JP2012087412A - マグネトロンスパッタリング用ターゲットおよびその製造方法 - Google Patents

マグネトロンスパッタリング用ターゲットおよびその製造方法 Download PDF

Info

Publication number
JP2012087412A
JP2012087412A JP2011252104A JP2011252104A JP2012087412A JP 2012087412 A JP2012087412 A JP 2012087412A JP 2011252104 A JP2011252104 A JP 2011252104A JP 2011252104 A JP2011252104 A JP 2011252104A JP 2012087412 A JP2012087412 A JP 2012087412A
Authority
JP
Japan
Prior art keywords
powder
phase
alloy
target
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011252104A
Other languages
English (en)
Other versions
JP5748639B2 (ja
Inventor
Takashi Miyashita
敬史 宮下
Yasuyuki Goto
康之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46259345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012087412(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2011252104A priority Critical patent/JP5748639B2/ja
Publication of JP2012087412A publication Critical patent/JP2012087412A/ja
Application granted granted Critical
Publication of JP5748639B2 publication Critical patent/JP5748639B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】ターゲットに含まれる強磁性金属元素の含有量を減少させずに、マグネトロンスパッタリング時の漏洩磁束量を従来よりも増加させることができるマグネトロンスパッタリング用ターゲットを提供する。
【解決手段】強磁性金属元素を有するマグネトロンスパッタリング用ターゲットであって、前記強磁性金属元素を含む磁性相12と、前記強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相14、16と、酸化物相18とを有している。
【選択図】図1

Description

本発明は、強磁性金属元素を有するマグネトロンスパッタリング用ターゲットおよびその製造方法に関する。
マグネトロンスパッタリングでは、ターゲットの裏面に磁石を配置し、ターゲットの表面側に漏れ出る漏洩磁束によりプラズマを高密度に集中させる。これにより、安定した高速スパッタリングを可能としている。
このため、マグネトロンスパッタリングに用いられるターゲットには、ターゲットの表面側に漏れ出る漏洩磁束の量を多くすることが求められる。
例えば、特許文献1には、Coを有するマグネトロンスパッタリング用ターゲットであって、Coを含む磁性相と、Coを含む非磁性相と、酸化物相と、を有し、該磁性相と該非磁性相と該酸化物相とが互いに分散しており、該磁性相はCoおよびCrを主成分として含み、該磁性相におけるCoの含有割合は、76at%以上80at%以下であることを特徴とするマグネトロンスパッタリング用ターゲットや、Coを有するマグネトロンスパッタリング用ターゲットであって、Coを含む磁性相と、Coを含む非磁性相と、を有し、該磁性相と該非磁性相とが互いに分散しており、該非磁性相はPtを主成分として含むPt−Co合金相であり、該Pt−Co合金相におけるCoの含有割合は、0at%より大きく13at%以下であることを特徴とするマグネトロンスパッタリング用ターゲットが記載されている。
これらのマグネトロンスパッタリング用ターゲットは、ターゲットに含まれる強磁性金属元素であるCoの含有量を減少させずに、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を増加させることができ、マグネトロンスパッタリングを良好に行うことができる。
特許第4422203号公報
しかしながら、ターゲットに含まれる強磁性金属元素の含有量を減少させずに、マグネトロンスパッタリング時の漏洩磁束量をさらに増加させることが求められている。
本発明は、かかる点に鑑みてなされたものであって、ターゲットに含まれる強磁性金属元素の含有量を減少させずに、マグネトロンスパッタリング時の漏洩磁束量を従来よりも増加させることができるマグネトロンスパッタリング用ターゲットおよびその製造方法を提供することを課題とする。
本発明は、強磁性金属元素を有するマグネトロンスパッタリング用ターゲットであって、前記強磁性金属元素を含む磁性相と、前記強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相と、酸化物相とを有していることを特徴とするマグネトロンスパッタリング用ターゲットにより、前記課題を解決したものである。
また、「磁性相」とは、磁性を有している相(通常の磁性体と比べて磁性が十分に小さい相を除く)のことであり、「非磁性相」とは、磁性がゼロの相だけでなく、通常の磁性体と比べて磁性が十分に小さい相も含む概念である。
本発明によれば、強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相を設けることにより、ターゲット全体における強磁性金属元素の量を一定に保ったまま、前記強磁性金属元素を含む磁性相のターゲット全体に対する体積分率を減少させることができ、ターゲット全体の磁性を減少させることができる。これにより、ターゲットに含まれる強磁性金属元素の含有量を減少させずに、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を増加させることができ、マグネトロンスパッタリングを良好に行うことができる。
前記複数の非磁性相は、例えば2種の非磁性相とすることができる。
前記強磁性金属元素は、例えばCoであり、この場合、前記ターゲットを用いてマグネトロンスパッタリングを行うと、磁気記録特性に優れた磁気記録媒体を得やすい。
前記磁性相は、例えばCoおよびCrを主成分として含むCo−Cr合金相とすることができ、この場合、ターゲット全体に対する非磁性相の体積分率を大きくして磁性相の体積分率を小さくし、ターゲット表面からの漏洩磁束の量を増加させる点で、該磁性相におけるCoの含有割合は、85at%以上であることが好ましい。さらに、前記の点で、前記磁性相をCo単体からなる相とすることはより好ましい。
前記非磁性相のうちの少なくとも1つは、Coの含有割合が0at%より大きく75at%以下であるCo−Cr合金相またはCoの含有割合が0at%より大きく73at%以下であるCo−Cr−Pt合金相からなることが好ましく、また、前記非磁性相のうちの少なくとも1つは、Coの含有割合が12at%以下であるCo−Pt合金相からなることが好ましい。
前記酸化物相は、例えば、SiO2、TiO2、Ti23、Ta25、Cr23、CoO、Co34、B25、Fe23、CuO、Y23、MgO、Al23、ZrO2、Nb25、MoO3、CeO2、Sm23、Gd23、WO2、WO3、HfO2、NiO2のうちの
少なくとも1種を含むものとすることができる。
前記ターゲットの中には、磁気記録層の形成に好適に用いることができるものがある。
前記ターゲットは、例えば、強磁性金属元素を含む磁性金属粉末と、前記強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性金属粉末と、酸化物粉末とを用いることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法により製造することができる。
ここで、磁性金属粉末とは、磁性を有している粉末(通常の磁性体と比べて磁性が十分に小さい粉末を除く)のことであり、非磁性金属粉末とは、磁性がゼロの粉末だけでなく、通常の磁性体と比べて磁性が十分に小さい粉末も含む概念である。
前記複数の非磁性金属粉末は、例えば2種の非磁性金属粉末とすることができる。
前記強磁性金属元素は、例えばCoであり、この場合、前記製造方法により製造したターゲットを用いてマグネトロンスパッタリングを行うと、磁気記録特性に優れた磁気記録媒体を得やすい。
前記磁性金属粉末がCoおよびCrを主成分として含み、該磁性金属粉末におけるCoの含有割合が85at%以上であることは、製造されるターゲットの漏洩磁束率を向上させる点で好ましく、前記磁性金属粉末はCo単体からなることがより好ましい。
前記複数の非磁性金属粉末のうち少なくとも1つは、Coの含有割合が0at%より大きく75at%以下であるCo−Cr合金またはCoの含有割合が0at%より大きく73at%以下であるCo−Cr−Pt合金からなることが好ましく、また、前記複数の非磁性金属粉末のうち少なくとも1つは、Coの含有割合が12at%以下であるCo−Pt合金からなることが好ましい。
本発明によれば、ターゲットに含まれる強磁性金属元素の含有量を減少させずに、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を従来よりも増加させることができ、マグネトロンスパッタリングを良好に行うことができる。
本実施形態に係るターゲットのミクロ構造を示す一例の金属顕微鏡写真 Co−Cr合金において、Coの含有割合と磁性との関係を示すグラフ図 Co−Pt合金において、Coの含有割合と磁性との関係を示すグラフ図 磁性混合粉末を加圧焼結して得た焼結体の断面の金属顕微鏡写真 第1の磁性混合粉末を加圧焼結して得た焼結体の断面の金属顕微鏡写真 第2の磁性混合粉末を加圧焼結して得た焼結体の断面の金属顕微鏡写真 第2の磁性混合粉末を加圧焼結して得た焼結体の断面の金属顕微鏡写真 実施例1のテストピースの厚さ方向断面の金属顕微鏡写真(低倍率) 実施例1のテストピースの厚さ方向断面の金属顕微鏡写真(高倍率) 実施例1のテストピースの厚さ方向断面のSEM写真(低倍率) 実施例1のテストピースの厚さ方向断面のSEM写真(高倍率) 実施例2のテストピースの厚さ方向断面の金属顕微鏡写真(低倍率) 実施例2のテストピースの厚さ方向断面の金属顕微鏡写真(高倍率) 実施例2のテストピースの厚さ方向断面のSEM写真(低倍率) 実施例2のテストピースの厚さ方向断面のSEM写真(高倍率) 比較例1のテストピースの厚さ方向断面の金属顕微鏡写真(低倍率) 比較例1のテストピースの厚さ方向断面の金属顕微鏡写真(高倍率) 比較例1のテストピースの厚さ方向断面のSEM写真(低倍率) 比較例1のテストピースの厚さ方向断面のSEM写真(高倍率) 比較例2のテストピースの厚さ方向断面の金属顕微鏡写真(低倍率) 比較例2のテストピースの厚さ方向断面の金属顕微鏡写真(高倍率) 比較例2のテストピースの厚さ方向断面のSEM写真(低倍率) 比較例2のテストピースの厚さ方向断面のSEM写真(高倍率) 比較例3のテストピースの厚さ方向断面の金属顕微鏡写真(低倍率) 比較例3のテストピースの厚さ方向断面の金属顕微鏡写真(高倍率) 比較例5のテストピースの厚さ方向断面の金属顕微鏡写真(低倍率) 比較例5のテストピースの厚さ方向断面の金属顕微鏡写真(高倍率)
本発明に係るマグネトロンスパッタリング用ターゲットは、強磁性金属元素を有するマグネトロンスパッタリング用ターゲットであって、前記強磁性金属元素を含む磁性相と、前記強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相と、酸化物相とを有していることを特徴とする。
本発明は、強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相を設けることにより、ターゲット全体における強磁性金属元素を含む各構成元素の含有割合を一定に保ったまま、ターゲット全体に対する非磁性相の体積分率を大きくすることができ、ターゲット全体に対する磁性相の体積分率を小さくすることができる。これによりターゲット全体としての磁性を弱めることができ、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を増加させることができ、マグネトロンスパッタリングを良好に行うことができる。
例えば、後述するように、Co−Cr合金ではCoの含有割合が75at%以下のときその磁性はほとんどゼロになり、Co−Pt合金ではCoの含有割合が12at%以下のときその磁性はほとんどゼロになる。したがって、ターゲットに含まれる金属元素がCo、Cr、Ptの三元素の場合、非磁性相をCoの含有割合が75at%以下のCo−Cr合金相の1相またはCoの含有割合が12at%以下のCo−Pt合金相の1相とするより、非磁性相をCoの含有割合が75at%以下のCo−Cr合金相およびCoの含有割合が12at%以下のCo−Pt合金相の2相とする方が、ターゲット全体の組成を一定に保ったまま、ターゲット全体に対する非磁性相の体積分率を大きくすることができ、ターゲット全体に対する磁性相の体積分率を小さくすることができる。
このように、強磁性金属元素を含む非磁性相を、構成元素またはその含有割合の異なる複数の非磁性相とすることにより、非磁性相を1つとした場合よりも、ターゲット全体の組成を一定に保ったまま、ターゲット全体に対する非磁性相の体積分率を大きくすることができ、ターゲット全体に対する磁性相の体積分率を小さくすることができ、ターゲット全体としての磁性を弱めることができる。
なお、ターゲット全体の組成を一定に保ったまま、ターゲット全体に対する非磁性相の体積分率を大きくすると、磁性相の体積分率が小さくなり、磁性相の強磁性金属元素の含有割合は大きくなるが、後述するように、例えば、Co−Cr合金ではCoの含有割合が85at%以上となるとその磁性はCo単体の磁性と同程度となり、それ以上Coの含有割合が増えても磁性は同程度を保つ。したがって、磁性相の強磁性金属元素の含有割合が一定の値以上となると、磁性相の強磁性金属元素の含有割合がそれ以上大きくなっても、磁性相の磁性は大きくは上昇しないと考えられる。このため、磁性相の強磁性金属元素の含有割合が大きくなっても、ターゲット全体に対する非磁性相の体積分率を大きくして、ターゲット全体に対する磁性相の体積分率を小さくすることにより、ターゲット全体としての磁性を弱めることができる。
また、本発明に係るマグネトロンスパッタリング用ターゲットは、強磁性金属元素を有するので、磁気記録媒体の作製に用いることができる。本発明に適用可能な強磁性金属元素は、特に限定されず、例えばCo、Fe、Niを用いることができる。強磁性金属元素としてCoを用いた場合、保磁力の大きい記録層(磁性層)を形成することができ、ハードディスクの作製に好適なターゲットとすることができる。
また、本発明に係るマグネトロンスパッタリング用ターゲットにおいて、磁性相および非磁性相に含まれる強磁性金属元素以外の金属元素は特に限定されず、例えば、Cr、Pt、Au、Ag、Ru、Rh、Pd、Ir、W、Ta、Cu、B、Mo等の金属元素を磁性相および/または非磁性相に含ませることができる。
以下では、磁気記録層の作製に好適に用いることができるCo−Cr−Pt−SiO2
−TiO2−Cr23ターゲットを本発明の実施形態として取り上げ、具体的に説明する。本実施形態では、金属相を1つの磁性相と2つの非磁性相で構成した3相構造とするが、金属相を1つの磁性相と3つ以上の非磁性相で構成した4相以上の多相構造とすることもできる。
1.ターゲットの構成成分
本実施形態に係るターゲットの構成成分は、Co−Cr−Pt−SiO2−TiO2−Cr23である。Co、Cr、Ptは、スパッタリングによって形成される磁気記録層のグラニュラ構造において、磁性粒子(微小な磁石)となる。酸化物(SiO2、TiO2、Cr23)は、グラニュラ構造において、磁性粒子(微小な磁石)を仕切る非磁性マトリックスとなる。
ターゲット全体に対する金属(Co、Cr、Pt)の含有割合および酸化物(SiO2、TiO2、Cr23)の含有割合は、目的とする磁気記録層の成分組成によって決まり、ターゲット全体に対する金属(Co、Cr、Pt)の含有割合は88〜94mol%、ターゲット全体に対する酸化物(SiO2、TiO2、Cr23)の含有割合は6〜12mol%である。
Coは強磁性金属元素であり、磁気記録層のグラニュラ構造の磁性粒子(微小な磁石)の形成において中心的な役割を果たす。Coの含有割合は金属(Co、Cr、Pt)全体に対して60〜80at%である。
Crは、所定の組成範囲でCoと合金化することによりCoの磁気モーメントを低下させる機能を有し、磁性粒子の磁性の強さを調整する役割を有する。Crの含有割合は金属(Co、Cr、Pt)全体に対して4〜24at%である。
Ptは、所定の組成範囲でCoと合金化することによりCoの磁気モーメントを増加させる機能を有し、磁性粒子の磁性の強さを調整する役割を有する。Ptの含有割合は金属(Co、Cr、Pt)全体に対して1〜22at%である。
なお、本実施形態では酸化物としてSiO2、TiO2、Cr23を用いたが、用いる酸化物はSiO2、TiO2、Cr23に限定されず、例えば、SiO2、TiO2、Ti23、Ta25、Cr23、CoO、Co34、B25、Fe23、CuO、Y23、MgO、Al23、ZrO2、Nb25、MoO3、CeO2、Sm23、Gd23、WO2、WO3、HfO2、NiO2のうちの少なくとも1種を含む酸化物を用いることもできる。
2.ターゲットのミクロ構造
本実施形態に係るターゲットのミクロ構造は、図1(実施例1のターゲットの厚さ方向断面のSEM写真)を例にとって示すように、磁性相(Coの含有割合が85at%以上のCo−Cr合金相)、第1の非磁性相(Coの含有割合が0at%より大きく73at%以下のCo−Cr−Pt合金相)、第2の非磁性相(Coの含有割合が0at%より大きく12at%以下のCo−Pt合金相)がお互いに分散し、かつ、酸化物相によって仕切られ、お互いに接触していない構造となっている。なお、本実施形態では、磁性相(Coの含有割合が85at%以上のCo−Cr合金相)をCoの含有割合が100at%のCo単体相としてもよく、Coの含有割合が85at%以上のCo−Cr合金相には、Coの含有割合が100at%のCo単体相も含まれるものとする。
図1において、符号10は本実施形態に係るターゲット、符号12で示す相(灰色が濃く比較的大きな相)は磁性相(Co相)、符号14で示す相(磁性相12および第2の非磁性相16の中間的な灰色の濃さの相)は第1の非磁性相(69Co−22Cr−9Pt合金相)、符号16で示す相(最も白っぽい相)は第2の非磁性相(5Co−95Pt合金相)、符号18で示す部位(灰色が濃く、金属相の間を仕切っている部位)は酸化物相(SiO2−TiO2−Cr23相)である。
金属相をCo−Cr−Pt合金相の単相とせず、1つの磁性相(Coの含有割合が85at%以上のCo−Cr合金相)と2つの非磁性相(Coの含有割合が0at%より大きく73at%以下のCo−Cr−Pt合金相、Coの含有割合が0at%より大きく12at%以下のCo−Pt合金相)で構成した3相構造とすることにより、ターゲット全体における強磁性金属元素を含む各構成元素の含有割合を一定に保ったまま、ターゲット全体に対する磁性相の体積分率を小さくすることができる。これにより、ターゲット全体における各構成元素の含有割合を一定に保ったまま、ターゲット全体としての磁性を弱めることができ、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を増加させることができ、マグネトロンスパッタリングを良好に行うことができる。
本実施形態において、磁性相であるCo−Cr合金相において、Coの含有割合を85at%以上とした理由について説明する。
下記の表1は、Co−Cr合金において、Coの含有割合を振って測定した磁性の評価尺度の引張応力(後述するように引張応力の値が大きいほど磁性が強くなる)についての実験結果であり、図2は、下記の表1をグラフにしたもので、Co−Cr合金において、Coの含有割合と磁性との関係を示すグラフ図であり、横軸がCoの含有割合、縦軸が磁性の評価尺度の引張応力である。
表1、図2に示すように、Co−Cr合金において、Coの含有割合が75at%以下では、Co−Cr合金の磁性はほとんど零であり、Coの含有割合が75at%を超えると、磁性が急激に大きくなり始め、Coの含有割合が83at%以上になると、磁性の増加が穏やかになりほぼ一定値となる。したがって、磁性相であるCo−Cr合金においては、Coの含有割合を83at%より増やしても、Coの含有割合が83at%以上のときと比べて磁性はほとんど大きくならない。
そこで、本実施形態においては、Co−Cr合金相におけるCoの含有割合を85at%以上とし、Coの含有割合が83at%のときと比べて磁性をほとんど大きくせずに、磁性相であるCo−Cr合金相におけるCoの含有割合を大きくしている。Co−Cr合金相におけるCoの含有割合が大きいほど、ターゲット全体におけるCo量を一定に保ちつつ、磁性相であるCo−Cr合金相の体積分率を小さく、非磁性相(Coの含有割合が0at%より大きく73at%以下のCo−Cr−Pt合金相、Coの含有割合が0at%より大きく12at%以下のCo−Pt合金相)の体積分率を大きくすることができ、ターゲット全体の磁性を小さくすることができる。
次に、Co−Cr−Pt合金相において、Coの含有割合を0at%より大きく73at%以下としている理由について説明する。
表1、図2に示すように、Co−Cr合金において、CoとCrの合計に対するCoの含有割合を75at%以下とすることにより、Co−Cr合金の磁性をほとんど零のレベルにしたまま、合金中にCoを含有させることができる。Co−Cr合金にPtを添加したCo−Cr−Pt合金においても同様の傾向を示すと考えられるので、Co、Cr、Ptの合計に対するCoの含有割合を75at%以下とすれば、Co−Cr合金の磁性をほとんど零のレベルにしたまま、合金中にCoを含有させることができると考えることもできる。しかしながら、前述したようにPtは所定の組成範囲でCoと合金化することによりCoの磁気モーメントを増加させる機能を有するので、本実施形態ではCo、Cr、Ptの合計に対するCoの含有割合を73at%以下とした。実際、後に示す実施例では、第1の非磁性相を69Co−22Cr−9Pt合金相(Coの含有割合は69at%であり、73at%以下である。)とすることにより、大きい漏洩磁束率が得られている。ただし、Coの含有割合が零では、非磁性相であるCo−Cr−Pt合金相にCoを含有させたことにならず、ターゲット10全体におけるCoを含む構成元素の含有割合を一定に保ったまま、Co−Cr合金相(磁性相)の体積分率を減少させることに寄与しない。そこで、本実施形態においては、Co−Cr−Pt合金相におけるCoの含有割合を0at%より大きく73at%以下として、ターゲット10全体におけるCoを含む構成元素の含有割合を一定に保ったまま、Co−Cr合金相(磁性相)の体積分率を減少させ、ターゲット全体の磁性を減少させて、良好なマグネトロンスパッタリングができるようにしている。
次に、Co−Pt合金相において、Coの含有割合を0at%より大きく12at%以下としている理由について説明する。
下記の表2は、Co−Pt合金において、Coの含有割合を振って測定した磁性の評価尺度の引張応力(後述するように引張応力の値が大きいほど磁性が強くなる)についての実験結果であり、図3は、下記の表2をグラフにしたもので、Co−Pt合金において、Coの含有割合と磁性との関係を示すグラフ図であり、横軸がCoの含有割合、縦軸が磁性の評価尺度の引張応力である。
表2、図3に示すように、Co−Pt合金において、CoとPtの合計に対するCoの含有割合を12at%以下とすることにより、Co−Pt合金の磁性をほとんど零のレベルにしたまま、合金中にCoを含有させることができる。ただし、Coの含有割合が零では、ターゲット10全体におけるCoを含む構成元素の含有割合を一定に保ったまま、Co−Cr合金相(磁性相)の体積分率を減少させてターゲット全体の磁性を減少させることに寄与しない。そこで、本実施形態においては、Co−Pt合金相におけるCoの含有割合を0at%より大きく12at%以下として、ターゲット10全体におけるCoを含む構成元素の含有割合を一定に保ったまま、Co−Cr合金相(磁性相)の体積分率を減少させ、ターゲット全体の磁性を減少させて、良好なマグネトロンスパッタリングができるようにしている。
なお、表1、表2、図2、図3のデータは、本発明者が測定して得たデータであり、具体的には下記のようにして測定した。表1、図2のデータの場合、CoとCrを体積が1cm3になるように配材してアーク溶解し、底面積が0.785cm2である円盤状のサンプルを組成比を変えて作製した。そして、この円盤状のサンプルの底面を、残留磁束密度が500ガウスの磁石(材質フェライト)に付着させた後、底面と垂直な方向に引っ張り、磁石から離れたときの力を測定した。この力を底面積0.785cm2で除して求めた引張応力はサンプルの磁性と正の相関があるので、これを磁性の評価尺度とし、表1の数値、図2の縦軸とした。表2、図3のデータの場合、PtとCoを体積が1cm3になるように配材した以外は、表1、図2のデータの場合と同様にしてデータの取得を行った。
以上説明したように、本実施形態に係るターゲット10では、Coを含む非磁性相であるCo−Cr−Pt合金相(Coの含有割合は0at%より大きく73at%以下)およびCo−Pt合金相(Coの含有割合は0at%より大きく12at%以下)を設けているので、ターゲット10全体におけるCoを含む各構成元素の含有割合を一定に保ったまま、磁性相であるCo−Cr合金相の体積分率を減少させることができ、ターゲット10全体の磁性を減少させることができる。また、磁性相であるCo−Cr合金相において、Coの含有割合を85at%以上としているので、Coの含有割合が83at%のときと比べて磁性をほとんど大きくせずに、磁性相であるCo−Cr合金相におけるCoの含有割合を大きくすることができ、ターゲット全体におけるCo量を一定に保ちつつ、磁性相であるCo−Cr合金相の体積分率を小さくすることができ、ターゲット全体の磁性を小さくすることができる。
したがって、本実施形態では、ターゲットに含まれる強磁性金属元素の含有量を減少させず(ターゲットに含まれる各構成元素の含有割合を変えず)に、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を増加させることができ、マグネトロンスパッタリングを良好に行うことができる。
3.ターゲットの製造方法
本実施形態に係るターゲット10は、以下のようにして製造することができる。
(1)磁性混合粉末の作製
所定の組成(Coの含有割合が85at%以上)となるようにCo、Crを秤量し、合金溶湯を作製して、ガスアトマイズを行い、所定の組成(Coの含有割合が85at%以上)のCo−Cr合金アトマイズ磁性粉末を作製する。ここで、Crを含有させずにCo単体のアトマイズ磁性粉末としてもよく、本実施形態では、所定の組成(Coの含有割合が85at%以上)のCo−Cr合金アトマイズ磁性粉末には、Co単体のアトマイズ磁性粉末も含まれるものとする。
作製したCo−Crアトマイズ磁性粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを混合分散して、磁性混合粉末を作製する。酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)は、微細な1次粒子が凝集して2次粒子を形成しているが、混合分散の程度は、Co−Crアトマイズ磁性粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態となるまで行う。
図4は、磁性混合粉末(酸化物粉末が被覆されたCo粉末)を温度1160℃、圧力24.5MPa、時間1hで加圧焼結して得た焼結体の断面の金属顕微鏡写真であり、符号20で示す白っぽい相が磁性相(Co相)であり、符号22で示す灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)である。図4からわかるように、磁性相(Co相)20の周囲は酸化物相(SiO2−TiO2−Cr23相)22により仕切られており、Co−Cr合金アトマイズ磁性粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを混合分散して作製した磁性混合粉末は、Co−Cr合金アトマイズ磁性粉末の周囲を酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)が被覆した状態になっていると考えられる。
(2)第1の非磁性混合粉末の作製
所定の組成(Coの含有割合が0at%より大きく73at%以下)となるようにCo、Cr、Ptを秤量し、合金溶湯を作製して、ガスアトマイズを行い、所定の組成(Coの含有割合が0at%より大きく73at%以下)のCo−Cr−Pt合金アトマイズ非磁性粉末を作製する。
作製したCo−Cr−Pt合金アトマイズ非磁性粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを混合分散して、第1の非磁性混合粉末を作製する。酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)は、微細な1次粒子が凝集して2次粒子を形成しているが、混合分散の程度は、Co−Cr−Pt合金アトマイズ非磁性粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により覆われた状態となるまで行う。
図5は、第1の非磁性混合粉末(酸化物粉末が被覆された所定の組成(Coの含有割合が0at%より大きく73at%以下)のCo−Cr−Pt合金粉末)を加圧焼結して得た焼結体の断面の金属顕微鏡写真であり、符号24で示す白っぽい相が非磁性相(69Co−22Cr−9Pt合金相)であり、符号26で示す灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)である。図5からわかるように、Coを含有する非磁性相(69Co−22Cr−9Pt合金相)の周囲を酸化物相(SiO2−TiO2−Cr23相)が覆っており、Co−Cr−Pt合金アトマイズ非磁性粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを混合分散して作製した第1の非磁性混合粉末は、Co−Cr−Pt合金アトマイズ非磁性粉末の周囲を酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)が被覆した状態になっていると考えられる。
(3)第2の非磁性混合粉末の作製
所定の組成(Coの含有割合が0at%より大きく12at%以下)となるようにCo、Ptを秤量し、合金溶湯を作製して、ガスアトマイズを行い、所定の組成(Coの含有割合が0at%より大きく12at%以下)のCo−Pt合金アトマイズ非磁性粉末を作製する。
作製したCo−Pt合金アトマイズ非磁性粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを混合分散して、第2の非磁性混合粉末を作製する。酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)は、微細な1次粒子が凝集して2次粒子を形成しているが、混合分散の程度は、Co−Pt合金アトマイズ非磁性粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により覆われた状態となるまで行う。
図6、図7は、第2の非磁性混合粉末(酸化物粉末が被覆された所定の組成(Coの含有割合が0at%より大きく12at%以下)のCo−Pt粉末)を加圧焼結して得た焼結体の断面の金属顕微鏡写真であり、図6は非磁性相が5Co−95Pt合金相の場合であり、図7は非磁性相が10Co−90Pt合金相の場合である。図6において、符号28が非磁性相(5Co−95Pt合金相)であり、符号30で示す灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)である。図7において、符号32が非磁性相(10Co−90Pt合金相)であり、符号34で示す灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)である。図6、図7のいずれの場合も、非磁性相の周囲を酸化物相(SiO2−TiO2−Cr23相)が覆っている。このことから、Co−Pt合金アトマイズ非磁性粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを混合分散して作製した第2の非磁性混合粉末は、Co−Pt合金アトマイズ非磁性粉末の周囲を酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)が被覆した状態になっていると考えられる。
(4)加圧焼結用混合粉末の作製
作製した磁性混合粉末(酸化物粉末が被覆されたCo−Cr合金粉末)、第1の非磁性混合粉末(酸化物粉末が被覆されたCo−Cr−Pt合金粉末)、第2の非磁性混合粉末(酸化物粉末が被覆されたCo−Pt合金粉末)を概ね均一になるまで混合分散して、加圧焼結用混合粉末を作製する。この加圧焼結用混合粉末の作製の際には、磁性混合粉末、第1の非磁性混合粉末、第2の非磁性混合粉末に、必要に応じ酸化物粉末を加えて混合分散を行ってもよい。なお、この工程での混合分散は、各粒子径が小さくならない程度に止める。各粒子径が小さくなるほど混合分散を行うと、アトマイズ金属粉末を覆っている酸化物粉末層が破壊されて、3種類のアトマイズ金属粉末(Co−Cr合金粉末、Co−Cr−Pt合金粉末、Co−Pt合金粉末)同士が接触して、混合分散により金属原子の拡散が起こって、各アトマイズ金属粉末の組成が所定の組成からずれてしまうおそれがある。
(5)成形
作製した加圧焼結用混合粉末を、例えば真空ホットプレス法により加圧焼結して成形し、ターゲットを作製する。
(6)製造方法の特徴
本実施形態に係る製造方法の特徴は、各金属粉末(Co−Cr合金粉末、Co−Cr−Pt合金粉末、Co−Pt合金粉末)をそれぞれ酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)と混合分散させて、金属粒子の周囲を酸化物粉末で覆わせた混合粉末とした(1段階目の混合)後、各混合粉末同士を混合分散させて加圧焼結用混合粉末を得ており(2段階目の混合)、加圧焼結用混合粉末を2段階の混合を経て作製していることである。
そして、1段階目の混合では、各金属粒子(Co−Cr合金粒子、Co−Cr−Pt合金粒子、Co−Pt合金粒子)の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態になるまで混合(この混合により酸化物粉末の粒径は小さくなる)を行うのに対して、2段階目の混合では、混合分散を、各粒子径が小さくならない程度に止めている。
1段階目の混合で各金属粒子(Co−Cr合金粒子、Co−Cr−Pt合金粒子、Co−Pt合金粒子)の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態になるまで混合を行うことにより、酸化物粉末は十分に微細になりつつ、金属粒子を緻密に被覆するので、金属粒子同士が接触することを効果的に抑えることができる。
一方、2段階目の混合は、混合分散を、各粒子径が小さくならない程度に止めているので、アトマイズ金属粉末を覆っている酸化物粉末層は破壊されず、3種類のアトマイズ金属粉末(Co−Cr合金粉末、Co−Cr−Pt合金粉末、Co−Pt合金粉末)同士の接触が抑制され、混合分散時における金属原子の拡散により各アトマイズ金属粉末の組成が所定の組成からずれてしまうことが抑制される。
また、各アトマイズ金属粉末の表面は酸化物粉末によって覆われているので、真空ホットプレスを行っても、各アトマイズ金属粉末間での金属原子の拡散移動は起こりにくく、加圧焼結時に各金属相(Co−Cr合金相、Co−Cr−Pt合金相、Co−Pt合金相)における構成元素の含有割合が変動してしまうことも防止することができる。これにより、得られるターゲット中において、非磁性相になるように設計を行った相が磁性を帯びてしまうことを防止することができ、ターゲット全体における非磁性相の体積分率を設計通りに高く保つことができ、マグネトロンスパッタリング時に、ターゲット表面からの漏洩磁束の量を確実に増加させることができる。
(実施例1)
実施例1として作製したターゲット全体の組成は、91(73Co−11Cr−16Pt)−4SiO2−2TiO2−3Cr23であり、以下のようにして作製を行うとともに評価を行った。なお、ターゲット全体の金属(Co、Cr、Pt)に対するCoの含有割合は73at%、Crの含有割合は11at%、Ptの含有割合は16at%である。
Co単体を1700℃まで加熱してCo単体の溶湯とし、ガスアトマイズを行ってCo粉末(磁性金属粉末)を作製した。
また、合金組成がCo:69at%、Cr:22at%、Pt:9at%となるように各金属を秤量し、1700℃まで加熱して69Co−22Cr−9Pt合金溶湯とし、ガスアトマイズを行って69Co−22Cr−9Pt合金粉末(第1の非磁性金属粉末)を作製した。
また、合金組成がCo:5at%、Pt:95at%となるように各金属を秤量し、2000℃まで加熱して5Co−95Pt合金溶湯とし、ガスアトマイズを行って5Co−95Pt合金粉末(第2の非磁性金属粉末)を作製した。
作製した3種類のアトマイズ金属粉末(Co粉末、69Co−22Cr−9Pt合金粉末、5Co−95Pt合金粉末)をそれぞれ150メッシュのふるいで分級して、粒径がφ106μm以下の3種類のアトマイズ金属粉末(Co粉末、69Co−22Cr−9Pt合金粉末、5Co−95Pt合金粉末)を得た。
分級後のCo粉末1470.00gに、SiO2粉末65.80g、TiO2粉末43.81g、Cr23粉末124.95gを添加して混合分散を行い、磁性混合粉末(酸化物粉末が被覆されたCo粉末)を得た。用いたSiO2粉末、TiO2粉末、Cr23粉末は、中心径0.6μmの1次粒子が凝集して、粒径がφ100μm程度の2次粒子を形成していたが、Co粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態になるまでボールミルで混合分散を行い、磁性混合粉末(酸化物粉末が被覆されたCo粉末)を得た。
また、分級後の69Co−22Cr−9Pt合金粉末1150.00gに、SiO2粉末43.60g、TiO2粉末28.98g、Cr23粉末82.76gを添加して混合分散を行い、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)を得た。用いたSiO2粉末、TiO2粉末、Cr23粉末は、中心径0.6μmの1次粒子が凝集して、粒径がφ100μm程度の2次粒子を形成していたが、69Co−22Cr−9Pt合金粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態になるまでボールミルで混合分散を行い、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)を得た。
また、分級後の5Co−95Pt合金粉末1480.00gに、SiO2粉末20.82g、TiO2粉末13.83g、Cr23粉末39.32gを添加して混合分散を行い、第2の非磁性混合粉末(酸化物粉末が被覆された5Co−95Pt合金粉末)を得た。用いたSiO2粉末、TiO2粉末、Cr23粉末は、中心径0.6μmの1次粒子が凝集して、粒径がφ100μm程度の2次粒子を形成していたが、5Co−95Pt合金粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態になるまでボールミルで混合分散を行い、第2の非磁性混合粉末(酸化物粉末が被覆された5Co−95Pt合金粉末)を得た。
次に、磁性混合粉末(酸化物粉末が被覆されたCo粉末)805.67g、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)1229.89g、第2の非磁性混合粉末(酸化物粉末が被覆された5Co−95Pt合金粉末)744.44gを混合して混合分散を行い、加圧焼結用混合粉末を得た。詳細には、各粉末(磁性混合粉末、第1の非磁性混合粉末、第2の非磁性混合粉末)の粒径が小さくならない範囲内で、各粉末が概ね均一に分散するように混合分散を行い、加圧焼結用混合粉末とした。
作製した加圧焼結用混合粉末30gを、焼結温度:1100℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、テストピース(φ30mm)を作製した。得られたテストピースの厚さは4.5mm程度であった。作製したテストピースの密度を測定したところ、9.041(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は97.85%であった。
図8および図9は、得られたテストピースの厚さ方向断面の金属顕微鏡写真であり、図8は低倍率の写真で、図9は高倍率の写真である。図10および図11は、得られたテストピースの厚さ方向断面のSEM写真であり、図10は低倍率の写真で、図11は高倍率の写真である。
EPMAによる元素分析の結果、図11のSEM写真において、相の大きさが比較的大きく灰色の濃い部分がCo相であり、最も白っぽい部分が5Co−95Pt合金相であり、Co相および5Co−95Pt合金相の中間的な灰色の濃さの部分が69Co−22Cr−9Pt合金相であり、これらの金属相の間を仕切っている灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)であり、金属相同士は酸化物相(SiO2−TiO2−Cr23相)により仕切られていることが判明した。
次に、作製した加圧焼結用混合粉末を用いて、焼結温度:1070℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、φ152.4mm×厚さ7.0mmのターゲットを2つ作製した。作製した2つのターゲットの密度を測定したところ、9.009、9.009(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は97.50%、97.50%であった。
作製した2つのターゲットについて、ASTM F2086−01に基づき、漏洩磁束についての評価を行った。磁束を発生させるための磁石には馬蹄形磁石(材質:アルニコ)を用いた。この磁石を漏洩磁束の測定装置に取り付けるとともに、ホールプローブにガウスメータを接続した。ホールプローブは、前記馬蹄形磁石の磁極間の中心の真上に位置するように配置した。
まず、測定装置のテーブルにターゲットを置かずに、テーブルの表面における水平方向の磁束密度を測定し、ASTMで定義されるSource Fieldを測定したところ900(G)、900(G)であった。
次に、ホールプローブの先端を、ターゲットの漏洩磁束測定時の位置(テーブル表面からターゲットの厚さ+2mmの高さ位置)に上昇させ、テーブル面にターゲットを置かない状態で、テーブル面に水平な方向の漏洩磁束密度を測定し、ASTMで定義されるReference fieldを測定したところ563(G)、572(G)であった。
次に、ターゲット表面の中心と、ターゲット表面のホールプローブ直下の点の間の距離が43.7mmになるようにターゲットをテーブル面に配置した。そして、中心位置を移動させずにターゲットを反時計回りに5回転させた後、中心位置を移動させずにターゲットを0度、30度、60度、90度、120度回転させ、それぞれの位置で、テーブル面に水平な方向の漏洩磁束密度を測定した。得られた5つの漏洩磁束密度の値をReferennce fieldの値で割って100を掛けて漏洩磁束率(%)とした。5点の漏洩磁束率(%)の平均をとり、その平均値をそのターゲットの平均漏洩磁束率(%)とした。下記の表3、表4に示すように、作製した2つのターゲットの平均漏洩磁束率は51.0%、50.7%であり、その2つの平均漏洩磁束率の平均は50.9%であった。
(実施例2)
実施例2として作製したターゲット全体の組成は、91(73Co−11Cr−16Pt)−4SiO2−2TiO2−3Cr23であり、実施例1と同じであるが、アトマイズにより作製する第2の非磁性金属粉末が10Co−90Pt合金粉末である点が異なる。
実施例2のターゲットを以下のようにして作製を行うとともに評価を行った。
合金組成のみを変更した以外は実施例1と同様にアトマイズおよび分級を行って、10Co−90Pt合金粉末を得た。なお、10Co−90Pt合金粉末を得るアトマイズの際の加熱温度および噴射温度は2000℃であった。
得られた10Co−90Pt合金粉末1500.00gにSiO2粉末21.77g、TiO2粉末14.52g、Cr23粉末41.50gを添加した以外は実施例1と同様にして混合分散を行い、第2の非磁性混合粉末(酸化物粉末が被覆された10Co−90Pt合金粉末)を得た。
また、実施例1でアトマイズにより得られたCo粉末1450.00gにSiO2粉末64.91g、TiO2粉末43.22g、Cr23粉末123.26gを添加した以外は実施例1と同様にして混合分散を行い、磁性混合粉末(酸化物粉末が被覆されたCo粉末)を得た。
また、実施例1でアトマイズにより得られた69Co−22Cr−9Pt合金粉末1150.00gにSiO2粉末43.60g、TiO2粉末28.98g、Cr23粉末82.76gを添加した以外は実施例1と同様にして混合分散を行い、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)を得た。
次に、磁性混合粉末(酸化物粉末が被覆されたCo粉末)791.37g、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)1229.89g、第2の非磁性混合粉末(酸化物粉末が被覆された10Co−90Pt合金粉末)758.74gを混合して実施例1と同様にして混合分散を行い、加圧焼結用混合粉末を得た。
作製した加圧焼結用混合粉末30gを、焼結温度:1100℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、テストピース(φ30mm)を作製した。得られたテストピースの厚さは4.5mm程度であった。作製したテストピースの密度を測定したところ、9.052(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は97.96%であった。
図12および図13は、得られたテストピースの厚さ方向断面の金属顕微鏡写真であり、図12は低倍率の写真で、図13は高倍率の写真である。図14および図15は、得られたテストピースの厚さ方向断面のSEM写真であり、図14は低倍率の写真で、図15は高倍率の写真である。
EPMAによる元素分析の結果、図15のSEM写真において、相の大きさが比較的大きく灰色の濃い部分がCo相であり、最も白っぽい部分が10Co−90Pt相であり、Co相および10Co−90Pt相の中間的な灰色の濃さの部分が69Co−22Cr−9Pt相であり、これらの金属相の間を仕切っている灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)であり、金属相同士は酸化物相(SiO2−TiO2−Cr23相)により仕切られていることが判明した。
次に、作製した加圧焼結用混合粉末を用いて、焼結温度:1080℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、φ152.4mm×厚さ7.0mmのターゲットを2つ作製した。作製した2つのターゲットの密度を測定したところ、9.023、9.014(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は97.65%、97.55%であった。
作製した2つのターゲットについて、実施例1と同様にして、漏洩磁束についての評価を行った。下記の表5、表6に示すように、平均漏洩磁束率は50.6%と50.7%であり、その2つの平均漏洩磁束率の平均は50.7%であった。
(比較例1)
比較例1として作製したターゲット全体の組成は、91(73Co−11Cr−16Pt)−4SiO2−2TiO2−3Cr23であり、実施例1、2と同じであるが、実施例1、2の第2の非磁性金属粉末(5Co−95Pt合金粉末、10Co−90Pt合金粉末)に替えて、磁性金属粉末である50Co−50Pt合金粉末を用いてターゲットを作製しており、非磁性相が1つである点(磁性相がCo相と50Co−50Pt合金相の2つである点)が異なる。
比較例1のターゲットを以下のようにして作製を行うとともに評価を行った。
合金組成のみを変更した以外は実施例1と同様にアトマイズおよび分級を行って、50Co−50Pt合金粉末を得た。なお、50Co−50Pt合金粉末を得るアトマイズの際の加熱温度および噴射温度は1800℃であった。
得られた50Co−50Pt合金粉末1850.00gにSiO2粉末38.55g、TiO2粉末25.63g、Cr23粉末72.93gを添加した以外は実施例1と同様にして混合分散を行い、第2の磁性混合粉末(酸化物粉末が被覆された50Co−50Pt合金粉末)を得た。
また、実施例1でアトマイズにより得られたCo粉末1080.00gにSiO2粉末48.34g、TiO2粉末32.19g、Cr23粉末91.81gを添加した以外は実施例1と同様にして混合分散を行い、第1の磁性混合粉末(酸化物粉末が被覆されたCo粉末)を得た。
また、実施例1で得られた69Co−22Cr−9Pt合金粉末1150.00gにSiO2粉末43.60g、TiO2粉末28.98g、Cr23粉末82.76gを添加した以外は実施例1と同様にして混合分散を行い、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt粉末)を得た。
次に、磁性混合粉末(酸化物粉末が被覆されたCo粉末)574.04g、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)1229.89g、第2の磁性混合粉末(酸化物粉末が被覆された50Co−50Pt合金粉末)976.07gを混合して実施例1と同様にして混合分散を行い、加圧焼結用混合粉末を得た。
作製した加圧焼結用混合粉末30gを、焼結温度:1100℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、テストピース(φ30mm)を作製した。得られたテストピースの厚さは4.5mm程度であった。作製したテストピースの密度を測定したところ、9.023(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は97.65%であった。
図16および図17は、得られたテストピースの厚さ方向断面の金属顕微鏡写真であり、図16は低倍率の写真で、図17は高倍率の写真である。図18および図19は、得られたテストピースの厚さ方向断面のSEM写真であり、図18は低倍率の写真で、図19は高倍率の写真である。
EPMAによる元素分析の結果、図19のSEM写真において、相の大きさが比較的大きく灰色の濃い部分がCo相であり、最も白っぽい部分が50Co−50Pt相であり、Co相および50Co−50Pt相の中間的な灰色の濃さの部分が69Co−22Cr−9Pt相であり、これらの金属相の間を仕切っている灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)であり、金属相同士は酸化物相(SiO2−TiO2−Cr23相)により仕切られていることが判明した。
次に、作製した加圧焼結用混合粉末を用いて、焼結温度:1090℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、φ152.4mm×厚さ7.0mmのターゲットを2つ作製した。作製した2つのターゲットの密度を測定したところ、9.071、9.065(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は98.17%、98.11%であった。
作製した2つのターゲットについて、実施例1と同様にして、漏洩磁束についての評価を行った。下記の表7、表8に示すように、平均漏洩磁束率は44.8%と44.9%であり、その2つの平均漏洩磁束率の平均は44.9%であった。
(比較例2)
比較例2として作製したターゲット全体の組成は、91(73Co−11Cr−16Pt)−4SiO2−2TiO2−3Cr23であり、実施例1、2および比較例1と同じである。また、ターゲットの作製に用いる磁性金属粉末はCo粉末であり、第1の非磁性金属粉末は69Co−22Cr−9Pt合金粉末であり、第2の磁性金属粉末は50Co−50Pt合金粉末であり、ターゲットの作製に用いる3種類の金属粉末の組成は比較例1と同じである。
しかしながら、本比較例2では、前記した3種類の金属粉末と酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)とを同時に(1段階で)混合分散させて加圧焼結用混合粉末を作製しており、この点が、3種類の金属粉末をそれぞれ酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)と混合分散させた後、得られた3種類の混合粉末をさらに混合して(2段階の混合を経て)加圧焼結用混合粉末を得ている実施例1、2および比較例1とは異なる。
比較例2のターゲットを以下のようにして作製を行うとともに評価を行った。
実施例1でアトマイズにより得られたCo粉末254.74g、実施例1でアトマイズにより得られた69Co−22Cr−9Pt合金粉末557.61g、比較例1でアトマイズにより得られた50Co−50Pt合金粉末467.65g、SiO2粉末42.35g、TiO2粉末28.18g、Cr23粉末80.26gを同時に混合して混合分散を行い、1段階の混合で加圧焼結用混合粉末を得た。詳細には、実施例1と同様の時間および強さで、ボールミルで混合分散を行い、1段階の混合で加圧焼結用混合粉末を作製した。
作製した加圧焼結用混合粉末30gを、焼結温度:1100℃、圧力:24.5MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、テストピース(φ30mm)を作製した。得られたテストピースの厚さは4.5mm程度であった。作製したテストピースの密度を測定したところ、9.027(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は97.69%であった。
図20および図21は、得られたテストピースの厚さ方向断面の金属顕微鏡写真であり、図20は低倍率の写真で、図21は高倍率の写真である。図22および図23は、得られたテストピースの厚さ方向断面のSEM写真であり、図22は低倍率の写真で、図23は高倍率の写真である。
EPMAによる元素分析の結果、図23のSEM写真において、金属相として観察できる部分はほとんどがCo相であり、50Co−50Pt合金相として観察できる比較的大きな部位は図23に示す部位である。他の部位は金属と酸化物が入り混じった相となっており、金属相同士は酸化物相により仕切られていないと考えられる。
次に、作製した加圧焼結用混合粉末を用いて、焼結温度:1100℃、圧力:24.5MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、φ152.4mm×厚さ7.0mmのターゲットを1つ作製した。
さらに、前記した製造プロセスと同様のプロセスで、φ152.4mm×厚さ7.0mmのターゲットをもう1つ作製した。
作製した2つのターゲットの密度を測定したところ、9.07、9.06(g/cm3)であった。理論密度は9.24(g/cm3)であるので、相対密度は98.2%、98.1%であった。
作製した2つのターゲットについて、実施例1と同様にして、漏洩磁束についての評価を行った。下記の表9、表10に示すように、平均漏洩磁束率は31.9%と31.5%であり、その2つの平均漏洩磁束率の平均は31.7%であった。
(比較例3)
比較例3として作製したターゲット全体の組成は、91(71Co−11Cr−18Pt)−3SiO2−2TiO2−4Cr23である。なお、ターゲット全体の金属(Co、Cr、Pt)に対するCoの含有割合は71at%、Crの含有割合は11at%、Ptの含有割合は18at%である。
本比較例3でターゲットの作製に用いる磁性金属粉末はCo粉末であり、第1の非磁性金属粉末は69Co−22Cr−9Pt合金粉末であり、第2の非磁性金属粉末はPt粉末である。本比較例3では、2つの非磁性金属粉末のうち、第1の非磁性金属粉末(69Co−22Cr−9Pt合金粉末)には強磁性金属元素であるCoが含まれているが、第2の非磁性金属粉末(Pt粉末)には強磁性金属元素が含まれていない。
比較例3のターゲットを以下のようにして作製を行うとともに評価を行った。
Co単体を1700℃まで加熱してCo単体の溶湯とし、ガスアトマイズを行ってCo粉末(磁性金属粉末)を作製した。
また、合金組成がCo:69at%、Cr:22at%、Pt:9at%となるように各金属を秤量し、1700℃まで加熱して69Co−22Cr−9Pt合金溶湯とし、ガスアトマイズを行って69Co−22Cr−9Pt合金粉末(第1の非磁性金属粉末)を作製した。
また、Pt単体を2000℃まで加熱してPt単体の溶湯とし、ガスアトマイズを行ってPt粉末(非磁性金属粉末)を作製した。
そして、得られた金属粉末に対して実施例1と同様に分級を行って、Co粉末、69Co−22Cr−9Pt合金粉末、Pt粉末を得た。
分級後のCo粉末700.00gにSiO2粉末23.56g、TiO2粉末20.84g、Cr23粉末79.32gを添加した以外は実施例1と同様にして混合分散を行い、磁性混合粉末(酸化物粉末が被覆されたCo粉末)を得た。
また、分級後の69Co−22Cr−9Pt合金粉末1050.00gにSiO2粉末29.81g、TiO2粉末26.43g、Cr23粉末100.67gを添加した以外は実施例1と同様にして混合分散を行い、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)を得た。
また、分級後のPt粉末840.00gにSiO2粉末8.49g、TiO2粉末7.52g、Cr23粉末28.76gを添加した以外は実施例1と同様にして混合分散を行い、第2の非磁性混合粉末(酸化物粉末が被覆されたPt粉末)を得た。
次に、磁性混合粉末(酸化物粉末が被覆されたCo粉末)738.62g、第1の非磁性混合粉末(酸化物粉末が被覆された69Co−22Cr−9Pt合金粉末)1107.63g、第2の非磁性混合粉末(酸化物粉末が被覆されたPt粉末)653.75gを混合して実施例1と同様にして混合分散を行い、加圧焼結用混合粉末を作製した。
作製した加圧焼結用混合粉末30gを、焼結温度:1070℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、テストピース(φ30mm)を作製した。得られたテストピースの厚さは4.5mm程度であった。作製したテストピースの密度を測定したところ、9.375(g/cm3)であった。理論密度は9.56(g/cm3)であるので、相対密度は98.06%であった。
図24および図25は、得られたテストピースの厚さ方向断面の金属顕微鏡写真であり、図24は低倍率の写真で、図25は高倍率の写真である。
図24および図25において、白っぽい部分が金属相(Co相、69Co−22Cr−9Pt合金相、Pt相)であり、これらの金属相の間を仕切っている灰色の濃い部分が酸化物相(SiO2−TiO2−Cr23相)であり、金属相同士は酸化物相(SiO2−TiO2−Cr23相)により仕切られている。
次に、作製した加圧焼結用混合粉末を用いて、焼結温度:1030℃、圧力:31MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、φ152.4mm×厚さ6.0mmのターゲットを作製した。作製したターゲットの密度を測定したところ、9.388(g/cm3)であった。理論密度は9.56(g/cm3)であるので、相対密度は98.20%であった。
作製したターゲットについて、実施例1と同様にして、漏洩磁束についての評価を行った。下記の表11に示すように、平均漏洩磁束率は50.3%であった。
(比較例4)
φ152.4mm×厚さ6.0mmのターゲットを作製する際の焼結温度を1000℃にし、比較例3の焼結温度を1030℃よりも低くした以外は比較例3と同様にして、φ152.4mm×厚さ6.0mmのターゲットを作製した。
作製したターゲットについて、実施例1と同様にして、漏洩磁束についての評価を行った。下記の表12に示すように、平均漏洩磁束率は51.0%であった。
(比較例5)
実施例1、2、比較例1〜4では、ターゲットの作製に用いたアトマイズ金属粉末はいずれも3種類であったが、本比較例5でターゲットの作製に用いるアトマイズ金属粉末は71Co−11Cr−18Pt合金粉末の1種類である。
作製したターゲット全体の組成は、91(71Co−11Cr−18Pt)−3SiO2−2TiO2−4Cr23であり、比較例3、4と同じである。
比較例5のターゲットを以下のようにして作製を行うとともに評価を行った。
合金組成がCo:71at%、Cr:11at%、Pt:18at%となるように各金属を秤量し、1700℃まで加熱して71Co−11Cr−18Pt合金溶湯とし、ガスアトマイズを行って71Co−11Cr−18Pt合金粉末を作製した。そして、実施例1と同様に分級して71Co−11Cr−18Pt合金粉末を得た。
分級後の71Co−11Cr−18Pt合金粉末1140.00gにSiO2粉末27.34g、TiO2粉末24.26g、Cr23粉末92.17gを添加して混合分散を行い、加圧焼結用混合粉末(酸化物粉末が被覆された71Co−11Cr−18Pt合金粉末)を得た。用いたSiO2粉末、TiO2粉末、Cr23粉末は、中心径0.6μmの1次粒子が凝集して、粒径がφ100μm程度の2次粒子を形成していたが、71Co−11Cr−18Pt合金粒子の周囲が酸化物粉末(SiO2粉末、TiO2粉末、Cr23粉末)により緻密に覆われた状態になるまでボールミルで混合分散を行い、加圧焼結用混合粉末(酸化物粉末が被覆された71Co−11Cr−18Pt合金粉末)を得た。
作製した加圧焼結用混合粉末30gを、焼結温度:1160℃、圧力:24.5MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、テストピース(φ30mm)を作製した。得られたテストピースの厚さは4.5mm程度であった。作製したテストピースの密度を測定したところ、9.402(g/cm3)であった。理論密度は9.56(g/cm3)であるので、相対密度は98.35%であった。
図26および図27は、得られたテストピースの厚さ方向断面の金属顕微鏡写真であり、図26は低倍率の写真で、図27は高倍率の写真である。
図26および図27において、白っぽい部分が金属相(71Co−11Cr−18Pt相)である。比較例3の図24および図25と比較して、金属相(白っぽい部分)の大きさが小さくなっているとともに、濃い灰色の部分の面積が広くなっている。したがって、本比較例5は、比較例3、4と比べて金属相自体が微細化しているとともに、金属相と酸化物相とが微細に分散し合った領域が増加しているものと思われる。
次に、作製した加圧焼結用混合粉末を用いて、焼結温度:1160℃、圧力:24.5MPa、時間:60min、雰囲気:5×10-2Pa以下の条件でホットプレスを行い、φ152.4mm×厚さ6.0mmのターゲットを作製した。作製したターゲットの密度を測定したところ、9.397(g/cm3)であった。理論密度は9.56(g/cm3)であるので、相対密度は98.30%であった。
作製したターゲットについて、実施例1と同様にして、漏洩磁束についての評価を行った。下記の表13に示すように、平均漏洩磁束率は40.0%であった。
(考察)
平均漏洩磁束率を測定した実施例1、2、比較例1〜5についての測定結果を下記の表14にまとめて示す。ただし、実施例1、2、比較例1、2において平均漏洩磁束率を測定したターゲットの厚さが7mmであるのに対し、比較例3〜5において平均漏洩磁束率を測定したターゲットの厚さは6mmであり、この厚さの違いにより、実施例1、2、比較例1、2よりも比較例3〜5の方が平均漏洩磁束率が大きく測定されやすくなる点に留意する必要がある。また、実施例1、2、比較例1、2のターゲット全体の組成が91(73Co−11Cr−16Pt)−4SiO2−2TiO2−3Cr23であるのに対し、比較例3〜5のターゲット全体の組成は91(71Co−11Cr−18Pt)−3SiO2−2TiO2−4Cr23であり、実施例1、2、比較例1、2のターゲットにおけるCoの含有割合が66.43mol%であるのに対し、比較例3〜5のターゲットにおけるCoの含有割合が64.61mol%であり、比較例3〜5のターゲットの方が強磁性金属元素であるCoの含有割合が小さくなっており、強磁性金属元素であるCoの含有割合の点からも、実施例1、2、比較例1、2よりも比較例3〜5の方が平均漏洩磁束率が大きく測定されやすくなる点に留意する必要がある。
実施例1、2は、Co(強磁性金属元素)を含む磁性層と、Co(強磁性金属元素)を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相(第1の非磁性相と第2の非磁性相)とを有しており、本発明の範囲に含まれる。実施例1、2では、第1の非磁性相と第2の非磁性相の両方にCoが含まれており、ターゲット全体におけるCo量を一定に保ちつつ磁性相(Co相)の体積分率を減少させることができ、ターゲットの平均漏洩磁束率を大きくすることができる。
比較例1は、Co−Pt合金相のCoの含有割合が50at%と大きく、Co−Pt合金相が磁性相となっており、非磁性相は69Co−22Cr−9Pt合金相のみである。このため、ターゲット全体に対する磁性相の体積分率が実施例1、2よりも大きくなっており、平均漏洩磁束率が実施例1、2よりも12%程度小さくなっている。したがって、強磁性金属元素が含まれる非磁性相を複数設けることは、ターゲットの平均漏洩磁束率を向上させる上で重要と考えられる。
比較例2は、Co−Pt合金相のCoの含有割合が50at%と大きく、Co−Pt合金相が磁性相となっており、非磁性相は69Co−22Cr−9Pt合金相のみである。また、加圧焼結用混合粉末を1段階の混合で作製しており、混合時に異なる組成の金属粉末間で連結が生じ、混合時および加圧焼結時に金属原子の移動(拡散)が生じているものと思われる。このため、69Co−22Cr−9Pt合金粉末から形成された相においても、その一部が磁性相となっている可能性がある。実際、比較例2のターゲットの平均漏洩磁束率は31.7%であり、実施例1、2と比べると38%程度小さくなっており、また、比較例1と比べても29%程度小さくなっており、69Co−22Cr−9Pt合金粉末から形成された相の一部は磁性相となっていると思われる。したがって、実施例1、2のように加圧焼結用混合粉末を2段階の混合で作製することは、ターゲットの平均漏洩磁束率を向上させる上で重要と考えられる。
比較例3、4は、実施例1、2と同様に非磁性相を2つ有するが、第2の非磁性相がPt単体相であり、強磁性金属元素であるCoが含まれていない。このため、ターゲット全体における磁性相の体積分率が十分には小さくなっておらず、平均漏洩磁束率が十分には向上していないと考えられる。比較例3、4の平均漏洩磁束率は実施例1、2の平均漏洩磁束率と同程度であるが、前記したように、比較例3、4のターゲットの厚さは実施例1、2のターゲットの厚さよりも小さく、また、比較例3、4のターゲットに含まれるCoの含有割合は実施例1、2よりも小さいので、これらを実施例1、2と揃えた場合には、比較例3、4の平均漏洩磁束率は実施例1、2の平均漏洩磁束率よりもかなり小さくなると考えられる。
なお、比較例3、4の平均漏洩磁束率を比較すると、焼結温度が1030℃の比較例3よりも、焼結温度が1000℃の比較例4の方が平均漏洩磁束率がわずかであるが大きくなっている。焼結温度が低い方が原子の拡散が起こりにくいため、このような結果になったものと思われる。したがって、マグネトロンスパッタリング時の漏洩磁束量を向上させたターゲットを作製するためには、焼結温度は低い方が好ましいと思われる。
比較例5は、金属相が71Co−11Cr−18Pt合金相のみである。この金属相は磁性相であり、比較例5のターゲットには非磁性の金属相は存在していないと考えられ、磁性相の体積分率が高くなっていると考えられる。このため、比較例5のターゲットの平均漏洩磁束率は比較例3、4のターゲットの平均漏洩磁束率よりも小さくなったと考えられる。なお、比較例5のターゲットの平均漏洩磁束率は40.0%であるが、ターゲットの厚さおよびCoの含有割合を実施例1、2および比較例1、2に合わせた場合、平均漏洩磁束率の値は40.0%よりもかなり小さくなるものと思われる。
10…ターゲット
12…磁性相
14…第1の非磁性相
16…第2の非磁性相
18、22、26、30、34…酸化物相
20…Co相
24…69Co−22Cr−9Pt合金相
28…5Co−95Pt合金相
32…10Co−90Pt合金相

Claims (17)

  1. 強磁性金属元素を有するマグネトロンスパッタリング用ターゲットであって、
    前記強磁性金属元素を含む磁性相と、前記強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性相と、酸化物相とを有していることを特徴とするマグネトロンスパッタリング用ターゲット。
  2. 請求項1において、
    前記複数の非磁性相は、2種の非磁性相であることを特徴とするマグネトロンスパッタリング用ターゲット。
  3. 請求項1または2において、
    前記強磁性金属元素は、Coであることを特徴とするマグネトロンスパッタリング用ターゲット。
  4. 請求項3において、
    前記磁性相は、Coの含有割合が85at%以上であるCo−Cr合金相からなることを特徴とするマグネトロンスパッタリング用ターゲット。
  5. 請求項3において、
    前記磁性相は、Co単体であることを特徴とするマグネトロンスパッタリング用ターゲット。
  6. 請求項3〜5のいずれかにおいて、
    前記非磁性相のうちの少なくとも1つは、Coの含有割合が0at%より大きく75at%以下であるCo−Cr合金相またはCoの含有割合が0at%より大きく73at%以下であるCo−Cr−Pt合金相からなることを特徴とするマグネトロンスパッタリング用ターゲット。
  7. 請求項3〜6のいずれかにおいて、
    前記非磁性相のうちの少なくとも1つは、Coの含有割合が12at%以下であるCo−Pt合金相からなることを特徴とするマグネトロンスパッタリング用ターゲット。
  8. 請求項1〜7のいずれかにおいて、
    前記酸化物相は、SiO2、TiO2、Ti23、Ta25、Cr23、CoO、Co34、B25、Fe23、CuO、Y23、MgO、Al23、ZrO2、Nb25、MoO3、CeO2、Sm23、Gd23、WO2、WO3、HfO2、NiO2のうちの少なくとも1種を含むことを特徴とするマグネトロンスパッタリング用ターゲット。
  9. 請求項1〜8のいずれかにおいて、
    前記ターゲットは、磁気記録層の形成に用いられることを特徴とするマグネトロンスパッタリング用ターゲット。
  10. 強磁性金属元素を含む磁性金属粉末と、前記強磁性金属元素を含み、かつ、構成元素またはその含有割合の異なる複数の非磁性金属粉末と、酸化物粉末とを用いることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  11. 請求項10において、
    前記複数の非磁性金属粉末は、2種の非磁性金属粉末であることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  12. 請求項10または11において、
    前記強磁性金属元素は、Coであることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  13. 請求項12において、
    前記磁性金属粉末はCoおよびCrを主成分として含み、該磁性金属粉末におけるCoの含有割合が85at%以上であることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  14. 請求項12において、
    前記磁性金属粉末はCo単体からなることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  15. 請求項10〜14のいずれかにおいて、
    前記複数の非磁性金属粉末のうち少なくとも1つは、Coの含有割合が0at%より大きく75at%以下であるCo−Cr合金またはCoの含有割合が0at%より大きく73at%以下であるCo−Cr−Pt合金からなることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  16. 請求項10〜15のいずれかにおいて、
    前記複数の非磁性金属粉末のうち少なくとも1つは、Coの含有割合が12at%以下であるCo−Pt合金からなることを特徴とするマグネトロンスパッタリング用ターゲットの製造方法。
  17. 請求項10〜16のいずれかに記載の製造方法により得られたマグネトロンスパッタリング用ターゲット。
JP2011252104A 2011-11-17 2011-11-17 マグネトロンスパッタリング用ターゲットおよびその製造方法 Active JP5748639B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011252104A JP5748639B2 (ja) 2011-11-17 2011-11-17 マグネトロンスパッタリング用ターゲットおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252104A JP5748639B2 (ja) 2011-11-17 2011-11-17 マグネトロンスパッタリング用ターゲットおよびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010178199A Division JP4871406B1 (ja) 2010-08-06 2010-08-06 マグネトロンスパッタリング用ターゲットおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2012087412A true JP2012087412A (ja) 2012-05-10
JP5748639B2 JP5748639B2 (ja) 2015-07-15

Family

ID=46259345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011252104A Active JP5748639B2 (ja) 2011-11-17 2011-11-17 マグネトロンスパッタリング用ターゲットおよびその製造方法

Country Status (1)

Country Link
JP (1) JP5748639B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143858A1 (ja) * 2015-03-12 2016-09-15 山陽特殊製鋼株式会社 Ni系スパッタリングターゲット材および磁気記録媒体
CN113817993A (zh) * 2017-09-21 2021-12-21 Jx金属株式会社 溅镀靶、积层膜的制造方法、积层膜及磁记录媒体

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925566A (ja) * 1995-07-10 1997-01-28 Sony Corp スパッタリング用ターゲットの製造方法
JP2006144124A (ja) * 2001-04-11 2006-06-08 Heraeus Inc 貴金属磁気スパッタリングターゲットの製造方法及びこの方法で製造された貴金属磁気スパッタリングターゲット
JP2007059424A (ja) * 2005-08-22 2007-03-08 Showa Denko Kk 磁性薄膜作成用ターゲット、磁気記録媒体およびその製造方法、磁気記録再生装置
JP2008088546A (ja) * 2006-09-08 2008-04-17 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法
JP2008163438A (ja) * 2007-01-04 2008-07-17 Mitsui Mining & Smelting Co Ltd CoCrPt系スパッタリングターゲットおよびその製造方法
JP2008260970A (ja) * 2007-04-10 2008-10-30 Hitachi Metals Ltd Co−Zr系合金焼結スパッタリングターゲット材およびその製造方法
JP2009001861A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009001862A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009001860A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009132975A (ja) * 2007-11-30 2009-06-18 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009293102A (ja) * 2008-06-09 2009-12-17 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP4422203B1 (ja) * 2009-04-01 2010-02-24 Tanakaホールディングス株式会社 マグネトロンスパッタリング用ターゲットおよびその製造方法
JP4673453B1 (ja) * 2010-01-21 2011-04-20 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット
JP4673448B2 (ja) * 2009-03-27 2011-04-20 Jx日鉱日石金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925566A (ja) * 1995-07-10 1997-01-28 Sony Corp スパッタリング用ターゲットの製造方法
JP2006144124A (ja) * 2001-04-11 2006-06-08 Heraeus Inc 貴金属磁気スパッタリングターゲットの製造方法及びこの方法で製造された貴金属磁気スパッタリングターゲット
JP2007059424A (ja) * 2005-08-22 2007-03-08 Showa Denko Kk 磁性薄膜作成用ターゲット、磁気記録媒体およびその製造方法、磁気記録再生装置
JP2008088546A (ja) * 2006-09-08 2008-04-17 Mitsubishi Materials Corp パーティクル発生の少ない磁気記録膜形成用Co基焼結合金スパッタリングターゲットの製造方法
JP2008163438A (ja) * 2007-01-04 2008-07-17 Mitsui Mining & Smelting Co Ltd CoCrPt系スパッタリングターゲットおよびその製造方法
JP2008260970A (ja) * 2007-04-10 2008-10-30 Hitachi Metals Ltd Co−Zr系合金焼結スパッタリングターゲット材およびその製造方法
JP2009001861A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009001862A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009001860A (ja) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009132975A (ja) * 2007-11-30 2009-06-18 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP2009293102A (ja) * 2008-06-09 2009-12-17 Mitsubishi Materials Corp 比透磁率の低い垂直磁気記録媒体膜形成用スパッタリングターゲット
JP4673448B2 (ja) * 2009-03-27 2011-04-20 Jx日鉱日石金属株式会社 非磁性材粒子分散型強磁性材スパッタリングターゲット
JP4422203B1 (ja) * 2009-04-01 2010-02-24 Tanakaホールディングス株式会社 マグネトロンスパッタリング用ターゲットおよびその製造方法
JP4673453B1 (ja) * 2010-01-21 2011-04-20 Jx日鉱日石金属株式会社 強磁性材スパッタリングターゲット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143858A1 (ja) * 2015-03-12 2016-09-15 山陽特殊製鋼株式会社 Ni系スパッタリングターゲット材および磁気記録媒体
JPWO2016143858A1 (ja) * 2015-03-12 2017-04-27 山陽特殊製鋼株式会社 Ni系スパッタリングターゲット材および磁気記録媒体
CN107408397A (zh) * 2015-03-12 2017-11-28 山阳特殊制钢株式会社 Ni系溅射靶材和磁记录介质
CN107408397B (zh) * 2015-03-12 2019-07-05 山阳特殊制钢株式会社 Ni系溅射靶材和磁记录介质
CN113817993A (zh) * 2017-09-21 2021-12-21 Jx金属株式会社 溅镀靶、积层膜的制造方法、积层膜及磁记录媒体

Also Published As

Publication number Publication date
JP5748639B2 (ja) 2015-07-15

Similar Documents

Publication Publication Date Title
JP4871406B1 (ja) マグネトロンスパッタリング用ターゲットおよびその製造方法
JP4422203B1 (ja) マグネトロンスパッタリング用ターゲットおよびその製造方法
CN105934532B (zh) 磁控溅射用靶
TWI494453B (zh) Ferromagnetic material sputtering target
CN104105812B (zh) 粉粒产生少的强磁性材料溅射靶
JP4885333B1 (ja) 強磁性材スパッタリングターゲット
CN107251176B (zh) R-t-b系烧结磁体的制造方法
US20120097535A1 (en) Sputtering Target of Ferromagnetic Material with Low Generation of Particles
TW201125993A (en) Sputtering target comprising oxide phase dispersed in co or co alloy phase, magnetic material thin film comprising co or co alloy phase and oxide phase, and magnetic recording medium produced using the magnetic material thin film
JP5768029B2 (ja) マグネトロンスパッタリング用ターゲットおよびその製造方法
WO2017090481A1 (ja) スパッタリングターゲット
JP5863411B2 (ja) マグネトロンスパッタリング用ターゲットおよびその製造方法
JP5748639B2 (ja) マグネトロンスパッタリング用ターゲットおよびその製造方法
JP2014074219A5 (ja)
WO2024014156A1 (ja) Co-Cr-Pt-酸化物系スパッタリングターゲット
WO2020044573A1 (ja) 安定的に放電可能なスパッタリングターゲット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150512

R150 Certificate of patent or registration of utility model

Ref document number: 5748639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250