Ta, which is an intermetallic compound containing M element. since presenting with peaks, HatsuAkirabu in the microstructure is Fe 2 Ta intermetallic phases, KyoAkirabu can be identified as consisting of BCC-CoFe phase intermetallic compound phase.
3 shows a scanning electron microscope image of the Fe—Co alloy target material of the comparative example, and FIG. 4 shows an X-ray diffraction pattern of the Fe—Co alloy target material of the comparative example. From FIG. 3, it can be seen that the microstructure of the comparative example shows a typical melt-cast structure, consisting of a light gray primary crystal part and a dark gray eutectic part. Furthermore, the X-ray diffraction pattern of the comparative example shown in FIG. 4 reflects the BCC-CoFe phase, which is a BCC phase mainly composed of Fe and Co, and the phase close to Fe 2 Ta, which is an intermetallic compound containing M element. Therefore, it can be identified that the primary crystal part of the microstructure is the Fe 2 Ta intermetallic compound phase, and that the eutectic part is composed of the BCC-CoFe phase and the intermetallic compound phase.

次に、図1の本発明のミクロ組織と図3の比較例のミクロ組織から、M元素を含有する金属間化合物相であるFeTa相に描ける最大内接円の直径を測定した。FeTa相に描ける最大内接円の直径とは図5に示すターゲット材のミクロ組織の模式図において、金属間化合物相の領域に描ける最大内接円3の直径をいう。測定結果を表1に示す。表1および図1から本発明例はミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下となるFe−Co系合金ターゲット材を確認できる。 Next, from the microstructure of the present invention of FIG. 1 and the microstructure of the comparative example of FIG. 3, the diameter of the maximum inscribed circle that can be drawn in the Fe 2 Ta phase, which is an intermetallic compound phase containing M element, was measured. The diameter of the maximum inscribed circle that can be drawn in the Fe 2 Ta phase refers to the diameter of the maximum inscribed circle 3 that can be drawn in the region of the intermetallic compound phase in the schematic diagram of the microstructure of the target material shown in FIG. The measurement results are shown in Table 1. From Table 1 and FIG. 1, the example of the present invention can confirm the Fe—Co alloy target material in which the diameter of the maximum inscribed circle that can be drawn in the intermetallic compound phase containing M element in the microstructure is 10 μm or less.

次に、作製した各ターゲット材の端材から長さ30mm、幅10mm、厚さ5mmの試験片を採取した。さらに東英工業(株)製直流磁気特性測定装置TRF5Aを使用してこれらの試験片の磁化曲線を測定した。得られた磁化曲線から最大透磁率を求め、表2に示した。表2から、本発明例のターゲット材が、比較例に比べ格段に低い最大透磁率を示していることがわかる。   Next, a test piece having a length of 30 mm, a width of 10 mm, and a thickness of 5 mm was collected from the end material of each of the prepared target materials. Furthermore, the magnetization curves of these test pieces were measured using a DC magnetic property measuring apparatus TRF5A manufactured by Toei Industry Co., Ltd. The maximum magnetic permeability was determined from the obtained magnetization curve and shown in Table 2. From Table 2, it can be seen that the target material of the example of the present invention exhibits a significantly lower maximum magnetic permeability than the comparative example.

次に、作製した各ターゲット材の漏洩磁束(Pass−Through−Flux:以下、PTFと記す)を測定し表3に示した。PTF測定はターゲット材の裏面に永久磁石を配置し、ターゲット材表面に漏洩する磁束を測定する方法で、マグネトロンスパッタ装置に近い状態の漏洩磁束を定量的に測定できる方法である。実際の測定はASTM F1761−00(Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets)に基づいて行い、PTFは次式より求めた。
(PTF)=100×(ターゲット材を置いた状態での磁束の強さ)÷(ターゲット材を置かない状態での磁束の強さ) (%)
Next, the magnetic flux leakage (Pass-Through-Flux: hereinafter referred to as PTF) of each of the prepared target materials was measured and shown in Table 3. The PTF measurement is a method in which a permanent magnet is disposed on the back surface of the target material and the magnetic flux leaking to the surface of the target material is measured, and the leakage magnetic flux close to the magnetron sputtering apparatus can be measured quantitatively. Actual measurement was performed based on ASTM F1761-00 (Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets), and PTF was calculated from the following equation.
(PTF) = 100 × (Magnetic strength with target material placed) ÷ (Magnetic flux strength with no target material placed) (%)

PTFの測定結果を示した表3より、本発明例のターゲット材のPTFは、比較例に比べて高い値を示しており、上述した最大透磁率の測定結果と対応し、非常に強い漏洩磁束が得られることがわかる。
以上より、ミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下からなる本発明のFe−Co系合金ターゲット材とすることで、低い最大透磁率と、強い漏洩磁束が得られることが確認できた。
From Table 3 showing the measurement result of PTF, the PTF of the target material of the present invention example shows a higher value than that of the comparative example, corresponding to the measurement result of the maximum permeability described above, and a very strong leakage magnetic flux. It can be seen that
From the above, by using the Fe—Co-based alloy target material of the present invention in which the diameter of the maximum inscribed circle that can be drawn in the intermetallic compound phase containing M element in the microstructure is 10 μm or less, low maximum magnetic permeability and strong It was confirmed that leakage flux was obtained.

Arガスを用いたガスアトマイズ法によって合金化処理した表4に示す組成の粉末を作製し、得られたアトマイズ粉末を250μmのふるいで分級した。分級後のアトマイズ粉末をMICROTRAC社製MT3200によるレーザー回折・散乱法で測定し、平均粒径(D50)は250μm以下であることを確認した。作製した各アトマイズ粉末を軟鋼カプセルに充填して脱気封止した。次いで、圧力122MPa、温度950℃、保持時間1時間の条件で熱間静水圧プレス法により焼結体を作製し、機械加工により直径190mm、厚さ5mmのFe−Co系合金ターゲット材を得た。   A powder having the composition shown in Table 4 which was alloyed by a gas atomizing method using Ar gas was prepared, and the obtained atomized powder was classified with a 250 μm sieve. The atomized powder after classification was measured by a laser diffraction / scattering method using MT3200 manufactured by MICROTRAC, and it was confirmed that the average particle size (D50) was 250 μm or less. Each produced atomized powder was filled into a mild steel capsule and degassed and sealed. Next, a sintered body was produced by hot isostatic pressing under conditions of a pressure of 122 MPa, a temperature of 950 ° C., and a holding time of 1 hour, and an Fe—Co alloy target material having a diameter of 190 mm and a thickness of 5 mm was obtained by machining. .

作製した各ターゲット材の端材から10mm×10mmの試験片を1個採取しバフ研磨を施した後、走査型電子顕微鏡を用いたミクロ組織観察を行った。試料3、4の走査電子顕微鏡像を図6、7に示す。図6に示す試料3のミクロ組織は、アトマイズにおける急冷凝固工程で形成されたデンドライト組織を反映した薄灰色の初晶部と濃灰色の共晶部からなる組織を呈しており、X線回折パターンより初晶部はM元素を含有する金属間化合物相であり、共晶部はFeとCoを主体とするBCC相であるBCC−CoFe相と金属間化合物相からなることを確認した。また、図7に示す試料4のミクロ組織は、アトマイズにおける急冷凝固工程で形成されたデンドライト組織を反映した薄灰色の初晶部と濃灰色の共晶部からなる組織を呈しており、X線回折パターンより初晶部はM元素を含有する金属間化合物相であり、共晶部はBCC−CoFe相と金属間化合物相からなることを確認した。そして、ミクロ組織から、実施例1と同様にM元素を含有する金属間化合物相に描ける最大内接円の直径を測定した。測定結果を表4に示す。図6、7および表4から本発明例の試料3〜6はミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下となるFe−Co系合金ターゲット材を確認できる。   One 10 mm × 10 mm test piece was sampled from the manufactured end material of each target material, buffed, and then subjected to microstructure observation using a scanning electron microscope. Scanning electron microscope images of Samples 3 and 4 are shown in FIGS. The microstructure of sample 3 shown in FIG. 6 exhibits a structure composed of a light gray primary crystal part and a dark gray eutectic part reflecting the dendrite structure formed in the rapid solidification process in atomization, and an X-ray diffraction pattern It was further confirmed that the primary crystal part was an intermetallic compound phase containing M element, and the eutectic part was composed of a BCC-CoFe phase, which is a BCC phase mainly composed of Fe and Co, and an intermetallic compound phase. Further, the microstructure of Sample 4 shown in FIG. 7 exhibits a structure composed of a light gray primary crystal part and a dark gray eutectic part reflecting the dendrite structure formed in the rapid solidification process in atomization. From the diffraction pattern, it was confirmed that the primary crystal part was an intermetallic compound phase containing M element, and the eutectic part was composed of a BCC-CoFe phase and an intermetallic compound phase. And the diameter of the maximum inscribed circle which can be drawn in the intermetallic compound phase containing M element similarly to Example 1 was measured from the microstructure. Table 4 shows the measurement results. 6 and 7 and Table 4, Samples 3 to 6 of the present invention are Fe-Co alloy target materials in which the diameter of the maximum inscribed circle that can be drawn in the intermetallic compound phase containing M element in the microstructure is 10 μm or less. I can confirm.

次に、作製した各ターゲット材の端材から試験片を採取し、実施例1と同一の方法で、試験片の磁化曲線を測定し、得られた磁化曲線から最大透磁率を求めた。測定結果を表4に示す。
以上より、ミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下からなる本発明のFe−Co系合金ターゲット材とすることで、低い最大透磁率が得られることが確認できた。なお、Fe−Co系合金ターゲット材の最大透磁率はその合金組成に依存し、含有するTa量の増加に伴って低下する傾向があることが分かる。
Next, a test piece was collected from the end material of each of the produced target materials, the magnetization curve of the test piece was measured by the same method as in Example 1, and the maximum permeability was obtained from the obtained magnetization curve. Table 4 shows the measurement results.
From the above, by using the Fe—Co alloy target material of the present invention in which the diameter of the maximum inscribed circle that can be drawn in the intermetallic compound phase containing M element in the microstructure is 10 μm or less, a low maximum magnetic permeability can be obtained. I was able to confirm. In addition, it turns out that the maximum magnetic permeability of a Fe-Co-type alloy target material is dependent on the alloy composition, and tends to fall with the increase in the amount of Ta to contain.

本発明では、Fe−Co系合金スパッタリングターゲット材のミクロ組織をFeとCoを主体とするBCC相および/またはFCC相とM元素を含有する金属間化合物相とからなる組織とし、該M元素を含有する最大内接円の直径が10μm以下にすることにより、最大透磁率が低く、漏洩磁束が強いFe−Co系合金スパッタリングターゲット材が得られる。この結果、軟磁性膜形成に際して、安定したマグネトロンスパッタリングを行うことが可能となる。   In the present invention, the microstructure of the Fe—Co based alloy sputtering target material is a structure composed of a BCC phase mainly composed of Fe and Co and / or an FCC phase and an intermetallic compound phase containing M element, and the M element is By setting the diameter of the maximum inscribed circle to be 10 μm or less, an Fe—Co alloy sputtering target material having a low maximum magnetic permeability and a strong leakage magnetic flux can be obtained. As a result, stable magnetron sputtering can be performed when forming the soft magnetic film.

1 FeとCoを主体とする相
2 金属間化合物相
3 最大内接円
1 Phase mainly composed of Fe and Co 2 Intermetallic phase 3 Maximum inscribed circle

Claims (6)

原子比における組成式が(Fe−Co100−X100−Y、20≦X≦80、4≦Y≦25で表され、前記組成式のM元素がNbおよび/あるいはTaであるスパッタリングターゲット材であって、該スパッタリングターゲット材のミクロ組織がFeとCoを主体とするBCC相および/またはFCC相とM元素を含有する金属間化合物相とでなる金属組織を有し、ミクロ組織においてM元素を含有する金属間化合物相に描ける最大内接円の直径が10μm以下であることを特徴とするFe−Co系合金スパッタリングターゲット材。 Composition formula in atomic ratio is represented by (Fe X -Co 100-X) 100-Y M Y, 20 ≦ X ≦ 80,4 ≦ Y ≦ 25, M elements of said composition formula is Nb and / or Ta A sputtering target material, wherein the microstructure of the sputtering target material has a metal structure comprising a BCC phase mainly composed of Fe and Co and / or an FCC phase and an intermetallic compound phase containing an M element, and the microstructure The Fe—Co alloy sputtering target material, wherein the diameter of the maximum inscribed circle drawn in the intermetallic compound phase containing M element is 10 μm or less. 前記Fe−Co系合金スパッタターゲット材において、Feの一部を10原子%以下のNiで置換することを特徴とする請求項1に記載のFe−Co系合金スパッタリングターゲット材。   2. The Fe—Co alloy sputtering target material according to claim 1, wherein in the Fe—Co alloy sputtering target material, a part of Fe is substituted with 10 atomic% or less of Ni. 前記M元素としてBを10原子%以下含有することを特徴とする請求項1または2に記載のFe−Co系合金スパッタリングターゲット材。   The Fe-Co alloy sputtering target material according to claim 1, wherein B is contained as the M element in an amount of 10 atomic% or less. 請求項1乃至3のいずれかに記載のFe−Co系合金スパッタリングターゲット材の製造方法において、合金化処理したFe−Co系合金粉末を加圧焼結することを特徴とするFe−Co系合金スパッタリングターゲット材の製造方法。   The Fe-Co-based alloy sputtering method according to any one of claims 1 to 3, wherein the alloyed Fe-Co-based alloy powder is sintered under pressure. A method for producing a sputtering target material. 前記Fe−Co系合金粉末の平均粒径が250μm以下であることを特徴とする請求項4に記載のFe−Co系合金スパッタリングターゲット材の製造方法。   5. The method for producing an Fe—Co alloy sputtering target material according to claim 4, wherein an average particle diameter of the Fe—Co alloy powder is 250 μm or less. 前記合金化処理は、合金溶湯の急冷凝固処理であることを特徴とする請求項4または5に記載のFe−Co系合金スパッタリングターゲット材の製造方法。   The said alloying process is a rapid solidification process of a molten alloy, The manufacturing method of the Fe-Co type alloy sputtering target material of Claim 4 or 5 characterized by the above-mentioned.
JP2009137623A 2008-06-12 2009-06-08 Fe-Co alloy sputtering target material and method for producing the same Active JP5472688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137623A JP5472688B2 (en) 2008-06-12 2009-06-08 Fe-Co alloy sputtering target material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008154507 2008-06-12
JP2008154507 2008-06-12
JP2009137623A JP5472688B2 (en) 2008-06-12 2009-06-08 Fe-Co alloy sputtering target material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010018884A true JP2010018884A (en) 2010-01-28
JP5472688B2 JP5472688B2 (en) 2014-04-16

Family

ID=41704063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137623A Active JP5472688B2 (en) 2008-06-12 2009-06-08 Fe-Co alloy sputtering target material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5472688B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059540A (en) * 2008-08-04 2010-03-18 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL AND Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL
JP2010095794A (en) * 2008-09-22 2010-04-30 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
WO2010143602A1 (en) * 2009-06-10 2010-12-16 山陽特殊製鋼株式会社 Co-fe-ni alloy for soft magnetic film layer in perpendicular magnetic recording medium, sputtering target material, and perpendicular magnetic recording medium
JP2012216273A (en) * 2011-03-30 2012-11-08 Hitachi Metals Ltd Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND POWDER SINTERING SPATTERING TARGET MATERIAL FOR FORMING Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM
WO2013183546A1 (en) * 2012-06-06 2013-12-12 日立金属株式会社 Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING SAME
WO2014017381A1 (en) * 2012-07-24 2014-01-30 日立金属株式会社 Target material and method for producing same
JP2015129332A (en) * 2014-01-08 2015-07-16 Jx日鉱日石金属株式会社 Magnetic material sputtering target and production method thereof
JP2015129331A (en) * 2014-01-08 2015-07-16 Jx日鉱日石金属株式会社 Magnetic material sputtering target and production method thereof
TWI647031B (en) * 2014-07-09 2019-01-11 奧地利商攀時歐洲公司 Process for producing a component
US20230076444A1 (en) * 2020-02-13 2023-03-09 Sanyo Special Steel Co., Ltd. Sputtering Target Material and Method of Producing the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346423A (en) * 2003-04-30 2004-12-09 Hitachi Metals Ltd Fe-Co-B ALLOY TARGET MATERIAL, ITS MANUFACTURING METHOD, SOFT MAGNETIC FILM, MAGNETIC RECORDING MEDIUM AND TMR ELEMENT
JP2005320627A (en) * 2004-04-07 2005-11-17 Hitachi Metals Ltd Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346423A (en) * 2003-04-30 2004-12-09 Hitachi Metals Ltd Fe-Co-B ALLOY TARGET MATERIAL, ITS MANUFACTURING METHOD, SOFT MAGNETIC FILM, MAGNETIC RECORDING MEDIUM AND TMR ELEMENT
JP2005320627A (en) * 2004-04-07 2005-11-17 Hitachi Metals Ltd Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2006265653A (en) * 2005-03-24 2006-10-05 Hitachi Metals Ltd Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059540A (en) * 2008-08-04 2010-03-18 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL AND Co-Fe BASED ALLOY SPUTTERING TARGET MATERIAL
JP2010095794A (en) * 2008-09-22 2010-04-30 Hitachi Metals Ltd METHOD FOR PRODUCING Co-Fe-Ni-BASED ALLOY SPUTTERING TARGET MATERIAL
WO2010143602A1 (en) * 2009-06-10 2010-12-16 山陽特殊製鋼株式会社 Co-fe-ni alloy for soft magnetic film layer in perpendicular magnetic recording medium, sputtering target material, and perpendicular magnetic recording medium
JP2010287269A (en) * 2009-06-10 2010-12-24 Sanyo Special Steel Co Ltd CoFeNi-BASED ALLOY FOR SOFT MAGNETIC FILM LAYER IN VERTICAL MAGNETIC RECORDING MEDIUM, AND SPUTTERING TARGET MATERIAL
JP2012216273A (en) * 2011-03-30 2012-11-08 Hitachi Metals Ltd Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM, AND POWDER SINTERING SPATTERING TARGET MATERIAL FOR FORMING Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING MEDIUM
US20150034483A1 (en) * 2012-06-06 2015-02-05 Hitachi Metals, Ltd. Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD OF PRODUCING SAME
CN104145043A (en) * 2012-06-06 2014-11-12 日立金属株式会社 Fe-co-based alloy sputtering target material, and method for producing same
WO2013183546A1 (en) * 2012-06-06 2013-12-12 日立金属株式会社 Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING SAME
CN104145043B (en) * 2012-06-06 2015-11-25 日立金属株式会社 Fe-Co based alloy sputtering target material and manufacture method thereof
US20160141158A1 (en) * 2012-06-06 2016-05-19 Hitachi Metals, Ltd. Fe-Co-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD OF PRODUCING SAME
US9773654B2 (en) * 2012-06-06 2017-09-26 Hitachi Metals, Ltd. Fe-Co-based alloy sputtering target material, and method of producing same
WO2014017381A1 (en) * 2012-07-24 2014-01-30 日立金属株式会社 Target material and method for producing same
CN104508173A (en) * 2012-07-24 2015-04-08 日立金属株式会社 Target material and method for producing same
JPWO2014017381A1 (en) * 2012-07-24 2016-07-11 日立金属株式会社 Target material and manufacturing method thereof
JP2015129332A (en) * 2014-01-08 2015-07-16 Jx日鉱日石金属株式会社 Magnetic material sputtering target and production method thereof
JP2015129331A (en) * 2014-01-08 2015-07-16 Jx日鉱日石金属株式会社 Magnetic material sputtering target and production method thereof
TWI647031B (en) * 2014-07-09 2019-01-11 奧地利商攀時歐洲公司 Process for producing a component
US20230076444A1 (en) * 2020-02-13 2023-03-09 Sanyo Special Steel Co., Ltd. Sputtering Target Material and Method of Producing the Same

Also Published As

Publication number Publication date
JP5472688B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5472688B2 (en) Fe-Co alloy sputtering target material and method for producing the same
JP2008189996A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP4016399B2 (en) Method for producing Fe-Co-B alloy target material
CN101161854B (en) Co-Fe-Zr based alloy sputtering target material and process for production thereof
JP4953082B2 (en) Co-Fe-Zr alloy sputtering target material and method for producing the same
JP2005320627A (en) Co ALLOY TARGET AND ITS PRODUCTION METHOD, SOFT MAGNETIC FILM FOR PERPENDICULAR MAGNETIC RECORDING AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2006265653A (en) Fe-Co-BASED ALLOY TARGET MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5359890B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
JP2005530925A (en) High PTF sputtering target and manufacturing method thereof
JP5370917B2 (en) Method for producing Fe-Co-Ni alloy sputtering target material
JP2010159491A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL
JP2009191359A (en) Fe-Co-Zr BASED ALLOY TARGET MATERIAL
JP5477724B2 (en) Co-Fe alloy for soft magnetic film, soft magnetic film and perpendicular magnetic recording medium
JP6431496B2 (en) Alloy for seed layer of magnetic recording medium, sputtering target material, and magnetic recording medium
JP5403418B2 (en) Method for producing Co-Fe-Ni alloy sputtering target material
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
CN104508167A (en) Fe-Co alloy sputtering target material and method for producing same, and soft magnetic thin film layer and perpendicular magnetic recording medium using same
JP5397755B2 (en) Fe-Co alloy sputtering target material for soft magnetic film formation
WO2018062189A1 (en) Ni-Ta SYSTEM ALLOY, TARGET MATERIAL AND MAGNETIC RECORDING MEDIUM
JP2009203537A (en) Co-Fe-BASED ALLOY SPUTTERING TARGET MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP6094848B2 (en) Method for producing Fe-Co alloy soft magnetic film for perpendicular magnetic recording medium
JP6581780B2 (en) Ni-based target material with excellent sputtering properties
JP5418897B2 (en) Method for producing Co-Fe alloy sputtering target material
JP2000096220A (en) Cobalt-chromium sputtering target and its manufacture
TWI823989B (en) Sputtering targets for soft magnetic layers of magnetic recording media and magnetic recording media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Ref document number: 5472688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350