JP2012125053A - 漏電検出遮断器 - Google Patents

漏電検出遮断器 Download PDF

Info

Publication number
JP2012125053A
JP2012125053A JP2010273539A JP2010273539A JP2012125053A JP 2012125053 A JP2012125053 A JP 2012125053A JP 2010273539 A JP2010273539 A JP 2010273539A JP 2010273539 A JP2010273539 A JP 2010273539A JP 2012125053 A JP2012125053 A JP 2012125053A
Authority
JP
Japan
Prior art keywords
leakage
unit
power supply
input voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010273539A
Other languages
English (en)
Other versions
JP5634240B2 (ja
Inventor
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010273539A priority Critical patent/JP5634240B2/ja
Priority to CN201180058376.2A priority patent/CN103384951B/zh
Priority to PCT/IB2011/002939 priority patent/WO2012076959A1/ja
Priority to TW100145179A priority patent/TWI442437B/zh
Publication of JP2012125053A publication Critical patent/JP2012125053A/ja
Priority to US13/845,239 priority patent/US9685777B2/en
Application granted granted Critical
Publication of JP5634240B2 publication Critical patent/JP5634240B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers

Abstract

【課題】漏電検出遮断器において、交流電源に接続された経路で発生する漏電のみならず、直流電源に接続された経路で発生する漏電をも検出して、漏電が発生した経路の電源からの電力供給を遮断する。
【解決手段】交流漏電判断部2aが交流漏電電流検出部1aから出力された信号に基づいて交流の漏電の有無を判断し、電力供給遮断部3が商用交流電源51から負荷53に供給される電力を遮断する。直流漏電判断部2bが直流漏電電流検出部1bから出力された信号に基づいて直流の漏電の有無を判断し、電力供給遮断部3が直流電源52から負荷53に供給される電力を遮断する。これにより、商用交流電源51に接続された経路で発生する漏電のみならず、直流電源52に接続された経路で発生する漏電をも検出して、漏電が発生した経路の電源からの電力供給を遮断する。
【選択図】図1

Description

本発明は、交流漏電及び直流漏電を検出し、負荷に対する交流電力及び直流電力の供給を遮断して人体等を保護する漏電検出遮断器に関する。
従来から、交流漏電及び直流漏電を検出し、蓄電部に対する交流電力の供給を遮断する技術が知られている(例えば、特許文献1参照)。
また、一方で近年、エコロジー意識の高まりと太陽光発電の普及に伴い、ソーラーパネル(太陽光発電装置)によって発電された直流電力を、例えばハイブリッドカーのバッテリなどの負荷に供給する技術が検討されている。このような直流電力を供給するための構成は、従前の商用交流電源から交流電力を供給するための構成に追加して設けられ、直流電力と交流電力が接続される負荷に応じて選択的に切り替えられるように構成される。
特開2000−270463号公報
上記特許文献1の段落(0020)等に示された技術においては、電気自動車の蓄電部付近(または直流側)で地絡が起きると、蓄電部の正極側→人体抵抗→大地→漏電遮断器の開閉部の復路方向のケーブル→蓄電部の負極の経路で直流漏電電流が流れる。このとき、直流漏電検出部により直流漏電が検出され、その検出出力で漏電遮断器は開閉部を開いて電力供給を遮断する。
しかしながら、電気自動車の蓄電部(バッテリ)を負荷として、ソーラーパネルによって発電された直流電力によって蓄電部を充電する構成に適用した場合、以下の問題が生ずる。すなわち、直流電源であるソーラーパネルから負荷に至る経路において直流電流の漏電が発生した場合、この漏電を検出してソーラーパネルからの直流電力の供給を遮断することができない。
本発明は、上記課題を解決するためになされたものである。すなわち、交流電源に接続された経路で発生する漏電のみならず、直流電源に接続された経路で発生する漏電をも検出して、漏電が発生した経路の電源からの電力供給を遮断する漏電検出遮断器を提供することを目的とする。
本発明の漏電検出遮断器は、漏電電流を検出する変流器と、前記変流器から出力された信号に基づいて直流及び交流の漏電を判断する漏電判断部と、前記漏電判断部によって漏電と判断されたとき、直流又は交流の電力供給を遮断する電力供給遮断部を備える。
この発明において、前記変流器は、単一の構成により直流及び交流の漏電電流を検出することが好ましい。
この発明において、接続される電力線に印加される電圧の種類を判別する入力電圧種類判別部をさらに備え、前記漏電判断部は、前記入力電圧種類判別部によって判別された入力電圧の種類に応じて直流又は交流の漏電を判断することが好ましい。
この発明において、前記漏電判断部は、前記変流器から出力された信号を2乗して得られた信号に基づいて直流及び/又は交流の漏電を判断することが好ましい。
この発明において、前記漏電判断部によって漏電と判断されたとき、前記入力電圧種類判別部によって判別された入力電圧の種類を表示する表示部をさらに備えることが好ましい。
この発明において、交流の入力電圧を検出する入力電圧検出部をさらに備え、前記入力電圧検出部が所定の電圧以上の入力電圧を検出したとき、前記電力供給遮断部が交流の電力供給を遮断することが好ましい。
この発明において、前記電力供給遮断部は、双方向開閉半導体素子によって構成されていることが好ましい。
この発明において、前記双方向開閉半導体素子は、2個の単方向トランジスタが逆接続されることによって構成されていることが好ましい。
この発明において、前記双方向開閉半導体素子は、2個の制御端子を有する横型の双方向トランジスタによって構成されていることが好ましい。
この発明において、前記電力供給遮断部は、2個の制御端子を有する横型の双方向トランジスタと接点を有する開閉素子が直列接続した構造を有することが好ましい。
この発明において、前記電力供給遮断部は、2個の制御端子を有する横型の双方向トランジスタと接点を有する開閉素子が並列接続した構造を有することが好ましい。
本発明の漏電検出遮断器によれば、漏電判断部が変流器から出力された信号に基づいて直流及び交流の漏電を判断し、電力供給遮断部が直流又は交流の電力供給を遮断する。これにより、交流電源に接続された経路で発生する漏電のみならず、直流電源に接続された経路で発生する漏電をも検出して、漏電が発生した経路の電源からの電力供給を遮断することができる。
本発明の一実施形態による漏電検出遮断器の概略構成を示す回路図。 同漏電検出遮断器において、特に交流漏電を検出し遮断するための構成を示す回路図。 同漏電検出遮断器において、特に直流漏電を検出し遮断するための構成を示す回路図。 直流漏電判断部等の各部から出力される信号の波形を示す図。 上記実施形態による漏電検出遮断器の変形例の概略構成を示す回路図。 同変形例において、交流漏電判断部等の各部から出力される信号の波形を示す図。 上記実施形態による漏電検出遮断器の別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 同変形例において、交流漏電判断部等の各部から出力される信号の波形を示す図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 上記実施形態による漏電検出遮断器のさらに別の変形例の概略構成を示す回路図。 GaN/AlGaN横型トランジスタ構造のスイッチ素子の構成を示す平面図。 図17のA−A断面図。 GaN/AlGaN横型トランジスタ構造の双方向スイッチ素子の構成を示す平面図。 図19のB−B断面図。
本発明の一実施形態による漏電検出遮断器について図面を参照して説明する。図1は漏電検出遮断器の概略構成を示す。漏電検出遮断器は、交流漏電電流検出部(変流器)1aと、直流漏電電流検出部(変流器)1bと、交流漏電判断部2aと、直流漏電判断部2bと、電力供給遮断部3と、制御部4と、電源回路5と入力端子40と出力端子41等によって構成されている。漏電検出遮断器は、商用交流電源51及びソーラーパネル等の直流電源52と、負荷53の間に接続され、交流又は直流の漏電を検出し、商用交流電源51又は直流電源52から負荷53に供給される電力を遮断する。
交流漏電電流検出部1aは、零相変流器(ZCT)等によって構成され、交流の漏電電流を検出する。直流漏電電流検出部1bは、零相変流器等によって構成され、直流の漏電電流を検出する。交流漏電判断部2aは、交流漏電電流検出部1aから出力された信号に基づいて交流の漏電を判断する。直流漏電判断部2bは、直流漏電電流検出部1bから出力された信号に基づいて直流の漏電を判断する。電力供給遮断部3は、制御部4から出力される制御信号に応じて、商用交流電源51又は直流電源52から負荷53に供給される電力を遮断する。電力供給遮断部3の一例としては、電磁的に制御される機械的な接点を有するリレーが挙げられる。
制御部4は、交流漏電判断部2a及び直流漏電判断部2bから出力される信号に基づいて、電力供給遮断部3に制御信号を出力する。すなわち、交流漏電判断部2aによって交流の漏電が発生していると判断されたとき、制御部4は、電力供給遮断部3に制御信号を出力し、商用交流電源51から負荷53に供給される電力を遮断する。また、直流漏電判断部2bによって直流の漏電が発生していると判断されたとき、制御部4は、電力供給遮断部3に制御信号を出力し、直流電源52から負荷53に供給される電力を遮断する。電源回路5は、漏電検出遮断器の各部に電力を供給する。
入力端子40は、商用交流電源51又は直流電源52のいずれかが接続される。図1においては、実線で示すように商用交流電源51が接続されている。負荷53として直流電源を必要とする負荷が接続される場合は、破線で示すように直流電源52が接続される。出力端子41は、負荷53が接続される。
図2は漏電検出遮断器において、特に交流漏電判断部2a等の構成を示す。交流漏電判断部2aは、電流電圧変換回路21aと、フィルタ回路22aと、波形パターン閾値判定回路23a等を有している。電流電圧変換回路21aは、交流漏電電流検出部1aから出力された電流信号を電圧信号に変換する。フィルタ回路22aは、電流電圧変換回路21aから出力された電圧信号のノイズ成分を除去する。波形パターン閾値判定回路23aは、フィルタ回路22aから出力された電圧信号の波形パターンに基づいて閾値を参照して交流の漏電を判定する。
電流電圧変換回路21aは、交流漏電電流検出部1aから出力された電流信号を電圧信号に変換する。フィルタ回路22aは、電流電圧変換回路21aから出力された電圧信号のノイズ成分を除去する。波形パターン閾値判定回路23aは、フィルタ回路22aから出力された電圧信号の波形パターンに基づいて交流の漏電を判定する。例えば、絶対値の値が所定の閾値を超えるプラス成分及びマイナス成分の電圧信号が交互に検出されたとき、交流の漏電が発生していると判定される。
図3は漏電検出遮断器において、特に直流漏電判断部2b等の構成を示す。また、図4は、直流漏電判断部2b等の各部から出力される信号の波形を示す。直流漏電判断部2bは、励磁信号回路21bと、電流電圧変換回路22bと、フィルタ回路23bと、整流回路24bと、積分回路25bと、閾値判定回路26b等を有する。
励磁信号回路21bは、直流漏電電流検出部1bに入力するパルス信号(電圧信号)を発生する。パルス信号が入力された直流漏電電流検出部1bは、図4に示す電流信号を電流電圧変換回路22bに出力する。電流電圧変換回路22bは、直流漏電電流検出部1bから入力された電流信号を電圧信号に変換する。フィルタ回路23bは、電流電圧変換回路22bから入力された電圧信号のノイズ成分を除去する。整流回路24bは、フィルタ回路23bから入力された電圧信号を整流する。積分回路25bは、整流回路24bから入力された電圧信号を平滑化する。閾値判定回路26bは、積分回路25bから入力された電圧信号を所定の閾値と比較して、直流の漏電の有無を判定する。すなわち、積分回路25bから入力された電圧信号が閾値より大きい場合は、直流の漏電が発生していると判定し、積分回路25bから入力された電圧信号が閾値より小さい場合は、直流の漏電が発生していないと判定する。
以上のように、本実施形態の漏電検出遮断器によれば、交流漏電判断部2aが交流漏電電流検出部1aから出力された信号に基づいて交流の漏電の有無を判断し、電力供給遮断部3が商用交流電源51から負荷53に供給される電力を遮断する。また、直流漏電判断部2bが直流漏電電流検出部1bから出力された信号に基づいて直流の漏電の有無を判断し、電力供給遮断部3が直流電源52から負荷53に供給される電力を遮断する。これにより、商用交流電源51に接続された経路で発生する漏電のみならず、直流電源52に接続された経路で発生する漏電をも検出して、漏電が発生した経路の電源からの電力供給を遮断することができる。
(変形例)
図5は、上記実施形態による漏電検出遮断器の変形例を示している。この変形例においては、単一の漏電電流検出部1によって直流及び交流の漏電電流を検出し、単一の漏電判断部2によって直流及び交流の漏電の有無を判断する。
漏電判断部2は、励磁信号回路21と、電流電圧変換回路22と、交流用フィルタ回路23c、直流用フィルタ回路23dと、交流用整流回路24c、直流用整流回路24dと、交流用積分回路25c、直流用積分回路25dと、閾値判定回路26等を有する。このうち、直流漏電の有無を判断する構成、すなわち励磁信号回路21、電流電圧変換回路22、直流用フィルタ回路23d、直流用整流回路24d、直流用積分回路25d、閾値判定回路26及びその動作については、図4等と同等であるので説明を省略する。
図6は、交流の漏電の有無を判断する際における、漏電判断部2等の各部から出力される信号の波形を示す。この変形例においては、交流の漏電を判断するにあたっても、励磁信号回路21から漏電電流検出部1にパルス信号を入力する。そして、漏電電流検出部1から電流信号が電流電圧変換回路22に入力されると、電流電圧変換回路22はその電流信号を電圧信号を変換し、交流用フィルタ回路23cに出力する。交流用フィルタ回路23cは、電流電圧変換回路22から入力された電圧信号のノイズ成分を除去する。交流用整流回路24cは、交流用フィルタ回路23cから入力された電圧信号を整流する。交流用積分回路25cは、交流用整流回路24cから入力された電圧信号を平滑化する。閾値判定回路26bは、交流用積分回路25cから入力された電圧信号を所定の閾値と比較して、直流の漏電の有無を判定する。すなわち、交流用積分回路25cから入力された電圧信号が閾値より大きい場合は、直流の漏電が発生していると判定し、交流用積分回路25cから入力された電圧信号が閾値より小さい場合は、直流の漏電が発生していないと判定する。なお、直流漏電の有無の判断については、図4と同等であるため、その説明を省略する。
本変形例の漏電検出遮断器によれば、単一の漏電電流検出部1によって直流及び交流の漏電電流を検出し、漏電判断部2によって直流及び交流の漏電の有無を判断するので、装置の構成を簡素かつ安価にすることができる。
(変形例)
図7は、上記実施形態による漏電検出遮断器の別の変形例を示している。この変形例においては、単一の漏電電流検出部1によって直流及び交流の漏電電流を検出するとともに、漏電検出遮断器に入力される電圧の種類を判別し、交流漏電判断部2a又は直流漏電判断部2bを選択的に切り替えて動作させる。
すなわち、漏電検出遮断器は、入力電圧種類判別部6と、切替部7を有する。入力電圧種類判別部6は、漏電検出遮断器に入力される電圧の種類(負荷53が接続される電力線に印加される電圧の種類)を判別し、制御部4に通知する。制御部4は、入力電圧種類判別部6からの通知に基づいて、切替部7を制御するための制御信号を切替部7に出力する。切替部7は、制御部4から入力される制御信号に応じて、交流漏電判断部2a又は直流漏電判断部2bを選択的に切り替える。
本変形例の漏電検出遮断器によれば、負荷53が接続される電力線に印加される電圧に応じて交流漏電判断部2a又は直流漏電判断部2bに自動的に切り替えるので、漏電検出遮断器の設定に要する手間を削減することができる。
(変形例)
図8は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例においては、交流用整流回路24cと交流用積分回路25cの間に交流用2乗演算回路27cを、直流用整流回路24dと直流用積分回路25dとの間に直流用2乗演算回路27dをさらに有する。
図9は、交流の漏電の有無を判断する際における漏電判断部2等の各部から出力される信号の波形を示す。交流用2乗演算回路27cは、交流用整流回路24cから出力された信号の2乗演算を行い交流用積分回路25cに出力する。同様に、直流用2乗演算回路27dは、直流用整流回路24dから出力された信号の2乗演算を行い直流用積分回路25dに出力する。交流用2乗演算回路27c及び直流用2乗演算回路27dは、整流された電圧信号を2乗することにより、電圧信号のエネルギーに相当する物理量を算出する。なお、直流漏電の有無の判断についても同様である。
整流された電圧信号が歪みを伴う場合にあっては、そのまま積分演算すると平均化されて本来の値よりも低い値が算出される虞がある。本変形例の漏電検出遮断器によれば、このような場合であっても、電圧信号のエネルギーから精度よく漏電を判定することができる。
(変形例)
図10は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例においては、図7に示した変形例に対して表示部8をさらに有する。表示部8は、入力電圧種類判別部6によって判別された入力電圧の種類を、例えばLEDを点灯させるなどにより表示する。
本変形例の漏電検出遮断器によれば、交流又は直流のいずれの電力線で漏電が生じているのか、表示部8を確認することにより知得できる。これにより、漏電が生じた際に対応を行う使用者及び管理者の負担を低減できる。
(変形例)
図11は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例は、中性線10を用いた単相3線式の配電方式に対応し、100Vの負荷53a,53bと200Vの負荷53cが接続される。この変形例においては、図10に示した変形例に対して入力電圧検出部9a,9bをさらに有する。
図11において、何らかの障害により中性線10が外れた場合には、負荷53a又は負荷53bのいずれか一方に大きな電圧が印加され、破壊される虞が生ずる。そこで、本変形例においては、入力電圧検出部9aによって負荷53aに印加される電圧を検出し、入力電圧検出部9bによって負荷53bに印加される電圧を検出する。そして、入力電圧検出部9a又は入力電圧検出部9bによって所定の閾値以上の電圧が検出された場合は、電力供給遮断部3が交流の電力供給を遮断する。
本変形例の漏電検出遮断器によれば、中性線10を用いた単相3線式の配電方式において、負荷に印加される交流電圧にアンバランスが生じた際に、電力供給を遮断し、負荷を保護することができる。
(変形例)
図12は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例は、図10に示した変形例における電力供給遮断部3として双方向開閉半導体素子31が適用されて構成される。
電力供給遮断部3としては、機械的な接点を有するリレー等を用いてもよいが、直流電の遮断を制御するにあたってアークの発生を抑制するための構成が必要となるため、回路の規模が大きくなるという問題がある。本変形例においては、電力供給遮断部3として双方向開閉半導体素子31を適用しているので、直流電の遮断を制御するにあたってアークの発生を防止することができ、回路の小型化を図ることができる。
(変形例)
図13は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例は、図12に示した変形例における双方向開閉半導体素子31として、逆接続された2個の単方向トランジスタ32が適用されている。逆接続とは、単方向トランジスタ32の寄生ダイオードが互いに逆向きとなるように直列に接続されることをいう。
交流回路を開閉する素子の一例として、一般的にトライアックを用いた構成が知られているが、この構成においては、直流回路を開閉することができない。本変形例においては、逆接続された2個の単方向トランジスタを用いることにより、簡素な構成で商用交流電源51又は直流電源52のいずれの電源が接続された場合であっても、回路を開閉することが可能となる。
(変形例)
図14は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例は、図12に示した変形例における双方向開閉半導体素子31として、2個の制御端子(デュアルゲート)を有する横型の双方向トランジスタ33が適用されている。
本変形例の漏電検出遮断器によれば、2個の制御端子間で耐電圧を維持しつつ、電力供給遮断部ひいては漏電検出遮断器の小型化を図ることができる。
(変形例)
図15は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例は、図10に示した変形例における電力供給遮断部3として、双方向開閉半導体素子と、直列に接続された機械的な接点を有する開閉素子とにより構成されている。双方向開閉半導体素子の一例としては横型の双方向トランジスタ33が挙げられ、開閉素子の一例としては機械式リレー30が挙げられる。
本変形例においては、電力供給遮断部3を閉じる際には、先に機械式リレー30を閉じた後、双方向トランジスタ33を閉じる。一方、電力供給遮断部3を開く際には、先に双方向トランジスタ33を開いた後、機械式リレー30を開く。
本変形例の漏電検出遮断器によれば、電力供給遮断部3として、機械式リレー30と双方向トランジスタ33を併用し、開閉タイミングを適宜制御することにより、開閉時のアークの発生を抑制することができる。また、電力供給遮断時における電力供給遮断部3の絶縁性を高めることができる。
(変形例)
図16は、上記実施形態による漏電検出遮断器のさらに別の変形例を示している。この変形例は、図10に示した変形例における電力供給遮断部3として、双方向開閉半導体素子と、並列に接続された機械的な接点を有する開閉素子とにより構成されている。本変形例においては、電力供給遮断部3を閉じる際には、先に双方向トランジスタ33を閉じた後、機械式リレー30を閉じる。一方、電力供給遮断部3を開く際には、先に機械式リレー30を開いた後、双方向トランジスタ33を開く。
(横型シングルゲートトランジスタ構造のスイッチ素子)
図17は横型のシングルゲートトランジスタ構造のスイッチ素子101の構成を示す平面図であり、図18はそのA−A断面図である。図18に示すように、スイッチ素子101の基板120は、基材層101aと、基材層101aの上に積層されたGaN層101b及びAlGaN層101cで構成されている。このスイッチ素子101では、チャネル層としてAlGaN/GaNヘテロ界面に生じる2次元電子ガス層を利用している。図17に示すように、基板120の表面120dには、電源6又は負荷7に対して接続される第1電極D1及び第2電極D2と、第1電極D1の電位及び第2電極D2の電位に対して中間電位となる中間電位部Sが形成されている。さらに、中間電位部Sの上には、ゲート電極Gが積層形成されている。ゲート電極Gとして、例えばショットキ電極を用いる。第1電極D1及び第2電極D2は、それぞれ互いに平行に配列された複数の電極部111,112,113・・・及び121,122,123・・・を有する櫛歯状であり、櫛歯状に配列された電極部同士が互いに対向するように配置されている。中間電位部S及びゲート電極Gは、櫛歯状に配列された電極部111,112,113・・・及び121,122,123・・・の間にそれぞれ配置されており、電極部の間に形成される空間の平面形状に相似した形状を有している。
図17に示すように、第1電極D1の電極部111と第2電極D2の電極部112は、それらの幅方向における中心線が同一線上に位置するように配列されている。また、中間電位部Sの対応部分及びゲート電極Gの対応部分は、それぞれ第1電極D1の電極部111及び第2電極D2の電極部121の配列に対して平行に設けられている。上記幅方向における第1電極D1の電極部111と第2電極D2の電極部112と中間電位部Sの対応部分及びゲート電極Gの対応部分の距離は、所定の耐電圧を維持しうる距離に設定されている。上記幅方向に直交する方向、すなわち第1電極D1の電極部111と第2電極D2の電極部112の長手方向においても同様である。また、これらの関係は、その他の電極部112及び122,113及び123・・・についても同様である。すなわち、中間電位部S及びゲート電極Gは、第1電極D1及び第2電極D2に対して所定の耐電圧を維持しうる位置に配置されている。
第1電極D1の電位及び第2電極D2の電位に対して中間電位となる中間電位部S及びこの中間電位部Sに接続され、中間電位部Sに対して制御を行うためのゲート電極Gが、第1電極D1及び第2電極D2に対して所定の耐電圧を維持しうる位置に配置されている。そのため、例えば第1電極D1が高電位側、第2電極D2が低電位側である場合、スイッチ素子101がオフ、すなわちゲート電極Gに0Vの信号が印加されたときには、少なくとも第1電極D1と、ゲート電極G及び中間電位部Sの間で、電流は確実に遮断される。すなわち、ゲート電極Gの直下で電流が阻止される。一方、スイッチ素子101がオンの時、すなわちゲート電極Gに所定の閾値以上の電圧の信号が印加されたときは、図17中矢印で示すように、第1電極D1、中間電位部S、第2電極D2の経路で電流が流れる。逆の場合も同様である。
このように、第1電極D1及び第2電極D2に対して所定の耐電圧を維持しうる位置に中間電位部Sを形成したので、ゲート電極Gに印加する信号の閾値電圧を必要最低限のレベルまで低下させても、スイッチ素子101を確実にオン/オフさせることができる。その結果、スイッチ素子の低オン抵抗を実現することができる。そして、このスイッチ素子101を用いて開閉部11を構成することにより、制御信号の基準(GND)を中間電位部Sと同電位とすることで、数Vの制御信号で駆動される制御部12によって、高電圧の商用電源6を直接制御することができる。また、チャネル層としてヘテロ界面に生じる2次元電子ガス層を利用している横型のトランジスタ素子においては、素子を非導通にさせる閾値電圧の高電位化と導通時のオン抵抗は相反関係にある。そのため、閾値電圧を低くすることができることは、オン抵抗を低く維持することができることにつながり、電子リレー1の小型高容量化を実現することができる。
(横型デュアルゲートトランジスタ構造のスイッチ素子)
図19は、トランジスタ構造を有するスイッチ素子として、GaN/AlGaN横型デュアルゲートトランジスタ構造の双方向スイッチ素子300の構成を示す平面図であり、図20はそのB−B断面図である。
図20に示すように、双方向スイッチ素子300は、基板表面上に形成された第1電極D1及び第2電極D2と、少なくともその一部分が基板表面上に形成され、それぞれ独立した制御信号が入力される第1ゲート電極G1及び第2ゲート電極G2を備えている。また、第1ゲート電極G1と第2ゲート電極G2は、所定の耐電圧を維持しうる位置に配置されている。耐圧を維持する箇所が、第1ゲート電極G1と第2ゲート電極G2の間の1箇所であるので、損失の少ない双方向スイッチ素子を実現することができる。この構成の双方向スイッチ素子300は、ドレイン電極D1,D2の電圧を基準として制御する必要があり、2つのゲート電極G1,G2にそれぞれ異なった駆動信号を入力する必要がある(そのため、デュアルゲートトランジスタ構造と呼ぶ)。この双方向スイッチ素子300の等価回路は、図13に示すように、1つのMOSFETを寄生ダイオードの向きが互いに逆になるように直列接続したものとほぼ同じである。
本変形例の漏電検出遮断器によれば、電力供給遮断部3として、機械式リレー30と双方向トランジスタ33を併用し、開閉タイミングを適宜制御することにより、開閉時のアークの発生を抑制することができる。また、負荷53に大電流を流すことができる。
なお、本発明は上記実施形態の構成に限られることなく、少なくとも交流漏電電流検出部1a,直流漏電電流検出部1bと、交流漏電判断部2a,直流漏電判断部2bと、電力供給遮断部3とを備えて構成されていればよい。また、上記変形例の特徴を適宜組み合わせて構成されていてもよい。
1 漏電電流検出部(変流器)
1a 交流漏電電流検出部(変流器)
1b 直流漏電電流検出部(変流器)
2 漏電判断部
2a 交流漏電判断部
2b 直流漏電判断部
3 電力供給遮断部
4 制御部
6 入力電圧種類判別部
8 表示部
9a 入力電圧検出部
9b 入力電圧検出部
27c 交流用2乗演算回路
27d 直流用2乗演算回路
30 機械式リレー
31 双方向開閉半導体素子
32 単方向トランジスタ
33 双方向トランジスタ
53 負荷

Claims (11)

  1. 漏電電流を検出する変流器と、前記変流器から出力された信号に基づいて直流及び交流の漏電を判断する漏電判断部と、前記漏電判断部によって漏電と判断されたとき、直流又は交流の電力供給を遮断する電力供給遮断部を備えたことを特徴とする漏電検出遮断器。
  2. 前記変流器は、単一の構成により直流及び交流の漏電電流を検出することを特徴とする請求項1に記載の漏電検出遮断器。
  3. 接続される電力線に印加される電圧の種類を判別する入力電圧種類判別部をさらに備え、前記漏電判断部は、前記入力電圧種類判別部によって判別された入力電圧の種類に応じて直流又は交流の漏電を判断することを特徴とする請求項1又は請求項2に記載の漏電検出遮断器。
  4. 前記漏電判断部は、前記変流器から出力された信号を2乗して得られた信号に基づいて直流及び/又は交流の漏電を判断することを特徴とする請求項1乃至請求項3のいずれか一項に記載の漏電検出遮断器。
  5. 前記漏電判断部によって漏電と判断されたとき、前記入力電圧種類判別部によって判別された入力電圧の種類を表示する表示部をさらに備えたことを特徴とする請求項3又は請求項4のいずれか一項に記載の漏電検出遮断器。
  6. 交流の入力電圧を検出する入力電圧検出部をさらに備え、前記入力電圧検出部が所定の電圧以上の入力電圧を検出したとき、前記電力供給遮断部が交流の電力供給を遮断することを特徴とする請求項1乃至請求項5のいずれか一項に記載の漏電検出遮断器。
  7. 前記電力供給遮断部は、双方向開閉半導体素子によって構成されていることを特徴とする請求項1乃至請求項6のいずれか一項に記載の漏電検出遮断器。
  8. 前記双方向開閉半導体素子は、2個の単方向トランジスタが逆接続されることによって構成されていることを特徴とする請求項7に記載の漏電検出遮断器。
  9. 前記双方向開閉半導体素子は、2個の制御端子を有する横型の双方向トランジスタによって構成されていることを特徴とする請求項7に記載の漏電検出遮断器。
  10. 前記電力供給遮断部は、2個の制御端子を有する横型の双方向トランジスタと接点を有する開閉素子が直列接続した構造を有することを特徴とする請求項7に記載の漏電検出遮断器。
  11. 前記電力供給遮断部は、2個の制御端子を有する横型の双方向トランジスタと接点を有する開閉素子が並列接続した構造を有することを特徴とする請求項7に記載の漏電検出遮断器。
JP2010273539A 2010-12-08 2010-12-08 漏電検出遮断器 Active JP5634240B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010273539A JP5634240B2 (ja) 2010-12-08 2010-12-08 漏電検出遮断器
CN201180058376.2A CN103384951B (zh) 2010-12-08 2011-12-06 漏电检测断路器
PCT/IB2011/002939 WO2012076959A1 (ja) 2010-12-08 2011-12-06 漏電検出遮断器
TW100145179A TWI442437B (zh) 2010-12-08 2011-12-08 漏電檢測斷路器
US13/845,239 US9685777B2 (en) 2010-12-08 2013-03-18 Leakage detection breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010273539A JP5634240B2 (ja) 2010-12-08 2010-12-08 漏電検出遮断器

Publications (2)

Publication Number Publication Date
JP2012125053A true JP2012125053A (ja) 2012-06-28
JP5634240B2 JP5634240B2 (ja) 2014-12-03

Family

ID=46206656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010273539A Active JP5634240B2 (ja) 2010-12-08 2010-12-08 漏電検出遮断器

Country Status (5)

Country Link
US (1) US9685777B2 (ja)
JP (1) JP5634240B2 (ja)
CN (1) CN103384951B (ja)
TW (1) TWI442437B (ja)
WO (1) WO2012076959A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199676A (ja) * 2016-04-28 2017-11-02 エルエス産電株式会社Lsis Co., Ltd. 回路遮断器用トリップ制御回路
JP2018087783A (ja) * 2016-11-29 2018-06-07 パナソニックIpマネジメント株式会社 漏電検出装置
TWI640141B (zh) * 2017-04-28 2018-11-01 圓展科技股份有限公司 漏電流保護系統及方法
JP2019009980A (ja) * 2017-06-23 2019-01-17 Tdk株式会社 漏電検出装置、ワイヤレス送電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
US10453637B2 (en) 2017-07-27 2019-10-22 Lsis Co., Ltd. Direct current air circuit breaker
KR102291191B1 (ko) * 2020-09-10 2021-08-18 한국전기연구원 스마트 전기안전 전자스위치
KR20220015768A (ko) * 2020-07-31 2022-02-08 태성전기산업주식회사 과전류 계전부를 포함하는 누전 차단 장치

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634240B2 (ja) * 2010-12-08 2014-12-03 パナソニック株式会社 漏電検出遮断器
TWI580985B (zh) * 2014-09-23 2017-05-01 明新科技大學 漏電斷路動作檢測裝置
JP6697745B2 (ja) * 2016-11-29 2020-05-27 パナソニックIpマネジメント株式会社 直流漏電検出装置、漏電検出装置
JP6431132B1 (ja) * 2017-05-30 2018-11-28 ファナック株式会社 漏れ電流の大きい逆変換器を検知するモータ駆動装置
CN109119970B (zh) * 2017-06-23 2021-01-12 Tdk株式会社 漏电检测装置、无线送电装置、无线受电装置及无线电力传输系统
TWI626457B (zh) * 2017-09-26 2018-06-11 Ship power distribution feeder insulation abnormal positioning system
WO2019193743A1 (ja) * 2018-04-06 2019-10-10 三菱電機株式会社 漏電検出装置および漏電遮断器
TWI662766B (zh) * 2018-05-23 2019-06-11 車王電子股份有限公司 Electric bus power system
CN110626172A (zh) * 2018-06-01 2019-12-31 车王电子股份有限公司 电动巴士的电力系统
KR20200085563A (ko) * 2019-01-07 2020-07-15 엘에스일렉트릭(주) 누설 전류의 유형을 출력할 수 있는 누전 차단기 및 그 제어 방법
TWI723851B (zh) * 2020-04-21 2021-04-01 友達光電股份有限公司 太陽能電池檢測系統
TWI737388B (zh) * 2020-07-06 2021-08-21 瑞洲電裝股份有限公司 開關微漏電流偵測裝置
CN111833574A (zh) * 2020-07-14 2020-10-27 广东格美淇电器有限公司 一种电压感应式报警装置及其报警方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63917A (ja) * 1986-06-18 1988-01-05 日本碍子株式会社 無接点開閉器
JPH03101477U (ja) * 1990-02-02 1991-10-23
JPH06118111A (ja) * 1992-10-07 1994-04-28 Osaka Gas Co Ltd 漏電検出装置
JPH10191552A (ja) * 1996-12-25 1998-07-21 Fuji Electric Co Ltd 漏電遮断器の過電圧検出回路
JP2006060275A (ja) * 2004-08-17 2006-03-02 Showa Dengyosha:Kk 電子遮断装置
JP2007110844A (ja) * 2005-10-14 2007-04-26 C Tekku:Kk 直流電源遮断装置
JP2010015745A (ja) * 2008-07-02 2010-01-21 Panasonic Electric Works Co Ltd 漏電検出機能付配線器具
WO2010010711A1 (ja) * 2008-07-24 2010-01-28 パナソニック株式会社 電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002738A (ja) * 1998-06-17 2000-01-07 Shihen Tech Corp 直流漏電検出装置
JP2000270463A (ja) 1999-03-15 2000-09-29 Matsushita Electric Works Ltd 電力供給装置
JP3517617B2 (ja) * 1999-09-17 2004-04-12 株式会社東芝 電気機器の漏電検知方法
TW517420B (en) 2000-11-07 2003-01-11 Lee Soon Tan A method and apparatus for automatically detecting and managing an AC power fault
JP4167872B2 (ja) 2001-10-04 2008-10-22 株式会社日立産機システム 漏れ電流の監視装置及びその監視システム
WO2007007749A1 (ja) * 2005-07-12 2007-01-18 Komatsu Ltd. 車載用電力供給システムの漏電検出装置
WO2009014143A1 (ja) * 2007-07-24 2009-01-29 Panasonic Electric Works Co., Ltd. 充電監視装置
FR2930091B1 (fr) * 2008-04-09 2011-10-28 Schneider Electric Ind Sas Systeme a relais statique comprenant deux transistors de type jfet en serie
CN101534000A (zh) * 2009-04-24 2009-09-16 北京Abb低压电器有限公司 漏电保护器
JP5634240B2 (ja) * 2010-12-08 2014-12-03 パナソニック株式会社 漏電検出遮断器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63917A (ja) * 1986-06-18 1988-01-05 日本碍子株式会社 無接点開閉器
JPH03101477U (ja) * 1990-02-02 1991-10-23
JPH06118111A (ja) * 1992-10-07 1994-04-28 Osaka Gas Co Ltd 漏電検出装置
JPH10191552A (ja) * 1996-12-25 1998-07-21 Fuji Electric Co Ltd 漏電遮断器の過電圧検出回路
JP2006060275A (ja) * 2004-08-17 2006-03-02 Showa Dengyosha:Kk 電子遮断装置
JP2007110844A (ja) * 2005-10-14 2007-04-26 C Tekku:Kk 直流電源遮断装置
JP2010015745A (ja) * 2008-07-02 2010-01-21 Panasonic Electric Works Co Ltd 漏電検出機能付配線器具
WO2010010711A1 (ja) * 2008-07-24 2010-01-28 パナソニック株式会社 電力変換装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483751B2 (en) 2016-04-28 2019-11-19 Lsis Co., Ltd. Trip control circuit for circuit breaker
JP2017199676A (ja) * 2016-04-28 2017-11-02 エルエス産電株式会社Lsis Co., Ltd. 回路遮断器用トリップ制御回路
JP2018087783A (ja) * 2016-11-29 2018-06-07 パナソニックIpマネジメント株式会社 漏電検出装置
WO2018101053A1 (ja) * 2016-11-29 2018-06-07 パナソニックIpマネジメント株式会社 漏電検出装置
CN110036303B (zh) * 2016-11-29 2021-07-02 松下知识产权经营株式会社 漏电检测装置
CN110036303A (zh) * 2016-11-29 2019-07-19 松下知识产权经营株式会社 漏电检测装置
US10809312B2 (en) 2016-11-29 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Electric leakage detector
TWI640141B (zh) * 2017-04-28 2018-11-01 圓展科技股份有限公司 漏電流保護系統及方法
US10749331B2 (en) 2017-04-28 2020-08-18 Aver Information Inc. System and method for leakage current protection
JP2019009980A (ja) * 2017-06-23 2019-01-17 Tdk株式会社 漏電検出装置、ワイヤレス送電装置、ワイヤレス受電装置、及びワイヤレス電力伝送システム
US10453637B2 (en) 2017-07-27 2019-10-22 Lsis Co., Ltd. Direct current air circuit breaker
KR20220015768A (ko) * 2020-07-31 2022-02-08 태성전기산업주식회사 과전류 계전부를 포함하는 누전 차단 장치
KR102374727B1 (ko) * 2020-07-31 2022-03-15 태성전기산업주식회사 과전류 계전부를 포함하는 누전 차단 장치
KR102291191B1 (ko) * 2020-09-10 2021-08-18 한국전기연구원 스마트 전기안전 전자스위치

Also Published As

Publication number Publication date
CN103384951B (zh) 2015-08-19
US20130215538A1 (en) 2013-08-22
TWI442437B (zh) 2014-06-21
US9685777B2 (en) 2017-06-20
TW201230119A (en) 2012-07-16
JP5634240B2 (ja) 2014-12-03
WO2012076959A1 (ja) 2012-06-14
CN103384951A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5634240B2 (ja) 漏電検出遮断器
KR101364913B1 (ko) 교류 및 직류 양용 스위치
JP5884067B2 (ja) 直流接続装置
CN101106329B (zh) 用于高压电源电路的方法和装置
CN106663557B (zh) 用于中断直流电流的分离开关
BR102016008589A2 (pt) interruptores de circuito de corrente contínua e método para operar um interruptor
WO2016185579A1 (ja) 電源制御装置及びその方法
KR20120025993A (ko) 충방전 제어 회로 및 배터리 장치
CN105375796B (zh) 具有电压检测的整流器
US7733098B2 (en) Saturation detection circuits
CN105720095B (zh) 半导体器件
JP6468114B2 (ja) 電源装置及びそのスイッチ制御方法
CN104811169B (zh) 一种无电弧断电保护开关控制电路
JP2021034124A (ja) 直流電流開閉装置
CN105375795B (zh) 具有辅助电压输出的整流器
JP5879950B2 (ja) 空気調和機の制御基板
JP6444719B2 (ja) 半導体遮断器
WO2019030990A1 (ja) 電力変換装置
KR20170009344A (ko) 전력 스위치용 단락방지 회로
CN104166019B (zh) 一种直流宽电压可靠使用电路工装
CN107070264A (zh) 多级开关电源电路及电压转换设备
JP6660566B2 (ja) 電流遮断回路および電力変換ユニット
CN105319491B (zh) 暂态过电压测试电路及暂态过电压测试设备
GB2433657A (en) Saturation detection circuit
KR20200044457A (ko) 수배전반의 고전압 스위치용 전원백업장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R151 Written notification of patent or utility model registration

Ref document number: 5634240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151