JP2011504088A - 昇圧回路 - Google Patents

昇圧回路 Download PDF

Info

Publication number
JP2011504088A
JP2011504088A JP2010534515A JP2010534515A JP2011504088A JP 2011504088 A JP2011504088 A JP 2011504088A JP 2010534515 A JP2010534515 A JP 2010534515A JP 2010534515 A JP2010534515 A JP 2010534515A JP 2011504088 A JP2011504088 A JP 2011504088A
Authority
JP
Japan
Prior art keywords
terminal
capacitor
voltage
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010534515A
Other languages
English (en)
Inventor
ドゥ スーザ ルイ
バティスト ルー ジャン
ベンダニ ラルビ
Original Assignee
ヴァレオ システム ドゥ コントロール モトゥール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴァレオ システム ドゥ コントロール モトゥール filed Critical ヴァレオ システム ドゥ コントロール モトゥール
Publication of JP2011504088A publication Critical patent/JP2011504088A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】 安価にキャパシタの急速な予備充電を実現でき、かつ専有空間の小さな電圧ステップアップ回路を提供する。
【解決手段】 この電圧ステップアップ回路(100)は、第1の端子(+BAT)および第2の端子を有する電圧源(S)と、第1の端子が電圧源の第1の端子に接続されている少なくとも1つのインダクタ(Lb)と、アノードがインダクタの第2の端子に接続されている少なくとも1つのダイオード(Db)と、第1の端子がダイオードのカソードに接続されている少なくとも1つのキャパシタ(Cb)と、インダクタの第2の端子と電圧源の第2の端子との間に接続されている少なくとも1つの電流スイッチ(Mb)と、キャパシタの第2の端子と、電圧源の第2の端子との間に接続されている第2の電流スイッチ(M)と、キャパシタの第2の端子から、電圧源の第1の端子に電流を流すことを可能にする手段(D)を備えている。
【選択図】図4

Description

本発明は、上昇回路、すなわち昇圧回路に関する。本発明の特に有利な1つの適用分野は、自動車の車内ネットワーク(12Vのバッテリ電圧)から電力を供給されて、可変インダクタンスを有する電気装置の電流を制御するためのパワーブリッジに電力を供給するための、12V/42V直流/直流パワーコンバータである。
12V/42V直流/直流パワーコンバータは、例えば単相または多相の「4象限」ブリッジとも呼ばれているパワーHブリッジのための電圧源として、しばしば用いられている。このようなパワーHブリッジは、例えば電磁弁アクチュエータの電流を制御するために特に用いられている(「カムレス」システム)。
このような直流/直流パワーコンバータは、昇圧回路を用いて実現される。「ブースト」タイプ回路とも呼ばれる昇圧回路1の一例が、図1に示されている。
この昇圧回路1は、次のものを備えている。
− 自動車のバッテリからの電圧などから成る、第1および第2の端子(図1の場合には、+端子および接地端子)を有する電圧源2、
− 第1の端子が電圧源2の+端子に、後述する第2の電流スイッチ7を介して、または直接に接続されているインダクタ3、
− アノードがインダクタ3の第2の端子に接続されているダイオード4、
− 第1の端子がダイオード4のカソードに接続されているキャパシタ5、
− インダクタ3の第2の端子と接地端子との間に接続されている、MOSFET(MOS電界効果トランジスタ)などから成る電流スイッチ6、
− 電圧源2の+端子とインダクタ3の第1の端子との間に接続されている、MOSFETであっても、リレータイプの電気機械部品であってもよい第2の電流スイッチ7(この第2の電流スイッチ7を、キャパシタ5の第2の端子と接地端子との間に接続してもよいことは理解し得ると思う)。
「ブースト」タイプ回路である電圧ステップアップ回路1の動作は、電流スイッチ6の状態に応じて、次の2つの異なる段階に分けることができる。
− エネルギー蓄積段階:電流スイッチ6が閉じられている(オン状態)ときには、インダクタ3内の電流が増加し、したがって、ある一定のエネルギー量が、磁気エネルギーとしてインダクタ3に蓄えられる。このとき、ダイオード4は遮断状態にあり、したがって、キャパシタ5は電力を供給されない。
− 予備充電段階:電流スイッチ6が開かれているときには、インダクタ3が電圧源2に直列に接続されているために、インダクタ3のEMF(起電力)が、電圧源2のEMFに加算される(ブースター効果)。このとき、インダクタ3を通る電流は、ダイオード4およびキャパシタ5を通る。その結果、インダクタ3に蓄積されていたエネルギーが、キャパシタ5に伝達される。
この放電は、キャパシタ5の端子間電圧である出力電圧Vsが、入力電圧Ve(バッテリ電圧)より高いときしか可能ではない。そのようなときには、出力電圧Vsは、ほぼ連続であり、その値は、入力電圧Ve、および電流スイッチ6の開閉によるパルス制御信号のデューティサイクルα=τ/Tに依存する。ここで、τは、パルス制御信号の1周期におけるハイ状態の時間であり、Tは、パルス制御信号の周期である。これは、充電電流が、PWM(パルス幅変調)によって制御されるということを意味している。この場合には、出力電圧Vsは、Vs=Ve/(1−α)であって、常に入力電圧より大きく(デューティサイクルは0〜1の範囲で可変である)、αの増加とともに増加する。
キャパシタ5は、ほとんどケミカルコンデンサからなり、その正極は、ダイオード4のカソードに接続されている。大きなエネルギーの蓄積が必要になる応用においては、ケミカルコンデンサの使用が、しばしば不可避になる。実際、ケミカルコンデンサの蓄積することができる電気エネルギー密度は最大である。
しかしながら、このようなケミカルコンデンサの使用によって、いくつかの問題が生じる。
例えばケミカルコンデンサには、大きな漏洩電流が生じるという欠点が存在する。それは、特に、自動車のバッテリによって電力が供給される利用においては有害になる。十分に長い間、装置に対して過度の電圧が供給され続けると、漏洩電流によって、バッテリの極度の放電が発生し得る。例えば駐車モードにおいて、コンバータが、自動車の12Vバッテリに接続されているときに、そのようなことが生じる。したがって、漏洩電流を減らすために、キャパシタを切り離すことが必要になる場合がある。特に、電磁弁システムにおいては、車内ネットワークから、電磁弁アクチュエータに対する好適な電源ネットワーク、この場合には42Vのネットワークを発生させるだけではなく、とりわけ、42Vのネットワークから、12Vの車内ネットワークを減結合させるコンバータが必要になる。このとき、電磁弁アクチュエータの制御動作によって、非常に高い比率の低周波高調波が生じる。車内ネットワークに誘起される電流リップルを制限するためには、したがって、バッテリを保護するためには、42Vのネットワークの容量を大きくしなければならない。したがって、高い容量値のキャパシタバンクが必要になる。しかしながら、それによって、駐車モード仕様に適合しない漏洩電流が発生する。
漏洩電流に関するこの問題を解決するための1つの解決方法として、これらのキャパシタを切り離すために、第2の電流スイッチ7を用いることが知られている。例えば駐車モードにおいて、第2の電流スイッチ7を開くことによって、いかなる電流漏洩も、したがってバッテリの放電のいかなる危険も防止される。
しかしながら、この解決方法の実行には、いくつかの困難が伴う。
例えば上述のように、電圧ステップアップ回路1内の電流の抑制は、キャパシタ5の端子間電圧である出力電圧Vsが入力電圧Veより大きいときしか可能ではない。出力電圧Vsが入力電圧Veより低いときには、電圧ステップアップ回路1は、電流を抑制することができない。キャパシタ5が放電しているために、出力電圧Vsが0であるときに、電力供給が行われる(第2の電流スイッチ7が閉じられる)たびに、このような事態が発生する。キャパシタ5を充電させると、電圧ステップアップ回路1で抑制することができない電流が発生する。電流突入は、ライン抵抗でしか制限することができない。充電時間は、キャパシタおよびこれらのライン抵抗の規模によって定められる。電力供給に伴って、出力電圧が入力電圧に近い平衡値に達するまで、キャパシタ5は急激に充電させられる。抵抗を介してのキャパシタ充電の場合には、伝達されたエネルギー量のうちの相当の部分が消費されると考えられる。このエネルギーは、短時間で消費される。したがって、それに伴う消費電力は、破壊的な大きさになり得る。実際、突入電流は、この突入電流が流れる部品、特に電力供給のために用いられる第2の電流スイッチ7の部品の仕様を超過する値にまで達し得る。機械的または電気機械的な電流スイッチの場合には、電流突入に伴う電気的アークの効果によって、コンタクト部の破壊または摩耗が生じる。電源ケーブルと、例えばバッテリのような低内部抵抗の電圧源との間の直接的なコンタクトの場合には、電気的アークによって、コンタクトしている金属が溶けて、金属粒子が飛散する場合がある。MOSFETタイプの固体スイッチの場合には、特にその部品の熱容量が小さいときに、電流突入に伴う激しい局所過熱によって、その固体スイッチの破壊または早期劣化が生じる場合がある。
電圧源の内部抵抗が大きすぎる場合には、突入電流によって、さらに、電圧源の破壊などの他の問題が発生する場合がある。
電力供給のための第2の電流スイッチ7が存在しなかったとしても、突入電流が伝わるループ内に配置された任意の他のスイッチに、同じ障害が置き換えられることは理解しうると思う。
この突入電流を制限するために利用することができる解決方法が知られている。その突入電流を制限する回路の原理は、熱放出によって電流突入を制限することである。出力能力が高いほど、この突入電流を制限する回路は、より有効になる。
電流制限手段を組み込んだ電圧ステップアップ回路10の第1の例が、図2に示されている。この電圧ステップアップ回路10は、キャパシタ5の第2の端子と接地端子との間に直列に取り付けられたトランジスタ8を備えているということを除けば、図1の電圧ステップアップ回路1と同じである(同等の部分には、同一の符号が付されている)。このトランジスタ8は、バイポーラトランジスタであっても、MOSFETタイプまたはJFET(接合型電界効果トランジスタ)タイプの電界効果トランジスタであってもよい。この解決方法は、トランジスタ8の線形モード動作によって、キャパシタ5の充電電流を抑制する手法を含んでいる。このトランジスタ8は、さらに、電流制限機能の作動の後に、接地端子に対するキャパシタ5の分離/接続を行うためのスイッチとして働くことができる(飽和モード)。キャパシタ5の容量値が大きい場合には、特に予備充電のために許される時間が短ければ、トランジスタの数を多くする手法が存在する。しかしながら、トランジスタの数を多くすれば、相当に余分な費用が必要になる。さらに、線形モードのトランジスタの並列接続においては、電流が自然には釣り合わないから、回路の複雑性が増す。
別の解決方法は、直列抵抗によって突入電流を制限する手法を含んでいる。この解決方法は、図3の電圧ステップアップ回路20によって示されている。
電圧ステップアップ回路20は、キャパシタ5の第2の端子と接地端子との間に直列に取り付けられたスイッチ9、およびスイッチ9に並列に取り付けられた抵抗11を備えているということを除けば、図1の電圧ステップアップ回路1と同じである(同等の部分には、同一の参照番号が付されている)。したがって、突入電流は、抵抗11によって制限される。接地端子に対するキャパシタ5の分離/接続を行うために、スイッチ9を用いることができる。
しかしながら、図2および図3に示されている解決方法の実行にも、いくつかの困難が伴う。
例えば特に電磁弁の制御の場合には、始動の遅延(すなわち、運転者がイグニッションキーを回す瞬間と、システムの準備ができていなければならない瞬間との間の遅延)は、総計で約300ミリ秒程度の比較的短い遅延である。さらに、この遅延中に、キャパシタの予備充電以外に、多くの他の動作を行なわなければならない(診断、リセット、電力供給の開始など)。したがって、キャパシタ5の予備充電のために割り当てられる時間は極めて短い。図2と図3とのどちらの解決方法も、熱放出によって電流が制限されるという欠点を有している。急速な予備充電が必要な場合には、消費される電力が大きくなり、したがって、比較的規模が大きく、かつ製品の寿命期間に比して、上述の機能(熱放出による電流の制限)が用いられる時間が短いことを考慮すると、高コストである回路が必要になる。およそのイメージを得るために、4.7ミリ秒(RC値)の予備充電が要求される場合には、抵抗値R=0.1Ωを有する抵抗11、および容量値C=47mFを有するキャパシタ5を用いることができる。入力電圧Veの値を10Vとし(バッテリ電圧は、12Vをわずかに下回ることが多い)、かつ突入電流の最大値をVe/Rと見積もると、100A程度の突入電流、すなわち1000W程度の消費電力が得られる。したがって、消費電力は非常に大きい。抵抗値を低くしたとしても、このような設定では、非常に大きなサイズのパワー抵抗が必要になる。スルーホール抵抗しか用いることができない。また、SMC(表面実装部品)の使用は考えられない。さらに、並列接続された2つの抵抗を用いることが必要になるかもしれない。したがって、上述の解決方法は、空間の浪費だけではなく、相当な過剰費用を必要とすることが容易に理解される。
上述に鑑みて、本発明は、キャパシタの急速な予備充電を安価に行いうるとともに、構成部品によって占められる空間が小さい電圧ステップアップ回路を提供することを目的とするものである。
この目的を達成するために、本発明は、次のものを備えている電圧ステップアップ回路を提供する。
− 第1の端子および第2の端子を有する電圧源と、
− 第1の端子が電圧源の第1の端子に接続されている、少なくとも1つのインダクタと、
− アノードがインダクタの第2の端子に接続されている、少なくとも1つのダイオードと、
− 第1の端子がダイオードのカソードに接続されている、少なくとも1つのキャパシタと、
− インダクタの第2の端子と電圧源の第2の端子との間に接続されている、少なくとも1つの電流スイッチと、
− キャパシタの第2の端子と、電圧源の第2の端子との間に接続されている第2の電流スイッチ。
この電圧ステップアップ回路は、さらに、キャパシタの第2の端子から、電圧源の第1の端子に電流を流すことを可能にする手段を備えている。
用語「キャパシタ」は、任意のタイプの容量性の回路部品を意味している。それは、単一のキャパシタであってもよいし、直列または並列に接続された複数のキャパシタを有するキャパシタバンクであってもよい。用語「インダクタ」には、単一のインダクタだけではなく、直列または並列に接続された複数のインダクタも含まれる。
本発明によって提供される構成は、熱放出によってではなく、電流を抑制することができる構造を用いることによって、電流を制限するという長所を有する。キャパシタの第2の端子(ケミカルコンデンサの場合にはその負極)から、電圧源の第1の端子(自動車のバッテリの場合には、バッテリの正極端子)に電流を流すことを可能にする手段を加えることによって、キャパシタバンクの充電電流を抑制することができる。この手段は、通常、ダイオードによって形成される。キャパシタの負極を、この第2のダイオードを介して、接地端子にではなく、電圧源に接続することによって、インダクタの消磁によって生じる充電電流を、このダイオードを介して流すことができる。
さらに、電圧ステップアップ回路において通常見出される損失を除けば、この解決方法は、制限抵抗または線形モードのトランジスタに基づく電流抑制とは異なり、さらに熱を消費することはない。本発明による電圧ステップアップ回路を用いることによって、相当な過剰費用の原因となるパワー部品の使用を不要にすることができる。
さらに、この構成によると、電圧ステップアップ回路の機能に変更を加えることはなく、従来のPWMによって充電電流を抑制することができ、しかも、キャパシタバンクの充電状態にかかわらず、抑制することができる。第2の電流スイッチは、接地端子からの/へのキャパシタの切り離し/接続を行うために用いられる。
本発明による回路システムは、さらに、次の特性のうちの1つ以上を、個別に、または技術的に実現可能な組み合わせとして備えることができる。
キャパシタの第2の端子から、電圧源の第1の端子に電流を流すことを可能にする手段は、アノードがキャパシタの第2の端子に接続されており、かつカソードが電圧源の第1の端子に接続されている第2のダイオードによって形成されていると特に有利である。
本発明は、上記の少なくとも1つのキャパシタがケミカルコンデンサである場合に、特に有利に適用可能である。
有利な一実施形態によれば、本発明による電圧ステップアップ回路は、上記の少なくとも1つのダイオードのアノードと、電圧源の第2の端子との間に接続されている第2のキャパシタを備えている。
別の有利な一実施形態によれば、iが1〜nの範囲の整数であり、nが2以上の自然数であるとしたとき、本発明による電圧ステップアップ回路は、次のものを備えている。
− 電圧源の第1の端子に接続されている第1の端子をそれぞれに有するn個のインダクタLbiと、
− n個のダイオードDbiであって、各ダイオードDbiのアノードが各インダクタLbiの第2の端子に接続されているn個のダイオードDbiと、
− n個の電流スイッチMbiであって、各電流スイッチMbiが、各インダクタLbiの第2の端子と電圧源の第2の端子との間に接続されており、かつ他の電流スイッチが開かれている間、閉じられているように制御されるn個の電流スイッチMbi。
また、上述の少なくとも1つのキャパシタの第1の端子は、n個のダイオードDbiのそれぞれのカソードに接続されている。
電圧源は、自動車のバッテリであるのが有利である。
本発明による電圧ステップアップ回路は、12Vの直流電圧を、42Vの直流電圧に変換するときに有利である。
本発明は、さらに、電気的制御装置の電流を制御するためのHブリッジに電力を供給するために、少なくとも1つのキャパシタの端子間電圧が電力供給電圧を形成するように、本発明による電圧ステップアップ回路を使用する使用方法を提供するものである。
この電気的制御装置は、作動部を備えたアクチュエータに含まれており、この作動部の運動を制御すると有利である。
このアクチュエータは、電磁弁のためのアクチュエータであることが好ましい。
従来技術の電圧ステップアップ回路の回路図である。 従来技術による、電流制限手段を組み込んだ電圧ステップアップ回路の回路図である。 従来技術による、電流制限手段を組み込んだ別の電圧ステップアップ回路の回路図である。 本発明の第1の実施形態による電圧ステップアップ回路の回路図である。 図4の電圧ステップアップ回路の電流制限動作を説明する図である。 図4の電圧ステップアップ回路の電流制限動作を説明する別の図である。 図4の電圧ステップアップ回路のキャパシタの予備充電段階における出力電圧の推移を、時間の関数として示すグラフである。 本発明の第2の実施形態による電圧ステップアップ回路の回路図である。 本発明の第3の実施形態による電圧ステップアップ回路の回路図である。
添付図面を参照して、例示的かつ非限定的な、以下の説明を読むことによって、本発明の他の特徴および利点が明らかになると思う。
全ての図において、同等の部分には、同一の符号が付してある。
図1〜図3については、従来技術に関連付けて既に説明している。
図4は、本発明の第1の実施形態による電圧ステップアップ回路100を示している。
電圧ステップアップ回路100は、次のものを備えている。
− 自動車のバッテリからの電圧などから成る、入力電圧Veを供給する第1および第2の端子(図4の場合には、+BAT端子および接地端子)を有する電圧源Sと、
− 第1の端子が電圧源Sの+BAT端子に接続されているインダクタLbと、
− アノードがインダクタLbの第2の端子に接続されているダイオードDbと、
− 第1の端子(正極)がダイオードDbのカソードに接続されている、ケミカルコンデンサタイプのキャパシタCb(このキャパシタCbは、通常、単一のキャパシタではなく、キャパシタバンクによって形成されることが多いことは理解しうると思う)と、
− インダクタLbの第2の端子と接地端子との間に接続されている、MOSFETなどから成る電流スイッチMbと、
− キャパシタCbの第2の端子(負極)と接地端子との間に接続されている第2の電流スイッチM(MOSFETであっても、リレータイプの電気機械部品であってもよい)と、
− アノードがキャパシタCbの負極に接続されており、かつカソードが電圧源Sの+BAT端子に接続されている第2のダイオードD。
電流スイッチMbは、スイッチング周期T、デューティサイクルαのPWMタイプの制御法によって制御される。
突入電流を制限しながらのキャパシタCbの予備充電中、キャパシタCbの第2の端子(負極)が接地端子に接続されずに、電圧源に接続されるように、第2の電流スイッチMは開かれている。
エネルギー蓄積段階、および予備充電段階における電圧ステップアップ回路100の動作を、それぞれ図5および図6を参照して説明する。図5および図6において、太い矢印は、電流の流れる方向を示している。
図5に示すように、電流スイッチMbが導通状態のとき(電流スイッチMbの制御信号の一周期中の0〜αTの期間)、インダクタLbは磁化され、したがって、エネルギー(電流スイッチMbが開かれたときに開放される)を蓄える。
図6に示すように、電流スイッチMbが開かれているとき(電流スイッチMbの制御信号の一周期中のαT〜Tの期間)、ダイオードDbおよび第2のダイオードDは順次に導通状態になり、したがって、インダクタLbからキャパシタCbに、エネルギーが伝達される。
再度、電流スイッチMbが導通状態になると、ダイオードDbおよび第2のダイオードDは遮断状態になる。したがって、キャパシタCbは、そのエネルギーを開放することができない。したがって、このエネルギーは、スイッチング周期T毎に蓄積されていく。
第2のダイオードDを加えたこと、およびキャパシタCbの負極を接地端子から切り離したことによって、キャパシタCb(キャパシタバンク)の充電電流を抑制することができる。キャパシタCbの負極を、スイッチを介して接地端子に接続するのではなく、第2のダイオードDを介して電圧源に接続することにより、インダクタLbの消磁によって発生する充電電流を、第2のダイオードDを介して流すことができる。このような構成においては、電圧ステップアップモードにおける電圧ステップアップ回路100の機能に変更はなく、従来のPWMによって充電電流を抑制することができ、しかも、キャパシタCbの充電状態にかかわらず、そうである。
コンバータにおいて通常見出される損失を除けば、この解決方法は、制限抵抗または線形モードのトランジスタに基づく電流抑制とは異なり、さらに熱を消費することはない。
キャパシタCbに電流が突入することなく(すなわち、電流を抑制して)、予備充電を行うために、最初に、第2の電流スイッチMを開くことは理解しうると思う。キャパシタCbの端子間電圧Vcが、入力電圧Veと等しくなったとき(または、わずかに高くさえなって、いかなる突入電流も避けられるようになったとき)には、電圧ステップアップ回路として動作するように、第2の電流スイッチMを閉じることができる。
さらに、出力電圧Vs(接地端子に対する、キャパシタCbの正極と等電位の出力点Sの電圧)が、キャパシタCbの予備充電段階中に連続的でないことは理解しうると思う。図7は、時間tの関数として出力電圧Vsを表わすことによって、この現象を示している。
出力電圧Vsは、PWMの周波数(電磁弁に対する適用の場合には約70kHz)で切り換わる(チョップされる)。実際には、電流スイッチMbが導通状態にあるときには、ダイオードDbおよび第2のダイオードDは遮断状態にある。それによって、出力電圧Vsは、0〜Vcの範囲で変化する電圧にセットされている。電流スイッチMbが開かれているときには、ダイオードDbおよび第2のダイオードDは導通状態にある。それによって、出力電圧Vsは、(Ve+Vfd+Vc)にセットされている。Vfdは、第2のダイオードDの端子間の電圧降下である。
キャパシタの予備充電段階中、出力電圧Vsが、できるだけわずかの不連続しか示してはならない応用においては、2つの解決方法が、図8および図9に示されている。
図8は、本発明の第2の実施形態による、出力電圧Vsの不連続問題の発生を未然に防ぐ電圧ステップアップ回路200を示している。
電圧ステップアップ回路200は、ダイオードDbのアノードと接地端子との間に接続された、さらなるキャパシタCを備えているということを除けば、図4の電圧ステップアップ回路100と同じである。したがって、このキャパシタCの端子間電圧の値は、出力電圧Vsの値に等しい。
このキャパシタCは、低漏洩電流かつ低容量値のキャパシタである(低容量の「フィルム」コンデンサまたはセラミックタイプコンデンサを用いることができる)。キャパシタCは、接地端子と出力点Sとの間に接続されており、電流スイッチMbが導通状態にあるときに、出力電圧Vsを一定に保つ。このキャパシタCは、不変に接続されており、したがって、最初に、その端子間電圧がバッテリ電圧になるまで充電される(電圧降下を無視すれば)。電流スイッチMbが導通状態にあるときには、出力電圧Vsは、キャパシタCの充電電圧に維持される。キャパシタCは、出力点に接続されている任意の負荷に対する電流を供給する。電流スイッチMbが開かれているときには、ダイオードDbおよび第2のダイオードDは導通状態にあり、電流は、このキャパシタCだけではなく、キャパシタバンクであるキャパシタCbも充電する。キャパシタCの端子間電圧は、キャパシタCbによって課される電圧にしたがう。その電圧の大きさは、明らかに、開始時に出力点に接続された負荷に依存する。
図9は、本発明の第3の実施形態による、出力電圧Vsの不連続問題の発生を未然に防ぐ電圧ステップアップ回路300を示している。
シングルセル回路である、図4および図8の電圧ステップアップ回路100および200と異なり、電圧ステップアップ回路300はマルチセル回路である。言い換えると、この電圧ステップアップ回路300は、各々がインダクタ−ダイオード−電流スイッチ3連体(Lbi、Dbi、Mbi)を有するn個のセルを備えている(iは、1〜nの範囲の整数であり、nは、最小でも2以上の自然数である)。図9の例においては、nは2である。
インダクタLbiの各々は、その第1の端子を、+BAT端子に接続されている。
ダイオードDbiの各々は、そのアノードを、インダクタLbiの第2の端子に接続されている。
電流スイッチMbiの各々は、インダクタLbiの第2の端子と接地端子との間に接続されている。
予備充電されるキャパシタCbは、その第1の端子(正極)を、ダイオードDbiの各々のカソードに接続されている。
電圧ステップアップ回路100および200と同様に、電圧ステップアップ回路300は、次のものを備えている。
− キャパシタCbの負極と接地端子との間に接続されている第2の電流スイッチMと、
− アノードがキャパシタCbの負極に接続されており、かつカソードが+BAT端子に接続されている第2のダイオードD。
したがって、この場合には、いくつかの電圧ステップアップ回路を形成する、並列接続された、いくつかのセルが存在する。全ての電流スイッチMbiが一緒に閉じられることがない(電流スイッチMbiは順番に閉じられる)ように、これらのセルの同期はとられない。このようなマルチセル構成によって、キャパシタCbの充電電流中のリップルが小さくなる(キャパシタCbに対する充電の連続性を確実にするためには、十分な数のセルがなければならないことは明らかである。すなわち、nは3以上であることが多い)。シングルセル構成に優るマルチセル構成の利点は、マルチセル構成においては、電流リップルが非常に小さくなり(シングルセル構成において同一の電流リップルを達成するためには、インダクタンス値の非常に高いインダクタが必要である)、かつ出力が分配されるということである。
セル間に段階差を置くことによって、ダイオードDbiの少なくとも1つが、各時刻において確実に導通状態にある。したがって、出力電圧Vsは、値(Ve+Vfd+Vc)に維持される。Vfdは、第2のダイオードDの端子間の電圧降下である。図9に示す例においては、電流スイッチMb1は閉じられており(したがって、電流スイッチMb2は開かれており)、ダイオードDb2は導通状態にある。ハッチングを施した矢印と太い矢印とは、それぞれ、インダクタLb1の磁化段階(エネルギー蓄積段階)における電流の流れる方向と、キャパシタCbの予備充電段階における電流の流れる方向とを示している。
本発明は、上述の実施形態に限定されないことは明白である。
特に、キャパシタの第2の端子を+BAT端子に接続することを可能にするために、ダイオードを用いる場合について、本発明を詳細に説明したが、キャパシタの第2の端子から+BAT端子に電流を流すことを可能にする別の手段を用いることもできる。例えばキャパシタの負極と+BAT端子との間に直列に接続されたスイッチを用いることができる。このスイッチは、電流スイッチMbが開かれるときに閉じられる。
同様に、上述の実施形態においては、電流スイッチとしてMOSFETを用いているが、本発明の範囲を逸脱することなく、他のタイプのトランジスタ〔例えばIGBT(絶縁ゲートバイポーラトランジスタ)〕を用いることもできる。
最後に、前記した手段も、それに等価な手段と置き換えることができる。
1、10、20、100、200、300 電圧ステップアップ回路
2 電圧源
3 インダクタ
4 ダイオード
5 キャパシタ
6 電流スイッチ
7 第2の電流スイッチ
8 トランジスタ
9 スイッチ
11 抵抗
C、Cb キャパシタ
D 第2のダイオード
Db、Db1、Db2 ダイオード
Lb、Lb1、Lb2 インダクタ
M 第2の電流スイッチ
Mb、Mb1、Mb2 電流スイッチ
S 電圧源、出力点
t 時間
Vc 端子間電圧
Ve 入力電圧
Vfd 電圧降下
Vs 出力電圧

Claims (10)

  1. − 第1の端子(+BAT)および第2の端子を有する電圧源(S)と、
    − 第1の端子が前記電圧源(S)の第1の端子(+BAT)に接続されている、少なくとも1つのインダクタ(Lb)と、
    − アノードが前記インダクタ(Lb)の第2の端子に接続されている、少なくとも1つのダイオード(Db)と、
    − 第1の端子が前記ダイオード(Db)のカソードに接続されている、少なくとも1つのキャパシタ(Cb)と、
    − 前記インダクタ(Lb)の第2の端子と、前記電圧源(S)の第2の端子との間に接続されている、少なくとも1つの電流スイッチ(Mb)と、
    − 前記キャパシタ(Cb)の第2の端子と、前記電圧源(S)の第2の端子との間に接続されている第2の電流スイッチ(M)
    とを備えている電圧ステップアップ回路(100、200、300)であって、
    前記キャパシタ(Cb)の第2の端子から、前記電圧源(S)の第1の端子(+BAT)に電流を流すことを可能にする手段(D)を備えていることを特徴とする電圧ステップアップ回路(100、200、300)。
  2. 前記キャパシタ(Cb)の第2の端子から、前記電圧源(S)の第1の端子(+BAT)に電流を流すことを可能にする前記手段(D)は、アノードが前記キャパシタ(Cb)の第2の端子に接続されており、かつカソードが前記電圧源(S)の第1の端子(+BAT)に接続されている第2のダイオード(D)によって形成されていることを特徴とする、請求項1に記載の電圧ステップアップ回路(100、200、300)。
  3. 前記少なくとも1つのキャパシタ(Cb)は、ケミカルコンデンサであることを特徴とする、請求項1または2に記載の電圧ステップアップ回路(100、200、300)。
  4. 前記少なくとも1つのダイオード(Db)のアノードと、前記電圧源(S)の第2の端子との間に接続されている第2のキャパシタ(C)を備えていることを特徴とする、請求項1〜3のいずれか1つに記載の電圧ステップアップ回路(200)。
  5. iが1〜nの範囲の整数であり、nが2以上の自然数であるとしたとき、前記電圧ステップアップ回路(300)は、
    − 前記電圧源(S)の第1の端子(+BAT)に接続されている第1の端子をそれぞれに有するn個のインダクタLbiと、
    − n個のダイオードDbiであって、各ダイオードDbiのアノードが各インダクタLbiの第2の端子に接続されているn個のダイオードDbiと、
    − n個の電流スイッチMbiであって、各電流スイッチMbiが、各インダクタLbiの第2の端子と前記電圧源(S)の第2の端子との間に接続されており、かつ他の電流スイッチが開かれている間、閉じられているように制御されるn個の電流スイッチMbi
    とを備えており、前記少なくとも1つのキャパシタ(Cb)の第1の端子は、前記n個のダイオードDbiのそれぞれのカソードに接続されていることを特徴とする、請求項1〜3のいずれか1つに記載の電圧ステップアップ回路(300)。
  6. 前記電圧源は、自動車のバッテリによって形成されていることを特徴とする、請求項1〜5のいずれか1つに記載の電圧ステップアップ回路(100、200、300)。
  7. 12Vの直流電圧を、42Vの直流電圧に変換する、請求項1〜6のいずれか1つに記載の電圧ステップアップ回路(100、200、300)。
  8. 電気的制御装置の電流を制御するためのHブリッジに電力を供給するために、少なくとも1つのキャパシタの端子間電圧が電力供給電圧を形成するように、請求項1〜6のいずれか1つに記載の電圧ステップアップ回路を使用する使用方法。
  9. 前記電気的制御装置は、作動部を備えたアクチュエータに含まれており、該作動部の運動を制御することを特徴とする、請求項8に記載の使用方法。
  10. 前記アクチュエータは、電磁弁のためのアクチュエータであることを特徴とする、請求項9に記載の使用方法。
JP2010534515A 2007-11-20 2008-11-20 昇圧回路 Pending JP2011504088A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708144A FR2923962B1 (fr) 2007-11-20 2007-11-20 Circuit elevateur de tension
PCT/FR2008/001622 WO2009101269A1 (fr) 2007-11-20 2008-11-20 Circuit élévateur de tension

Publications (1)

Publication Number Publication Date
JP2011504088A true JP2011504088A (ja) 2011-01-27

Family

ID=39092637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010534515A Pending JP2011504088A (ja) 2007-11-20 2008-11-20 昇圧回路

Country Status (8)

Country Link
US (1) US20100315048A1 (ja)
EP (1) EP2220752A1 (ja)
JP (1) JP2011504088A (ja)
KR (1) KR20100092948A (ja)
CN (1) CN101953059A (ja)
BR (1) BRPI0820580A2 (ja)
FR (1) FR2923962B1 (ja)
WO (1) WO2009101269A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021535168A (ja) * 2018-08-30 2021-12-16 ローワン・ユニバーシティ 筋萎縮性側索硬化症の治療方法または予防方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012202868A1 (de) * 2012-02-24 2013-08-29 Robert Bosch Gmbh Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
CN102879678B (zh) * 2012-09-24 2015-06-03 北京二七轨道交通装备有限责任公司 电磁阀测试仪
EP2713494A1 (de) * 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Energieeinspeisevorrichtung zur Einspeisung von aus kinetischer Energie erzeugter elektrischer Energie in ein Drehstromverteilernetz
EP2713499A1 (de) * 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Energieeinspeisevorrichtung mit symmetrischer Anbindung einer Gleichstrom-Quelle an einen geerdeten Sternpunkt eines Drehstromnetzes
CA2818450C (en) 2013-06-17 2020-04-07 Mcmaster University Reconfigurable hybrid energy storage system for electrified vehicles
FR3007227B1 (fr) 2013-06-18 2015-06-05 Renault Sa Procede de gestion d'une charge alimentee par un convertisseur lui-meme alimente par une batterie, et systeme correspondant
CN104393755B (zh) * 2014-11-20 2017-02-22 无锡中感微电子股份有限公司 高效率升压电路
CN106611986A (zh) 2015-10-26 2017-05-03 通用电气公司 对电容器组预充电
US10058706B2 (en) * 2016-09-09 2018-08-28 Qualcomm Incorporated Bi-directional switching regulator for electroceutical applications
CN110086333A (zh) * 2019-05-31 2019-08-02 合肥巨一动力系统有限公司 一种大功率boost升压电路的预充电电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5394076A (en) * 1993-08-25 1995-02-28 Alliedsignal Inc. Pulse width modulated power supply operative over an extended input power range without output power dropout
DE19833830A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung wenigstens eines Magnetventils
JP2003111396A (ja) * 2001-09-28 2003-04-11 Shindengen Electric Mfg Co Ltd スイッチング電源
ITTO20020263A1 (it) * 2002-03-25 2003-09-25 Sila Holding Ind Spa Circuito di interfaccia fra una sorgente di tensione continua ed un circuito di pilotaggio di un carico,particolarmente per l'impiego a bord
US6936994B1 (en) * 2002-09-03 2005-08-30 Gideon Gimlan Electrostatic energy generators and uses of same
JP4510022B2 (ja) * 2004-08-17 2010-07-21 ローム株式会社 電源装置およびそれを用いた電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021535168A (ja) * 2018-08-30 2021-12-16 ローワン・ユニバーシティ 筋萎縮性側索硬化症の治療方法または予防方法

Also Published As

Publication number Publication date
CN101953059A (zh) 2011-01-19
FR2923962A1 (fr) 2009-05-22
WO2009101269A1 (fr) 2009-08-20
EP2220752A1 (fr) 2010-08-25
US20100315048A1 (en) 2010-12-16
KR20100092948A (ko) 2010-08-23
FR2923962B1 (fr) 2009-11-20
BRPI0820580A2 (pt) 2015-06-16

Similar Documents

Publication Publication Date Title
JP2011504088A (ja) 昇圧回路
JP5774919B2 (ja) 機械設備を駆動する電動装置、及びそれに関連する方法
US8222871B2 (en) Method and device for charging an electrical energy storage element, in particular an ultracapacitor
CN108696107B (zh) 单电源供电的混合动力驱动谐振栅极驱动器
EP3421287B1 (en) Battery connection system for electric and/or hybrid vehicles
US20070236965A1 (en) Dc-to-dc converter and electric motor drive system using the same
JP6944058B2 (ja) Dc/dcコンバータを備える車両充電器
US7907431B2 (en) Devices and methods for converting or buffering a voltage
US8058744B2 (en) Electrical system and automotive drive system having an on-demand boost converter, and related operating methods
CN110739848A (zh) 用于电动化车辆的高增益dc-dc转换器
JP2002320302A (ja) 電源装置
US20210074490A1 (en) Direct current circuit breaker device
CA3110897A1 (en) Dual dc-dc converter
CN112448580B (zh) 飞跨电容转换器
JP2015216825A (ja) 平滑回路を有するパワースイッチング装置
US10906484B2 (en) In-vehicle power supply device
CN111315614B (zh) 包括dc/dc转换器的车辆充电器
US20190044327A1 (en) Multiple output battery system with alternator architectures
US11563377B2 (en) Hybrid power converters
JP2020533935A (ja) 自動車両に搭載された電圧コンバータおよび関連する充電器
JP6700060B2 (ja) 電源システム
JP7426397B2 (ja) パワー半導体スイッチの駆動回路に電圧を供給するためのパワーエレクトロニクスデバイスおよび方法
CN109417350B (zh) 控制dc-dc电压转换器电路的控制系统
US20190044347A1 (en) Multiple output battery system
US9054582B2 (en) Load control circuit in a motor vehicle control device