JP2011258635A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2011258635A
JP2011258635A JP2010129825A JP2010129825A JP2011258635A JP 2011258635 A JP2011258635 A JP 2011258635A JP 2010129825 A JP2010129825 A JP 2010129825A JP 2010129825 A JP2010129825 A JP 2010129825A JP 2011258635 A JP2011258635 A JP 2011258635A
Authority
JP
Japan
Prior art keywords
layer
type
region
drift layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010129825A
Other languages
Japanese (ja)
Inventor
Hiroshi Watanabe
寛 渡邊
Kenichi Otsuka
健一 大塚
Narihisa Miura
成久 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010129825A priority Critical patent/JP2011258635A/en
Publication of JP2011258635A publication Critical patent/JP2011258635A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide

Abstract

PROBLEM TO BE SOLVED: To achieve reduced channel resistance and improved breakdown voltage of a gate insulating film in a vertical semiconductor device in which p-type semiconductor regions at cell corners are connected to each other.SOLUTION: The semiconductor device comprises: an n-type drift layer 2 formed on a surface of an SiC substrate; a plurality of p-type base layers 3 selectively formed on the surface of the n-type drift layer 2; n-type source regions 4 that are selectively formed on surfaces of the p-type base layers 3, and define the surfaces of the p-type base layers 3 sandwiched between the regions and the n-type drift layer 2 as channel regions; a gate electrode 6 formed over from the channel regions to the n-type drift layer 2 via a gate insulating film 5; and a p-type semiconductor layer 12 formed in such a way that, in a region of the n-type drift layer 2 surrounded by the p-type base layers 3 in a plane view, the p-type semiconductor layer 12 is extended from a predetermined part of the p-type base layers 3 to the center of the region.

Description

この発明は、パワーMOSFETに関するものである。   The present invention relates to a power MOSFET.

SiC基板を用いたパワーMOSFETでは、例えばn型SiC基板の表面に複数のセルが縦横に配列される。各セルは基板表層部にp型ベース層、さらにその内側の表層部にn型ソース層を形成し、その上面にはゲート絶縁膜、ゲート電極およびソース電極、裏面にドレイン電極を形成して作成される。n型半導体基板とn型ソース層との間のp型ベース層表面をチャネル領域といい、その距離をチャネル長と定義する。チャネル領域のうちn型半導体基板とp型ベース層との境界の長さ(周囲長)が長いほど、またセルピッチが小さいほど単位面積当たりのチャネル抵抗は減少する。ソース電極はソースコンタクト層を介してp型コンタクト層及びn型コンタクト層に電気的に接触している。   In a power MOSFET using a SiC substrate, for example, a plurality of cells are arranged vertically and horizontally on the surface of an n-type SiC substrate. Each cell is formed by forming a p-type base layer on the substrate surface layer, an n-type source layer on the inner surface layer, a gate insulating film, a gate electrode and a source electrode on the top surface, and a drain electrode on the back surface. Is done. The surface of the p-type base layer between the n-type semiconductor substrate and the n-type source layer is called a channel region, and the distance is defined as the channel length. In the channel region, the channel resistance per unit area decreases as the boundary length (peripheral length) between the n-type semiconductor substrate and the p-type base layer is longer, and as the cell pitch is smaller. The source electrode is in electrical contact with the p-type contact layer and the n-type contact layer through the source contact layer.

特許文献1には、Si基板を用いて製造されたn型DMOS(Double−Diffused MOS)素子において、p型用ソースコンタクト部とn型用ソースコンタクト部が分離して配置され、セルコーナー部のp型半導体領域にp型ソースコンタクト部を配置した縦型半導体装置が記載されている。これは、p型ベース層を部分的に接続して1つの連続した領域とし、ソース電極と接続するp型ベース層と同一導電型の抜き取り領域を形成することで、寄生トランジスタの動作を抑制し、破壊耐量を向上させる方法として示されている。   In Patent Document 1, in an n-type DMOS (Double-Diffused MOS) device manufactured using a Si substrate, a p-type source contact portion and an n-type source contact portion are arranged separately, and a cell corner portion is formed. A vertical semiconductor device is described in which a p-type source contact portion is disposed in a p-type semiconductor region. This is because the p-type base layer is partially connected to form one continuous region, and the extraction region of the same conductivity type as the p-type base layer connected to the source electrode is formed, thereby suppressing the operation of the parasitic transistor. It is shown as a method of improving the breakdown tolerance.

また、特許文献2には、セルコーナー部が接続されたp型半導体領域に第2のチャネル領域を設け、かつ第2のチャネル領域表面にもソース領域とソース電極を設けて第2のセルとしたパワーMOSFETが記載されている。これは、第2のセルを設けない場合に対して単位面積当たりのチャネル周囲長が長くなり、チャネル抵抗を減少することができる構造として示されている。   Further, in Patent Document 2, a second channel region is provided in a p-type semiconductor region to which a cell corner portion is connected, and a source region and a source electrode are provided on the surface of the second channel region. A power MOSFET is described. This is shown as a structure in which the channel perimeter per unit area becomes longer and the channel resistance can be reduced compared to the case where the second cell is not provided.

特開平5−102487号公報Japanese Patent Laid-Open No. 5-102487 特開平1−238173号公報JP-A-1-238173

しかしながら、特許文献1ではセルコーナー部のp型半導体領域内にチャネル領域が形成されていない為、p型半導体領域はセルとして機能せず、単位面積当たりのチャネル抵抗が増大するという問題がある。   However, in Patent Document 1, since the channel region is not formed in the p-type semiconductor region at the cell corner, there is a problem that the p-type semiconductor region does not function as a cell and the channel resistance per unit area increases.

また、特許文献2では、互いに接続されたセルコーナー部にチャネル領域が形成された第2のセルが設けられているが、四方がセルで囲まれたn型半導体領域のサイズ(長辺と短辺)はセルのサイズとほぼ同じになり、セルのサイズと独立に決定することが出来ない。その結果、セルで囲まれたn型半導体領域上(特に、平面視における中央部付近)のゲート絶縁膜に電界集中が生じて、耐圧が低下するという課題がある。   Further, in Patent Document 2, a second cell in which a channel region is formed in a cell corner portion connected to each other is provided. However, the size (long side and short side) of an n-type semiconductor region surrounded on all four sides by the cell. (Side) is almost the same as the cell size and cannot be determined independently of the cell size. As a result, there is a problem in that electric field concentration occurs in the gate insulating film on the n-type semiconductor region surrounded by the cells (particularly, in the vicinity of the central portion in plan view), and the breakdown voltage decreases.

本発明は、上述の問題点に鑑みてなされたものであり、セルコーナー部のp型半導体領域が互いに接続された縦型の半導体装置において、チャネル抵抗の低減とゲート絶縁膜の絶縁破壊電圧の向上を両立することを目的としている。   The present invention has been made in view of the above-described problems, and in a vertical semiconductor device in which the p-type semiconductor regions at the cell corners are connected to each other, the channel resistance is reduced and the breakdown voltage of the gate insulating film is reduced. The aim is to achieve both improvements.

本発明の半導体装置は、SiC基板表面に形成された第1導電型のドリフト層と、ドリフト層表面に選択的に複数形成された、第2導電型のベース層と、ベース層表面に選択的に形成された領域であって、当該領域とドリフト層とで挟まれたベース層表面をチャネル領域として規定する第1導電型のソース領域と、チャネル領域上からドリフト層上に渡って、絶縁膜を介して形成されたゲート電極と、平面視でベース層に囲まれたドリフト層の領域において、当該領域の中心部と前記ベース層とを繋ぐ第2導電型の第1半導体層と、を備える。   The semiconductor device of the present invention includes a first conductivity type drift layer formed on the surface of the SiC substrate, a plurality of second conductivity type base layers selectively formed on the drift layer surface, and selective on the surface of the base layer. A source region of a first conductivity type that defines a base layer surface sandwiched between the region and the drift layer as a channel region, and an insulating film extending from the channel region to the drift layer And a first conductive semiconductor layer of a second conductivity type that connects the center of the region and the base layer in the region of the drift layer surrounded by the base layer in plan view. .

本発明の半導体装置は、平面視でベース層に囲まれたドリフト層の領域において、当該領域の中心部と前記ベース層とを繋ぐ第2導電型の第1半導体層を備えるため、ゲート絶縁膜の絶縁破壊電圧が向上する。   Since the semiconductor device of the present invention includes the first semiconductor layer of the second conductivity type that connects the center of the region and the base layer in the region of the drift layer surrounded by the base layer in plan view, the gate insulating film Improves the dielectric breakdown voltage.

本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す断面図である。It is sectional drawing which shows the SiC semiconductor device which concerns on this invention. 本発明に係るSiC半導体装置を示す平面図である。It is a top view which shows the SiC semiconductor device which concerns on this invention.

(実施の形態1)
<構成>
本実施の形態の半導体装置であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の断面図を図15に、平面図を図1〜図7に示す。図1はMOSFETの表面パターンを示す平面図であり、図2〜図7は図1の平面図と同位置における異なる層のパターンを示している。図15(a)は、図1のA−A’断面図であり、図15(b)は図1のB−B’断面図である。
(Embodiment 1)
<Configuration>
FIG. 15 is a sectional view of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) which is a semiconductor device of the present embodiment, and FIGS. FIG. 1 is a plan view showing a surface pattern of a MOSFET, and FIGS. 2 to 7 show patterns of different layers at the same position as the plan view of FIG. 15A is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 15B is a cross-sectional view taken along the line BB ′ in FIG.

図15に示すように、MOSFETは、高濃度のn型不純物を含むn+型ドレイン層1aとn+型ドレイン層1a上に形成される比較的低濃度のn−型ドリフト層2からなるSiC基板1を備える。さらに、n−型ドリフト層2の表層部に形成されるp型ベース層3と、p型ベース層3の表層部で、その外周部から所定距離だけ離れた内側に形成されるn+型ソース層4(図4参照)と、n+型ソース層4を貫通してp型ベース層3と接触するp+型コンタクト層13とを備える。p+型コンタクト層13はp型ベース層3よりも高いp型不純物濃度を有する。p型ベース層3、n+型ソース層4、p+型コンタクト層13が形成される領域がセル領域となり、図1に示すようにセル領域はSiC基板1上に複数形成される。図2に示すように、p型ベース層3はn−型ドリフト層2上に、角部を互いに接続した千鳥格子状に配設される。図6に示すように、p+型コンタクト層13はn+型ソース層4に囲まれるように形成される。   As shown in FIG. 15, the MOSFET includes an SiC substrate 1 comprising an n + type drain layer 1a containing a high concentration n-type impurity and a relatively low concentration n− type drift layer 2 formed on the n + type drain layer 1a. Is provided. Furthermore, the p-type base layer 3 formed in the surface layer portion of the n − -type drift layer 2, and the n + -type source layer formed inside the surface layer portion of the p-type base layer 3 at a predetermined distance from the outer peripheral portion. 4 (see FIG. 4) and a p + -type contact layer 13 that penetrates the n + -type source layer 4 and contacts the p-type base layer 3. The p + -type contact layer 13 has a higher p-type impurity concentration than the p-type base layer 3. A region where the p-type base layer 3, the n + -type source layer 4 and the p + -type contact layer 13 are formed becomes a cell region, and a plurality of cell regions are formed on the SiC substrate 1 as shown in FIG. As shown in FIG. 2, the p-type base layer 3 is disposed on the n − -type drift layer 2 in a staggered pattern with corners connected to each other. As shown in FIG. 6, the p + type contact layer 13 is formed so as to be surrounded by the n + type source layer 4.

MOSFETは、4つの格子のp型ベース層3に囲まれたn−型ドリフト層2の領域において、表面から離間した内部に形成されるp型半導体層12と、表層部に形成されるn+型半導体層14をさらに備える。p型ベース層3の表面において、n+型ソース層4とn+型半導体層14の間の領域がチャネル領域となる。しかし、n+型半導体層14を設けない場合には、n+型ソース層4とn−型ドリフト層2の間がチャネル領域となる。p型半導体層12は図3に示すように、p型ベース層3に囲まれたn−型ドリフト層2の領域において、当該領域の中心部とp型ベース層3の角部(セルコーナー部)とを線状に繋いでいる。なお、当該領域の中心部はp型ベース層3とp型半導体層12によって繋がっていれば良く、図18に示すように各セルコーナー部の全てと繋がっている必要はない。n+型半導体層14は、図5に示すように、p型ベース層3に囲まれたn−型ドリフト層2の領域の全面を覆うように形成される。   In the region of the n − type drift layer 2 surrounded by the p type base layer 3 of four lattices, the MOSFET includes a p type semiconductor layer 12 formed inside spaced apart from the surface, and an n + type formed in the surface layer portion. A semiconductor layer 14 is further provided. On the surface of the p-type base layer 3, a region between the n + -type source layer 4 and the n + -type semiconductor layer 14 becomes a channel region. However, when the n + type semiconductor layer 14 is not provided, the channel region is between the n + type source layer 4 and the n − type drift layer 2. As shown in FIG. 3, the p-type semiconductor layer 12 includes a central portion of the region and a corner (cell corner portion) of the p-type base layer 3 in the region of the n − -type drift layer 2 surrounded by the p-type base layer 3. ) In a line. Note that the central portion of the region only needs to be connected by the p-type base layer 3 and the p-type semiconductor layer 12, and does not need to be connected to all the cell corner portions as shown in FIG. As shown in FIG. 5, the n + type semiconductor layer 14 is formed so as to cover the entire surface of the n − type drift layer 2 surrounded by the p type base layer 3.

また、MOSFETは、チャネル領域及びn−型ドリフト層2上に形成されるゲート絶縁膜5と、ゲート絶縁膜5上に形成されるゲート電極6(図7参照)と、ゲート電極6上に形成される層間絶縁膜7(図1参照)と、ゲート絶縁膜の開口においてn+型ソース層4及びp+型コンタクト層13にオーミック接続されたソースコンタクト電極9と、層間絶縁膜7上に形成され、且つソースコンタクト電極9を介してn+型ソース層4及びp+型コンタクト層13とオーミック接続するソース電極8とを備える。   The MOSFET is formed on the channel region and the n − type drift layer 2, the gate electrode 6 (see FIG. 7) formed on the gate insulating film 5, and the gate electrode 6. An interlayer insulating film 7 (see FIG. 1) to be formed, a source contact electrode 9 ohmically connected to the n + type source layer 4 and the p + type contact layer 13 in the opening of the gate insulating film, and the interlayer insulating film 7. The source electrode 8 is ohmically connected to the n + type source layer 4 and the p + type contact layer 13 via the source contact electrode 9.

さらに、MOSFETは、n+型ドレイン層1の裏面に形成されるドレイン電極11を備える。   Further, the MOSFET includes a drain electrode 11 formed on the back surface of the n + -type drain layer 1.

SiC基板1にSi基板を用いる従来の縦型半導体装置では、n−型ドリフト層2の不純物濃度をあげると電界強度が増加してしまうため、n−型ドリフト層2がSiCである縦型半導体装置と比較してn−型ドリフト層2の不純物濃度を1/100程度にする必要がある。この場合、n−型ドリフト層2の抵抗が増加するため、実効的なn−型ドリフト層2の抵抗を下げるべくセル領域以外のn−型ドリフト層2の単位面積当たりの割合を大きくする必要があった。例えば、セル一辺の長さを数10μm以上にする必要があり、そうしたとしても、セル領域以外のn−型ドリフト層2の単位面積当たりの割合を大きくすると、チャネルの周囲長が減少するため十分にチャネル抵抗を下げられないという問題があった。   In a conventional vertical semiconductor device using a Si substrate as the SiC substrate 1, the electric field strength increases when the impurity concentration of the n − type drift layer 2 is increased. Therefore, the vertical semiconductor device in which the n − type drift layer 2 is SiC. Compared to the device, the impurity concentration of the n − type drift layer 2 needs to be about 1/100. In this case, since the resistance of the n − type drift layer 2 increases, it is necessary to increase the ratio per unit area of the n − type drift layer 2 other than the cell region in order to reduce the effective resistance of the n − type drift layer 2. was there. For example, the length of one side of the cell needs to be several tens of μm or more. Even in such a case, if the ratio per unit area of the n − type drift layer 2 other than the cell region is increased, the peripheral length of the channel is sufficiently reduced. However, the channel resistance cannot be lowered.

しかし、本実施の形態ではSiC基板を用いることによって、n−型ドリフト層2の不純物濃度を上げても絶縁破壊電界強度が確保でき、さらにSiを用いた半導体装置では実現できない一辺のサイズが10μm以下のセルにおいて、さらなるチャネル抵抗の低減とゲート絶縁膜の絶縁破壊電圧の向上の両立を目指す。   However, in this embodiment, by using the SiC substrate, the breakdown electric field strength can be secured even if the impurity concentration of the n − type drift layer 2 is increased, and the size of one side that cannot be realized by a semiconductor device using Si is 10 μm. In the following cells, we aim to further reduce the channel resistance and improve the breakdown voltage of the gate insulating film.

<製法>
図8〜図15を用いて、本実施の形態に係る半導体装置の製造工程を説明する。図8(a)〜図15(a)は、各製造工程における図1のA−A’断面図であり、図8(b)〜図15(b)は、各製造工程における図1のB−B’断面図である。
<Production method>
A manufacturing process of the semiconductor device according to the present embodiment will be described with reference to FIGS. 8A to 15A are cross-sectional views taken along the line AA ′ of FIG. 1 in each manufacturing process, and FIGS. 8B to 15B are views of FIG. It is -B 'sectional drawing.

はじめに、図8に示すように、表層にn+型ドレイン層1aを含有する炭化珪素基板1を用意し、n+型ドレイン層1aの表面上に、厚さ10μmでn型不純物濃度が1×1016/cm3のSiC層であるn−型ドリフト層2をエピタキシャル成長させる。 First, as shown in FIG. 8, a silicon carbide substrate 1 containing an n + -type drain layer 1a as a surface layer is prepared. On the surface of the n + -type drain layer 1a, a thickness of 10 μm and an n-type impurity concentration is 1 × 10 16. An n − type drift layer 2 which is an SiC layer of / cm 3 is epitaxially grown.

次に、n−型ドリフト層2の表面上にフォトリソグラフィを用いて第1レジストパターンを形成した上で、p型の不純物であるAlイオンをn−型ドリフト層2にイオン注入する(第1イオン注入工程)。   Next, after forming a first resist pattern on the surface of the n − type drift layer 2 using photolithography, Al ions, which are p type impurities, are ion-implanted into the n − type drift layer 2 (first first). Ion implantation step).

このイオン注入により、n−型ドリフト層2の表面側で第1レジストパターンに覆われていない部分にp型ベース層3が形成される。この状態を上面から見ると、図2に示すように各セルのp型ベース層3の角部が互いに接続された格子状に形成されている。セルのサイズは、例えば正方形のp型ベース層3の一辺の長さを9μmとする。   By this ion implantation, the p-type base layer 3 is formed on the surface of the n − -type drift layer 2 that is not covered with the first resist pattern. When this state is viewed from above, as shown in FIG. 2, the corners of the p-type base layer 3 of each cell are formed in a lattice shape connected to each other. As for the size of the cell, for example, the length of one side of the square p-type base layer 3 is 9 μm.

第1イオン注入工程では、n−型ドリフト層2の表面から深さ0.8μmまでAlイオンの濃度が2×1018個/cm3で一定(ボックスプロファイルという)となるようにAlイオンを注入する。イオン注入時のSiC基板1の温度は25℃とする。 In the first ion implantation step, Al ions are implanted so that the concentration of Al ions is constant at 2 × 10 18 ions / cm 3 from the surface of the n − type drift layer 2 to a depth of 0.8 μm (referred to as a box profile). To do. The temperature of the SiC substrate 1 during ion implantation is set to 25 ° C.

次に、n−型ドリフト層2の主表面上にフォトリソグラフィを用いて第2レジストパターンを形成した上で、p型不純物となるAlイオンをn−型ドリフト層2にイオン注入する(第2イオン注入工程)。   Next, after forming a second resist pattern on the main surface of the n − -type drift layer 2 using photolithography, Al ions to be p-type impurities are ion-implanted into the n − -type drift layer 2 (second Ion implantation step).

このイオン注入により、図9に示すように、n−型ドリフト層2の表面側で第2レジストパターンに覆われていない部分にp型半導体層12が形成される。この状態を上面から見ると、図3に示すようにn−型ドリフト層2の中央部と、隣接するp型ベース層3の角部を接続するようにp型半導体層12は形成される。上面から見たp型半導体層12の最小幅は、例えば1μmとする。   By this ion implantation, as shown in FIG. 9, the p-type semiconductor layer 12 is formed on the surface side of the n − -type drift layer 2 in a portion not covered with the second resist pattern. When this state is viewed from above, the p-type semiconductor layer 12 is formed so as to connect the central portion of the n − -type drift layer 2 and the corner portion of the adjacent p-type base layer 3 as shown in FIG. The minimum width of the p-type semiconductor layer 12 as viewed from above is, for example, 1 μm.

第2イオン注入工程では、n−型ドリフト層2の表面から深さ0.4μm〜0.8μmまでAlイオンの濃度が2×1018個/cm3で一定となるように、n−型ドリフト層2の表面から離間した内部にAlイオンが注入される。イオン注入時のSiC基板1の温度は25℃とする。 In the second ion implantation step, the n − type drift is performed so that the concentration of Al ions is constant at 2 × 10 18 ions / cm 3 from the surface of the n − type drift layer 2 to a depth of 0.4 μm to 0.8 μm. Al ions are implanted into the interior away from the surface of the layer 2. The temperature of the SiC substrate 1 during ion implantation is set to 25 ° C.

つづいて、第2レジストパターンを除去した後、上記の過程で形成されたSiC基板1の主表面上にフォトリソグラフィを用いて第3レジストパターンを形成した上で、n型不純物となる窒素イオンをp型ベース層3にイオン注入する(第3イオン注入工程)。   Subsequently, after removing the second resist pattern, a third resist pattern is formed on the main surface of the SiC substrate 1 formed in the above-described process using photolithography, and then nitrogen ions serving as n-type impurities are introduced. Ions are implanted into the p-type base layer 3 (third ion implantation step).

このイオン注入により、図4、図10に示すようにp型ベース層3内にn+型ソース層4が形成される。例えば、n+型ソース層4の1辺の長さは8μmとすると、p型ベース層の1辺の長さは9μmであるからチャネル長は0.5μmとなる。   By this ion implantation, an n + type source layer 4 is formed in the p type base layer 3 as shown in FIGS. For example, if the length of one side of the n + -type source layer 4 is 8 μm, the length of one side of the p-type base layer is 9 μm, so the channel length is 0.5 μm.

第3イオン注入工程では、窒素イオンの濃度が、n−型ドリフト層2の表面から深さ0.3μmまで3×1019/cm3で一定となるようにイオンを注入する。イオン注入時のSiC基板1の温度は25℃とする。 In the third ion implantation step, ions are implanted so that the concentration of nitrogen ions is constant at 3 × 10 19 / cm 3 from the surface of the n − -type drift layer 2 to a depth of 0.3 μm. The temperature of the SiC substrate 1 during ion implantation is set to 25 ° C.

さらに、第3レジストパターンを除去した後、SiC基板の表面上にフォトリソグラフィを用いて第4レジストパターンを形成した上で、n型不純物となる窒素イオンをp型ベース層3に囲まれたn−型ドリフト層2にイオン注入する(第4イオン注入工程)。このイオン注入により、図11に示すようにn−型ドリフト層2内にn+型半導体層4を形成する。この状態を上面から見ると、図5に示すようにp型ベース層3に囲まれた領域にn+型半導体層4が形成されている。   Further, after removing the third resist pattern, a fourth resist pattern is formed on the surface of the SiC substrate using photolithography, and then nitrogen ions that become n-type impurities are surrounded by the p-type base layer 3. Ions are implanted into the − type drift layer 2 (fourth ion implantation step). By this ion implantation, an n + type semiconductor layer 4 is formed in the n − type drift layer 2 as shown in FIG. When this state is viewed from above, an n + -type semiconductor layer 4 is formed in a region surrounded by the p-type base layer 3 as shown in FIG.

第4イオン注入工程では、窒素イオンの濃度はn−型ドリフト層2の濃度よりも高く、n−型ドリフト層2の表面部を含み深さ0.3μmまで1×1017個/cm3で一定となるように注入する。イオン注入時のSiC基板1の温度は25℃とする。 In the fourth ion implantation step, the concentration of nitrogen ions is higher than the concentration of n − type drift layer 2, including the surface portion of n − type drift layer 2, and 1 × 10 17 ions / cm 3 up to a depth of 0.3 μm. Inject to be constant. The temperature of the SiC substrate 1 during ion implantation is set to 25 ° C.

次に、第4レジストパターンを除去した後、SiC基板1の表面上に酸化膜パターンを形成した上で、p型の不純物となるAlイオンをp型ベース層3にイオン注入する(第5イオン注入工程)。このイオン注入により、図11に示すように、n+型ソース層4を貫通してp型ベース層3と接続するp+型コンタクト層13が形成される。この状態を上面からみると、図6に示すようにp+型コンタクト層13はn+型ソース層4に囲まれて形成されている。   Next, after removing the fourth resist pattern, an oxide film pattern is formed on the surface of the SiC substrate 1, and then, Al ions that become p-type impurities are ion-implanted into the p-type base layer 3 (fifth ions). Injection process). By this ion implantation, as shown in FIG. 11, a p + type contact layer 13 that penetrates the n + type source layer 4 and is connected to the p type base layer 3 is formed. When this state is viewed from above, the p + -type contact layer 13 is formed surrounded by the n + -type source layer 4 as shown in FIG.

第5イオン注入工程では、Alイオンの濃度が、n−型ドリフト層2の表面から深さ0.4μmまで3×1020個/cm3で一定となるようにイオンを注入する。このイオン注入時のSiC基板1の温度は500℃とする。 In the fifth ion implantation step, ions are implanted so that the concentration of Al ions is constant at 3 × 10 20 ions / cm 3 from the surface of the n − -type drift layer 2 to a depth of 0.4 μm. The temperature of the SiC substrate 1 during this ion implantation is set to 500 ° C.

この後、活性化アニール工程(図示せず)を行う。前工程の酸化膜パターンを除去した後、n−型ドリフト層2などのSiC膜表面にカーボン保護層を形成し、第1イオン注入工程〜第5イオン注入工程で注入された不純物イオンを活性化するために、アルゴン(Ar)ガス雰囲気中で、1700℃、10分間の熱処理(活性化アニール)を行う。活性化アニール後にカーボン保護層を除去する。   Thereafter, an activation annealing step (not shown) is performed. After removing the oxide film pattern in the previous process, a carbon protective layer is formed on the surface of the SiC film such as the n − type drift layer 2 to activate the impurity ions implanted in the first ion implantation process to the fifth ion implantation process. Therefore, heat treatment (activation annealing) is performed at 1700 ° C. for 10 minutes in an argon (Ar) gas atmosphere. The carbon protective layer is removed after the activation annealing.

ここで、図12に示した第5イオン注入工程後の断面図において、第1イオン注入工程によりAlイオンがイオン注入されたp型ベース層3のうち、第3イオン注入工程により形成されたn+型ソース層4には、第1イオン注入工程で注入されたp型の不純物となるAlイオンと逆の導電型を与えるn型の不純物である窒素イオンが注入される。第3イオン注入工程で注入される窒素イオンの体積密度は第1イオン注入工程で注入されるAlイオンの体積密度より多いため、n+型ソース層4の導電型は活性化アニール工程の後にn型となる。   Here, in the cross-sectional view after the fifth ion implantation step shown in FIG. 12, of the p-type base layer 3 into which Al ions are implanted by the first ion implantation step, n formed by the third ion implantation step is formed. In the + -type source layer 4, nitrogen ions, which are n-type impurities having a conductivity type opposite to that of Al ions, which are p-type impurities implanted in the first ion implantation step, are implanted. Since the volume density of nitrogen ions implanted in the third ion implantation process is higher than the volume density of Al ions implanted in the first ion implantation process, the conductivity type of the n + -type source layer 4 is n-type after the activation annealing process. It becomes.

n+型ソース層4のうち、第5イオン注入工程により形成されたp+型コンタクト層13は、第3イオン注入工程で注入されたn型不純物となる窒素イオンと逆の導電型を与えるp型の不純物であるAlイオンが第5イオン注入工程で注入される。第5イオン注入工程で注入されるイオンの体積密度が第3イオン注入工程で注入されるイオンの体積密度より多いため、n+型ソース層4内のp+型コンタクト層13の導電型は活性化アニール工程の後にp型となる。   Of the n + type source layer 4, the p + type contact layer 13 formed by the fifth ion implantation step is a p type that provides a conductivity type opposite to that of the nitrogen ions that are n type impurities implanted in the third ion implantation step. Al ions as impurities are implanted in the fifth ion implantation step. Since the volume density of ions implanted in the fifth ion implantation step is higher than the volume density of ions implanted in the third ion implantation step, the conductivity type of the p + type contact layer 13 in the n + type source layer 4 is activated annealing. It becomes p-type after the process.

また、p型ベース層3とp型半導体層12については、第1イオン注入工程および第2イオン注入工程で注入されたAlイオンの体積密度がn−型ドリフト層2のn型不純物の体積密度よりも多いため、活性化アニール工程の後にp型の導電型になる。   For the p-type base layer 3 and the p-type semiconductor layer 12, the volume density of Al ions implanted in the first ion implantation step and the second ion implantation step is the volume density of n-type impurities in the n − type drift layer 2. Therefore, it becomes a p-type conductivity after the activation annealing step.

次に、図13に示すように、n−型ドリフト層2の表面を熱酸化して所望の厚みのゲート絶縁膜5を形成した後、ゲート絶縁膜5の上に導電性を付与した多結晶Si膜を減圧CVD法により形成し、これをパターニングすることによりゲート電極6を形成する(ゲート形成工程)。この状態を上面から見ると図7のようになる。ゲート電極6は、n+型半導体層14とp型ベース層3と一部のn+型ソース層4の上にゲート酸化膜5を介して形成される。   Next, as shown in FIG. 13, the surface of the n − -type drift layer 2 is thermally oxidized to form a gate insulating film 5 having a desired thickness, and then a polycrystal with conductivity provided on the gate insulating film 5. A Si film is formed by a low pressure CVD method, and this is patterned to form a gate electrode 6 (gate forming step). FIG. 7 shows this state as viewed from above. The gate electrode 6 is formed on the n + type semiconductor layer 14, the p type base layer 3, and a part of the n + type source layer 4 via the gate oxide film 5.

その後、図14に示すように、ゲート電極6およびゲート絶縁膜5の上に酸化珪素からなる層間絶縁膜7を形成する。また、層間絶縁膜7およびゲート絶縁膜5に開口してn+型ソース層4の一部とp+型コンタクト層13を露出し、その上にソースコンタクト層を堆積し、これを熱処理することによってソースコンタクト電極9を形成する。この状態を上面からみると図1のようになり、層間絶縁膜7の開口部がn+型ソース層4の一部とp+型コンタクト層13の上に形成される。   Thereafter, as shown in FIG. 14, an interlayer insulating film 7 made of silicon oxide is formed on the gate electrode 6 and the gate insulating film 5. Further, a part of the n + type source layer 4 and the p + type contact layer 13 are exposed through the interlayer insulating film 7 and the gate insulating film 5, and a source contact layer is deposited thereon and heat-treated to thereby source the source. Contact electrode 9 is formed. When this state is viewed from the top, it becomes as shown in FIG. 1, and an opening of the interlayer insulating film 7 is formed on a part of the n + type source layer 4 and the p + type contact layer 13.

ソースコンタクト電極9には例えばNiを選択すると、n+型ソース層4およびp+型コンタクト層13に対してオーミックコンタクトを形成することができる。   For example, when Ni is selected for the source contact electrode 9, an ohmic contact can be formed with respect to the n + -type source layer 4 and the p + -type contact layer 13.

続いて、図15に示すように、ソースコンタクト電極9上にソース電極8および図示しない内部配線を形成する。また、図示しないがゲート電極6上の層間絶縁膜7を開口し、ゲート電極6上の開口部にはゲート配線を形成する。最後に、SiC基板1の裏面側に例えばNi合金のドレイン電極11を形成する(裏面電極形成工程)。   Subsequently, as shown in FIG. 15, the source electrode 8 and an internal wiring (not shown) are formed on the source contact electrode 9. Although not shown, an interlayer insulating film 7 on the gate electrode 6 is opened, and a gate wiring is formed in the opening on the gate electrode 6. Finally, a drain electrode 11 made of, for example, an Ni alloy is formed on the back surface side of the SiC substrate 1 (back surface electrode forming step).

以上の工程によって、本実施の形態の半導体装置である縦型のSiC−MOSFETが形成される。   Through the above steps, a vertical SiC-MOSFET which is a semiconductor device of the present embodiment is formed.

n+型半導体層14はn−型ドリフト層2よりも低抵抗であり、チャネル領域を通る電流の経路を拡大する効果を奏し、p型半導体層12を設けることにより生じるn−型ドリフト層2の抵抗の増加を防ぐ。そのため、n+型半導体層14は少なくともチャネル領域と接していれば良く、図10〜図15に示したようなn−型ドリフト層2の表層部だけでなく、その内部に設けても良い。また、p型ベース領域3に囲まれたn−型ドリフト層2の領域において、電界強度が最も大きくなる中央部以外の領域に設けても良い。さらに、n+型半導体層14はp型半導体層12と離間して形成しているが、p型半導体層12を囲むように配置しても良い。特に、n−型ドリフト層2内で最も抵抗が高くなるp型半導体層12とp型ベース層3で挟まれる領域にn型半導体層14を配置すると、n−型ドリフト層2内の抵抗を大きく減らすことが可能である。なお、n−型ドリフト層2の抵抗が許容できる値である場合は、n+型半導体層14を形成しなくても良い。   The n + type semiconductor layer 14 has a lower resistance than the n − type drift layer 2, has an effect of expanding a current path through the channel region, and is formed by providing the p type semiconductor layer 12. Prevent increase in resistance. Therefore, the n + type semiconductor layer 14 only needs to be in contact with at least the channel region, and may be provided not only in the surface layer portion of the n − type drift layer 2 as shown in FIGS. Further, in the region of the n − type drift layer 2 surrounded by the p-type base region 3, it may be provided in a region other than the central portion where the electric field strength is the highest. Further, although the n + type semiconductor layer 14 is formed apart from the p type semiconductor layer 12, it may be arranged so as to surround the p type semiconductor layer 12. In particular, when the n-type semiconductor layer 14 is disposed in a region sandwiched between the p-type semiconductor layer 12 and the p-type base layer 3 having the highest resistance in the n − -type drift layer 2, the resistance in the n − -type drift layer 2 is reduced. It can be greatly reduced. If the resistance of the n − type drift layer 2 is an allowable value, the n + type semiconductor layer 14 may not be formed.

また、p型半導体層12はn−型ドリフト層2の内部に形成することとしたが、チャネル領域ではないセルコーナー部でp型ベース層3と接続する場合はチャネル抵抗に影響を与えないため、p型半導体層12をn−型ドリフト層2の表層部に形成しても良い。この場合、n+型半導体層14は形成しないか(図17)、n−型ドリフト層2の内部に形成される。   In addition, the p-type semiconductor layer 12 is formed inside the n − -type drift layer 2. However, when the p-type semiconductor layer 12 is connected to the p-type base layer 3 at a cell corner that is not a channel region, the channel resistance is not affected. The p-type semiconductor layer 12 may be formed on the surface layer portion of the n − -type drift layer 2. In this case, the n + type semiconductor layer 14 is not formed (FIG. 17) or is formed inside the n − type drift layer 2.

また、第2、第4イオン注入工程において、p型半導体層12とn型半導体層14へのイオン注入は密度が一定となるボックスプロファイルで行ったが、必ずしもボックスプロファイルに限定するものではない。例えばp型半導体層12では、n−型ドリフト層2の表層での濃度が内部の濃度よりも高くなるように、n−型ドリフト層2の表層から内部へ離れるに従って、徐々にイオン注入濃度が高くなるようなプロファイルにしても良い。この場合、イオン注入に必要な加速電圧の種類を、例えばボックスプロファイルとして形成する際に必要な6種類から1種類に削減することができ、イオン注入工程のスループットが向上するという効果がある。   Further, in the second and fourth ion implantation steps, ion implantation into the p-type semiconductor layer 12 and the n-type semiconductor layer 14 is performed with a box profile having a constant density, but is not necessarily limited to the box profile. For example, in the p-type semiconductor layer 12, the ion implantation concentration gradually increases as the distance from the surface layer of the n − -type drift layer 2 increases so that the concentration in the surface layer of the n − -type drift layer 2 is higher than the internal concentration. You may make it a profile which becomes high. In this case, the type of acceleration voltage required for ion implantation can be reduced from, for example, six types necessary for forming a box profile to one type, and the throughput of the ion implantation process is improved.

<効果>
本発明の半導体装置である縦型SiC−MOSFETによれば、以下の効果を奏する。すなわち、本実施の形態の半導体装置は、SiC基板1表面に形成された第1導電型のドリフト層(n−型ドリフト層2)と、n−型ドリフト層2表面に選択的に複数形成された、第2導電型のベース層(p型ベース層3)と、p型ベース層3表面に選択的に形成された領域であって、当該領域とn−型ドリフト層2とで挟まれたp型ベース層3表面をチャネル領域として規定する第1導電型のソース領域(n+型ソース層4)と、チャネル領域上からn−型ドリフト層2上に渡って、ゲート絶縁膜5を介して形成されたゲート電極6と、平面視でp型ベース層3に囲まれたn−型ドリフト層2の領域において、当該領域の中心部とp型ベース層3とを繋ぐ第2導電型の第1半導体層(p型半導体層12)と、を備える。p型ベース層3に囲まれたn−型ドリフト層2の領域の中心部が最も逆方向電界強度が高くなる領域であるが、この領域とp型ベース層3の所定部分をp型半導体層12で接続することにより、n−型ドリフト層2のサイズを小さくすることなくゲート絶縁膜5の逆方向電界強度が低減し、ゲート絶縁膜5の絶縁破壊電圧を高めるという効果を奏する。また、p型半導体層12はソース電極8と接続されたp型ベース層3と繋がっているため、p型半導体層12間の電位のばらつきが少なく、どのp型半導体層12においても安定して電界強度を下げることが出来る。セルが多数集積された縦型半導体装置内のどこか1箇所のp型半導体装置12の電界緩和効果が低減すれば、その場所のゲート絶縁膜に絶縁破壊が生じてしまうので、全てのp型半導体層12の電位を安定に保つことは非常に重要である。また、半導体基板1にSiC基板を用いるため、Si基板と比べてn−型ドリフト層2の不純物濃度を1/100程度にすることができる。そのため、セルサイズの一辺を10μm以下と小さくすることが出来る。
<Effect>
The vertical SiC-MOSFET which is the semiconductor device of the present invention has the following effects. That is, the semiconductor device of the present embodiment is selectively formed on the surface of the first conductivity type drift layer (n − type drift layer 2) formed on the surface of SiC substrate 1 and on the surface of n − type drift layer 2. A region selectively formed on the surface of the second conductivity type base layer (p-type base layer 3) and the p-type base layer 3 and sandwiched between the region and the n − -type drift layer 2 A first conductivity type source region (n + type source layer 4) defining the surface of the p type base layer 3 as a channel region, and a gate insulating film 5 from the channel region to the n− type drift layer 2. In the region of the formed gate electrode 6 and the n − -type drift layer 2 surrounded by the p-type base layer 3 in plan view, the second conductivity type second connecting the central portion of the region and the p-type base layer 3. 1 semiconductor layer (p-type semiconductor layer 12). The central portion of the region of the n − -type drift layer 2 surrounded by the p-type base layer 3 is a region having the highest reverse electric field strength. A predetermined portion of this region and the p-type base layer 3 is defined as a p-type semiconductor layer. By connecting at 12, the reverse electric field strength of the gate insulating film 5 is reduced without reducing the size of the n − type drift layer 2, and the breakdown voltage of the gate insulating film 5 is increased. Further, since the p-type semiconductor layer 12 is connected to the p-type base layer 3 connected to the source electrode 8, there is little variation in potential between the p-type semiconductor layers 12, and any p-type semiconductor layer 12 is stable. Electric field strength can be lowered. If the electric field relaxation effect of the p-type semiconductor device 12 at one location in the vertical semiconductor device in which a large number of cells are integrated is reduced, dielectric breakdown occurs in the gate insulating film at that location. It is very important to keep the potential of the semiconductor layer 12 stable. In addition, since a SiC substrate is used as the semiconductor substrate 1, the impurity concentration of the n − type drift layer 2 can be reduced to about 1/100 as compared with the Si substrate. Therefore, one side of the cell size can be reduced to 10 μm or less.

また、p型ベース層3は、角部(セルコーナー部)を互いに接続した千鳥格子状に配設される。このように配置することによって、n−型ドリフト層2はその周囲がセルで囲まれ、チャネル領域と接することにより、単位面積当たりのチャネル領域の周囲長が増大し、チャネル抵抗が低減する。   The p-type base layer 3 is arranged in a staggered pattern in which corner portions (cell corner portions) are connected to each other. By arranging in this way, the n − type drift layer 2 is surrounded by cells and is in contact with the channel region, so that the perimeter of the channel region per unit area increases and the channel resistance decreases.

さらに、p型半導体層12はp型ベース層3に囲まれたn−型ドリフト層の領域の中心部と、当該領域の外周と接触するp型ベース層3のセルコーナー部のうち少なくとも一つとを繋ぐ。セルコーナー部はチャネルとして機能していないため、第1半導体層12はp型ベース層3と接触してもチャネル領域とは接触しない。つまり、チャネル抵抗を増加させずに耐圧を向上することができる。   Further, the p-type semiconductor layer 12 includes at least one of a central portion of a region of the n − -type drift layer surrounded by the p-type base layer 3 and a cell corner portion of the p-type base layer 3 in contact with the outer periphery of the region. Connect. Since the cell corner portion does not function as a channel, the first semiconductor layer 12 does not contact the channel region even if it contacts the p-type base layer 3. That is, the breakdown voltage can be improved without increasing the channel resistance.

また、p型半導体層12がn−型ドリフト層2の表面から離間して内部に形成されることにより、チャネル領域からn−型ドリフト層2への電流経路を妨げない。そのため、p型半導体層12はセルコーナー部でp型ベース層3と接続しなくとも良く、例えば図16に示すようにセルの辺でp型ベース層3と接続することも可能である。このような場合でも、チャネル抵抗を増加させずに耐圧を向上することができる。   In addition, since the p-type semiconductor layer 12 is formed inside and spaced from the surface of the n − type drift layer 2, the current path from the channel region to the n − type drift layer 2 is not hindered. Therefore, the p-type semiconductor layer 12 does not need to be connected to the p-type base layer 3 at the cell corner portion. For example, as shown in FIG. 16, it can be connected to the p-type base layer 3 at the cell side. Even in such a case, the breakdown voltage can be improved without increasing the channel resistance.

あるいは、p型半導体層12がn−型ドリフト層2の表層部に形成される場合は、p型半導体層12がセルコーナー部でp型ベース層3と接続することによって、チャネル抵抗を増加させずに耐圧を向上することができる。   Alternatively, when the p-type semiconductor layer 12 is formed on the surface layer portion of the n − -type drift layer 2, the p-type semiconductor layer 12 is connected to the p-type base layer 3 at the cell corner portion, thereby increasing the channel resistance. The breakdown voltage can be improved.

また、半導体装置は、p型ベース層3に囲まれたn−型ドリフト層2の表層部に配設され、n−型ドリフト層2よりも不純物密度の高い第1導電型の第2半導体層(n+型半導体層14)をさらに備える。n+型半導体層14はn−型ドリフト層2よりも低抵抗であり、n−型ドリフト層2の表層部で速やかに電流経路を拡大する効果があるため、p型半導体層12を設けることにより生じるn−型ドリフト層2の抵抗の増加を防ぐことが出来る。   The semiconductor device is disposed in the surface layer portion of the n − type drift layer 2 surrounded by the p type base layer 3, and has a first conductivity type second semiconductor layer having a higher impurity density than the n − type drift layer 2. (N + type semiconductor layer 14) is further provided. By providing the p-type semiconductor layer 12, the n + -type semiconductor layer 14 has a lower resistance than the n − -type drift layer 2 and has the effect of quickly expanding the current path at the surface layer portion of the n − -type drift layer 2. The increase in resistance of the n − type drift layer 2 can be prevented.

1 SiC基板、1a n+型ドレイン層、2 n−型ドリフト層、3 p型ベース層、4 n+型ソース層、5 ゲート絶縁膜、6 ゲート電極、7 層間絶縁膜、8 ソース電極、9 ソースコンタクト電極、12 p型半導体層、13 p+型半導体層、14 n+型半導体層。   1 SiC substrate, 1a n + type drain layer, 2 n− type drift layer, 3 p type base layer, 4 n + type source layer, 5 gate insulating film, 6 gate electrode, 7 interlayer insulating film, 8 source electrode, 9 source contact Electrode, 12 p-type semiconductor layer, 13 p + type semiconductor layer, 14 n + type semiconductor layer.

Claims (6)

SiC基板表面に形成された第1導電型のドリフト層と、
前記ドリフト層表面に選択的に複数形成された、第2導電型のベース層と、
前記ベース層表面に選択的に形成された領域であって、当該領域と前記ドリフト層とで挟まれた前記ベース層表面をチャネル領域として規定する第1導電型のソース領域と、
前記チャネル領域上から前記ドリフト層上に渡って、絶縁膜を介して形成されたゲート電極と、
平面視で前記ベース層に囲まれた前記ドリフト層の領域において、当該領域の中心部と前記ベース層とを繋ぐ第2導電型の第1半導体層と、を備える半導体装置。
A first conductivity type drift layer formed on the surface of the SiC substrate;
A plurality of second conductivity type base layers selectively formed on the surface of the drift layer;
A region selectively formed on the surface of the base layer, the first conductivity type source region defining the base layer surface sandwiched between the region and the drift layer as a channel region;
A gate electrode formed through an insulating film over the drift region from the channel region;
A semiconductor device comprising: a first semiconductor layer of a second conductivity type that connects a central portion of the region and the base layer in a region of the drift layer surrounded by the base layer in plan view.
前記ベース層は、角部を互いに接続した千鳥格子状に配設される、請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the base layer is arranged in a staggered pattern with corners connected to each other. 前記第1半導体層は、前記ベース層に囲まれた前記ドリフト層の領域の中心部と、当該領域の外周と接触する前記ベース層の前記角部のうち少なくとも一つの角部とを繋ぐ請求項2に記載の半導体装置。   The said 1st semiconductor layer connects the center part of the area | region of the said drift layer enclosed by the said base layer, and the at least 1 corner | angular part of the said corner | angular part of the said base layer which contacts the outer periphery of the said area | region. 2. The semiconductor device according to 2. 前記第1半導体層は、前記ドリフト層の表面から離間して内部に形成される、請求項1〜3のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the first semiconductor layer is formed inside and spaced from a surface of the drift layer. 前記第1半導体層は、前記ドリフト層の表層部に形成される、請求項1〜3のいずれかに記載の半導体装置。   The semiconductor device according to claim 1, wherein the first semiconductor layer is formed in a surface layer portion of the drift layer. 前記ベース層に囲まれた前記ドリフト層の表層部に配設され、前記ドリフト層よりも不純物密度の高い第1導電型の第2半導体層をさらに備える、請求項1〜5のいずれかに記載の半導体装置。   6. The semiconductor device according to claim 1, further comprising a second semiconductor layer of a first conductivity type disposed in a surface layer portion of the drift layer surrounded by the base layer and having a higher impurity density than the drift layer. Semiconductor device.
JP2010129825A 2010-06-07 2010-06-07 Semiconductor device Pending JP2011258635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129825A JP2011258635A (en) 2010-06-07 2010-06-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129825A JP2011258635A (en) 2010-06-07 2010-06-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2011258635A true JP2011258635A (en) 2011-12-22

Family

ID=45474540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129825A Pending JP2011258635A (en) 2010-06-07 2010-06-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2011258635A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147276A1 (en) * 2012-03-30 2013-10-03 富士電機株式会社 Vertical, high-voltage-resistant semiconductor device, and method for producing vertical, high-voltage-resistant semiconductor device
WO2013175840A1 (en) * 2012-05-25 2013-11-28 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
WO2015019797A1 (en) * 2013-08-08 2015-02-12 富士電機株式会社 High-withstand-voltage semiconductor device, and production method therefor
JP2015053462A (en) * 2013-08-06 2015-03-19 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
CN105103297A (en) * 2012-12-28 2015-11-25 科锐 Semiconductor devices having reduced electric field at gate oxide layer
WO2016084131A1 (en) * 2014-11-25 2016-06-02 株式会社日立製作所 Semiconductor device and power conversion device
WO2018003064A1 (en) * 2016-06-30 2018-01-04 株式会社日立製作所 Semiconductor device
US10115815B2 (en) 2012-12-28 2018-10-30 Cree, Inc. Transistor structures having a deep recessed P+ junction and methods for making same
JP2019216252A (en) * 2013-09-20 2019-12-19 モノリス セミコンダクター インコーポレイテッド High voltage MOSFET device and method of manufacturing the device
JP2020013916A (en) * 2018-07-19 2020-01-23 国立研究開発法人産業技術総合研究所 Semiconductor device
JP2020102596A (en) * 2018-12-25 2020-07-02 トヨタ自動車株式会社 Semiconductor device
CN112234095A (en) * 2020-09-30 2021-01-15 济南星火技术发展有限公司 Power MOSFET device with enhanced cell design
US11417760B2 (en) 2017-12-21 2022-08-16 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
CN116190446A (en) * 2022-12-20 2023-05-30 瑶芯微电子科技(上海)有限公司 Silicon carbide-based MOSFET device with high reliability and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238173A (en) * 1988-03-18 1989-09-22 Sanyo Electric Co Ltd Power mosfet
JPH05102487A (en) * 1991-10-07 1993-04-23 Nippondenso Co Ltd Vertical semiconductor device
JP2001077354A (en) * 1999-08-31 2001-03-23 Miyazaki Oki Electric Co Ltd Vertical insulating gate semiconductor device
JP2009094314A (en) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp Semiconductor device with vertical mosfet structure
JP2009099714A (en) * 2007-10-16 2009-05-07 Oki Semiconductor Co Ltd Semiconductor apparatus and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01238173A (en) * 1988-03-18 1989-09-22 Sanyo Electric Co Ltd Power mosfet
JPH05102487A (en) * 1991-10-07 1993-04-23 Nippondenso Co Ltd Vertical semiconductor device
JP2001077354A (en) * 1999-08-31 2001-03-23 Miyazaki Oki Electric Co Ltd Vertical insulating gate semiconductor device
JP2009094314A (en) * 2007-10-10 2009-04-30 Mitsubishi Electric Corp Semiconductor device with vertical mosfet structure
JP2009099714A (en) * 2007-10-16 2009-05-07 Oki Semiconductor Co Ltd Semiconductor apparatus and method of manufacturing the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303311A (en) * 2012-03-30 2015-01-21 富士电机株式会社 Vertical, high-voltage-resistant semiconductor device, and method for producing vertical, high-voltage-resistant semiconductor device
US10211330B2 (en) 2012-03-30 2019-02-19 Fuji Electric Co., Ltd. Vertical high voltage semiconductor apparatus and fabrication method of vertical high voltage semiconductor apparatus
WO2013147276A1 (en) * 2012-03-30 2013-10-03 富士電機株式会社 Vertical, high-voltage-resistant semiconductor device, and method for producing vertical, high-voltage-resistant semiconductor device
CN104303311B (en) * 2012-03-30 2017-10-13 富士电机株式会社 The manufacture method of longitudinal type high-voltage-resistant semiconductor device and longitudinal type high-voltage-resistant semiconductor device
JPWO2013147276A1 (en) * 2012-03-30 2015-12-14 富士電機株式会社 Vertical high voltage semiconductor device and method for manufacturing vertical high voltage semiconductor device
US9722018B2 (en) 2012-03-30 2017-08-01 Fuji Electric Co., Ltd. Vertical high voltage semiconductor apparatus and fabrication method of vertical high voltage semiconductor apparatus
US9673313B2 (en) 2012-05-25 2017-06-06 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and fabrication method thereof
WO2013175840A1 (en) * 2012-05-25 2013-11-28 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
JP2013247252A (en) * 2012-05-25 2013-12-09 National Institute Of Advanced Industrial & Technology Silicon carbide semiconductor device and method of manufacturing the same
US10115815B2 (en) 2012-12-28 2018-10-30 Cree, Inc. Transistor structures having a deep recessed P+ junction and methods for making same
US10840367B2 (en) 2012-12-28 2020-11-17 Cree, Inc. Transistor structures having reduced electrical field at the gate oxide and methods for making same
JP2016506081A (en) * 2012-12-28 2016-02-25 クリー インコーポレイテッドCree Inc. Semiconductor device with reduced electric field in gate oxide layer
CN105103297A (en) * 2012-12-28 2015-11-25 科锐 Semiconductor devices having reduced electric field at gate oxide layer
EP3840056A1 (en) * 2012-12-28 2021-06-23 Cree, Inc. Semiconductor devices having reduced electric field at a gate oxide layer
US10886396B2 (en) 2012-12-28 2021-01-05 Cree, Inc. Transistor structures having a deep recessed P+ junction and methods for making same
JP2015053462A (en) * 2013-08-06 2015-03-19 住友電気工業株式会社 Silicon carbide semiconductor device and method of manufacturing the same
JPWO2015019797A1 (en) * 2013-08-08 2017-03-02 富士電機株式会社 High voltage semiconductor device and manufacturing method thereof
CN105474403A (en) * 2013-08-08 2016-04-06 富士电机株式会社 High-withstand-voltage semiconductor device, and production method therefor
WO2015019797A1 (en) * 2013-08-08 2015-02-12 富士電機株式会社 High-withstand-voltage semiconductor device, and production method therefor
US10263105B2 (en) 2013-08-08 2019-04-16 Fuji Electric Co., Ltd. High voltage semiconductor device
JP2019216252A (en) * 2013-09-20 2019-12-19 モノリス セミコンダクター インコーポレイテッド High voltage MOSFET device and method of manufacturing the device
WO2016084131A1 (en) * 2014-11-25 2016-06-02 株式会社日立製作所 Semiconductor device and power conversion device
WO2018003064A1 (en) * 2016-06-30 2018-01-04 株式会社日立製作所 Semiconductor device
US11417760B2 (en) 2017-12-21 2022-08-16 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
JP2020013916A (en) * 2018-07-19 2020-01-23 国立研究開発法人産業技術総合研究所 Semiconductor device
JP7078226B2 (en) 2018-07-19 2022-05-31 国立研究開発法人産業技術総合研究所 Semiconductor device
JP2020102596A (en) * 2018-12-25 2020-07-02 トヨタ自動車株式会社 Semiconductor device
JP7070393B2 (en) 2018-12-25 2022-05-18 株式会社デンソー Semiconductor device
CN112234095A (en) * 2020-09-30 2021-01-15 济南星火技术发展有限公司 Power MOSFET device with enhanced cell design
CN112234095B (en) * 2020-09-30 2023-07-18 济南星火技术发展有限公司 Power MOSFET device with enhanced cell design
CN116190446A (en) * 2022-12-20 2023-05-30 瑶芯微电子科技(上海)有限公司 Silicon carbide-based MOSFET device with high reliability and manufacturing method thereof
CN116190446B (en) * 2022-12-20 2023-12-08 瑶芯微电子科技(上海)有限公司 Silicon carbide-based MOSFET device with high reliability and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2011258635A (en) Semiconductor device
JP6049784B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6759563B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
US8658503B2 (en) Semiconductor device and method of fabricating the same
JP6055498B2 (en) Semiconductor device
RU2548058C1 (en) Semiconductor device and method of its manufacturing
JP6099749B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
KR101398735B1 (en) Power semiconductor device and method for manufacturing same
JP6140823B2 (en) Silicon carbide semiconductor device
JP2014135494A (en) Semiconductor element having dual parallel channel structure and method of manufacturing the same
JP6853977B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2017112161A (en) Semiconductor device
JP5676923B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2012235001A (en) Semiconductor device and manufacturing method therefor
JP5997426B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2012064741A (en) Semiconductor device and method of manufacturing the same
JP6207627B2 (en) Semiconductor device
JP6766522B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6528640B2 (en) Semiconductor device and method of manufacturing the same
JP6771433B2 (en) Semiconductor device
JP2011238899A (en) Method of manufacturing semiconductor device
JP6092680B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5046886B2 (en) Semiconductor device
JP2013055177A (en) Semiconductor device and method of manufacturing the same
JP2011018809A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303