JP2012107220A - 高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法 - Google Patents

高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法 Download PDF

Info

Publication number
JP2012107220A
JP2012107220A JP2011232052A JP2011232052A JP2012107220A JP 2012107220 A JP2012107220 A JP 2012107220A JP 2011232052 A JP2011232052 A JP 2011232052A JP 2011232052 A JP2011232052 A JP 2011232052A JP 2012107220 A JP2012107220 A JP 2012107220A
Authority
JP
Japan
Prior art keywords
group
polymer electrolyte
carbon atoms
substituent
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011232052A
Other languages
English (en)
Inventor
Kentaro Masui
建太朗 増井
Mitsunori Nodono
光紀 野殿
Fumiko Kako
芙美子 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011232052A priority Critical patent/JP2012107220A/ja
Publication of JP2012107220A publication Critical patent/JP2012107220A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

【課題】従来の高分子電解質膜と比較して、製膜時に支持基材と接触しなかった側の膜表面(空気側面)が親水的な高分子電解質膜を製造できる高分子電解質組成物を提供する。
【解決手段】高分子電解質と溶媒とを含有し、上記溶媒が、ヒドロキシ基とエーテル結合とを有する化合物である高分子電解質組成物。
【選択図】なし

Description

本発明は、高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法に関する。
固体高分子形燃料電池(以下、場合により「燃料電池」という)は、燃料ガス(例えば、水素が挙げられる。)と酸素との化学的反応により発電させる発電装置であり、次世代エネルギーの一つとして電気機器産業や自動車産業等の分野において大きく期待されている。燃料電池は、2つの触媒層と、これら2つの触媒層に挟まれた高分子電解質膜(隔膜)と、を基本単位として構成されている。このような燃料電池に用いられる高分子電解質膜としては、例えば、炭化水素系高分子電解質とN,N−ジメチルアセトアミドとを含有する高分子電解質組成物からなる炭化水素系高分子電解質膜がある(例えば特許文献1参照)。
特開2003−31232号公報
しかしながら、上記従来の高分子電解質膜は、製膜時に支持基材と接触しなかった側の膜表面(以下、場合により「空気側面」という)の親水性が不十分であることから触媒層に対する接着性が十分ではなかった。
そこで、本発明は、従来の高分子電解質膜と比較して、空気側面が親水的な高分子電解質膜を製造できる高分子電解質組成物、当該高分子電解質組成物を用いた高分子電解質膜、及び当該高分子電解質膜の製造方法を提供することを目的とする。本発明は、また、上記高分子電解質膜を備える膜−電極接合体及び当該膜−電極接合体を備える、固体高分子形燃料電池を提供することを目的とする。
本発明は、高分子電解質と溶媒とを含有し、上記溶媒が、ヒドロキシ基とエーテル結合とを有する化合物である高分子電解質組成物を提供する。
このような高分子電解質組成物は、上記構成を有することにより、従来の高分子電解質膜と比較して、空気側面が親水的な高分子電解質膜を製造できる。
本発明の高分子電解質組成物においては、上記溶媒が下記式(1)で表される化合物であることが好ましい。
Figure 2012107220
式(1)中、kは1〜5の整数を表す。Rは2価の脂肪族基を表す。当該2価の脂肪族基は、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基、ヒドロキシ基から選ばれる基で置換されていてもよい。Rは、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜20のアリール基を表す。
上記溶媒がこのようなものであると、得られる高分子電解質膜の空気側面をより親水的なものとすることができる。
式(1)中、Rが炭素数1〜10のアルキレン基であり、Rが炭素数1〜10のアルキル基であることが好ましい。
及びRがこのようなものであると、高分子電解質の溶解性が良好となり、生産性が向上する。
式(1)中、kが1〜3の整数であることが好ましい。
kがこのようなものであると、高分子電解質の溶解性が良好となり、生産性が向上する。
高分子電解質のイオン交換基を有する部位の溶解性を向上させる観点からは、kは1であることが好ましく、高分子電解質のイオン交換基を有しない部位の溶解性を向上させる観点からは、kは2であることが好ましい。
式(1)において、より好適なR、R及びkの組み合わせとしては、次の組み合わせが挙げられる。すなわち、Rがエチレン基であり、Rがエチル基であり、kが2である組み合わせ、Rがエチレン基であり、Rがプロピル基であり、kが1である組み合わせ、Rがプロピレン基であり、Rがメチル基であり、kが1である組み合わせ、Rがエチレン基であり、Rがメチル基であり、kが2である組み合わせ、並びに、Rがエチレン基であり、Rがエチル基であり、kが1である組み合わせが挙げられる。
、R及びkがこのようなものであると、高分子電解質の溶解性が向上し、かつ得られる高分子電解質膜の空気側面の親水性が向上する。
本発明の高分子電解質組成物においては、上記高分子電解質が、イオン交換基を有するブロック及びイオン交換基を実質的に有しないブロックを有するブロック共重合体型高分子電解質であり、イオン交換基を有するブロックとして下記式(2a)で表されるブロックを有し、イオン交換基を実質的に有しないブロックとして、下記式(2b)、(3b)、又は(4b)で表されるブロックを有することが好ましい。
Figure 2012107220
式(2a)中、mは2以上の整数を表し、Arは2価の芳香族基を表す。ここで2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基で置換されていてもよい。式(2a)中のArは、主鎖を構成する芳香環に直接又は主鎖を構成する芳香環に結合した側鎖に結合しているイオン交換基を、Ar1個あたり平均0.5個以上有する。
Figure 2012107220
式(2b)、(3b)及び(4b)中、nは2以上の整数を表し、Ar、Ar、Ar、Ar、Ar、Ar、Ar及びArはそれぞれ独立に2価の芳香族基を表す。ここでこれらの2価の芳香族基は、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜10のアリール基、炭素数6〜18のアリールオキシ基又は炭素数2〜20のアシル基で置換されていてもよい。Z及びZ’は、それぞれ独立にカルボニル基又はスルホニル基を表し、X、X’及びX’’は、それぞれ独立にO又はSを表す。Yは直接結合又は下記式(2c)で表される基を表す。p’は0、1又は2を表し、p’が2である場合、2つあるAr及びYは同一でも異なっていてもよい。q’、r’はそれぞれ独立に1、2又は3を表す。q’が2以上の場合、複数のArは同一でも異なっていてもよい。r’が2以上の場合、複数のArは同一でも異なっていてもよい。
Figure 2012107220
式(2c)中、R及びRはそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基を表し、RとRが連結して、それらが結合する炭素原子と共に環を形成していてもよい。
上記高分子電解質がこのようなものであると、上記溶媒への溶解性が優れ、溶液安定性が向上し、且つ燃料電池として使用した際の耐久性が向上する。
本発明の高分子電解質組成物においては、ブロック共重合体型高分子電解質が、イオン交換基を有するブロックとして、式(2a)で表されるブロックを有し、かつ、このブロックのArが、主鎖を構成している芳香環にイオン交換基が直接結合している2価の芳香族基であることがより好ましい。
ブロック共重合体型高分子電解質が、このような構造であると、上記溶媒への溶解性が優れ、プロトン伝導度等の特性が向上する。
本発明の高分子電解質組成物においては、ブロック共重合体型高分子電解質が、ハロゲン原子を実質的に有しないことが好ましい。
ブロック共重合体型高分子電解質が、このようなものであると、燃料電池として用いた場合のハロゲン化水素の発生が防止され、他の部材の腐食を低減できる。
上記ブロック共重合体型高分子電解質においては、イオン交換基を有するブロックが、下記式(5aa)で表される構造を有することが好ましい。
Figure 2012107220
式(5aa)中、mは2以上の整数を表し、Rは、フッ素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基または置換基を有していてもよい炭素数2〜20のアシル基から選ばれる置換基を表す。pは0以上3以下の整数である。Rが複数存在する場合、それぞれ互いに同一でも異なってもよい。
イオン交換基を有するブロックが、このような構造を有すると、溶媒への溶解性が優れ、燃料電池として使用した際の耐久性や、プロトン伝導度等の発電特性がより向上する。
本発明は、上記高分子電解質組成物を用いて形成される高分子電解質膜を提供する。
このような高分子電解質膜は、上記高分子電解質組成物を用いて形成されるため、空気側面が親水的なものとなる。また、このような高分子電解質膜は、空気側面が親水的であることから、触媒層との接着性に優れる。
本発明は、上記高分子電解質組成物を支持基材上に塗布して塗膜を製造し、前記溶媒が塗膜中に残存するようにして該塗膜を乾燥させる乾燥工程と、該乾燥工程の後の塗膜に残存している上記溶媒を、洗浄溶媒によって洗浄除去する洗浄工程と、を有する、高分子電解質膜の製造方法を提供する。
このような高分子電解質膜の製造方法によれば、空気側面が親水的な高分子電解質膜を製造できる。
本発明は、上記高分子電解質膜を備える膜−電極接合体を提供する。
このような膜−電極接合体は、上述の高分子電解質膜を備えることにより、触媒層との接着性に優れる。これにより、燃料電池に使用した場合の燃料電池の発電性能や耐久性能が向上される。
本発明は上記膜−電極接合体を備える固体高分子形燃料電池を提供する。
このような固体高分子形燃料電池は、上記膜−電極接合体を備えることにより、発電性能や耐久性能に優れる。
本発明によれば、従来の高分子電解質膜と比較して空気側面が親水的な高分子電解質膜を製造できる高分子電解質組成物、当該高分子電解質組成物を用いた高分子電解質膜、及び当該高分子電解質膜の製造方法を提供することができる。本発明によれば、また、上記高分子電解質膜を備える膜−電極接合体及び当該膜−電極接合体を備える、固体高分子形燃料電池を提供することができる。
本発明の好適な実施形態に係る固体高分子形燃料電池100の一部破断斜視図である。
以下、本発明の好適な実施形態について説明する。
[高分子電解質組成物]
本実施形態に係る高分子電解質組成物は、高分子電解質と溶媒とを含有し、上記溶媒が、ヒドロキシ基とエーテル結合とを有する化合物である。このような高分子電解質組成物によれば、従来の高分子電解質膜と比較して空気側面が親水的な高分子電解質膜を製造できる。
ここで、本発明者らは、上記高分子電解質組成物が、このような効果を奏する理由を以下のように推測する。上述のとおり、上記高分子電解質組成物に用いられる溶媒はヒドロキシ基とエーテル結合とを有する化合物である。これにより、ヒドロキシ基が高分子電解質のイオン交換基及び空気中の水分と相互作用し電解質膜表面にイオン交換基を位置せしめることで親水性を発現させる。また、エーテル結合が高分子電解質の溶媒への溶解を補助する役割を果たすことで溶液キャストにより高い生産性で膜を形成することが可能となるものと推察される。
以下、各成分について詳細に説明する。
(溶媒)
上述のとおり、上記高分子電解質組成物が含有する溶媒はヒドロキシ基とエーテル結合とを有する化合物である。上記溶媒は、ヒドロキシ基とエーテル結合とを有する化合物であれば、特に制限はないが、下記式(1)で表される化合物であることが好ましい。上記溶媒がこのようなものであると、得られる高分子電解質膜の空気側面をより親水的なものとすることができる。
Figure 2012107220
式(1)中、kは1〜5の整数を表す。Rは2価の脂肪族基を表す。当該2価の脂肪族基は、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基、ヒドロキシ基から選ばれる基で置換されていてもよい。Rは、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜20のアリール基を表す。
式(1)中のRとしては、例えば、炭素数1〜10のアルキレン基、置換基としてヒドロキシ基を有する炭素数1〜10のアルキレン基、置換基としてアリール基を有する炭素数6〜10のアルキレン基、置換基としてアルコキシ基を有する炭素数6〜10のアルキレン基が挙げられる。
としての炭素数1〜10のアルキレン基としては、例えば、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基、n−ブチレン基、sec−ブチレン基、イソブチレン基、n−ペンチレン基、2,2−ジメチルプロピレン基、シクロペンチレン基、n−ヘキシレン基、シクロヘキシレン基、2−メチルペンチレン基、2−エチルヘキシレン基、n−ヘプシレン基、n−オクチレン基、ノニレン基、ドデシレン基が挙げられる。
中でも、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基、n−ブチレン基、sec−ブチレン基、イソブチレン基が好ましく、メチレン基、エチレン基、n−プロピレン基、イソプロピレン基がより好ましく、メチレン基、エチレン基、n−プロピレン基が更に好ましく、エチレン基が特に好ましい。
式(1)中のRとしては、例えば、炭素数1〜10のアルキル基、置換基としてヒドロキシ基を有する炭素数1〜10のアルキル基、置換基としてアリール基を有する炭素数6〜10のアルキル基、置換基としてアルコキシ基を有する炭素数6〜10のアルキル基、炭素数6〜10のアリール基、置換基としてヒドロキシ基を有する炭素数6〜10のアリール基、置換基としてアルキル基を有する炭素数6〜10のアリール基、置換基としてアルコキシ基を有する炭素数6〜10のアリール基が挙げられる。
としての炭素数1〜10のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、n−ペンチル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、2−メチルペンチル基、2−エチルヘキシル基、n−ヘプシル基、n−オクチル基、ノニル基、ドデシル基が挙げられる。中でも、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基が好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基がより好ましく、メチル基、エチル基、n−プロピル基が更に好ましく、エチル基が特に好ましい。
高分子電解質の溶解性を高める観点からは、式(1)において、Rが炭素数1〜10のアルキレン基であり、Rが炭素数1〜10のアルキル基であることが好ましい。
また、式(1)中のkは、高分子電解質の溶解性を更に向上させる観点からは、1〜3の整数であることが好ましく、高分子電解質のイオン交換基を有する部位の溶解性を向上させる観点からは、1であることが好ましく、高分子電解質のイオン交換基を有しない部位の溶解性を向上させる観点からは、2であることが好ましい。
高分子電解質の溶解性を高め、膜の空気側面の親水性を高める観点からは、式(1)におけるより好適なR、R及びkの組み合わせとして、次の組み合わせが挙げられる。すなわち、Rがエチレン基であり、Rがエチル基であり、kが2である組み合わせ、Rがエチレン基であり、Rがプロピル基であり、kが1である組み合わせ、Rがプロピレン基であり、Rがメチル基であり、kが1である組み合わせ、Rがエチレン基であり、Rがメチル基であり、kが2である組み合わせ、並びに、Rがエチレン基であり、Rがエチル基であり、kが1である組み合わせが挙げられる。なかでも、溶媒の入手および取り扱いが容易である点を考慮すると、Rがエチレン基であり、Rがエチル基であり、kが2である組み合わせ、または、Rがエチレン基であり、Rがプロピル基であり、kが1である組み合わせがより好ましい。また、溶液キャストによる膜形成の生産性を考慮すると、Rがエチレン基であり、Rがエチル基であり、kが2である組み合わせがさらに好ましい。
(高分子電解質)
本実施形態の高分子電解質膜が含有する高分子電解質に特に制限はないが、例えば、イオン交換基を有する高分子電解質が挙げられる。このような高分子電解質としては、Nafion(デュポン社登録商標)、旭化成製のAciplex(旭化成登録商標)、旭硝子製のFlemion(旭硝子登録商標)などのイオン交換基を有するフッ素系高分子電解質や、脂肪族炭化水素や芳香族炭化水素にスルホ基(−SO3H)、カルボキシル基(−COOH)、ホスホン基(−PO32)、スルホニルイミド基(−SO2NHSO2−)、フェノール性水酸基等のイオン交換基を導入した炭化水素系高分子電解質などが用いられる。
上記のうち、炭化水素系高分子電解質は、ラジカル耐性が高い傾向にあるので、高分子電解質が炭化水素系高分子電解質である場合、優れたラジカル耐性を有する高分子電解質膜等が得られ易くなる。また、フッ素系高分子電解質に比して、耐熱性等の観点からも炭化水素系高分子電解質は有利である。
なお、高分子電解質は、フッ素系高分子電解質と炭化水素系高分子電解質を組み合わせて含有してもよいが、この場合、上記の効果を良好に得る観点から、高分子電解質の全量(100重量%)に対して、炭化水素系高分子電解質が、51重量%以上であると好ましく、70重量%以上であるとより好ましくは、85重量%以上であるとさらに好ましくは、90重量%以上であると特に好ましい。
ここで、炭化水素系高分子電解質とは、当該高分子電解質を構成する元素重量含有比で表してハロゲン原子が15重量%以下である高分子電解質を意味する。かかる炭化水素系高分子電解質は、前記のフッ素系高分子電解質と比較して安価であるという利点を有するため、より好ましい、特に好適な炭化水素系高分子電解質は、実質的にハロゲン原子を含有していないものであり、このような炭化水素系高分子電解質は燃料電池の作動時に、ハロゲン化水素を発生して、他の部材を腐食させたりする恐れがない。
一方、フッ素系高分子電解質とは、当該高分子電解質を構成する元素重量含有比で表してフッ素原子が15重量%を超える高分子電解質を意味する。具体例としては上記例示の市販のフッ素系高分子電解質などをあげることができる。
高分子電解質が有しているイオン交換基としては、例えば、陽イオン交換基(酸性のイオン交換基、以下、場合により「カチオン交換基」という)、陰イオン交換基(塩基性のイオン交換基、以下、場合により「アニオン交換基」という)が挙げられる。陽イオン交換基としては、例えば、−SOH(スルホ基)、−COOH(カルボキシル基)、−PO(OH)(ホスホン基)、−POH(OH)、−SONHSO−(スルホニルイミド基)、−Ph(OH)(フェノール性水酸基)が挙げられる。なお、ここで、Phはフェニル基を表す。また、陰イオン交換基としては、−NH、−NHR、−NRR’、−NRR’R’’、−NH 等が挙げられる。なお、ここで、R、R’及びR’’は、アルキル基、シクロアルキル基、アリール基等を表す。
イオン交換基としては、カチオン交換基が好ましく、中でも、酸解離定数pKaが2以下の強酸性基がより好ましく、スルホ基(−SOH)又はホスホン基がさらに好ましく、スルホ基が一層好ましい。
ここで、イオン交換基は、部分的に、あるいは全てが、金属イオンや4級アンモニウムイオン等で交換されて塩を形成していてもよい。例えば、上記カチオン交換基は、部分的に又は全てが金属イオン等でイオン交換されて塩を形成していてもよい。しかし、これらのイオン交換基は、実質的に全てが遊離酸の状態であることが好ましい。例えば、実質的に全てのカチオン交換基が遊離酸の状態である親水性ブロックを有するブロック共重合体型高分子電解質によれば、当該高分子電解質を溶媒と混合して高分子電解質組成物とする際の製造安定性に優れる。また、燃料電池用隔膜等として使用する観点からも、実質的に全てのカチオン交換基が遊離酸の状態であることが好ましい。なお、イオン交換基は、高分子電解質の主鎖、側鎖の何れか/又は両方に導入されていてもよいが、好ましくは主鎖へ導入されているものが挙げられる。
本実施形態の高分子電解質においては、イオン交換基の導入量は、イオン交換容量で表して、1.0meq/g以上が好ましく、3.0meq/g以上がより好ましく、4.0meq/g以上が更に好ましく、4.4meq/g以上が一層このましく、4.7meq以上が特に好ましい。また、6.5meq/g以下が好ましく、6.0meq/g以下がより好ましく、5.5meq/g以下が更に好ましく、5.3meq/g以下が特に好ましい。このイオン交換基の導入量を示すイオン交換容量が1.0meq/g以上であると、プロトン伝導性が高くなり、燃料電池用の高分子電解質としての機能がより優れるので好ましい。一方、イオン交換容量が6.5meq/g以下であると、耐水性がより良好となるので好ましい。このようなイオン交換容量は、酸塩基滴定により測定される。
好適な炭化水素系高分子電解質の具体例としては、例えば、下記の(A)〜(F)で表される高分子電解質が挙げられる。
(A)主鎖が脂肪族炭化水素からなる高分子に、イオン交換基が導入された高分子電解質;
(B)主鎖が脂肪族炭化水素からなり、主鎖の一部の水素原子がフッ素原子で置換された高分子に、イオン交換基が導入された高分子電解質;
(C)主鎖が芳香環を有する高分子に、イオン交換基が導入された高分子電解質;
(D)主鎖が、シロキサン基やフォスファゼン基等の無機の単位構造を有する高分子にイオン交換基が導入された高分子電解質;
(E)高分子電解質(A)〜(D)の調製に使用する高分子の主鎖を構成する構造単位から選ばれる2種以上の構造単位を組み合わせた共重合体に、イオン交換基が導入された高分子電解質;
(F)主鎖や側鎖に窒素原子を含む炭化水素系高分子に、硫酸やリン酸等の酸性化合物をイオン結合により導入した高分子電解質。
なお、以下においては、これらの炭化水素系高分子電解質として、イオン交換基がスルホ基である高分子電解質を主として例示するが、このスルホ基を別のイオン交換基に置き換えた高分子電解質でもよい。
(A)の高分子電解質としては、例えば、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリ(α−メチルスチレン)スルホン酸等が挙げられる。
(B)の高分子電解質としては、特開平9−102322号公報に記載された炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合によって製造された高分子を主鎖とし、スルホ基を有する炭化水素鎖を側鎖とし、共重合様式がグラフト重合であるスルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE)が挙げられる。また、米国特許第4,012,303号公報又は米国特許第4,605,685号公報に記載された方法により得られる炭化フッ素系ビニルモノマーと炭化水素系ビニルモノマーとの共重合体に、α,β,β−トリフルオロスチレンをグラフト重合させ、これにスルホ基を導入して固体高分子電解質としたスルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFEも挙げることができる。
(C)の高分子電解質は、主鎖に酸素原子等のヘテロ原子を含むものであってもよい。このような高分子電解質としては、例えば、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリ(アリーレンエーテル)、ポリイミド、ポリ((4−フェノキシベンゾイル)−1,4−フェニレン)、ポリフェニルキノキサレン等の単独重合体のそれぞれに、スルホ基が導入されたものが挙げられる。具体的には、スルホアリール化ポリベンズイミダゾール、スルホアルキル化ポリベンズイミダゾール(例えば、特開平9−110982号公報参照)等が挙げられる。前記(C)の高分子電解質は、主鎖が酸素原子等のヘテロ原子で中断されている化合物であってもよく、例えば、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリ(アリーレンエーテル)、ポリイミド、ポリ((4−フェノキシベンゾイル)−1,4−フェニレン)、ポリフェニレンスルフィド、ポリフェニルキノキサレン、スルホアリール化ポリベンズイミダゾール、スルホアルキル化ポリベンズイミダゾール、ホスホアルキル化ポリベンズイミダゾール、ホスホン化ポリ(フェニレンエーテル)が挙げられる。このような高分子電解質は、特開平9−110982号公報、J.Appl.Polym.Sci.,18,1969(1974)にも記載されている。
(D)の高分子電解質としては、例えば、ポリフォスファゼンにスルホ基が導入されたもの等が挙げられる。これらは、Polymer Prep.,41,No.1,70(2000)に記載された方法に準じて容易に製造することができる。
(E)の高分子電解質は、スルホ基が導入されたランダム共重合体、スルホ基が導入された交互共重合体、スルホ基が導入されたブロック共重合体のいずれであってもよい。
(F)の高分子電解質としては、例えば、特表平11−503262号公報に記載されたようなリン酸を含有させたポリベンズイミダゾール等が挙げられる。
燃料電池用として良好な耐熱性を有する高分子電解質膜を得るためには、芳香族炭化水素系高分子電解質、特に主鎖に芳香環を有するもの(すなわち、上記(C))が好ましい。そのような高分子電解質は、より機械強度に優れ、高耐熱性であることからも好ましい。
また、上記(C)の中でも、さらには主鎖を構成する芳香環を有し、且つこの芳香環に直接結合または他の原子もしくは原子団を介して間接的に結合したイオン交換基を有する炭化水素系高分子電解質が好ましい。特に、主鎖を構成する芳香族を有し、さらに芳香環を有する側鎖を有してもよく、主鎖を構成する芳香環か側鎖の芳香環の、どちらかの芳香環に直接結合したイオン交換基を有する炭化水素系高分子電解質が好ましい。
上述したようなイオン交換基を有する高分子電解質としては、例えば、イオン交換基を有するブロック(以下、「セグメント」ともいう)及びイオン交換基を実質的に有しないブロック(以下、「セグメント」ともいう)を有するブロック共重合体型高分子電解質が挙げられる。このような高分子電解質からなる高分子電解質膜は、耐水性や機械強度に優れる傾向がある。ブロック共重合体型高分子電解質の共重合様式は、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合の何れでもよい。好ましくは、ランダム共重合、ブロック共重合、グラフト共重合であり、より好ましくは、ランダム共重合、ブロック共重合であり、特に好ましくはブロック共重合である。また、これらの共重合様式の組み合わせでもよい。
このようなブロック共重合体型高分子電解質としては、例えば、以下の第1のブロック共重合体型高分子電解質及び第2のブロック共重合体型高分子電解質が挙げられる。以下、各ブロック共重合体型高分子電解質について、それぞれ説明する。
<第1のブロック共重合体型高分子電解質>
第1のブロック共重合体型高分子電解質は、イオン交換基を有するブロックとして下記式(2a)で表されるブロックを有し、イオン交換基を実質的に有しないブロックとして、下記式(2b)、(3b)、又は(4b)で表されるブロックを有することが好ましい。当該高分子電解質がこのようなものであると、膜を形成する場合の安定性に優れ、且つ燃料電池として使用した際の耐久性が向上する。
Figure 2012107220

Figure 2012107220
式(2a)中、mは2以上の整数を表し、Arは2価の芳香族基を表す。ここで、2価の芳香族基とは、芳香族化合物から、2個の水素原子を取り去った残基である。以降、同様の意味で、「2価の芳香族基」と言う言葉を用いる。2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基で置換されていてもよい。式(2a)中のArは、主鎖を構成する芳香環に直接又は主鎖を構成する芳香環に結合した側鎖に結合しているイオン交換基を、Ar1個あたり平均0.5個以上有する。なお、ここで、mは5以上の整数であるとより好ましい。
式(2b)、(3b)及び(4b)中、nは2以上の整数を表し、Ar、Ar、Ar、Ar、Ar、Ar、Ar及びArはそれぞれ独立に2価の芳香族基を表す。ここでこれらの2価の芳香族基は、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜10のアリール基、炭素数6〜18のアリールオキシ基又は炭素数2〜20のアシル基で置換されていてもよい。Z及びZ’は、それぞれ独立にカルボニル基(−CO−で示される基)又はスルホニル基(−SO2−で示される基)を表し、X、X’及びX’’は、それぞれ独立にO又はSを表す。Yは直接結合又は下記式(2c)で表される基を表す。p’は0、1又は2を表し、p’が2である場合、2つあるAr及びYは同一でも異なっていてもよい。q’、r’はそれぞれ独立に1、2又は3を表す。q’が2以上の場合、複数のArは同一でも異なっていてもよい。r’が2以上の場合、複数のArは同一でも異なっていてもよい。
Figure 2012107220
式(2c)中、R及びRはそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基を表す。また、RとRとが連結して、それらが結合する炭素原子と共に環を形成していてもよい。RとRとが連結して形成される環を有する式(2C)の基としては、シクロヘキシリデン基などの炭素数5〜20の2価の環状炭化水素基が挙げられる。
式(2b)、(3b)、(4b)におけるnは、2以上の整数である。nは、高分子電解質膜とした際の熱水中での形体安定性を向上させるために、好ましくは、3以上である。また、同様の理由から、nは、100以下が好ましく、50以下がより好ましく、20以下がさらに好ましく、10以下が特に好ましい。
ここで、「イオン交換基を有するブロック(以下、場合により「親水性ブロック」という)」とは、当該ブロックを構成する構造単位1個に対して平均0.5個以上のイオン交換基を有するブロックを意味する。発電性能の観点からは、イオン交換基を有するブロックは、構造単位1個に対して平均1.0個以上のイオン交換基を有することが好ましい。
一方、「イオン交換基を実質的に有しないブロック(以下、場合により「疎水性ブロック」という)」とは、当該ブロックを構成する構造単位1個に対して平均0.1個未満のイオン交換基を有するブロックを意味する。耐水性や吸水寸法安定性の観点からは、イオン交換基を実質的に有しないブロックは、イオン交換基が構造単位1個に対して平均0.05個以下であるブロックであることが好ましく、イオン交換基を全く有しないブロックであることがより好ましい。
なお、本明細書において「ブロック共重合体」とは、イオン交換基を有するブロックとイオン交換基を実質的に有しないブロックとが主鎖構造を形成しているような共重合様式のものに加え、一方のブロックが主鎖構造を形成し、他方のブロックが側鎖構造を形成しているような、グラフト重合の共重合様式の共重合体も含む概念である。また、本実施形態において、ブロック共重合体は、ジブロック型であっても、トリブロック型であっても、それ以上連結されたものであってもよい。
上述のとおり、式(2a)におけるArは2価の芳香族基を表す。当該2価の芳香族基としては、例えば、1,3−フェニレン、1,4−フェニレン等の2価の単環式芳香族基、1,3−ナフタレンジイル、1,4−ナフタレンジイル、1,5−ナフタレンジイル、1,6−ナフタレンジイル、1,7−ナフタレンジイル、2,6−ナフタレンジイル、2,7−ナフタレンジイル等の2価の縮合環式芳香族基、ピリジンジイル、キノキサリンジイル、チオフェンジイル等の複素環式芳香族基が挙げられる。好ましくは2価の単環式芳香族基である。また、上述のとおり、当該2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基で置換されていてもよい。
該アルキル基としては、メチル基、エチル基、ブチル基、オクチル基、デシル基等が例示される。これらのアルキル基は、直鎖でも、分岐していても、環状であってもよい。また、該アルキル基に、水酸基、シアノ基、ハロゲン原子等が結合して、その総炭素数が1〜10のアルキル基であってもよい。
該アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、オクチルオキシ基、デシルオキシ基等が例示される。これらのアルコキシ基は、直鎖でも、分岐していても、環状であってもよい。また、該アルコキシ基に、水酸基、シアノ基、ハロゲン原子等が結合して、その総炭素数が1〜10のアルコキシ基も含む概念である。
該アリール基としては、フェニル基、ナフチル基等が例示される。また、これらのアリール基に、炭素数1〜4のアルキル基、シアノ基、ハロゲン原子等が結合して、その総炭素数が6〜18のアリール基であってもよい。
該アリールオキシ基としては、フェノキシ基、ナフトキシ基等が例示される。また、これらのアリールオキシ基に、炭素数1〜4のアルキル基、シアノ基、ハロゲン原子等が結合して、その総炭素数が6〜18のアリールオキシ基であってもよい。
該アシル基としては、アセチル基、ブチリル基、デシルカルボキシル基、ベンゾイル基等が例示される。また、該アシル基に、シアノ基、ハロゲン原子等が結合して、その総炭素数が2〜20のアシル基であってもよい。
式(2a)で表されるブロックにおけるArは、当該ブロックに[0.5×m]個以上のイオン交換基を有するものであり、式(1a)で表されるブロックにある全ての構造単位のArがイオン交換基を有することが好ましい。そして、Arには、当該ブロックの主鎖を構成する芳香環に少なくとも一つのイオン交換基を有していることがより好ましい。
上述のとおり、式(2b)、(3b)及び(4b)におけるAr、Ar、Ar、Ar、Ar、Ar、Ar及びArは、それぞれ独立に2価の芳香族基を表す。当該2価の芳香族基としては、例えば、1,3−フェニレン、1,4−フェニレン等の2価の単環性芳香族基、1,3−ナフタレンジイル、1,4−ナフタレンジイル、1,5−ナフタレンジイル、1,6−ナフタレンジイル、1,7−ナフタレンジイル、2,6−ナフタレンジイル、2,7−ナフタレンジイル等の2価の縮環系芳香族基、ピリジンジイル、キノキサリンジイル、チオフェンジイル等のヘテロ芳香族基等が挙げられる。中でも、2価の単環性芳香族基が好ましい。
また、上述のとおり、これらの2価の芳香族基は、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜10のアリール基、炭素数6〜18のアリールオキシ基又は炭素数2〜20のアシル基で置換されていてもよい。なお、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基としては、例えば、上述のものを用いることができる。
また、上述のとおり、式(2c)におけるR及びRは、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基を表し、RとRが連結して、それらが結合する炭素原子と共に環を形成していてもよい。ここで、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基としては、例えば、上述のものを用いることができる。
本実施形態においては、上記ブロック共重合体型高分子電解質が、イオン交換基を有するブロックとして、式(2a)で表されるブロックを有し、かつ、このブロックのArが、主鎖を構成している芳香環にイオン交換基が直接結合している2価の芳香族基であることがより好ましい。このようなブロック共重合体型高分子電解質は、上記の溶媒への溶解性が優れ、プロトン伝導度等の特性に優れる。
また、上記の溶媒への溶解性が優れ、燃料電池として使用した際の耐久性や、プロトン伝導度等の発電特性がより向上する観点からは、イオン交換基を有するブロックが、下記式(5a)、なかでも下記式(5aa)で表される構造を有することが好ましい。
Figure 2012107220
式(5a)及び(5aa)中、mは上記と同義である。すなわち、mは2以上の整数であり、5以上の整数であることが好ましい。Rは、フッ素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基または置換基を有していてもよい炭素数2〜20のアシル基から選ばれる置換基を表す。pは0以上3以下の整数であり、qは1〜4の整数であり、p+qは1〜4の整数である。Rが複数存在する場合、それぞれ互いに同一でも異なってもよい。なおここで、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アシル基としては、例えば、上述のものを用いることができる。
なお、ここで、式(2a)、(5a)、(5aa)中のm及び式(2b)、(3b)及び(4b)中のnは、それぞれ5〜1000の範囲であることが好ましく、10〜500の範囲であることがより好ましい。n及びmがこの範囲であるブロック共重合体型高分子電解質は、イオン伝導性と機械強度とのバランスに優れ、各々のブロックの製造自体も容易である。また、n及びmの比は、m/nで表して、10/90〜90/10の範囲であることが好ましい。さらに、式(5a)中のqは、1又は2が好ましい。
また、本実施形態の高分子電解質組成物においては、ブロック共重合体型高分子電解質が、ハロゲン原子を実質的に有しないことが好ましい。このようなブロック共重合体型高分子電解質は燃料電池の作動時に、ハロゲン化水素を発生して、他の部材を腐食させたりするおそれがないという利点がある。なお、ここでいう「実質的にハロゲン原子を有しない」とは、元素重量含有比で、ハロゲン原子が1重量%以下のものをいう。
上記ブロック共重合体型高分子電解質の中では、式(2a)で表される親水性ブロックと、式(2b)で表される疎水性ブロックと、からなるブロック共重合体型高分子電解質、又は式(2a)で表される親水性ブロックと一般式(3b)で表される疎水性ブロックとからなるブロック共重合体型高分子電解質が好ましい。
第1のブロック共重合体型高分子電解質としては、より具体的には、例えば、疎水性ブロックとして下記式(101a)〜(126a)のいずれかを有し、親水性ブロックとして下記式(201)を有するものが好適である。なお、これらの式中のn及びmは、いずれも上記と同義である。
Figure 2012107220
Figure 2012107220
このような第1のブロック共重合体型高分子電解質において、好適な疎水性ブロックと親水性ブロックとの組み合わせとしては、以下の表1の<a1>〜<z1>に示す組み合わせが挙げられる。
Figure 2012107220
上記の組み合わせの条件を満たす第1のブロック共重合体型高分子電解質としては、下記式(1)〜(26)で表される化合物が挙げられる。
Figure 2012107220
Figure 2012107220
Figure 2012107220
Figure 2012107220
Figure 2012107220
Figure 2012107220
なお、上記式(1)〜(26)は、括弧内の構造単位からなるブロックを有し、その共重合様式がブロック共重合であり、Gは2つのブロックを連結する結合、原子又は2価の原子団を表す。具体的に、Gを例示すると、直接結合、スルホニル基、カルボニル基、酸素原子、硫黄原子、2価の芳香族基又はこれらの組み合わせによる2価の基が挙げられる。また、式(1)〜(26)のn及びmは上記と同義である。
上記式(1)〜(26)で表されるブロック共重合体型高分子電解質の中では、式(3)、(5)、(9)〜(13)、(16)、(18)、(23)〜(26)で表されるブロック共重合体型高分子電解質が好ましく、(3)、(5)、(9)、(10)、(11)、(13)、(16)、(18)、(23)、(24)、(25)で表されるブロック共重合体型高分子電解質がより好ましく、(3)、(11)、(16)、(24)で表されるブロック共重合体型高分子電解質が特に好ましい。
第1のブロック共重合体型高分子電解質の分子量は、ポリスチレン換算の数平均分子量で、5000〜1000000であることが好ましく、15000〜400000であることがより好ましい。分子量がこの範囲であるブロック共重合体型高分子電解質を用いると、溶液キャスト法に使用するような溶液組成物(高分子電解質溶液)を得たとき、実用的な粘度の溶液組成物を得ることができる。
このようなブロック共重合体型高分子電解質は、例えば国際公開番号WO2007/043274や特開2011−190237に開示されたようなブロック共重合体の製造方法により製造できる。
<第2のブロック共重合体型高分子電解質>
第2のブロック共重合体型高分子電解質としては、下記式(11a)、(12a)、(13a)又は(14a)[以下、「式(11a)〜(14a)」と呼ぶことがある]で表されるイオン交換基を有する構造単位と、下記式(11b)、(12b)、(13b)又は(14b)[以下、「式(11b)〜(14b)」と呼ぶことがある。]で表されるイオン交換基を有しない構造単位とを有し、その共重合様式がランダム共重合、ブロック共重合、ブロック共重合又はグラフト共重合のいずれか、もしくはこれらの共重合様式を組合わせた高分子電解質が例示される。
Figure 2012107220

Figure 2012107220
式(11a)〜(14a)中、Ar11〜Ar19は、それぞれ独立に、主鎖に芳香環を有し、さらに芳香環を有する側鎖を有してもよい2価の芳香族基を表す。この主鎖の芳香環か側鎖の芳香環の少なくとも1つが、それらの芳香環に直接結合したイオン交換基を有する。Z、Z’はそれぞれ独立にカルボニル基(−CO−で示される基)又はスルホニル基(−SO−で示される基)を表し、X、X’、X”は、それぞれ独立に、O又はSを表す。Y11は直接結合もしくは下記式(15)で表される基を表す。pは0、1又は2を表し、q、rは、それぞれ独立に1、2又は3を表す。)
また、式(11b)〜(14b)中、Ar21〜Ar29は、それぞれ独立に、側鎖としての置換基を有していてもよい2価の芳香族基を表す。Z、Z’は、それぞれ独立にカルボニル基(−CO−で示される基)又はスルホニル基(−SO−で示される基)を表し、X、X’、X”は、それぞれ独立に、O又はSを表す。Y11は直接結合もしくは下記式(15)で表される基を表す。p’は0、1又は2を表し、q’、r’はそれぞれ独立に1、2又は3を表す。)
Figure 2012107220
式(15)中、Raa及びRbbは、それぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基又は置換基を有していてもよい炭素数2〜21のアシル基を表す。また、RaaとRbbとが連結して環を形成していてもよい。RaaとRbbとが連結して形成される環を有する式(15)の基としては、シクロヘキシリデン基などの炭素数5〜20の2価の環状炭化水素基が挙げられる。
式(11a)〜(14a)におけるAr11〜Ar19は、2価の芳香族基を表す。2価の芳香族基としては、例えば、1,3−フェニレン、1,4−フェニレン等の2価の単環性芳香族基、1,3−ナフタレンジイル、1,4−ナフタレンジイル、1,5−ナフタレンジイル、1,6−ナフタレンジイル、1,7−ナフタレンジイル、2,6−ナフタレンジイル、2,7−ナフタレンジイル等の2価の縮環系芳香族基、ピリジンジイル、キノキサリンジイル、チオフェンジイル、ピロール、2H−ピロール、イミダゾール、ピラゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドリジン、イソインドール、3H−インドール、インドール、1H−インダゾール、プリン、4H−キノリジン、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、カルバゾール、カルボリン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、フラザン、フェノキサジン、ピロリジン、ピロリン、イミダゾリン、イミダゾリジン、ピラゾリジン、ピラゾリン、ピペリジン、ピペラジン、インドリン、イソインドリン、キヌクリジン、オキサゾール、ベンゾオキサゾール、1,3,5−トリアジン、ブリン、テトラゾール、テトラジン、トリアゾール、フェナルサジン、ベンゾイミダゾール、ベンゾトリアゾールからなる群より選ばれる少なくとも1種から芳香環上の水素原子を2個取り去って得られるヘテロ芳香族基や、下記式(N−01)〜(N−07)で表される構造からなる群より選ばれる少なくとも1種の構造を含むヘテロ芳香族基等が挙げられる。なかでも、好ましくは2価の単環性芳香族基又は2価の縮環系芳香族基であり、より好ましくは2価の単環性芳香族基である。
Figure 2012107220
また、式(11a)〜(14a)におけるAr11〜Ar19で表される芳香族基の芳香環上の水素原子は、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基又は置換基を有していてもよい炭素数2〜21のアシル基で置換されていてもよい。
式(11a)〜(14a)におけるAr11〜Ar19で表される芳香族基は、芳香環に少なくとも一つのイオン交換基を有する。これらのイオン交換基は、高分子電解質の主鎖、側鎖の何れか/又は両方に導入されていてもよい。なかでも、主鎖を構成する芳香環に少なくとも一つのイオン交換基が結合していると好ましい。イオン交換基としては、上述のような酸性のイオン交換基(カチオン交換基)が好ましく、酸性のイオン交換基の中でも、スルホ基又はホスホン基がより好ましく、スルホ基が特に好ましい。
ここで、式(14a)で表されるイオン交換基を有する構造単位の例の一つとして、下記式(14a−1)で表される構造単位を挙げることができる。
Figure 2012107220
式(14a−1)中、Ar110、Ar120、Ar130は、それぞれ独立に、2価の芳香族基を示し、それらの芳香族基中の芳香環の水素原子は、フッ素原子で置換されていてもよい。Y000は、−CO−、−SO−、−SO−、−CONH−、−COO−、−(CFU000−(U000は1〜10の整数である)、−C(CF−、又は直接結合を示す。Z000は、−O−、−S−、直接結合、−CO−、−SO−、−SO−、−(CHL000−(L000は1〜10の整数である)、又は−C(CH−を示す。R110は、直接結合、−O(CHP000−、−O(CFP000−、−(CHP000−、又は−(CFP000−を示す(P000は、1〜12の整数を示す)。R120及びR130は、それぞれ独立に、水素原子、アルカリ金属原子又は炭化水素基を示す。ただし、上記式中に含まれる全てのR120及びR130のうち少なくとも1個は水素原子である。x100は、0〜4の整数を示し、x200は、1〜5の整数を示し、a000は、0〜1の整数を示し、b000は、0〜3の整数を示す。)
式(14a−1)におけるAr110、Ar120及びAr130は、2価の芳香族基を表す。このような2価の芳香族基としては、式(11a)〜(14a)におけるAr11〜Ar19と同様の2価の芳香族基があげられる。
120、R130は、それぞれ独立に、水素原子、アルカリ金属原子または炭化水素基を示す。アルカリ金属原子としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ルビジウムが挙げられる。炭化水素基としては、例えば、メチル基、エチル基、n−プロピル基、iso−プロピル基、tert−ブチル基、iso−ブチル基、n−ブチル基、sec−ブチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、アダマンチル基、アダマンタンメチル基、2−エチルヘキシル基、ビシクロ[2.2.1]へプチル基、ビシクロ[2.2.1]へプチルメチル基、テトラヒドロフルフリル基、2−メチルブチル基、3,3−ジメチル−2,4−ジオキソランメチル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基などの直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、複素環を有する炭化水素基などが挙げられる。これらのなかでも、n−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、ネオペンチル基がより好ましい。なお、R120、R130は、水素原子であることが好ましい。
上記式(14a−1)で表される構造単位は、さらに下記式(14a−2)で表される構造単位であることが好ましい。
Figure 2012107220
式(14a−2)中、Y001は、−CO−、−SO−、−SO−、−CONH−、−COO−、−(CF−(ここでのLは1〜10の整数である)、及び−C(CF−からなる群より選ばれる少なくとも1種の構造を示し、Z001は、直接結合又は−(CH−(ここでのLは1〜10の整数である)、−C(CH−、−O−、−S−、−CO−、−SO−からなる群より選ばれる少なくとも1種の構造を示し、Ar001は、−SOH、−O(CHSOH、又は−O(CFSOHで表される置換基を有する芳香族基を示す(ここでのPは、1〜12の整数である)。m001は0〜10の整数を示し、n001は0〜10の整数を示し、k001は1〜4の整数を示す。
式(14a−2)で表されるイオン交換基を有する構造単位の具体例としては、後述の式(4a−13)〜(4a−20)で表される構造単位を挙げることができる
一方、式(11b)〜(14b)におけるAr21〜Ar29は、それぞれ独立に、2価の芳香族基を表す。このような2価の芳香族基としては、例えば、1,3−フェニレン、1,4−フェニレン等の2価の単環性芳香族基、1,3−ナフタレンジイル、1,4−ナフタレンジイル、1,5−ナフタレンジイル、1,6−ナフタレンジイル、1,7−ナフタレンジイル、2,6−ナフタレンジイル、2,7−ナフタレンジイル等の2価の縮環系芳香族基、ピリジンジイル、キノキサリンジイル、チオフェンジイル、ピロール、2H−ピロール、イミダゾール、ピラゾール、イソオキサゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、インドリジン、イソインドール、3H−インドール、インドール、1H−インダゾール、プリン、4H−キノリジン、キノリン、イソキノリン、フタラジン、ナフチリジン、キノキサリン、キナゾリン、シンノリン、プテリジン、カルバゾール、カルボリン、フェナントリジン、アクリジン、ペリミジン、フェナントロリン、フェナジン、フラザン、フェノキサジン、ピロリジン、ピロリン、イミダゾリン、イミダゾリジン、ピラゾリジン、ピラゾリン、ピペリジン、ピペラジン、インドリン、イソインドリン、キヌクリジン、オキサゾール、ベンゾオキサゾール、1,3,5−トリアジン、ブリン、テトラゾール、テトラジン、トリアゾール、フェナルサジン、ベンゾイミダゾール、ベンゾトリアゾールからなる群より選ばれる少なくとも1種の芳香環上の水素原子を2個取り去って得られるヘテロ芳香族基、及び下記式(N−01)〜(N−07)で表される構造からなる群より選ばれる少なくとも1種の構造を含むヘテロ芳香族基等が挙げられる。なかでも、好ましくは2価の単環性芳香族基又は2価の縮環系芳香族基であり、より好ましくは2価の単環性芳香族基である。
Figure 2012107220
また、Ar21〜Ar29で表される芳香族基の芳香環上の水素原子は、フッ素原子、ホルミル基、シアノ基、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基又は置換基を有していてもよい炭素数2〜21のアシル基で置換されていてもよい。なお、ここでいう「置換基を有していてもよい」の置換基は、イオン交換基を包含するものではない。
ここで、式(11a)〜(14a)におけるAr11〜Ar19で表される芳香族基及び式(11b)〜(14b)におけるAr21〜Ar29で表される芳香族基が有することができる置換基について、以下に例示する。
置換基を有していてもよい炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、ブチル基、n−プロピル基、イソプロピル基、n−ペンチル基、2,2−ジメチルプロピル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、2−メチルペンチル基、2−エチルヘキシル基、ノニル基、ドデシル基、ヘキサデシル基、オクタデシル基、イコシル基等の炭素数1〜20のアルキル基、及び、これらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルキル基が挙げられる。
置換基を有していてもよい炭素数1〜20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、ブトキシ基、n−プロポキシ基、イソプロポキシ基、n−ペントキシ基、2,2−ジメチルプロポキシ基、シクロペントキシ基、n−ヘキソキシ基、シクロヘキソキシ基、2−メチルペントキシ基、2−エチルヘキソキシ基、ドデシロキシ基、ヘキサデシロキシ基、イコシロキシ基等の炭素数1〜20のアルコキシ基、及び、これらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアルコキシ基が挙げられる。
置換基を有していてもよい炭素数6〜20のアリール基としては、例えば、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリール基が挙げられる。
置換基を有していてもよい炭素数6〜20のアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が20以下であるアリールオキシ基が挙げられる。
置換基を有していてもよい炭素数2〜21のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、1−ナフトイル基、2−ナフトイル基等の炭素数2〜20のアシル基、及びこれらの基にフッ素原子、ヒドロキシル基、ニトリル基、アミノ基、メトキシ基、エトキシ基、イソプロピルオキシ基、フェニル基、ナフチル基、フェノキシ基、ナフチルオキシ基等が置換され、その総炭素数が21以下であるアシル基が挙げられる。
上述したなかでも、Ar11〜Ar19及びAr21〜Ar29で表される芳香族基が有している置換基が、フェニル基、ナフチル基、フェナントレニル基、アントラセニル基等のアリール基や、フェノキシ基、ナフチルオキシ基、フェナントレニルオキシ基、アントラセニルオキシ基等のアリールオキシ基、又は、ベンゾイル基、1−ナフトイル基、2−ナフトイル基等の芳香環を有するアシル基であると好ましい。これらの置換基を有する場合、ポリマーの耐熱性が良好となる傾向があり、より実用的な燃料電池用部材が得られる傾向にある。
Ar11〜Ar19やAr21〜Ar29で表される芳香族基が置換基として芳香環を有するアシル基を有する芳香環を有するアシル基を芳香環置換基として有する第2のブロック共重合体型高分子電解質においては、アシル基を有する2つの構造単位が隣接し、それらの2つの構造単位にあるアシル基同士が結合したり、また、アシル基同士が結合した後、転位反応を生じたりする場合がある。このように置換基同士が結合したり、結合後に転位反応を生じたりするような反応が生じたか否かは、例えば13C−核磁気共鳴スペクトルの測定により確認することができる。
上述した構造単位により構成される第2のブロック共重合体型高分子電解質は、炭化水素系高分子電解質であり、イオン交換基を有する構造単位と、イオン交換基を有しない構造単位とを有するが、特に、イオン交換基を有する構造単位による密な相が、膜厚方向に連続相を形成することができれば、よりプロトン伝導性に優れる高分子電解質膜が得られるといった利点があるので好ましい。
第2のブロック共重合体型高分子電解質は、式(11a)〜(14a)で表される構造単位からなるイオン交換基を有する構造単位と、式(11b)〜(14b)で表される構造単位からなるイオン交換基を有しない構造単位とを有するものである。好適なイオン交換基を有する構造単位とイオン交換基を有しない構造単位の組み合わせとしては、下記の表2の<a2>〜<m2>に示す構造単位の組み合わせが挙げられる。
Figure 2012107220
これらのなかでも、<b2>、<c2>、<d2>、<g2>、<h2>、<i2>、<j2>、<l2>、又は<m2>の組み合わせが好ましく、<g2>、<h2>、<l2>、又は<m2>の組み合わせがより好ましく、<g2>、<h2>、又は<l2>の組み合わせが更に好ましい。
より好適な第2のブロック共重合体型高分子電解質の例として、以下に示すイオン交換基を有する構造単位の群から選ばれる1種又は2種以上の構造単位と、以下に示すイオン交換基を有しない構造単位の群から選ばれる1種又は2種以上の構造単位と、から構成される共重合体を挙げることができる。第2のブロック共重合体型高分子電解質において、これらの構造単位同士は、直接結合で結合されているか、適当な原子又は原子団で結合されていてもよい。構造単位同士を結合する原子又は原子団の典型的な例としては、2価の芳香族基、酸素原子、硫黄原子、カルボニル基、スルホニル基又はこれらを組み合わせてなる2価の基を挙げることができる。
イオン交換基を有する構造単位の好適例としては、下記式(4a−1)〜(4a−20)、(4a−121)、(4a−122)で表される構造単位からなる群より選ばれる少なくとも1種が挙げられる。
Figure 2012107220
Figure 2012107220
イオン交換基を有しない構造単位の好適例としては、下記式(4b−1)〜(4b−32)で表される構造単位からなる群より選ばれる少なくとも1種が挙げられる。
Figure 2012107220
Figure 2012107220
Figure 2012107220
式(4b−15)〜(4b−32)中、r000は、0又は1以上の整数を示す。r000は、好ましくは100以下であり、より好ましくは1以上80以下である。
上述した好適例の中でも、イオン交換基を有する構造単位としては、(4a−1)、(4a−2)、(4a−3)、(4a−4)、(4a−5)、(4a−6)、(4a−7)、(4a−8)、(4a−9)、(4a−10)、(4a−11)及び(4a−12)のうちの少なくとも1種が好ましく、(4a−10)、(4a−11)及び(4a−12)のうちの少なくとも1種がより好ましく、(4a−11)及び/又は(4a−12)が更に好ましい。
また、イオン交換基を有しない構造単位としては、(4b−1)、(4b−2)、(4b−3)、(4b−4)、(4b−5)、(4b−6)、(4b−7)、(4b−8)、(4b−9)、(4b−10)、(4b−11)、(4b−12)、(4b−13)及び(4b−14)のうちの少なくとも1種が好ましく、(4b−2)、(4b−3)、(4b−9)、(4b−10)、(4b−13)及び(4b−14)のうちの少なくとも1種がより好ましく、(4b−2)、(4b−3)、(4b−13)及び(4b−14)のうちの少なくとも1種がさらに好ましく、(4b−2)、(4b−3)及び(4b−14)のうちの少なくとも1種が特に好ましい。
好適な第2のブロック共重合体型高分子電解質は、上記式(11a)〜(14a)で表される構造単位からなる、イオン交換基を有するセグメント(ブロック)と、上記式(11b)〜(14b)で表される構造単位からなる、イオン交換基を実質的に有しないセグメント(ブロック)とを有するものである。そして、好適なイオン交換基を有するセグメントを構成する構造単位と、イオン交換基を実質的に有しないセグメントを構成する構造単位との組み合わせとしては、下記の表3の<a3>〜<m3>に示すセグメントの組み合わせを挙げることができる。
Figure 2012107220
上述したイオン交換基を有するセグメント及びイオン交換基を実質的に有しないセグメントの組み合わせのなかでも、<b3>、<c3>、<d3>、<g3>、<h3>、<i3>、<j3>、<l3>、又は<m3>の組み合わせが好ましく、<g3>、<h3>、<l3>、又は<m3>の組み合わせがより好ましく、<g3>、<h3>又は<l3>の組み合わせが更に好ましい。
第2のブロック共重合体型高分子電解質の好ましい形態の一つとして、イオン交換基を有するセグメントの主鎖が、複数の芳香環が直接連結してなるポリアリーレン構造を有する形態があげられる。そのようなセグメントを構成するための構造単位として、好ましくは前述の(4a−10)、(4a−11)、(4a−12)、(4a−13)、(4a−14)、(4a−15)、(4a−16)、(4a−17)、(4a−18)、(4a−19)及び(4a−20)のうちの少なくとも1種が挙げられ、より好ましくは(4a−10)、(4a−11)及び(4a−12)のうちの少なくとも1種が挙げられ、更に好ましくは(4a−11)及び/又は(4a−12)が挙げられる。
このような構造単位を繰り返し単位を含むセグメント(すなわち、イオン交換基を有するセグメント)を有する高分子電解質、特に、このような繰り返し単位からなるセグメントを有する高分子電解質は、優れたイオン伝導性を発現できるものであり、また、当該セグメントがポリアリーレン構造となるため、化学的安定性も比較的良好となる傾向がある。
ここで「ポリアリーレン構造」とは、主鎖を構成している芳香環同士が直接結合で結合されている形態である。具体的には、芳香環同士の結合の総数を100%としたとき、直接結合の割合が80%以上の構造であると好ましく、90%以上の構造であるとより好ましく、95%以上の構造であるとさらに好ましい。なお、直接結合で結合されている形態以外の形態とは、芳香環同士が2価の原子又は2価の原子団で結合している形態である。
また、イオン交換基を有するセグメントとイオン交換基を実質的に有しないセグメントとは、直接結合している形態でもよく、適当な原子又は原子団で連結している形態でもよい。ここでいうセグメント同士を結合する原子又は原子団の典型的な例としては、2価の芳香族基、酸素原子、硫黄原子、カルボニル基、スルホニル基又はこれらを組み合わせてなる2価の基をあげることができる。
上述の如く、好適な第2のブロック共重合体型高分子電解質は、上記のイオン交換基を有する構造単位の群から選ばれる1種又は2種以上の構造単位を含むセグメント(すなわち、イオン交換基を有するセグメント)と、上記のイオン交換基を有しない構造単位の群から選ばれる1種又は2種以上の構造単位を含むセグメント(すなわち、イオン交換基を実質的に有しないセグメント)とから構成される。この場合のブロック共重合体は、イオン交換基を有するセグメントとイオン交換基を実質的に有しないセグメントとが直接結合で結合されているか、適当な原子又は原子団で結合された形態を有する。イオン交換基を有するセグメント及びイオン交換基を実質的に有しないセグメントの定義は、上述した親水性ブロック及び疎水性ブロックとそれぞれ同様である。
上記式(11a)〜(14a)で表される構造単位から選ばれる1種以上の構造単位からなるセグメントの重合度は2以上であると好ましく、3以上であるとより好ましく、5以上であると更に好ましく、10以上であると一層好ましい。また、かかるセグメントの重合度は1000以下が好ましく、500以下がより好ましい。この重合度が2以上、好ましくは5以上であると、第2のブロック共重合体型高分子電解質は、燃料電池用の高分子電解質として、十分なプロトン伝導度を発現し易くなる傾向にあり、この重合度が1000以下であると、第2のブロック共重合体型高分子電解質の製造がより容易となる傾向にある。
また、式(11b)〜(14b)で表される構造単位から選ばれる構造単位からなるセグメントの重合度は1以上であると好ましく、2以上であるとより好ましく、3以上であると更に好ましい。また、このセグメントの重合度は100以下が好ましく、90以下がより好ましく、80以下が更に好ましい。このような範囲内であれば、第2のブロック共重合体型高分子電解質は、燃料電池用の高分子電解質として、十分な機械強度を有し易く、また製造が容易となり易い傾向にある。
また、第2のブロック共重合体型高分子電解質の分子量は、ポリスチレン換算の数平均分子量で表して、5000〜1000000であることが好ましく、10000〜800000であることがより好ましく、10000〜600000であることが更に好ましく、15000〜400000であることが特に好ましい。このような範囲の分子量を有する第2のブロック共重合体型高分子電解質を用いることにより、高分子電解質膜は、その膜の形状を安定的に維持できる傾向がある。この数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される。
<その他の成分>
以上のように、本実施形態の高分子電解質組成物に含まれる高分子電解質としては、第1及び第2のブロック共重合体型高分子電解質が挙げられるが、高分子電解質がブロック共重合体型高分子電解質である場合、ブロック共重合体型高分子電解質以外の他の高分子電解質を含むこともできる。
ここで、高分子電解質膜を得る工程において、後述する溶液キャスト法で高い生産性を維持する観点から、本実施形態の高分子電解質組成物における上記高分子電解質の含有量は、高分子電解質組成物全体を基準として、1質量%〜40質量%であることが好ましく、2質量%〜30質量%であることがより好ましく、3質量%〜20質量%であることが特に好ましい。
また、上記高分子電解質組成物は、本発明の効果を損なわない限りにおいて、上記以外の成分を含むことができる。このような成分としては、例えば、水、添加剤が挙げられる。該添加剤としては、通常の高分子に使用される可塑剤、安定剤、離型剤等や、保水剤として添加される、無機又は有機の微粒子が挙げられる。このような添加剤を使用する際には、得られる高分子電解質膜の特性が著しく低下しない範囲で、その種類及び使用量を選択することが好ましい。
上記高分子電解質組成物は、例えば、上記高分子電解質と上記溶媒とを混合することにより製造できる。
[高分子電解質膜]
本実施形態の高分子電解質膜は、上記高分子電解質組成物を用いて形成される。このような高分子電解質膜は、上記高分子電解質組成物を用いて形成されるため、空気側面が親水的なものとなる。また、このような高分子電解質膜は、空気側面が親水的であることから、触媒層との接着性に優れる。
なお、本発明者らは、空気側面が親水的である高分子電解質膜が、触媒層に対して優れた接着性を発揮する理由を以下のように推測する。触媒層中の電解質表面はプロトン伝導するために、通常、イオン交換基が存在している。ここで、上記高分子電解質組成物を用いて形成された高分子電解質膜は、上述のとおり電解質膜表面にイオン交換基が配置されることにより親水性が発現されるものであると考えられる。そして、触媒層中のイオン交換基が、イオン交換基が十分に存在する親水的な膜表面に対して強く相互作用することにより、強い接着性が発現するものと考えられる。
上記高分子電解質膜は、例えば、上記高分子電解質組成物をキャストする溶液キャスト法や、上記高分子電解質組成物を多孔質基材に含浸させ複合化させる含浸法などによって形成することができる。以下、各方法及びこれらの方法によって得られる高分子電解質膜について説明する。
(溶液キャスト法)
まず、本発明の高分子電解質組成物から溶液キャスト法を用いて、燃料電池用隔膜(高分子電解質膜)を製造する方法について説明する。
溶液キャスト法とは、本発明の高分子電解質組成物を、ガラス基板、PET(ポリエチレンテレフタレート)フィルム等の支持基材上に流延塗布(キャスト製膜)して塗膜を形成せしめ、該塗膜から溶媒等の揮発成分を除去することにより支持基材上に高分子電解質膜を製膜する方法である。そして、高分子電解質膜が形成された支持基材を、高分子電解質膜から剥離等によって除去することで、高分子電解質膜を得ることができる。
本発明の効果をより高める観点からは、高分子電解質膜は、上記高分子電解質組成物を支持基材上に塗布して塗膜を製造し、上記溶媒が塗膜中に残存するようにして該塗膜を乾燥させる乾燥工程と、該乾燥工程の後の塗膜から、残存している上記溶媒を、洗浄溶媒によって洗浄除去する洗浄工程と、を有する製造方法により製造されることが好ましい。
ここで、乾燥工程後に残存している上記溶媒の重量が、塗膜中にあるブロック共重合体型高分子電解質の重量に対して1重量%以上であると好ましく、5重量%以上であるとより好ましい。乾燥工程後に残存している上記溶媒の重量が、ブロック共重合体型高分子電解質の重量に対してこの範囲であるとき、乾燥工程後に得られる塗膜で良好な相分離構造が発現するので、極めて高度のイオン伝導度を有する高分子電解質膜が得られると推定される。
また、該乾燥工程の後に残存している上記溶媒の重量が、塗膜中にあるブロック共重合体型高分子電解質の重量に対して150%以下であると好ましく、100%以下であるとより好ましい。乾燥工程後に残存している上記溶媒の重量が、ブロック共重合体型高分子電解質の重量に対してこの範囲であるとき、乾燥工程後に得られる塗膜を支持基材から剥離しても、高分子電解質膜が破断したりしない程度の十分な強度を示すという利点がある。
なお、乾燥工程を経て得られた塗膜に上記溶媒を残存させるために、温度等の乾燥条件を調整することが好ましい。
このようにして得られる高分子電解質膜の厚みは、特に制限はないが、燃料電池用隔膜として実用的である点で5〜300μmが好ましく、7〜100μmであればより好ましい。膜厚が5μm以上であると、実用的な強度の高分子電解質膜が得られるため好ましく、300μm以下であると、膜抵抗自体が小さくなる高分子電解質膜が得られやすいので好ましい。膜厚は、高分子電解質組成物におけるブロック共重合体型高分子電解質の重量濃度及び支持基材上の塗膜の塗布厚により制御できる。
(含浸法)
次に、含浸法により高分子電解質膜を形成する方法について説明する。
高分子電解質膜は、例えば、高分子電解質組成物を多孔質基材に含浸させ複合化することにより、複合膜として形成することができる。このような方法によれば、膜の強度や柔軟性、耐久性を更に向上することができる。
多孔質基材としては、上述の使用目的を満たすものであれば特に制限は無く、例えば多孔質膜、織布、不織布、フィブリル等が挙げられ、その形状や材質によらず用いることができる。多孔質基材の材質としては、耐熱性の観点や、物理的強度の補強効果を考慮すると、脂肪族系高分子、芳香族系高分子、または含フッ素高分子が好ましい。
この場合、多孔質基材の膜厚は、1〜100μmが好ましく、3〜30μmがより好ましく、5〜20μmが更に好ましい。また、多孔質基材の孔径は、0.01〜100μmが好ましく、0.02〜10μmがより好ましい。さらに、多孔質基材の空隙率は、20〜98%が好ましく、40〜95%がより好ましい。
多孔質基材の膜厚が1μm以上であると、複合化後の強度補強の効果あるいは、柔軟性や耐久性を付与するといった補強効果がより優れ、ガス漏れ(クロスリーク)が発生しにくくなる。また、該膜厚が100μm以下であると、電気抵抗がより低くなり、得られた複合膜が固体高分子型燃料電池のイオン伝導膜として、より優れたものとなる。該孔径が0.01μm以上であると、本発明の共重合体の充填がより容易となり、100μm以下であると、共重合体への補強効果がより大きくなる。空隙率が20%以上であると、イオン伝導性の抵抗がより小さくなり、98%以下であると、多孔質基材自体の強度がより大きくなり補強効果がより向上するので好ましい。
上述のようにして形成した高分子電解質膜は、例えば、固体高分子形燃料電池用の高分子電解質膜として用いることができる。
[膜−電極接合体及び固体高分子形燃料電池]
上記高分子電解質膜を備える膜−電極接合体及び当該膜−電極接合体を備える固体高分子形燃料電池について説明する。このような膜−電極接合体は、上述の高分子電解質膜を備えることにより、触媒層との接着性に優れる。これにより、燃料電池に使用した場合の燃料電池の発電性能や耐久性能が向上される。また、このような固体高分子形燃料電池は、発電性能や耐久性能に優れる。
図1は、本発明の好適な実施形態に係る固体高分子形燃料電池(燃料電池単セル)100の一部破断斜視図である。図1に示す固体高分子形燃料電池100は、膜−電極接合体(MEA)10、一対のガスケット4及び一対のセパレータ5を備える。膜−電極接合体10は、高分子電解質膜1、高分子電解質膜1の両面においてその面の一部に形成された触媒層2、及び触媒層2の面のうち高分子電解質膜1とは反対の面に形成された一対のガス拡散層3を備える。そして、膜−電極接合体10は、一対のセパレータ5で挟持されており、ガスケット4は、高分子電解質膜1とセパレータ5の間に配されている。なお、膜−電極接合体10において、ガス拡散層3は必ずしも必要ではない。ここで、高分子電解質膜1は、本実施形態の高分子電解質組成物を用いて形成された膜である。
膜−電極接合体10は、例えば、本実施形態の高分子電解質組成物を用いて形成された高分子電解質膜の両面に、触媒及び導電性物質を含む触媒層を接合することにより製造することができる。触媒層2と、高分子電解質膜1とは、例えば、スプレー法、ダイコート法、スクリーン印刷法、インクジェット法、転写法等の方法により接合することができる。高分子電解質膜1との接着性の観点からは、スプレー法、ダイコート法により接合することが好ましい。
ここで触媒としては、水素又は酸素との酸化還元反応を活性化できるものであれば特に制限はなく、公知のものを用いることができるが、白金又は白金系合金の微粒子を触媒として用いることが好ましい。なお、この白金又は白金系合金の微粒子はしばしば活性炭や黒鉛などの粒子状又は繊維状のカーボンに担持されて用いられることもある。
触媒層2は、例えば、上記触媒を、高分子電解質としてのパーフルオロアルキルスルホン酸樹脂のアルコール溶液と共に混合してペースト化した触媒インクを調製し、ガス拡散層及び/又は高分子電解質膜に塗布・乾燥することにより形成できる。具体的な方法としては例えば、J. Electrochem. Soc.:Electrochemical Science and Technology,1988,135(9),2209 に記載されている方法等の公知の方法を用いることができる。
なお、膜−電極接合体10の製造において、ガス拡散層3となる基材上に触媒層2を形成した後、高分子電解質膜1の両面にガス拡散層3及び触媒層2を接合させることにより、高分子電解質膜1の両面にガス拡散層3と触媒層2とをともに備えた膜−電極接合体10を製造することができる。当該膜−電極接合体10は、触媒インクを高分子電解質膜1に塗布して高分子電解質膜1上に触媒層2を形成させた後、触媒層2上に更にガス拡散層3を形成させる方法により製造してもよい。
ここで、触媒層2の製造用に使用される触媒インクとして、本実施形態の高分子電解質組成物に上記カーボン担持触媒を混合してなる触媒組成物を用いることもできる。
ガス拡散層には公知の材料を用いることができるが、多孔質性のカーボン織布、カーボン不織布またはカーボンペーパーが、原料ガスを触媒へ効率的に輸送するために好ましい。
そして、固体高分子形燃料電池100は、例えば、上述のようにして得られた膜−電極接合体10をセパレータ5で挟持し、高分子電解質膜1とセパレータ5の間をガスケット4でシールすることにより製造できる。
固体高分子形燃料電池100は、燃料として水素ガス又は改質水素ガスを使用する形式はもとより、メタノールを用いる各種の形式で使用可能である。
以上、本発明の好適な実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
<物性測定方法>
ここで、実施例における物性測定方法は以下のとおりである。
(イオン交換容量の測定)
加熱温度105℃に設定されたハロゲン水分率計を用いて、測定に供する高分子電解質膜の乾燥重量を求めた。次いで、この高分子電解質膜を0.1mol/L水酸化ナトリウム水溶液5mLに浸漬した後、更に50mLのイオン交換水を加え、2時間放置した。その後、この高分子電解質膜が浸漬された溶液に、0.1mol/Lの塩酸を徐々に加えることで滴定を行い、中和点を求めた。そして、高分子電解質膜の乾燥重量と上記の中和に要した塩酸の量から、高分子電解質膜のイオン交換容量(単位:meq/g)を算出した。
(分子量の測定)
ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)を測定した。なお、GPCの分析条件は下記とした。
[条件]
GPC測定装置:島津製作所社製 Prominence GPCシステム;
カラム :東ソー社製 TSKgel GMHHR−M(300mm(カラムの長さ)×7.8mm(カラムの径)、5μm(充填剤の径));
カラム温度 :40℃;
移動相溶媒 :DMF(LiBrを10mmol/dmになるように添加);
溶媒流量 :0.5mL/min
検出器 :RI
(接触角の測定)
各実施例又は比較例の高分子電解質膜について、支持基材から剥離した状態で、23℃50%RH雰囲気下で24時間静置させた後、接触角計(CA−A型 協和界面科学株式会社製)を用いて膜表面(支持基材と接触していなかった側の面)の水滴に対する接触角を液滴法により求めた。直径2.0mmの水滴を高分子電解質膜に滴下後、1秒後の接触角を値として用いた。
<合成例>
共沸蒸留装置を備えたフラスコに、窒素雰囲気下、4,4’−ジヒドロキシ−1,1’−ビフェニル52.8g(284mmol)、炭酸カリウム43.1g(312mmol)、N−メチルピロリドン500g、トルエン250gを加えた。バス温160℃で3.5時間トルエンを加熱還流することで系内の水分を共沸脱水した。生成した水とトルエンを留去した後、120℃まで放冷し、4,4’−ジクロロジフェニルスルホン114g(397mmol)を加えた。バス温を180℃に昇温し、7時間保温撹拌した。放冷後、反応液を、メタノール2503gと6mol/L塩酸501gとの混合溶液に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、乾燥した。得られた粗生成物148gをN−メチルピロリドン500gに溶解し、不溶物を濾過した後、メタノール2503gと6mol/L塩酸501gとの混合溶液に加え、析出した沈殿を濾過した後、イオン交換水で中性になるまで洗浄し、メタノールで洗浄し、乾燥し下記式(E)で表されるイオン交換基を実質的に有しないセグメントを誘導する前駆体144gを得た。
なお、当該前駆体の分子量をGPCにより測定したところ、Mnが1400であり、Mwが2800であった。
Figure 2012107220
ここで、式(E)中、nは繰り返し単位数を表す。
次に、アルゴン雰囲気下、フラスコに無水臭化ニッケル7.07g(32.4mmol)、N−メチルピロリドン400gを加え、内温65℃で攪拌した。無水臭化ニッケルが溶解したのを確認した後、バス温を50℃に冷却し、2,2’−ビピリジル6.06g(38.8mmol)、イオン交換水0.47gを加え、ニッケル含有溶液を調製した。
アルゴン雰囲気下、フラスコに上記式(E)で表されるイオン交換基を実質的に有しないセグメントを誘導する前駆体13.4g、4,4’−ジクロロビフェニル−2,2’−ジスルホン酸ジ(2,2−ジメチルプロピル)80.0g(153mmol)、亜鉛粉末15.9g(243mmol)、N−メチルピロリドン1200gを加え50℃に調整した。得られた溶液に、メタンスルホン酸1重量部とN−メチルピロリドン9重量部との混合溶液3.51g、を加え、50℃で30分間撹拌した。これに、上記ニッケル含有溶液を注ぎ込み、50℃で6時間重合反応を行い、黒色の重合溶液を得た。
得られた重合溶液を、2mol/L塩酸水溶液6720gに投入し、室温で1時間撹拌した。生じた沈殿を濾過した後、2mol/L塩酸水溶液3200gを加え、室温で30分間撹拌し、濾過し、イオン交換水で濾液のpHが4を越えるまで洗浄した。得られた粗ポリマーに、イオン交換水1600gと、メタノール1600gを加え、バス温90℃で1時間加熱撹拌した。粗ポリマーをろ過し、イオン交換水で洗浄、乾燥することで、スルホン酸前駆基(スルホン酸(2,2−ジメチルプロピル)基)を有するポリマー(F)81.6gを得た。
次に、以下のようにしてスルホン酸前駆基をスルホ基に変換した。
まず、上述のようにして得られたスルホン酸前駆基を有するポリマー(F)40.3g、イオン交換水99.2g、無水臭化リチウム26.6g(306mmol)及びN−メチルピロリドン826gをフラスコに入れ、バス温126℃で12時間加熱撹拌し、ポリマー溶液を得た。得られたポリマー溶液を6mol/L塩酸水溶液3970gに投入し、1時間攪拌した。析出した粗ポリマーを濾過し、メタノール50重量部と6mol/L塩酸水溶液50重量部との混合溶液1985gで洗浄する操作を3回繰り返した。その後、濾液のpHが4を越えるまでイオン交換水で洗浄した。続いて、得られたポリマーに大量のイオン交換水を加え、内温90℃以上に昇温し、約15分間加熱保温し濾過する洗浄操作を、7回繰り返した。得られたポリマーを乾燥することにより下記式(i)で示される繰り返し単位と、下記式(ii)で示されるセグメントとを含むポリマー(BCP)を得た。
Figure 2012107220

Figure 2012107220
ここで、式(ii)中、nは繰り返し単位数を表す。
なお、得られたポリマー(BCP)の重合度及びイオン交換容量は以下のとおりであった。
共重合体Mw :837000
イオン交換容量:4.8meq/g
<製膜条件>
キャスト製膜について、連続乾燥炉を用いて行った。すなわち、高分子電解質溶液を、膜厚可変型ドクターブレードを用いて所望の膜厚へと調整し、支持基材上に連続的に流延塗布して、連続的に乾燥炉(設定温度100℃、該乾燥炉の温度誤差は設定温度に対して−2℃以内であり、乾燥炉全体の温度分布(加熱ゾーン)は98〜100℃である)へと入れていき、大部分の溶媒を除去した。なお、乾燥時間(高分子電解質膜が乾燥炉に入炉してから出炉するまでの時間)は、0.5時間とした。乾燥後の高分子電解質膜を2N硫酸水溶液に2時間浸漬後、イオン交換水で洗浄せしめて、更に風乾することで、高分子電解質膜を作製した。
<実施例1>
上記合成例で得られた、ポリアリーレン系ブロック共重合体BCPをエチレングリコールモノエチルエーテルに溶解して、濃度が5wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、上記製膜条件に記載の方法で膜厚約10μmの高分子電解質膜を作製した。
<実施例2>
上記合成例で得られた、ポリアリーレン系ブロック共重合体BCPをジエチレングリコールモノエチルエーテルに溶解して、濃度が5wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、上記製膜条件に記載の方法で膜厚約10μmの高分子電解質膜を作製した。
<実施例3>
上記合成例で得られた、ポリアリーレン系ブロック共重合体BCPを3−メトキシ−1−プロパノールに溶解して、濃度が5wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、前期製膜条件の方法で膜厚約10μmの高分子電解質膜を作製した。
<実施例4>
上記合成例で得られた、ポリアリーレン系ブロック共重合体BCPをジエチレングリコールモノメチルエーテルに溶解して、濃度が5wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、前期製膜条件の方法で膜厚約10μmの高分子電解質膜を作製した。
<実施例5>
上記合成例で得られた、ポリアリーレン系ブロック共重合体BCPをエチレングリコールモノプロピルエーテルに溶解して、濃度が3wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、前期製膜条件の方法で膜厚約10μmの高分子電解質膜を作製した。
<比較例1>
上記合成例で得られた、ポリアリーレン系ブロック共重合体BCPをN−メチルピロリドン(NMP)に溶解して、濃度が6.5wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、上記製膜条件に記載の方法で膜厚約10μmの高分子電解質膜を作製した。
<比較例2>
上記前記合成例で得られた、ポリアリーレン系ブロック共重合体BCPをジメチルスルホキシド(DMSO)に溶解して、濃度が6.5wt%の溶液を調製した。得られた溶液を、支持基材のPET(東洋紡績社製PETフィルム、E5000グレード厚さ100μm)を用いて、上記製膜条件に記載の方法で膜厚約10μmの高分子電解質膜を作製した。
実施例1、2、3、4及び5、並びに比較例1及び2で得られた高分子電解質膜について、上述の方法により水滴に対する接触角を測定した結果を表1に示す。
Figure 2012107220
表4に示されるように、実施例1、2、3、4及び5は、比較例1及び2に比べ接触角が小さく、PET基材と接触しない側の膜表面(空気側面)が親水的であることを確認した。すなわち、実施例1、2、3、4及び5の高分子電解質膜によれば、膜と燃料電池触媒層との接着性が高まり、燃料電池材料として用いた場合の高い燃料電池特性や高い耐久性の発現が期待できる。
1…高分子電解質膜、2…触媒層、3…ガス拡散層、4…ガスケット、5…セパレータ、10…膜−電極接合体(MEA)、100…固体高分子形燃料電池(燃料電池単セル)。

Claims (20)

  1. 高分子電解質と溶媒とを含有し、
    前記溶媒が、ヒドロキシ基とエーテル結合とを有する化合物である高分子電解質組成物。
  2. 前記溶媒が、下記式(1)で表される化合物である、請求項1に記載の高分子電解質組成物。
    Figure 2012107220

    [式(1)中、kは1〜5の整数を表す。Rは2価の脂肪族基を表す。当該2価の脂肪族基は、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基、ヒドロキシ基から選ばれる基で置換されていてもよい。Rは、置換基を有していてもよい炭素数1〜10のアルキル基、又は置換基を有していてもよい炭素数6〜20のアリール基を表す。]
  3. が炭素数1〜10のアルキレン基であり、Rが炭素数1〜10のアルキル基である、請求項2に記載の高分子電解質組成物。
  4. kが1〜3の整数である請求項2又は3のいずれか一項に記載の高分子電解質組成物。
  5. kが1である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  6. kが2である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  7. がエチレン基であり、Rがエチル基であり、kが2である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  8. がエチレン基であり、Rがプロピル基であり、kが1である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  9. がプロピレン基であり、Rがメチル基であり、kが1である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  10. がエチレン基であり、Rがメチル基であり、kが2である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  11. がエチレン基であり、Rがエチル基であり、kが1である請求項2〜4のいずれか一項に記載の高分子電解質組成物。
  12. 前記高分子電解質がイオン交換基を有するブロック及びイオン交換基を実質的に有しないブロックを有するブロック共重合体型高分子電解質であり、
    前記イオン交換基を有するブロックとして下記式(2a)で表されるブロックを有し、
    前記イオン交換基を実質的に有しないブロックとして、下記式(2b)、(3b)、又は(4b)で表されるブロックを有する、請求項1〜11のいずれか一項に記載の高分子電解質組成物。
    Figure 2012107220

    [式(2a)中、mは2以上の整数を表し、Arは2価の芳香族基を表す。ここで2価の芳香族基は、フッ素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基で置換されていてもよい。式(2a)中のArは、主鎖を構成する芳香環に直接又は主鎖を構成する芳香環に結合した側鎖に結合しているイオン交換基を、Ar1個あたり平均0.5個以上有する。]
    Figure 2012107220

    [式(2b)、(3b)及び(4b)中、nは2以上の整数を表し、Ar、Ar、Ar、Ar、Ar、Ar、Ar及びArはそれぞれ独立に2価の芳香族基を表す。ここでこれらの2価の芳香族基は、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜10のアリール基、炭素数6〜18のアリールオキシ基又は炭素数2〜20のアシル基で置換されていてもよい。Z及びZ’は、それぞれ独立にカルボニル基又はスルホニル基を表し、X、X’及びX’’は、それぞれ独立にO又はSを表す。Yは直接結合又は下記式(2c)で表される基を表す。p’は0、1又は2を表し、p’が2である場合、2つあるAr及びYは同一でも異なっていてもよい。q’、r’はそれぞれ独立に1、2又は3を表す。q’が2以上の場合、複数のArは同一でも異なっていてもよい。r’が2以上の場合、複数のArは同一でも異なっていてもよい。]
    Figure 2012107220

    [式(2c)中、R及びRはそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1〜10のアルキル基、置換基を有していてもよい炭素数1〜10のアルコキシ基、置換基を有していてもよい炭素数6〜18のアリール基、置換基を有していてもよい炭素数6〜18のアリールオキシ基又は置換基を有していてもよい炭素数2〜20のアシル基を表し、RとRが連結して、それらが結合する炭素原子と共に環を形成していてもよい。]
  13. 前記ブロック共重合体型高分子電解質が、イオン交換基を有するブロックとして、前記式(2a)で表されるブロックを有し、
    かつ、このブロックのArが、主鎖を構成している芳香環にイオン交換基が直接結合している2価の芳香族基である、請求項12に記載の高分子電解質組成物。
  14. 前記ブロック共重合体型高分子電解質のイオン交換容量が、3.0〜6.5である、請求項12又は13記載の高分子電解質組成物。
  15. 前記ブロック共重合体型高分子電解質が、ハロゲン原子を実質的に有しない、請求項12〜14のいずれか一項に記載の高分子電解質組成物。
  16. イオン交換基を有するブロックが、下記式(5aa)で表される構造を有する、請求項12〜15のいずれか一項に記載の高分子電解質組成物。
    Figure 2012107220

    [式(5aa)中、mは2以上の整数を表し、Rは、フッ素原子、置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数1〜20のアルコキシ基、置換基を有していてもよい炭素数6〜20のアリール基、置換基を有していてもよい炭素数6〜20のアリールオキシ基または置換基を有していてもよい炭素数2〜20のアシル基から選ばれる置換基を表す。pは0以上3以下の整数である。Rが複数存在する場合、それぞれ互いに同一でも異なってもよい。]
  17. 請求項1〜16のいずれか一項に記載の高分子電解質組成物を用いて形成される、高分子電解質膜。
  18. 請求項1〜16のいずれか一項に記載の高分子電解質組成物を支持基材上に塗布して塗膜を製造し、前記溶媒が塗膜中に残存するようにして該塗膜を乾燥させる乾燥工程と、
    該乾燥工程の後の塗膜に残存している前記溶媒を、洗浄溶媒によって洗浄除去する洗浄工程と、を有する、高分子電解質膜の製造方法。
  19. 請求項17に記載の高分子電解質膜を備える、膜−電極接合体。
  20. 請求項19に記載の膜−電極接合体を備える、固体高分子形燃料電池。

JP2011232052A 2010-10-21 2011-10-21 高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法 Pending JP2012107220A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011232052A JP2012107220A (ja) 2010-10-21 2011-10-21 高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010236644 2010-10-21
JP2010236644 2010-10-21
JP2011232052A JP2012107220A (ja) 2010-10-21 2011-10-21 高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法

Publications (1)

Publication Number Publication Date
JP2012107220A true JP2012107220A (ja) 2012-06-07

Family

ID=46493160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011232052A Pending JP2012107220A (ja) 2010-10-21 2011-10-21 高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法

Country Status (1)

Country Link
JP (1) JP2012107220A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186201A (ja) * 2018-03-30 2019-10-24 東レ株式会社 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186201A (ja) * 2018-03-30 2019-10-24 東レ株式会社 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池
JP7188204B2 (ja) 2018-03-30 2022-12-13 東レ株式会社 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池

Similar Documents

Publication Publication Date Title
WO2009142274A1 (ja) ポリマー、ポリアリーレン系ブロック共重合体、高分子電解質、高分子電解質膜及び燃料電池
JP2011103295A (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子形燃料電池
WO2013018677A1 (ja) プロトン伝導性基を有する芳香族系共重合体およびその用途
JP4587383B2 (ja) 電解質膜及びその製造方法
US8349994B2 (en) Electrode electrolyte for polymer-type fuel cell, and use thereof
JP2008308683A (ja) 架橋芳香族ポリマー、高分子電解質、触媒インク、高分子電解質膜、膜−電極接合体及び燃料電池
JP2009206086A (ja) 高分子電解質組成物及びその製造方法、並びに燃料電池
WO2012015072A1 (ja) 高分子電解質組成物、高分子電解質および含硫黄複素環芳香族化合物
JP2005183311A (ja) 直接メタノール型燃料電池電極用高分子電解質、ワニス組成物および直接メタノール型燃料電池
JP2009021232A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
KR101087573B1 (ko) 디카보닐기로 가교된 폴리설폰, 이의 제조방법, 이를 이용한 고분자전해질막 및 이를 채용한 연료전지
JP2009021234A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP2012109231A (ja) 高分子電解質膜、膜−電極接合体及び固体高分子形燃料電池
JPWO2011155528A1 (ja) スルホン酸基を有する芳香族系共重合体、ならびにその用途
JP2012107220A (ja) 高分子電解質組成物、高分子電解質膜及び高分子電解質膜の製造方法
JP2011127109A (ja) ポリアリーレン系ブロック共重合体及びその用途
JP4754496B2 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP2007048747A (ja) 固体高分子型燃料電池用膜−電極構造体
JP2010219028A (ja) 高分子電解質膜、並びに、これを用いた膜−電極接合体及び燃料電池
JP2012134138A (ja) 触媒層、積層体及び膜−電極接合体の製造方法
WO2012099118A1 (ja) 高分子電解質膜、膜電極接合体、燃料電池
JP2013243058A (ja) 層状珪酸塩鉱物−高分子電解質複合膜およびその製造方法
JP2015008060A (ja) 電解質膜、膜−電極接合体および固体高分子型燃料電池
WO2012026623A1 (ja) 高分子電解質組成物および高分子電解質膜
JP2009197220A (ja) 高分子電解質組成物及びそれを用いた電池