JP2011259174A - 動きベクトル表示回路及び動きベクトル表示方法 - Google Patents

動きベクトル表示回路及び動きベクトル表示方法 Download PDF

Info

Publication number
JP2011259174A
JP2011259174A JP2010131369A JP2010131369A JP2011259174A JP 2011259174 A JP2011259174 A JP 2011259174A JP 2010131369 A JP2010131369 A JP 2010131369A JP 2010131369 A JP2010131369 A JP 2010131369A JP 2011259174 A JP2011259174 A JP 2011259174A
Authority
JP
Japan
Prior art keywords
motion vector
display
component
signal
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010131369A
Other languages
English (en)
Inventor
Isao Sezaki
勲 瀬崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2010131369A priority Critical patent/JP2011259174A/ja
Priority to US13/151,890 priority patent/US20110299598A1/en
Priority to CN2011101595665A priority patent/CN102281459A/zh
Publication of JP2011259174A publication Critical patent/JP2011259174A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0135Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes
    • H04N7/014Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving interpolation processes involving the use of motion vectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/10Special adaptations of display systems for operation with variable images
    • G09G2320/106Determination of movement vectors or equivalent parameters within the image
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Systems (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Television Systems (AREA)

Abstract

【課題】フレームレート変換機能を持つ画像処理装置の画質調整や検査において必要とされる動きベクトルの表示手段を提供する。
【解決手段】フレーム画像間の動きベクトルを動きベクトル検出回路で検出し、動きベクトルのノルムを輝度、動きベクトルの方向を色相として、カラーモニタに表示することにより、観察者の感覚に合致した動きベクトルの表示を可能にする。
【選択図】図1

Description

本発明は、動きベクトル表示回路及び動きベクトル表示方法に関する。特に、テレビに搭載されるフレームレート変換などで、中間フレームの生成に使用される動きベクトルを表示する回路および表示方法に関する。
動画像を、元のフレームレートと異なるフレームレートで表示する場合のフレームレート変換の方式としては、動き補正を用いずに同一映像を繰り返し表示する簡易的な方式と、動き補正した中間フレームを新たに生成する方式がある。後者の方式は、中間フレームを生成する前後のフレームの映像から映像の動く方向と長さを表す動きベクトルを生成し、生成された動きベクトルに応じて中間フレームを生成する。
例えば、映画のフレームレートは24フレーム/秒である。前者の方式で、これを60フレーム/秒の液晶TVに表示する際は、1フレームを2回や3回繰り返し表示するため、動いている映像では滑らかではなく離散的な動きになる。現在の液晶TVでは、カクカク感が生じる前者の方式ではなく、後者の中間フレームを生成する方式が多く採用されている。映像は時間軸の前後のフレームを比べた場合、前後のフレーム間の差分は少ない。後者の方式で中間フレームを生成する場合に、前後のフレームの映像の一部を用いる方法が取られている。しかしながら、前後のフレームのどの座標からどの程度の大きさの映像を、中間フレームのどの座標に用いるかは、前後のフレームを比較することにより生成する動きベクトルから決まるため、中間フレームの画質は動きベクトルに大きく影響される。よって、画像機器のセットのカラーモニタを直接見ながら機器の画質の調整や検査などを行う際に動きベクトル観測手段が必要となっている。
次に、動きベクトルをカラーモニタに表示する従来の技術として、特許文献1に記載された方法について、説明する。図9は従来技術として動きベクトルを用いて動き内挿処理を行なうテレビジョン方式変換装置を示す図である。図9において、ディジタル化された輝度信号101は、フレームメモリ102に入力される。このフレームメモリ102の容量はフレーム数の変換を行なうものであり、2フレーム以上あれば良い。フレームメモリ102の出力の1フレーム間時間的に離れた信号を用い、動きベクトル検出回路103で動きベクトルの検出を行なう。なお、輝度信号101があらかじめノンインターレース化されている場合は1フィールド離れた信号間でも可能である。動きベクトル検出回路103の動きベクトルの検出は、輝度信号の画面をm×nのブロックに分けてあり、ブロックごとに動きベクトルの検出を行なう。例えばm×nは8画素×8ラインで1ブロックとする方法がある。検出方法はブロック内の画素ごとに1フレーム間の信号差分の絶対値を演算し、その総和があらかじめ準備された参照ブロックの中から最小となるブロックを見付けるブロックマッチング法と、画像勾配とフレーム間差分を用いた勾配法とがあるがどちらの方法を用いても良い。ここで、ブロックマッチング法は、パターンマッチング法とも呼ばれる。検出されたブロック毎の動きベクトルはさらに104の動きベクトル判定回路にてその動きベクトルが、真の動きにマッチしているか否かを判定する。判定の方法は、たとえば現ブロックの近傍で現フィールド又はフレームより時間的に前で検出された動きベクトルや、また現ブロックでの現フィールド又はフレームの直前フィールド又はフレームで検出された動きベクトル等を用いて行なうものがある。
フレームメモリ102の出力の他方は、直線時間軸内挿回路106と動き補正フレーム内挿回路105に入力される。直線時間軸内挿回路106は従来のテレビジョン方式変換装置で用いられているフレーム間の時間軸直線内挿である。動き補正フレーム内挿回路105は動きベクトル判定回路104の出力の動きベクトルとフレーム内挿比により位置を補正したフレーム信号を用いて時間軸直線内挿を行う。内挿選択回路107では、前記の動き補正した内挿信号と動き補正のない直線内挿信号のうち、どちらを用いるか適正な選択条件下で選択するものである。内挿選択回路107の出力の輝度信号はフレーム数が出力方式に変換された信号であり、さらにこの信号はライン変換回路108でライン数の変換と変換で生じる画像の歪を補正するライン内挿を受ける。ライン変換回路108の出力が最終の輝度信号116として出力される。
色信号(C信号)111はディジタル化された色差信号R−Y,B−Yが時分割された信号である。この信号系の独自の動きベクトル検出回路、動きベクトル判定回路の必要性はなく、動きベクトルとしては輝度信号で検出、判定されたベクトルを共用する。113は動きベクトル選択回路、114は動きベクトルメモリ、115はC信号/動きベクトル切換回路である。動きベクトル検出回路103又は動きベクトル判定回路104の出力を動きベクトル選択回路113でいずれかを選択し、この選択された側のm×n単位で分割された各ブロックの動きベクトル情報を記憶するための少なくともNライン以上記憶できる動きベクトルメモリ114に書き込まれる。この動きベクトルメモリ114からの読み出し時は、アドレス変換によりブロック毎の動きベクトル情報を走査線毎の動きベクトル情報に変換すると同時に最終の輝度信号116とタイミングが合うように動きベクトル情報を読み出すものである。なお、動きベクトルメモリ114は動きベクトル情報を記憶するメモリ部と図示していない入出力基準信号から書き込み読み出しのメモリアクセス用の制御信号を発生するアドレス変換部から構成されている。
115は動きベクトルと本来の色信号系との切換回路であり、通常は色信号が選択されているが、動きベクトルをカラーモニタ上に表示したい場合は動きベクトル側を選択し、ライン変換回路108を通り出力が最終の色信号117として出力される。
以上詳細に説明したように、図9に示す従来技術によれば、検出された動きベクトルの長さ、方向を色信号のレベルと色相に置き換えているが、輝度信号は動き補正した内挿信号と動き補正のない直線内挿信号のどちらかを選択している。
図9に示す従来技術によれば、画像機器のセットのカラーモニタを直接見ながら機器の画質調整や検査などを行う際に、検出された動きベクトルの長さ、方向を色信号のレベルと色相に置き換え、動きベクトルの変化を色の変化としてカラーモニタに表示することにより動きベクトルを観察することができる。一方、図9に示す従来技術において、輝度信号は、動き補正した内挿信号と動き補正のない直線内挿信号のどちらかを選択しており、動きベクトルをカラーモニタに表示した映像から直接観察できない。
この直接観察できない理由を以下に説明する。輝度信号は、動きベクトルを用いないフレーム間の時間軸直線内挿もしくは、動きベクトルとフレーム内挿比により位置を補正したフレーム信号を用いて時間軸直線内挿のどちらかである。従って、輝度信号は動きベクトルに応じて入力映像同士を合成しており、動きベクトルを間接的に観察しているだけであり、直接観察できない。例えば、同一方向に早く動いている黒い映像と遅く動いている白い映像では、遅く動いている白い映像が早く動いている黒い映像よりも明るい。動きが大きい映像の色信号レベルは大きいため色の彩度が大きくなり明瞭に見えるが、上述した速く動いている黒い映像と遅く動いている白い映像の場合は、色信号のレベルに関係なく白い映像の方が黒い映像よりも明瞭に見えるため、動きの遅い映像の方が動きの速い映像よりも色信号のレベルが大きいと錯覚する。結果的に、画像機器のセットのカラーモニタを直接見ながら機器の画質調整、検査をする人が、動きベクトルが小さい映像を動きベクトルが大きいと錯覚してしまう。
特開平1−309598号公報
以下の分析は、本発明により与えられる。
特許文献1に記載の従来技術によれば、画像機器のセットのカラーモニタを直接見ながら機器の画質調整や検査などを行う際に、検出された動きベクトルの長さを色信号のレベル、方向を色相に置き換え、動きベクトルの変化を色の変化としてカラーモニタに表示することにより動きベクトルを観察することができる。しかしながら、特許文献1に記載の従来技術において、カラーモニタに表示される輝度信号は、動き補正した内挿信号、動き補正のない直線内挿信号のどちらかが選択されたものであり、動きベクトルの長さとは関連していない。
ここで、従来技術の問題は、カラーモニタに表示する輝度信号は、動きベクトルの長さと関連していないため、機器の調整や検査を行う観察者が、動きベクトルの長さをカラーモニタ表示画像から、判断することができないということである。
本発明の第1の側面による動きベクトル表示回路は、フレーム画像間の動きベクトルを検出する動きベクトル検出回路と、前記動きベクトル検出回路によって検出された動きベクトルの長さを算出するノルム演算回路と、を有し、前記検出された動きベクトルの長さを、表示信号の輝度成分とし、前記動きベクトルの第1の成分を、表示信号の第1の色差成分とし、前記動きベクトルの第2の成分を、表示信号の第2の色差成分とし、前記表示信号により前記動きベクトルを表示する。
本発明の第2の側面によるベクトル表示方法は、フレーム画像間の動きベクトルを検出するステップと、前記動きベクトルの長さを算出するステップと、前記動きベクトルの長さを表示信号の輝度成分とし、前記動きベクトルの第1の成分を表示信号の第1の色差成分とし、前記動きベクトルの第2の成分を表示信号の第2の色差成分とするステップと、前記表示信号を表示するステップと、を含む。
本発明のベクトル表示回路によれば、観察者の感覚に合致した動きベクトル表示回路を提供することができる。その理由は、検出した動きベクトルの長さを算出し、表示信号の輝度成分とし、表示するようにしたので、動きベクトルの長さに関し、観察者の感覚に合致した動きベクトルのモニタ表示が可能になったためである。
また、本発明のベクトル表示方法によれば、観察者の感覚に合致した動きベクトルの表示方法を提供することができる。その理由は、動きベクトルを検出するステップ、動きベクトルの長さを算出するステップ、動きベクトルの長さを、表示信号の輝度成分として表示するステップにより、動きベクトルの長さに関し、観察者の感覚に合致した動きベクトルのモニタ表示が可能になったためである。
本発明の実施例1を説明するためのブロック図である。 本発明の実施例2を説明するためのブロック図である。 本発明の実施例3を説明するためのブロック図である。 本発明の第2の実施形態を示すフローチャートである。 本発明の実施例3を示すフローチャートである。 本発明の実施例2を説明するための図である。 本発明におけるフレーム画像及び動きベクトルの表示例である。 本発明におけるレベル調整回路の設定例である。 従来技術のシステム全体を示すブロック図である。
本発明の実施形態について、必要に応じて図面を参照して説明する。なお、実施形態の説明において引用する図面及び図面の符号は実施形態の一例として示すものであり、それにより本発明による実施形態のバリエーションを制限するものではない。本発明の実施形態を、図1、図4を必要に応じて参照して説明する。
本発明による第1の実施形態の動きベクトル表示回路72は、図1に示すように、フレーム画像間の動きベクトルを検出する動きベクトル検出回路3と、動きベクトル検出回路3によって検出された動きベクトルの長さを算出するノルム演算回路4と、を有し、検出された動きベクトルの長さを、表示信号の輝度成分とし、動きベクトルの第1の成分を、表示信号の第1の色差成分とし、動きベクトルの第2の成分を、表示信号の第2の色差成分とし、表示信号により動きベクトルを表示する。ここで、表示信号の輝度成分は図1の輝度信号出力7に、動きベクトルの第1の成分は図1の10に、動きベクトルの第2の成分は図1の11に、第1の色差成分は図1の色差信号Cb出力24に、第2の色差成分は図1の色差信号Cr出力25に、対応している。
本発明の第1の実施形態において、動きベクトル検出回路3は、前のフレームの輝度信号入力である輝度(n)と、現在のフレームの輝度信号入力である輝度(n+1)から、動きベクトルを検出している。ここで、動きベクトル検出方法として、例えば、ブロックマッチング法が用いられる。動きベクトル検出回路3が算出した動きベクトルは、二次元ベクトルであり、第1の成分xと、第2の成分yで表される。ノルム演算回路4では、第1の成分xと、第2の成分yから、式(1)を用いて、動きベクトルのノルムNORMが計算される。
Figure 2011259174
式(1)で表されるノルムNORMは、動きベクトルの長さである。動きベクトル表示回路72は、式(1)で算出されたノルムNORMを、表示信号の輝度成分YOに、第1の成分xを表示信号の第1の色差成分CbOに、第2の成分yを表示信号の第2の色差成分CrOとして、出力し、不図示のカラーモニタに表示信号を供給し、モニタ表示する。
本発明による第2の実施形態の動きベクトル表示方法は、図4に示すように、フレーム画像間の動きベクトルを検出するステップS11と、動きベクトルの長さを算出するステップS12と、動きベクトルの長さを表示信号の輝度成分とし、動きベクトルの第1の成分を表示信号の第1の色差成分とし、動きベクトルの第2の成分を表示信号の第2の色差成分とするステップS13と、表示信号を表示するステップS14と、を含む。
以下、実施例について、図面を参照して詳しく説明する。
[実施例1の構成]
図1は、本発明の実施例1の動きベクトル表示回路72を示すブロック図である。現在のフレームの輝度信号入力1と、前のフレームの輝度信号入力2と、動きベクトル検出回路3と、ノルム演算回路4と、セレクタ6と輝度信号出力7と、ノルム演算回路4の出力9と、動きベクトル検出回路3の出力である動きベクトルの第1の成分xと、第2の成分yと、現在のフレームの色差信号Cb入力12と、現在のフレームの色差信号Cr入力13と、動きベクトル検出回路3の出力10を遅延させる遅延回路18と、動きベクトル検出回路3の出力11を遅延させる遅延回路19と、遅延回路18の出力20と、遅延回路19の出力21と、セレクタ22と、セレクタ23と、色差信号Cb出力24と、色差信号Cr出力25で構成される。
セレクタ6、セレクタ22、セレクタ23は、表示信号選択部を構成している。上位の不図示のユーザインターフェース部から、表示信号選択部に対して、表示モード71が与えられ、表示選択部は、表示モード71に基づいて、表示する信号を選択するように構成される。
[実施例1の動作]
図1を参照し、実施例1の動作について説明する。フレーム画像や動きベクトルが表示されたカラーモニタを観察する観察者は、上位のユーザインターフェース部で、表示モードの選択を行う。表示モードは、通常画像表示モードと動きベクトル表示モードのいずれかであり、通常画像表示モードが選択された場合は、表示画像はフレーム画像が表示され、動きベクトル表示モードが選択された場合は、表示画像は動きベクトルが表示される。選択された表示モードは、表示モード71として、動きベクトル表示回路72の表示信号選択部を構成しているセレクタ6、22、23に与えられる。
表示モード71が、通常画像表示モードの場合には、セレクタ6は、現在のフレームの輝度信号入力を、表示信号の輝度成分YOとして選択し、セレクタ22は、現在のフレームの色差信号Cb入力を、表示信号の第1の色差成分CbOとして選択し、セレクタ23は、現在のフレームの色差信号Cr入力を、表示信号の第2の色差成分CrOとして選択する。選択されたYO、CbO、CrOは、カラーモニタに表示され、観察者は、フレーム画像を観察する。
一方、表示モード71が、動きベクトル表示モードの場合には、セレクタ6は、ノルム演算回路の出力を表示信号の輝度成分YOとして選択し、セレクタ22は、遅延回路18の出力20を表示信号の第1の色差成分CbOとして選択し、セレクタ23は、遅延回路19の出力21を表示信号の第2の色差成分CrOとして選択する。ここで、遅延回路18、19は、ノルム演算回路4で発生する遅延によるタイミングのずれを補正し、ノルム演算回路の出力4と、遅延回路の18の出力20と、遅延回路の19の出力21のタイミングを合うようにするために設けられている。遅延回路18には、動きベクトル検出回路3で検出された動きベクトルの第1の成分xが与えられ、遅延回路19には、動きベクトル検出回路3で検出された動きベクトルの第2の成分yが与えられている。従って、動きベクトルの第1の成分xが、表示信号の第1の色差成分CbOとして選択され、動きベクトルの第2の成分yが、表示信号の第2の色差成分CrOとして選択されていることになる。
検出された動きベクトルの方向をθU、表示信号の色相角をθHとすると、θU、θHは、各々、式(2)、(3)により表される。
Figure 2011259174
Figure 2011259174

前述のように、動きベクトル表示モードの場合には、CbOがxに、CrOがyになるように表示信号選択部は選択するので、θHとθUは等しくなり、動きベクトルの方向は、表示信号の色相で表されることになる。また、表示信号の輝度成分YOは、ノルム演算回路4の出力NORMとなる。ここで、NORMは式(1)で定義され、動きベクトルの長さを表す。従って、観察者は、動きベクトルの長さを、カラーモニタの表示画像の輝度で、動きベクトルの方向をカラーモニタの表示画像の色相で評価することができる。
本発明の動きベクトル表示回路は、映像を表現する輝度と2つの色差信号を動きベクトルのみから生成しており、動きベクトルを生成する元になった現在や前のフレームは用いないため余計な情報を含んでおらず、動きベクトルを忠実に表示できる。よって、従来技術において、動きベクトルの長さが表示画像の明るさの変化に関連していないことにより、観察者が、動きベクトルの長さをカラーモニタ表示画像から、判断することができないという問題を解決している。
次に、図7を用いて具体例を説明する。図7は、図1に示した本発明の実施例1の動きベクトル表示回路を適用した表示装置のカラーモニタ上に表示される画像の一例である。図7の(A)は前のフレームの映像を示し、図7の(B)は現在のフレームの映像を示し、図7の(C)は動きベクトルを表示した映像を示したものである。表示装置のユーザインターフェース部による表示モードの指示が、通常画像表示モードである場合には、図7の(A)、(B)のようにフレーム画像がカラーモニタに表示される。一方、表示装置のユーザインターフェース部による表示モードの指示が、動きベクトル表示モードである場合には、図7の(C)のように、動きベクトルがカラーモニタに表示される。
動きベクトル表示回路72は、図7の(A)の前のフレームの映像40と図7の(B)の現在のフレームの映像41から動きベクトルを生成する。図7の(A)の前のフレームの映像40と図7の(B)の現在のフレームの映像41には、ビル43と自動車44とトラック45と道路面46がある。ビル43とトラック45と道路面46は動いておらず、これらビル43とトラック45と道路面46は、図7の(A)の前のフレームの映像40と図7の(B)現在のフレームの映像41で差が無い。すなわちビル43とトラック45と道路面46は動きベクトルが0である。自動車44は左から右に動いており動きベクトルが有る。図7の(A)のフレームの映像40と図7の(B)の現在のフレームの映像41を実施例1の動きベクトル表示回路72に入力した結果の表示画像は、図7の(C)の動きベクトルを表示した映像42となる。
図7の(C)の映像42には、色相を動きベクトルの方向とし輝度を動きベクトルの長さとして、動きベクトルが表示された自動車47のみが表示され、動いていない映像は表示されない。よって、画像機器のセットにおいてカラーモニタを直接見ながら機器の調整や検査などを行う際に、動きベクトルをカラーモニタに表示した映像から直接観察できる。また、動きベクトルの表示は、動画にして、連続表示させてもよいし、例えば、画質に問題のあるところで停止させ、静止画として表示させてもよい。また、ユーザインターフェース部で、表示モードの切り替え指示を行うようにすることで、観察者は、動きベクトルと対応するフレーム画像とを交互に切り替えて見ることができるので、画質調整や検査を効率良く進めることができる。
図2は本発明の実施例2の動きベクトル表示回路73のブロック図である。実施例2は、ノルム演算回路4とセレクタ6の間にレベル調整回路31を、遅延回路18とセレクタ22の間レベル調整回路32を、遅延回路19とセレクタ23の間にレベル調整回路33を実施例1に追加した構成になっている。
レベル調整回路31は、ノルム演算回路4の出力9のレベルをシフトする機能と、利得をかける機能と、一定値を超えた場合に一定値に置き変える機能を有する。レベル調整回路32は、動きベクトル検出回路3の出力10を遅延させる遅延回路18の出力20のレベルをシフトする機能と、利得をかける機能と、一定値を超えた場合に一定値に置き変える機能を有する。レベル調整回路33は、動きベクトル検出回路3の出力11を遅延させる遅延回路19の出力21のレベルをシフトする機能と、利得をかける機能と、一定値を超えた場合に一定値に置き変える機能を有する。
図2のレベル調整回路31、32、33により、動きベクトルのレベルをシフトすることで、動きベクトルのレベルが微小変化で、カラーモニタ上でそのレベルを確認することが困難な場合でも、確認できるレベルにシフトすることにより動きベクトルを見やすくすることができる。例えば、小さな飛行機が右から左にゆっくりと移動し、背景が飛行機と逆方向の左から右にゆっくりと移動している場合を考えてみる。ゆっくり動いているために動きベクトルは小さい。飛行機と背景の色相と輝度のレベルが低く全体的に暗く見えるため、飛行機と背景の区別がつきにくい。そこで、レベル調整回路のレベルをシフトすることにより、飛行機と背景の色相と輝度のレベル差が広がり、飛行機と背景が異なる動きベクトルを持つことが確認できる。
次に動きベクトルに利得をかける機能を有することで、動きベクトルの変化が微小な場合に動きベクトルの変化が見やすくすることができる。これも前述の飛行機と背景の例と同じように、利得をかけることで飛行機と背景の色相と輝度のレベル差が広がり動きベクトルを確認できる。
さらに、動きベクトルが一定値を超えた場合に一定値に置き変える機能を有する事で、前記レベルをシフトする機能と前記利得をかける機能により、上限を超えた場合に表示できるレベル以内に収めることができる。
次に、レベル調整回路31の設定例を図8の(A)に、レベル調整回路32の設定例を図8の(B)に示す。レベル調整回路33の設定例は、レベル調整回路32の設定と同様なので、説明は省略する。図8の(A)では、レベルをシフトする機能、利得をかける機能、一定値を超えた場合に一定値に置き換える機能を使用した設定例を示している。一方、図8の(B)では、利得をかける機能、一定値を超えた場合に一定値に置き換える機能を使用した設定例を示している。
次に、図6は、ある色相θHの色再現域を模式的に示したものである。横軸の彩度Cは、式(4)で定義される。
Figure 2011259174
観察者による評価に適した輝度信号Yの範囲50は、例えば、Y1〜Y2のような中間領域に限定される。その理由は、低輝度の場合、暗くて輝度の変化を観察することが難しい。一方、高輝度の場合には、色彩度が小さくなり、色相を判別しにくくなるためである。また、観察者による評価に適した彩度の範囲51は、ある彩度Cthよりも大きい領域であることが望ましい。彩度が大きい色のほうが、観察者は、色相を判別しやすいからである。以上から、評価に適した色再現領域は、例えば、図6の領域52のようになる。ここで、図6は、色再現域を模式的に示すためのものであり、実際のモニタの色再現域ではない。
動きベクトルの長さを、図6のY1〜Y2に収めて最適表示させるには、以下のようにヒストグラム情報の解析により自動的に、レベル調整回路31の設定を行うようにすればよい。まず、動きベクトルのノルムに関してヒストグラムを算出し、ヒストグラムの最大値NORM_MAX、最小値NORM_MINを求める。ノイズの影響を除去する必要がある場合には、最大値、最小値ではなく、ヒストグラムの99%点、1%点を用いればよい。その後、図8の(A)のNORM1をNORM_MINに、図8の(A)のNORM2をNORM_MAXに設定した特性を、レベル調整回路31に設定すれば、NORM_MIN〜NORM_MAXをY1〜Y2に割り当ててカラーモニタ表示することができ、観察者に対し、最適な輝度の動きベクトルを表示させることができる。ここで、ヒストグラムは、ある一つのフレームに対し算出してもよいし、動画の複数フレーム画像から算出してもよい。
ところで、経験が浅い観察者は、動きベクトルの方向と色相の関係が、身に付いていないので、それを補うために、図7の(C)のカラーモニタの画面内に、動きベクトルと色相の関係を見るためのチャート75を表示させるとよい。このチャートは、動きベクトルのx成分、y成分を2軸とした座標系の各々の点に、対応した輝度Y、色差Cr、Cbの色を表示したチャートである。0度、45度、90度、135度、180度、225度、270度、315度の方向に線を付加しておくと、色チャートと角度の関係を一目で見ることができる。このチャートにより、経験が浅い観察者であっても、画質の調整や検査を効率良く進めることができる。
図3、図5を参照し、実施例3について、説明する。実施例3は、フレームレート変換で中間フレームを発生させる場合に、中間フレーム画像の動きベクトルの表示を可能にし、中間フレームの画質調整や検査が可能なように構成したものである。図3は、実施例3を説明するためのブロック図である。図3の動きベクトル表示回路74は、図2の実施例2に対して、フレーム補間生成部61を付加した構成になっている。フレーム補間生成部61は、輝度信号に対するフレーム補間(Y)62と、色差信号Cbに対するフレーム補間(Cb)63と、色差信号Crに対するフレーム補間(Cr)64を含んでいる。
次に、実施例3の動作を、図5のフローチャートを参照し、説明する。まず、ステップS21で、動き検出ベクトルの検出を行う。実施例3では、図1の動きベクトル検出回路3が算出する動きベクトル、あるいは、図5のステップS21が算出する動きベクトルは、中間フレームにおける動きベクトルである。次に、ステップS22で表示モードが、通常画像モード、動きベクトル表示モードのどちらであるかを判別する。ここで、表示モードは、実施例1、実施例2と同様に、上位のユーザインターフェース部で、選択される。次に、通常画像表示モードの場合には、ステップS26で、フレーム補間処理により、中間フレームを生成し、ステップS27で中間フレームを含むフレーム画像を表示輝度信号、表示Cb信号、表示Cr信号に選択する。一方、動きベクトル表示モードの場合には、ステップS23で動きベクトルのノルム演算を行い、ステップS24で輝度信号のレベル調整、Cbのレベル調整、Crのレベル調整を行い、ステップS25で、動きベクトルのノルムを表示輝度信号、動きベクトルのx成分を表示Cb信号、動きベクトルのy成分を表示Cr信号に選択する。最後に、通常画像モードの場合はS27で選択された表示信号、動きベクトル表示モードの場合にはS25で選択された表示信号により、ステップS28で、モニタ表示を行う。
次に、実施例3の動きベクトル表示回路を使用した表示装置で観察者が行う画質調整について、説明する。まず、観察者は、ユーザインターフェース部で、通常画像表示モードを指示し、フレームレート変換による中間フレームを含んだフレームレート変換後の動画像を観察する。また、中間フレームが綺麗にできているかどうかを確認するため、画質確認を行いたい中間フレームの位置で動画を停止し、静止画表示させる。もし、中間フレーム画像が汚い場合には、ユーザインターフェース部で動きベクトル表示モードに切り替え、その中間フレームの動きベクトルをモニタに表示する。そして、中間フレーム画像が汚い領域で、中間フレームの動きベクトルの長さ、方向を観察することにより、中間フレーム画像が汚くなっている原因を解析した後、中間フレーム画像の画質調整を行う。
次に、実施例3の動きベクトル表示回路を使用した表示装置で、観察者が行う検査の例について示す。検査に用いる動きベクトルを検出するテスト画像として、全体的に左から右に移動しているものを使用する。動きベクトル検出が正しければ、動きベクトル表示モードでは、動きベクトルの方向は、同じ方向を示すはずであり、表示画像は同じ色相になるはずである。もし、画面の一部の領域で、表示される色相が異なっていれば、その領域で動きベクトルを誤検出しているとみなし、検査不合格と判定され、機器の再調整が必要であると判断される。このように、実施例3は、フレームレート変換で生成した中間フレームの動きベクトルの画質調整や検査を効率よく行うのに適用することができる。
本発明の動きベクトル表示回路は、フレームレート変換機能を持つ映像処理装置の画質調整、検査などに適用可能である。
なお、本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
1 現在のフレームの輝度信号入力
2 前のフレームの輝度信号入力
3 動きベクトル検出回路
4 ノルム演算回路
6、22、23 セレクタ
7 輝度信号出力
9 ノルム演算回路4の出力
10、11 動きベクトル検出回路3の出力
12 現在のフレームの色差信号Cb入力
13 現在のフレームの色差信号Cr入力
18 動きベクトル検出回路3の出力10を遅延させる遅延回路
19 動きベクトル検出回路3の出力11を遅延させる遅延回路
20 遅延回路18の出力
21 遅延回路19の出力
24 色差信号Cb出力
25 色差信号Cr出力
31、32、33 レベル調整回路
40 前のフレームの映像
41 現在のフレームの映像
42 本発明を適用し動きベクトルを表示した映像
43 ビル
44 自動車
45 トラック
46 道路面
47 動きベクトルが表示された自動車
50 評価に適した輝度信号Yの範囲
51 評価に適した彩度の範囲
52 評価に適した色再現領域
61 フレーム補間生成部
62 輝度信号Yのフレーム補間回路
63 色差信号Cbのフレーム補間回路
64 色差信号Crのフレーム補間回路
65 前のフレームの色差信号Cb入力
66 前のフレームの色差信号Cr入力
67 輝度信号Yの中間フレーム画像信号
68 色差信号Cbの中間フレーム画像信号
69 色差信号Crの中間フレーム画像信号
71 表示モード
72、73、74 動きベクトル表示回路
75 動きベクトルと色相の関係を見るためのチャート
101、116 輝度信号
102 フレームメモリ
103 動きベクトル検出回路
104 動きベクトル判定回路
105 動き補正フレーム内挿回路
106 直線時間軸内挿回路
107 内挿選択回路
108 ライン変換回路
111 色信号(C信号)
113 動きベクトル選択回路
114 動きベクトルメモリ
115 C信号/動きベクトル切換回路
117 色信号

Claims (8)

  1. フレーム画像間の動きベクトルを検出する動きベクトル検出回路と、
    前記動きベクトル検出回路によって検出された動きベクトルの長さを算出するノルム演算回路と、を有し、
    前記検出された動きベクトルの長さを、表示信号の輝度成分とし、
    前記動きベクトルの第1の成分を、表示信号の第1の色差成分とし、
    前記動きベクトルの第2の成分を、表示信号の第2の色差成分とし、
    前記表示信号により前記動きベクトルを表示することを特徴とする動きベクトル表示回路。
  2. 通常画像表示モード、または動きベクトル表示モードのいずれかの表示モードに応じて、表示する信号を切り替える表示信号選択部と、をさらに有し、
    前記表示モードが、通常画像表示モードの場合には、前記表示信号選択部は、前記フレーム画像を前記表示信号として選択し、
    前記表示モードが、動きベクトル表示モードの場合には、前記表示信号選択部は、前記動きベクトルの長さを表示信号の輝度成分とし、前記動きベクトルの第1の成分を表示信号の第1の色差成分とし、前記動きベクトルの第2の成分を表示信号の第2の色差成分として選択することを特徴とする請求項1に記載の動きベクトル表示回路。
  3. 前記フレーム画像から中間フレーム画像を生成するフレーム補間生成部をさらに有し、
    前記動きベクトル検出回路は、中間フレームにおける動きベクトルを検出し、
    前記フレーム補間生成部は、前記フレーム画像と、前記中間フレームにおける動きベクトルから、前記中間フレーム画像を生成し、
    前記表示モードが、通常画像表示モードの場合には、前記表示信号選択部は、前記フレーム画像および前記フレーム補間生成部で生成された前記中間フレーム画像を前記表示信号として選択し、
    前記表示モードが、動きベクトル表示モードの場合には、前記中間フレームにおける動きベクトルの長さを表示信号の輝度成分とし、前記中間フレームにおける動きベクトルの第1の成分を表示信号の第1の色差成分とし、前記中間フレームにおける動きベクトルの第2の成分を表示信号の第2の色差成分として選択することを特徴とする請求項2に記載の動きベクトル表示回路。
  4. 前記ノルム演算回路の出力をレベル調整する第1のレベル調整回路と、
    前記動きベクトルの第1の成分をレベル調整する第2のレベル調整回路と、
    前記動きベクトルの第2の成分をレベル調整する第3のレベル調整回路と、をさらに含むことを特徴とする請求項1乃至3のいずれか1項に記載の動きベクトル表示回路。
  5. フレーム画像間の動きベクトルを検出するステップと、
    前記動きベクトルの長さを算出するステップと、
    前記動きベクトルの長さを表示信号の輝度成分とし、前記動きベクトルの第1の成分を表示信号の第1の色差成分とし、前記動きベクトルの第2の成分を表示信号の第2の色差成分とするステップと、前記表示信号を表示するステップと、を含むことを特徴とする動きベクトル表示方法。
  6. 通常画像表示モード、または動きベクトル表示モードのいずれかの表示モードを判別するステップと、
    前記表示モードが通常画像表示モードの場合に、前記フレーム画像を表示するステップと、
    前記表示モードが動きベクトル表示モードの場合に、前記フレーム画像間の動きベクトルの長さを算出するステップ、前記動きベクトルの長さを表示信号の輝度信号とし、前記動きベクトルの第1の成分を表示信号の第1の色差信号とし、前記動きベクトルの第2の成分を前記表示信号の第2の色差信号とするステップと、を含むことを特徴とする請求項5に記載の動きベクトル表示方法。
  7. 前記動きベクトルを検出するステップは、中間フレームにおける動きベクトルを検出し、
    前記フレーム画像と、前記中間フレームにおける動きベクトルから、前記中間フレームにおける中間フレーム画像をフレーム補間するステップと、
    前記通常画像表示モードが選択された場合に、前記フレーム画像及び前記中間フレーム画像を表示するステップと、
    前記動きベクトル表示モードが選択された場合に、前記中間フレームにおける動きベクトルの長さを表示信号の輝度成分とし、前記中間フレームにおける動きベクトルの第1の成分を表示信号の第1の色差成分とし、前記中間フレームにおける動きベクトルの第2の成分を表示信号の第2の色差成分とするステップと、を含むことを特徴とする請求項6に記載の動きベクトル表示方法。
  8. 前記ノルム演算回路の出力をレベル調整する第1のレベル調整を行うステップと、
    前記動きベクトルの第1の成分をレベル調整する第2のレベル調整を行うステップと、
    前記動きベクトルの第2の成分をレベル調整する第3のレベル調整を行うステップと、をさらに含むことを特徴とする請求項5乃至7のいずれか1項に記載の動きベクトル表示方法。
JP2010131369A 2010-06-08 2010-06-08 動きベクトル表示回路及び動きベクトル表示方法 Withdrawn JP2011259174A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010131369A JP2011259174A (ja) 2010-06-08 2010-06-08 動きベクトル表示回路及び動きベクトル表示方法
US13/151,890 US20110299598A1 (en) 2010-06-08 2011-06-02 Motion vector display circuit and motion vector display method
CN2011101595665A CN102281459A (zh) 2010-06-08 2011-06-08 运动矢量显示电路以及运动矢量显示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131369A JP2011259174A (ja) 2010-06-08 2010-06-08 動きベクトル表示回路及び動きベクトル表示方法

Publications (1)

Publication Number Publication Date
JP2011259174A true JP2011259174A (ja) 2011-12-22

Family

ID=45064445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131369A Withdrawn JP2011259174A (ja) 2010-06-08 2010-06-08 動きベクトル表示回路及び動きベクトル表示方法

Country Status (3)

Country Link
US (1) US20110299598A1 (ja)
JP (1) JP2011259174A (ja)
CN (1) CN102281459A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946256B1 (ko) * 2018-07-09 2019-02-11 이노뎁 주식회사 압축영상에 대한 움직임 벡터의 시각화 표시 처리 방법
KR20200008183A (ko) * 2018-07-16 2020-01-28 이노뎁 주식회사 움직임 벡터의 시각화 처리 기반의 다채널 압축영상 표시 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008912B1 (ko) * 2013-04-22 2019-08-09 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8615141B2 (en) * 2009-08-10 2013-12-24 Seiko Epson Corporation Systems and methods for motion blur reduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946256B1 (ko) * 2018-07-09 2019-02-11 이노뎁 주식회사 압축영상에 대한 움직임 벡터의 시각화 표시 처리 방법
KR20200008183A (ko) * 2018-07-16 2020-01-28 이노뎁 주식회사 움직임 벡터의 시각화 처리 기반의 다채널 압축영상 표시 방법
KR102211448B1 (ko) * 2018-07-16 2021-02-03 이노뎁 주식회사 움직임 벡터의 시각화 처리 기반의 다채널 압축영상 표시 방법

Also Published As

Publication number Publication date
CN102281459A (zh) 2011-12-14
US20110299598A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
KR100657280B1 (ko) 신경망을 이용한 이미지 순차주사화 방법 및 장치
US8189941B2 (en) Image processing device, display device, image processing method, and program
JP4913163B2 (ja) 画像表示装置及び画像表示方法
JP5394305B2 (ja) 画像処理装置
KR101295649B1 (ko) 화상처리장치, 화상처리방법, 및 기억매체
US8456578B2 (en) Image processing apparatus and control method thereof for correcting image signal gradation using a gradation correction curve
US7046257B2 (en) Image signal processing apparatus and method
JP2011259174A (ja) 動きベクトル表示回路及び動きベクトル表示方法
JP2008028507A (ja) 画像補正回路、画像補正方法および画像表示装置
JPH077685A (ja) テレビジョン受像機
JP5219646B2 (ja) 映像処理装置及び映像処理装置の制御方法
JP2010054729A (ja) 液晶表示装置および色処理方法
US7268828B2 (en) Television receiver and control method thereof for displaying video signals based on different television modes
JP4505000B2 (ja) 画像表示装置及び方法、画像処理装置及び方法
US20090207188A1 (en) Image display device, highlighting method
US20040263683A1 (en) Video signal processing apparatus
US20080211966A1 (en) Image display device
JP7502902B2 (ja) 画像処理装置、撮像装置、制御方法及びプログラム
US7495706B2 (en) Video signal setting device for performing output setting to a display device
JP4656546B2 (ja) 映像信号処理装置
JPH09139865A (ja) ガンマ補正回路
US20090079866A1 (en) Video Signal Oblique Interpolating Apparatus and Method
JP2021110873A (ja) 情報処理装置、表示装置、情報処理方法
JPH06205324A (ja) Pipの子画面位置制御方法及び装置
JP2016122082A (ja) 画像表示装置及びその制御方法

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903