JP2012084562A - 半導体装置およびその製造方法 - Google Patents
半導体装置およびその製造方法 Download PDFInfo
- Publication number
- JP2012084562A JP2012084562A JP2010226937A JP2010226937A JP2012084562A JP 2012084562 A JP2012084562 A JP 2012084562A JP 2010226937 A JP2010226937 A JP 2010226937A JP 2010226937 A JP2010226937 A JP 2010226937A JP 2012084562 A JP2012084562 A JP 2012084562A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor device
- gan
- superlattice structure
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000010410 layer Substances 0.000 claims description 354
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 21
- 150000004767 nitrides Chemical class 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000005530 etching Methods 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 abstract description 51
- 230000015556 catabolic process Effects 0.000 abstract description 13
- 229910002601 GaN Inorganic materials 0.000 description 104
- 239000011777 magnesium Substances 0.000 description 24
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 20
- 239000000758 substrate Substances 0.000 description 15
- 229910002704 AlGaN Inorganic materials 0.000 description 14
- 239000012535 impurity Substances 0.000 description 10
- 230000010287 polarization Effects 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 238000001020 plasma etching Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000000370 acceptor Substances 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
- H01L29/151—Compositional structures
- H01L29/152—Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
- H01L29/155—Comprising only semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7788—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7789—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
【解決手段】 開口部28壁面に位置するチャネルを含む再成長層27と、端面が被覆されるp型バリア層6と、p型バリア層上に接するソース層7と、再成長層の上に位置するゲート電極Gと、開口部の周囲に位置するソース電極Sとを備え、ソース層が超格子構造で構成され、該超格子構造が、p型バリア層よりも小さい格子定数を持つ第1の層(a層)と、該第1の層よりも格子定数が大きい第2の層(b層)との積層体である、ことを特徴とする。
【選択図】 図1
Description
超格子構造内に第1の層を含むことで、上記のようなMgの進入を抑止することができる。その結果、ソース電極からソース層を経由して電子走行層にいたる経路(P2)の電気抵抗の増大を防止することで、半導体装置全体のオン抵抗の増大を防ぎことができる。
そして、結晶構造や格子定数の違いに起因する自然分極やピエゾ分極等によって二次元電子ガスが第2の層内の第1の層側の界面に生じる。この結果、ソース電極から超格子構造(ソース層)内の二次元電子ガスを経て、電子走行層にいたる経路の電気抵抗を、従来のn+ソース層よりも低くできることができる。
上記を整理すると、本発明では、次の2つの作用によって、低いオン抵抗を得ることができる。
(E1)p型バリア層からのMg等のソース層、およびソース層を経由した電子走行層上流への侵入を、超格子構造内の第1の層によって難しくする。
(E2)超格子構造を、格子定数が小さい第1の層と、それより大きな格子定数を持つ第2の層とで構成することで、第2の層内の第1の層側に二次元電子ガスを生じる。二次元電子ガスの濃度を十分高くすることで、ソース層の電気抵抗を、従来のn+ソース層よりも低くすることができる。
上記の超格子構造は、ドナー等をドープしてもよいが、電子はドナーで散乱する可能性があり、アンドープまたは不純物を抑制することが望ましい。耐圧性能という点からも不純物の導入は抑制するのがよい。
超格子構造では、(第1の層(a層)/第2の層(b層))を1ペアとして、何ペアであってもよい。また、第1の層と第2の層は、第1の層をp型バリア層上に接して位置させてもよいし、第2の層をp型バリア層上に接して位置させてもよい。すなわちどちらを下にしてp型バリア層上に接してもよい。ただ、Mgの侵入を抑止する上では第1の層をp型バリア層上に接して位置させるのがよい。
これによって、第1の層の格子定数を、簡単に、第2の層の格子定数よりも小さくすることができる。その結果、Mgのソース層への侵入を抑止しながら、格子定数の差に起因して誘起される二次元電子ガスによって低いオン抵抗とすることができる。
これによって、ピエゾ分極を高い強度で生じさせて、第2の層内の第1の層側に十分高濃度の二次元電子ガスを誘起することができる。この結果、経路(P2)の電気抵抗を低くでき、ひいては半導体装置における全体のオン抵抗を低くすることができる。
これによって製品歩留まりを低下させないようにできる。
2ペア以上積層することで二次元電子ガスを2層以上形成することができ、よりオン抵抗の低減を得ることができる。とくに1.5ペアの場合は、p型バリア層に、直接、格子定数の小さい層で蓋をし、したがってMg等の侵入を排除しながら二次元電子ガスを必ず1層形成することができる。なお、上記のペア数は自然数だけでなく、0.5の端数(ペアを組まないa層またはb層の存在)を持ってもよい。
ゲート電極下に絶縁層を配置することで、ゲートに正電圧を印加したときのゲートリーク電流を抑制できるため、大電流動作がしやすくなる。また、しきい値電圧をより正方向にシフトできるため、ノーマリーオフを得やすくなる。
上記の方法によって、容易に、オン抵抗の低い縦型の半導体装置を製造することができる。
上記の、n−型GaNドリフト層4/p型GaNバリア層6/超格子構造のソース層7は、連続して形成された積層体15を形成する。GaN基板1の種類によっては、GaN基板1とn−型GaNドリフト層4との間にAlGaN層またはGaN層からなるバッファ層を挿入してもよい。
なお、GaN基板1は、いわゆる一体物の厚手のGaN基板でも、または支持基体上にオーミック接触するGaN層を有する基板であってもよい。さらに、GaN系積層体の成長時にGaN基板等の上に形成して、その後の工程で、GaN基板等の所定厚み部分を除いて、製品の状態では薄いGaN層下地のみが残っているものであってもよい。これら、GaN基板、支持基体上にオーミック接触するGaN層を有する基板、製品に薄く残された下地のGaN層などを、単にGaN基板と略称する場合もある。
上記の薄い下地のGaN層は、導電性でも非導電性でもよく、ドレイン電極は、製造工程および製品の構造によるが、薄いGaN層の表面または裏面に設けることができる。GaN基板または支持基体等が製品に残る場合、当該支持基体または基板は、導電性でも、非導電性でもよい。導電性の場合は、ドレイン電極は、その支持基体または基板の裏面(下)またはおもて面(上)に直接設けることができる。また、非導電性の場合は、非導電性基板の上であって、上記半導体層中の下層側に位置する導電層の上に、ドレイン電極を設けることができる。
また、p型GaNバリア層は、本実施の形態ではp型GaNバリア層6としているが、p型AlGaN層を用いてもよい。積層体15を構成するその他の層についても、場合に応じて、上記に示したGaN層を他のGaN系半導体層としてよい。
(a1)耐圧性能の向上
(a2)バンドの正方向へのシフトによるピンチオフ特性の向上
さらに(a1)に関連して、p型GaNバリア層6とn−型GaNドリフト層4とのpn接合に逆バイアス時に生じる正孔を吸収することができる。この結果、正孔が残存することによる耐圧低下が防止され、良好な耐圧性能を継続して長期間、安定に得ることができる。
本発明では、上述したように、超格子構造を形成する一方の層であるa層の格子定数をp型GaNバリア層6の格子定数よりも小さくする。この結果、Mgは、容易にa層を通過できず、Mgによる弊害(このあと説明する)を除くことができる。また、第2の層であるb層は、ピエゾ分極によって2次元電子ガスを生じるように、a層の格子定数よりも小さくする。
図1(b)は、超格子構造が2.5ペアの場合で、a層がp型GaNバリア層6に接している場合、すなわちa層が下側および上側に位置する超格子構造の場合を示す。これによって、p型GaNバリア層6に接して水際でMgの移動を抑止することができる。
また、図1(c)は、b層が下側に位置する2ペアの場合の超格子構造の場合である。この場合でも、最下層のb層の上のa層がMgの移動を妨げるので、図1(b)の超格子と比べて大きな相違はない。
本実施の形態では、a層またはb層のどちらを下側に配置した超格子構造であってもよい。
超格子構造のペア数は、1ペアでも1.5以上のペア数でもよい。すなわち(a層/b層)を1ペアまたは周期1として、(a層/b層/a層)のように1.5ペア以上または1.5周期あってもよく、また、(a層/b層/a層/b層)のように2ペアまたは2周期であってもよい。さらに3ペア以上であってもよい。単位厚み当たりのペア数が多くなるにつれ、0.5ペア分の増大の場合はともかく、2次元電子ガスの単位厚み当たりの層数が増す。しかし、超格子構造の各層の厚みを過度に小さくするとピエゾ分極に起因する2次元電子ガスの電子濃度が低くなるので、適正範囲がある。
本実施の形態では、半導体装置におけるソース層7を超格子構造(a層/b層/a層/b層)で構成し、そのa層の格子定数を小さくしてMgの移動を妨げる。このため、Mgが超格子構造内に進入するのを抑止することができる。この結果、p型GaNバリア層6による耐圧性能およびピンチオフ特性の向上を得ながら、オン抵抗を低くすることができる。
(s1)AlGaN(a層)/GaN(b層)
(s2)AlN(a層)/GaN(b層)
(s3)AlxGa1−xN(a層)/AlyGa1−yN(b層):(x>y)
Al組成が高いほうが格子定数は小さくなり、Mgの移動を妨げ、かつピエゾ分極を生じる。
(s4)AlInN(a層)/GaN(b層)
(s5)AlInGaN(a層)/GaN(b層)
(s6)AlGaN(a層)/InGaN(b層)
上記の組み合わせのいくつかにおいて、Al組成が高いGaN系半導体の格子定数がAl組成が低いものより小さいことは、Al組成が有限とゼロとの組み合わせの場合にも当てはまる。
上記(s1)〜(s6)以外の組み合わせであってもよい。
また、ペア数は限定されず、1ペア以上、何ペアでもよい。ただし、半導体装置のサイズの制限、ピエゾ分極発生のための各層の厚み下限などから適正なペア数の範囲は自ずと定まる。
ソース層7の厚みは、0.1μm〜0.6μm程度とするのがよい。その上で、超格子構造を形成するa層の厚みは10nm(0.01μm)以上100nm(0.1μm)以下とするのがよい。b層の厚みも同程度とするのがよい。超格子構造のソース層7は、アンドープとしてドナーを意図的に含有させないほうがよい。その理由は、ドナーの存在によって電子ガスの流れが散乱されてオン抵抗がかえって増大するおそれがあるからである。
ソース層7の長さは、0.5μm以上5μm以下とするのがよい。このようにソース層7の長さが、比較的、大きいので、従来のようにドナー濃度を高めたn+型GaNソース層では、電気抵抗の低減には限度があった。本実施の形態のように、超格子構造にして十分高い濃度の二次元電子ガスを用いることで、ソース電極Sからソース層7を経由する電子走行層22への経路(P2)の電気抵抗を大幅に下げることができる。この結果、半導体装置10全体のオン抵抗を下げることができる。
上記の六角形のハニカム構造は、畝状にして、畝状の開口部を密に配置することでも、上記の面積当たりの開口部周囲長を大きくでき、この結果、電流密度を向上させることができる。
上記の層の形成は、MOCVD(有機金属化学気相成長)法などを用いるのがよい。たとえばMOCVD法で成長することで、結晶性の良好な積層体15を形成できる。GaN基板1の形成において、導電性基板上に窒化ガリウム膜をMOCVD法によって成長させる場合、ガリウム原料として、トリメチルガリウムを用いる。窒素原料としては高純度アンモニアを用いる。キャリアガスとしては純化水素を用いる。高純度アンモニアの純度は99.999%以上、純化水素の純度は99.999995%以上である。n型ドーパント(ドナー)のSi原料には水素ベースのシランを用い、p型ドーパント(アクセプタ)のMg原料にはシクロペンタジエニルマグネシウムを用いるのがよい。
導電性基板としては、直径2インチの導電性窒化ガリウム基板を用いる。1030℃、100Torrで、アンモニアおよび水素の雰囲気中で、基板クリーニングを実施する。その後、1050℃に昇温して、200Torr、V/III比=1500で窒化ガリウム層を成長させる。上記の導電性基板上のGaN層の形成は、GaN基板1の形成だけでなく、GaN基板1上の積層体15の成長においても共通する方法である。
上記の方法で、GaN基板1上に、n−型GaN層ドリフト層4/p型GaNバリア層6/超格子構造のソース層7、の順に成長する。
次いで、上記ウエハをMOCVD装置から取り出し、図8に示すように、絶縁膜9を成長させる。その後、再びフォトリソグラフィと電子ビーム蒸着法を用いて、図1に示すように、ソース電極Sをエピタキシャル層表面に、ドレイン電極DをGaN系基板1の裏面に形成する。さらにゲート電極Gを開口部28の側面に形成する。
<本発明例A>:
GaN基板1/n−型GaN層ドリフト層4/p型GaNバリア層6/超格子構造のソース層1、とした。超格子構造は、(AlGaN(a層)/GaN(b層))の2ペアとした。AlGaN層(a層)を上側に、GaN(b層)を下側に、に配置した(図1(c)の構造)。AlGaNのAl組成を0.2とし、厚みは30nm、GaNの厚みも同様とした。したがってソース層7の厚みは120nm(0.12μm)である。
p型GaNバリア層は厚み1.0μm、Mg濃度3E18cm−3とし、n−型GaNドリフト層は、厚み5.0μm、キャリア濃度7E15cm−3とした。
その後、RIEを用いてメサエッチを行い、再成長エピタキシャル層(GaN:厚み100nm/Al0.2Ga0.8N:厚み20nm)を成長し、電極プロセスにてソース電極、ドレイン電極をよびゲート電極を形成した。
<比較例B>
形状およびサイズは、本発明例Aと同様とした。ソース層については、従来と同じn型不純物を含むn+型GaNソース層を用い、本発明例Aと同様に、厚みは0.12μmにした。n+型GaNソース層のドナーにはSiを用い、ドナー濃度3E18cm−3とした。その他の部分は、本発明例Aと同様の構造とした。
上記の試験体、本発明例Aおよび比較例Bについて、TLM法(Transmission line model)によりソースゲート間抵抗Rsgを測定した結果を表1に示す。
Claims (8)
- 開口部が設けられた3族窒化物系積層体を備える縦型の半導体装置であって、
前記開口部の壁面を覆うように位置するチャネルを含む再成長層と、
前記開口部の壁面で前記再成長層にその端面が被覆されるp型3族窒化物系半導体層と、
前記3族窒化物系積層体の表層を形成し、前記p型3族窒化物系半導体層上に接して位置する3族窒化物系ソース層と、
前記開口部において前記再成長層の上に位置するゲート電極と、
前記開口部の周囲の前記3族窒化物系積層体上において前記再成長層および3族窒化物系ソース層に接して位置するソース電極とを備え、
前記再成長層は電子走行層および電子供給層を含み、前記チャネルが前記電子走行層内の前記電子供給層との界面に生じる二次元電子ガスにより形成され、
前記3族窒化物系ソース層が超格子構造で構成され、該超格子構造が、前記p型3族窒化物系半導体層よりも小さい格子定数を持つ第1の層と、該第1の層よりも格子定数が大きい第2の層との積層体である、ことを特徴とする、半導体装置。 - 前記第1の層が、AlNか、またはAl組成比が第2の層よりも大きいGaN系半導体であり、前記第2の層がGaN系半導体であることを特徴とする、請求項1に記載の半導体装置。
- 前記第1の層および/または第2の層、の厚みが、10nm以上100nm以下であることを特徴とする、請求項1または2に記載の半導体装置。
- 前記超格子構造は、該超格子構造内および前記p型3族窒化物系半導体層との界面に亀裂が生じないような、材料、厚み構成およびその組み合わせ、で形成されていることを特徴とする、請求項1〜3のいずれか1項に記載の半導体装置。
- 前記第1の層および第2の層が、1.5ペア以上、積層されていることを特徴とする、請求項1〜4のいずれか1項に記載の半導体装置。
- 前記再成長層上であって、前記ゲート電極の下に、絶縁層を備えることを特徴とする、請求項1〜5のいずれか1項に記載の半導体装置。
- 縦型GaN系半導体装置の製造方法であって、
n−型GaN系半導体層上にp型GaN系半導体層を形成する工程と、
前記p型GaN系半導体層上に3族元素窒化物の超格子構造を形成する工程と、
エッチングにより、表層から前記n−型GaN系半導体層にまで届く開口部を形成する工程と、
前記開口部に、電子走行層および電子供給層を含む再成長層をエピタキシャル成長させる工程と、
前記開口部の周囲において前記再成長層および前記超格子構造に接するようにソース電極を形成する工程とを備え、
前記超格子構造形成工程において、前記超格子構造が、前記p型GaN系半導体層よりも小さい格子定数を持つ第1の層と、該第1の層よりも格子定数が大きい第2の層との積層体となるように形成する、ことを特徴とする、半導体装置の製造方法。 - 前記超格子構造を、第1の層と第2の層が、1ペアまたは2ペア以上、形成することを特徴とする、請求項7に記載の半導体装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010226937A JP5742072B2 (ja) | 2010-10-06 | 2010-10-06 | 半導体装置およびその製造方法 |
US13/824,043 US8816398B2 (en) | 2010-10-06 | 2011-07-06 | Semiconductor device and method for producing the same |
PCT/JP2011/065468 WO2012046480A1 (ja) | 2010-10-06 | 2011-07-06 | 半導体装置およびその製造方法 |
DE112011103385T DE112011103385T5 (de) | 2010-10-06 | 2011-07-06 | Halbleitervorrichtung und Verfahren zur Herstellung derselben |
CN2011800482615A CN103155155A (zh) | 2010-10-06 | 2011-07-06 | 半导体器件及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010226937A JP5742072B2 (ja) | 2010-10-06 | 2010-10-06 | 半導体装置およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012084562A true JP2012084562A (ja) | 2012-04-26 |
JP5742072B2 JP5742072B2 (ja) | 2015-07-01 |
Family
ID=45927481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010226937A Expired - Fee Related JP5742072B2 (ja) | 2010-10-06 | 2010-10-06 | 半導体装置およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8816398B2 (ja) |
JP (1) | JP5742072B2 (ja) |
CN (1) | CN103155155A (ja) |
DE (1) | DE112011103385T5 (ja) |
WO (1) | WO2012046480A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015056486A (ja) * | 2013-09-11 | 2015-03-23 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP2019047122A (ja) * | 2017-09-01 | 2019-03-22 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 電界効果トランジスタ及び電界効果トランジスタを製造する方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5781292B2 (ja) * | 2010-11-16 | 2015-09-16 | ローム株式会社 | 窒化物半導体素子および窒化物半導体パッケージ |
DE112014002779B8 (de) * | 2013-06-11 | 2022-12-15 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung eines Nitrid-Verbindungshalbleiter-Bauelements |
WO2015125471A1 (ja) * | 2014-02-21 | 2015-08-27 | パナソニック株式会社 | 電界効果トランジスタ |
WO2015179671A1 (en) * | 2014-05-21 | 2015-11-26 | Arizona Board Of Regents On Behalf Of Arizona State University | Iii-nitride based n polar vertical tunnel transistor |
US9954112B2 (en) * | 2015-01-26 | 2018-04-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP6685278B2 (ja) * | 2015-03-11 | 2020-04-22 | パナソニック株式会社 | 窒化物半導体装置 |
US9865725B2 (en) * | 2015-04-14 | 2018-01-09 | Hrl Laboratories, Llc | III-nitride transistor with trench gate |
TWI608608B (zh) * | 2017-02-20 | 2017-12-11 | 新唐科技股份有限公司 | 電晶體 |
US11329132B2 (en) * | 2018-06-22 | 2022-05-10 | Intel Corporation | Transistor with polarization layer superlattice for target threshold voltage tuning |
WO2020216250A1 (zh) * | 2019-04-26 | 2020-10-29 | 苏州晶湛半导体有限公司 | 一种增强型器件及其制备方法 |
CN113594252B (zh) * | 2021-07-28 | 2022-04-15 | 中山大学 | 一种超结结构的氧化镓功率晶体管及其制备方法 |
JPWO2023112374A1 (ja) * | 2021-12-16 | 2023-06-22 | ||
CN114503282B (zh) * | 2021-12-31 | 2024-01-02 | 英诺赛科(苏州)科技有限公司 | 氮化物基半导体装置及其制造方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260140A (ja) * | 2003-02-06 | 2004-09-16 | Toyota Central Res & Dev Lab Inc | Iii族窒化物半導体を有する半導体素子 |
JP2006286942A (ja) * | 2005-03-31 | 2006-10-19 | Eudyna Devices Inc | 半導体装置及びその製造方法 |
JP2008053450A (ja) * | 2006-08-24 | 2008-03-06 | Rohm Co Ltd | Mis型電界効果トランジスタおよびその製造方法 |
JP2008227039A (ja) * | 2007-03-12 | 2008-09-25 | Eudyna Devices Inc | 半導体装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7023030B2 (en) * | 1999-02-24 | 2006-04-04 | Quantum Semiconductor, Llc | Misfet |
JP5189771B2 (ja) | 2007-02-01 | 2013-04-24 | ローム株式会社 | GaN系半導体素子 |
JP2011054873A (ja) * | 2009-09-04 | 2011-03-17 | Sony Corp | 不揮発性メモリ素子の製造方法 |
JP2012084739A (ja) * | 2010-10-13 | 2012-04-26 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
JP2012094688A (ja) * | 2010-10-27 | 2012-05-17 | Sumitomo Electric Ind Ltd | 半導体装置およびその製造方法 |
-
2010
- 2010-10-06 JP JP2010226937A patent/JP5742072B2/ja not_active Expired - Fee Related
-
2011
- 2011-07-06 DE DE112011103385T patent/DE112011103385T5/de not_active Withdrawn
- 2011-07-06 CN CN2011800482615A patent/CN103155155A/zh active Pending
- 2011-07-06 US US13/824,043 patent/US8816398B2/en active Active
- 2011-07-06 WO PCT/JP2011/065468 patent/WO2012046480A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004260140A (ja) * | 2003-02-06 | 2004-09-16 | Toyota Central Res & Dev Lab Inc | Iii族窒化物半導体を有する半導体素子 |
JP2006286942A (ja) * | 2005-03-31 | 2006-10-19 | Eudyna Devices Inc | 半導体装置及びその製造方法 |
JP2008053450A (ja) * | 2006-08-24 | 2008-03-06 | Rohm Co Ltd | Mis型電界効果トランジスタおよびその製造方法 |
JP2008227039A (ja) * | 2007-03-12 | 2008-09-25 | Eudyna Devices Inc | 半導体装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015056486A (ja) * | 2013-09-11 | 2015-03-23 | 株式会社東芝 | 半導体装置およびその製造方法 |
US9466705B2 (en) | 2013-09-11 | 2016-10-11 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
JP2019047122A (ja) * | 2017-09-01 | 2019-03-22 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 電界効果トランジスタ及び電界効果トランジスタを製造する方法 |
JP7315311B2 (ja) | 2017-09-01 | 2023-07-26 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 電界効果トランジスタ及び電界効果トランジスタを製造する方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5742072B2 (ja) | 2015-07-01 |
CN103155155A (zh) | 2013-06-12 |
DE112011103385T5 (de) | 2013-08-14 |
US8816398B2 (en) | 2014-08-26 |
WO2012046480A1 (ja) | 2012-04-12 |
US20130181255A1 (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742072B2 (ja) | 半導体装置およびその製造方法 | |
JP5110153B2 (ja) | 半導体装置およびその製造方法 | |
JP6174874B2 (ja) | 半導体装置 | |
JP5003813B2 (ja) | 半導体装置およびその製造方法 | |
US8890239B2 (en) | Semiconductor device and method for producing the same | |
WO2012049892A1 (ja) | 半導体装置およびその製造方法 | |
WO2012056770A1 (ja) | 半導体装置およびその製造方法 | |
US20130292690A1 (en) | Semiconductor device and method of manufacturing the same | |
WO2011043110A1 (ja) | 半導体装置およびその製造方法 | |
US8330187B2 (en) | GaN-based field effect transistor | |
CN113725296B (zh) | 氮化物半导体外延叠层结构及其功率元件 | |
WO2012060206A1 (ja) | 半導体装置およびその製造方法 | |
JP2011155221A (ja) | 半導体装置およびその製造方法 | |
JP2008210936A (ja) | 窒化物半導体素子および窒化物半導体素子の製造方法 | |
WO2012169019A1 (ja) | 半導体装置およびその製造方法 | |
CN212182338U (zh) | 半导体结构 | |
JP5569321B2 (ja) | 半導体装置およびその製造方法 | |
JP2015106627A (ja) | 半導体積層基板 | |
CN212542443U (zh) | 一种氮化镓晶体管结构及氮化镓基外延结构 | |
JP5429012B2 (ja) | 半導体装置およびその製造方法 | |
US9054171B2 (en) | HEMT semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150406 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5742072 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |