JP2020013916A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2020013916A
JP2020013916A JP2018135632A JP2018135632A JP2020013916A JP 2020013916 A JP2020013916 A JP 2020013916A JP 2018135632 A JP2018135632 A JP 2018135632A JP 2018135632 A JP2018135632 A JP 2018135632A JP 2020013916 A JP2020013916 A JP 2020013916A
Authority
JP
Japan
Prior art keywords
region
type
semiconductor
semiconductor region
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018135632A
Other languages
Japanese (ja)
Other versions
JP7078226B2 (en
Inventor
勇介 小林
Yusuke Kobayashi
勇介 小林
学 武井
Manabu Takei
学 武井
原田 信介
Shinsuke Harada
信介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fuji Electric Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fuji Electric Co Ltd
Priority to JP2018135632A priority Critical patent/JP7078226B2/en
Publication of JP2020013916A publication Critical patent/JP2020013916A/en
Application granted granted Critical
Publication of JP7078226B2 publication Critical patent/JP7078226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

To provide a MOS semiconductor device incorporating a SBD in the same semiconductor substrate, capable of restraining parasitic pin diode operation.SOLUTION: Between adjacent gate electrodes 9 of a vertical MOSFET of planar gate structure, a planar SBD20 having a conductive layer 21 in Schottky contact with a JFET region 3a is provided. In the n-type current diffusion region 3 of the MOSFET, first through third p-type regions 7, 41, 42 are provided selectively. On the drain side in the p-type base region 4, the n-type source region 5 and the p-type contact region 6, the first p-type region 7 opposes these regions in the depth direction in contact therewith. The second and third p-type regions 41, 42 are placed at positions opposing the first p-type region 7 in the depth direction Z, and form a multilayer lamination structure. The width L2 of third p-type region 42 (width of the lowermost p-type region) is narrower than the width L11 of the first p-type region 7, and is 8 μm or less.SELECTED DRAWING: Figure 1

Description

この発明は、半導体装置に関する。   The present invention relates to a semiconductor device.

シリコン(Si)よりもバンドギャップの広い半導体(以下、ワイドバンドギャップ半導体とする)は、最大電界強度がシリコンより大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待されている。また、ワイドバンドギャップ半導体を半導体材料として用いたパワー半導体装置では、低オン抵抗化、順方向特性劣化の抑制および逆回復損失の低減が求められている。   A semiconductor having a wider band gap than silicon (Si) (hereinafter, referred to as a wide band gap semiconductor) has a higher maximum electric field strength than silicon, and is therefore expected to be a semiconductor material capable of sufficiently reducing on-resistance. Further, in a power semiconductor device using a wide band gap semiconductor as a semiconductor material, it is required to reduce on-resistance, suppress forward characteristic deterioration, and reduce reverse recovery loss.

順方向特性劣化の抑制および逆回復損失の低減については、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属−酸化膜−半導体の3層構造からなる絶縁ゲートを備えたMOS型電界効果トランジスタ)と同一の半導体チップに、ショットキーバリアダイオード(SBD:Schottky Barrier Diode)を内蔵することで実現可能である。   The suppression of the forward characteristic deterioration and the reduction of the reverse recovery loss are the same as those of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor: a MOS field effect transistor having an insulating gate having a three-layer structure of metal-oxide-semiconductor). This can be realized by incorporating a Schottky Barrier Diode (SBD) in a semiconductor chip.

従来の半導体装置について、炭化珪素を半導体材料とした場合を例に説明する。図14は、従来の半導体装置の構造を示す断面図である。図14に示す従来の半導体装置は、炭化珪素からなる半導体基板(半導体チップ)130のおもて面上に平板状にゲート電極109を設けたプレーナゲート構造の縦型MOSFETであり、同一の半導体基板130のおもて面上に平板状に配置したSBD(以下、平面SBDとする)120を内蔵する。   A conventional semiconductor device will be described by way of an example in which silicon carbide is used as a semiconductor material. FIG. 14 is a cross-sectional view showing the structure of a conventional semiconductor device. The conventional semiconductor device shown in FIG. 14 is a vertical MOSFET having a planar gate structure in which a gate electrode 109 is provided in a flat plate shape on the front surface of a semiconductor substrate (semiconductor chip) 130 made of silicon carbide. An SBD (hereinafter, referred to as a plane SBD) 120 arranged in a flat plate shape on the front surface of the substrate 130 is incorporated.

半導体基板130は、炭化珪素からなるn+型出発基板101上にn-型ドリフト領域102およびp型ベース領域104となる各炭化珪素層131,132を順にエピタキシャル成長させたエピタキシャル基板である。n-型炭化珪素層131の、n+型出発基板101側に対して反対側の表面層に、n型電流拡散領域103が設けられている。n型電流拡散領域103は、キャリアの広がり抵抗を低減させる機能を有する。n-型炭化珪素層131の、n型電流拡散領域103以外の部分がn-型ドリフト領域102である。n型電流拡散領域103の内部には、最下部p+型領域107が選択的に設けられている。 Semiconductor substrate 130 is an epitaxial substrate in which silicon carbide layers 131 and 132 to be n type drift region 102 and p type base region 104 are sequentially epitaxially grown on n + type starting substrate 101 made of silicon carbide. An n-type current diffusion region 103 is provided on a surface layer of n -type silicon carbide layer 131 opposite to n + -type starting substrate 101 side. The n-type current diffusion region 103 has a function of reducing carrier spreading resistance. The portion of the n -type silicon carbide layer 131 other than the n-type current diffusion region 103 is the n -type drift region 102. Inside the n-type current diffusion region 103, a lowermost p + -type region 107 is selectively provided.

p型炭化珪素層132には、p型炭化珪素層132を深さ方向Zに貫通してn-型炭化珪素層131に達するn+型ソース領域105およびp++型コンタクト領域106がそれぞれ選択的に設けられている。また、p型炭化珪素層132には、n+型ソース領域105およびp++型コンタクト領域106と離してn型領域が設けられている。このn型領域は、炭化珪素層132を深さ方向Zに貫通して、下層のn型電流拡散領域103の、隣り合う最下部p+型領域107間に挟まれた部分に接して、n型電流拡散領域103(JFET領域103a)の一部をなす。 As the p-type silicon carbide layer 132, an n + -type source region 105 and a p ++ -type contact region 106 that penetrate the p-type silicon carbide layer 132 in the depth direction Z and reach the n -type silicon carbide layer 131 are respectively selected. Is provided. Further, p-type silicon carbide layer 132 has an n-type region separated from n + -type source region 105 and p ++ -type contact region 106. This n-type region penetrates silicon carbide layer 132 in the depth direction Z, contacts n-type current diffusion region 103 of the lower layer between adjacent lowermost p + -type regions 107, and Of the current diffusion region 103 (JFET region 103a).

p型炭化珪素層132の、n+型ソース領域105、p++型コンタクト領域106およびJFET領域103a以外の部分がp型ベース領域104である。これら炭化珪素層131,132に形成された各領域103a,104〜107は、半導体基板130のおもて面側から見て半導体基板130のおもて面に平行な方向(以下、第1方向とする)Xに延びる直線状のレイアウトに配置されている。n+型ソース領域105は、半導体基板130のおもて面に平行で、かつ第1方向Xと直交する方向(以下、第2方向とする)Yに、p型ベース領域104を挟んでJFET領域103aに対向する。 A portion of the p-type silicon carbide layer 132 other than the n + -type source region 105, the p ++ -type contact region 106 and the JFET region 103a is a p-type base region 104. Each of regions 103a, 104 to 107 formed in silicon carbide layers 131 and 132 has a direction parallel to the front surface of semiconductor substrate 130 when viewed from the front surface side of semiconductor substrate 130 (hereinafter, a first direction). Are arranged in a linear layout extending in X. The n + -type source region 105 is parallel to the front surface of the semiconductor substrate 130 and extends in a direction Y (hereinafter, referred to as a second direction) Y orthogonal to the first direction X with the p-type base region 104 interposed therebetween. It faces the area 103a.

++型コンタクト領域106は、n+型ソース領域105の、JFET領域103a側に対して反対側に配置され、当該n+型ソース領域105に接する。JFET領域103aは、n型電流拡散領域103の、隣り合うp型ベース領域(p型ベース領域104および後述する最下部p+型領域107)間の領域である。最下部p+型領域107は、n型電流拡散領域103の内部において最もドレイン側に配置されたp+型領域であり、p型ベース領域104、n+型ソース領域105およびp++型コンタクト領域106のドレイン側(ドレイン電極113側)に、これらの領域に接して設けられている。 p ++ -type contact region 106, the n + -type source region 105 is disposed on the opposite side of the JFET region 103a side, in contact with the n + -type source region 105. The JFET region 103a is a region between the adjacent p-type base regions (the p-type base region 104 and the lowermost p + -type region 107 described later) of the n-type current diffusion region 103. Bottom p + -type region 107 is a p + -type region disposed most drain side inside the n-type current diffusion region 103, p type base region 104, n + -type source region 105 and the p ++ -type contact The drain side (drain electrode 113 side) of the region 106 is provided in contact with these regions.

最下部p+型領域107は、p型ベース領域104、n+型ソース領域105およびp++型コンタクト領域106のドレイン側の全面を覆う。p型ベース領域104の、n+型ソース領域105とJFET領域103a(n型電流拡散領域103)との間の表面上に、ゲート絶縁膜108を介してゲート電極109が設けられている。導電層111は、n+型ソース領域105およびp++型コンタクト領域106にオーミック(ohmic)接触する。導電層121は、JFET領域103aにショットキー(shottky)接触する。ソース電極112は、導電層111,121に電気的に接続されている。 The lowermost p + -type region 107 covers the entire drain side of the p-type base region 104, the n + -type source region 105, and the p ++ -type contact region 106. A gate electrode 109 is provided on a surface of the p-type base region 104 between the n + -type source region 105 and the JFET region 103a (the n-type current diffusion region 103) via a gate insulating film. The conductive layer 111 makes ohmic contact with the n + type source region 105 and the p ++ type contact region 106. The conductive layer 121 makes a Schottky contact with the JFET region 103a. The source electrode 112 is electrically connected to the conductive layers 111 and 121.

平面SBD120は、JFET領域103aと導電層121とのショットキー接触による整流作用を示すダイオードであり、JFET領域103aを挟んで隣り合うゲート電極109間に配置されている。ゲート電極109間に平面SBD120を配置することで、p++型コンタクト領域106、最下部p+型領域107、n型電流拡散領域103、n-型ドリフト領域102およびn+型出発基板(n+型ドレイン領域)101とのpn接合で形成される寄生pin(p−intrinsic−n)ダイオード動作による順方向劣化が抑制される。 The plane SBD 120 is a diode that exhibits a rectifying function due to Schottky contact between the JFET region 103a and the conductive layer 121, and is disposed between the adjacent gate electrodes 109 with the JFET region 103a interposed therebetween. By arranging the plane SBD 120 between the gate electrodes 109, the p ++ type contact region 106, the lowermost p + type region 107, the n type current diffusion region 103, the n type drift region 102, and the n + type starting substrate (n Forward deterioration due to the operation of a parasitic pin (p-intrinsic-n) diode formed at the pn junction with the ( + type drain region) 101 is suppressed.

図14には、半導体基板130とオーミック接触する導電層111と、半導体基板130とショットキー接触する導電層121と、をそれぞれ異なるハッチングで示す。符号RJFET,RDは、それぞれMOSFETのJFET(Junction FET)抵抗、および、MOSFETのドリフト抵抗(n-型ドリフト領域102の抵抗)である。符号AAは、MOSFETの1つの単位セルである。 In FIG. 14, the conductive layer 111 that makes ohmic contact with the semiconductor substrate 130 and the conductive layer 121 that makes Schottky contact with the semiconductor substrate 130 are indicated by different hatchings. Symbols R JFET and R D are a MOSFET JFET (Junction FET) resistance and a MOSFET drift resistance (resistance of the n type drift region 102), respectively. AA is one unit cell of the MOSFET.

従来のプレーナゲート構造の縦型MOSFETの別の一例として、n型ドリフト層の内部において、p型ベース領域の、p+型コンタクト領域(ソース電極とオーミック接触するp+型コンタクト領域)に深さ方向に対向する部分の直下(ドレイン側)に、p型ベース領域に接して、p+型コンタクト領域と略同じ幅のp型層を選択的に設けた装置が提案されている(例えば、下記特許文献1(第0019,0041段落、第1図)参照。)。 As another example of a vertical MOSFET of the conventional planar gate structure, inside the n-type drift layer, p-type base region, the depth p + -type contact region (p + -type contact region contacting the source electrode and the ohmic) A device has been proposed in which a p-type layer having the same width as the p + -type contact region is selectively provided directly below (in the drain side) of a portion opposed in the direction, in contact with the p-type base region (for example, See Patent Document 1 (paragraph 0019, 0041, FIG. 1).)

下記特許文献1では、サージ電圧発生時に、p型ベース領域とn型ドリフト層とのpn接合により形成される寄生pnダイオードのブレークポイントがp型ベース領域直下のp型層となる。サージ電圧発生時に半導体基板内部に流れる電流を、p型ベース領域直下のp型層からp+型コンタクト領域を通る経路でソース電極へ引き抜くことで、表面チャネル層への電流集中を抑制して耐圧を向上させている。 In the following Patent Document 1, when a surge voltage occurs, a breakpoint of a parasitic pn diode formed by a pn junction between a p-type base region and an n-type drift layer becomes a p-type layer immediately below the p-type base region. By drawing the current flowing inside the semiconductor substrate when a surge voltage occurs from the p-type layer immediately below the p-type base region to the source electrode through the path passing through the p + -type contact region, current concentration on the surface channel layer is suppressed and the breakdown voltage is reduced. Has been improved.

また、従来のプレーナゲート構造の縦型MOSFETとして、n-型ドリフト領域よりも不純物濃度の高いn型電流拡散領域をJFET領域のみに設けることで、JFET領域のキャリアの広がり抵抗を低減させた装置が提案されている(例えば、下記特許文献2(第0083段落、第21図)参照。)。 Further, as a conventional vertical MOSFET having a planar gate structure, an n-type current diffusion region having an impurity concentration higher than that of an n -type drift region is provided only in the JFET region, thereby reducing the spread resistance of carriers in the JFET region. (For example, refer to Patent Document 2 below (paragraph 0083, FIG. 21)).

特開2009−016601号公報JP 2009-016601 A 特開2017−055145号公報JP 2017-055145 A

従来のプレーナゲート構造の縦型MOSFET(図14参照)では、最下部p+型領域107の直下の部分においてn型電流拡散領域103のキャリアの広がり抵抗Rspが高いと、p型ベース領域104、最下部p+型領域107、n型電流拡散領域103、n-型ドリフト領域102およびn+型出発基板101からなる寄生pinダイオードに順方向電圧が印加されやすい。この寄生pinダイオードは、最下部p+型領域107とn-型ドリフト領域102とのpn接合のビルトインポテンシャル(内蔵電位)を超える順方向電圧が印加されると動作してしまう。 In the conventional vertical MOSFET having a planar gate structure (see FIG. 14), when the carrier spreading resistance Rsp of the n-type current diffusion region 103 is high in the portion immediately below the lowermost p + -type region 107, the p-type base region 104, A forward voltage is easily applied to a parasitic pin diode including the lowermost p + -type region 107, the n-type current diffusion region 103, the n -type drift region 102, and the n + -type starting substrate 101. This parasitic pin diode operates when a forward voltage exceeding the built-in potential (built-in potential) of the pn junction between the lowermost p + type region 107 and the n type drift region 102 is applied.

n型電流拡散領域103のキャリアの広がり抵抗Rspは、最下部p+型領域107の幅L101で決まる。最下部p+型領域107の幅L101とは、n型電流拡散領域103からn+型出発基板101へ向かって流れる平面SBD120の順方向電流の電流経路からp++型コンタクト領域106側へ向かう方向Yにおける最下部p+型領域107の長さ(すなわち隣り合う平面SBD120の直下のJFET領域間の幅)である。 The spreading resistance Rsp of carriers in the n-type current diffusion region 103 is determined by the width L101 of the lowermost p + -type region 107. The width L101 of the lowermost p + -type region 107 is defined as the direction from the current path of the forward current of the plane SBD 120 flowing from the n-type current diffusion region 103 toward the n + -type starting substrate 101 to the p ++ -type contact region 106 side. This is the length of the lowermost p + -type region 107 in the direction Y (that is, the width between the JFET regions immediately below the adjacent plane SBD 120).

この最下部p+型領域107の幅L101が広いと、n型電流拡散領域103のキャリアの広がり抵抗Rspが高くなり、上記寄生pinダイオードが動作しやすいことが発明者により確認されている。最下部p+型領域107の幅L101は、プレーナゲート構造のMOSFETではp型ベース領域104、n+型ソース領域105およびp++型コンタクト領域106の条件(特にこれらの領域の幅)に依存して決定されるため、狭くすることが難しい。 It has been confirmed by the inventor that if the width L101 of the lowermost p + -type region 107 is large, the spreading resistance Rsp of carriers in the n-type current diffusion region 103 is high, and the above-mentioned parasitic pin diode is easy to operate. The width L101 of the lowermost p + -type region 107 depends on the conditions (particularly the width of these regions) of the p-type base region 104, the n + -type source region 105, and the p ++- type contact region 106 in the MOSFET having the planar gate structure. Because it is determined, it is difficult to narrow.

例えば、MOSFETのセルピッチL102が10μm程度である場合、最下部p+型領域107の幅L101は8μm以上となってしまう。最下部p+型領域107の幅L101が8μm以上となると、後述するように最下部p+型領域107からn+型出発基板101へ向かう方向(深さ方向Z)に大電流(寄生pnダイオードの動作電流)が流れた場合に、寄生pnダイオード動作を抑制することが難しいことが発明者により確認されている(図6,7参照)。 For example, when the cell pitch L102 of the MOSFET is about 10 μm, the width L101 of the lowermost p + -type region 107 is 8 μm or more. When the width L101 of the lowermost p + -type region 107 is 8 μm or more, a large current (parasitic pn diode) flows from the lowermost p + -type region 107 toward the n + -type starting substrate 101 (depth direction Z) as described later. It has been confirmed by the inventor that it is difficult to suppress the parasitic pn diode operation when the operating current flows (see FIGS. 6 and 7).

図15は、従来の半導体装置の別の一例を示す断面図である。図15には、上記特許文献1の図1の縦型MOSFETを簡略化して示す。上記特許文献1においても、図14に示す従来の縦型MOSFETと同様に、p型ベース領域104’の最下部107’の幅(具体的にはp型ベース領域104’の最下部107’の、JFET領域103a’から隣接する他の単位セルまでの幅L101’)で、n型ドリフト領域102’のキャリアの広がり抵抗Rsp’が決まる。   FIG. 15 is a cross-sectional view showing another example of the conventional semiconductor device. FIG. 15 shows a simplified version of the vertical MOSFET of FIG. In Patent Document 1 as well, similarly to the conventional vertical MOSFET shown in FIG. 14, the width of the lowermost portion 107 'of the p-type base region 104' (specifically, the width of the lowermost portion 107 'of the p-type base region 104'). , JFET region 103a ′ to another adjacent unit cell, L101 ′), determines the carrier spreading resistance Rsp ′ of n-type drift region 102 ′.

n型ドリフト領域102’のキャリアの広がり抵抗Rsp’を低くするには、n-型ドリフト領域102’の不純物濃度を高くすればよいが、n型ドリフト領域102’の不純物濃度を高くするほど耐圧が低下してしまう。一方、所定耐圧を得るためにn型ドリフト領域102’の不純物濃度を低くした場合、n型ドリフト領域102’のキャリアの広がり抵抗Rsp’が高くなってしまう。 To lower the carrier spreading resistance Rsp 'of the n - type drift region 102', the impurity concentration of the n -- type drift region 102 'may be increased. However, as the impurity concentration of the n-type drift region 102' is increased, the breakdown voltage becomes higher. Will decrease. On the other hand, if the impurity concentration of the n-type drift region 102 'is reduced to obtain a predetermined breakdown voltage, the carrier spreading resistance Rsp' of the n-type drift region 102 'increases.

また、上記特許文献1においても、p型ベース領域104’の最下部107’の幅(=2×L101’)は、p+型コンタクト領域106’、n+型ソース領域105’およびチャネル領域104a’の幅に依存して広くなってしまう。このため、図14に示す従来の縦型MOSFETと同様に、p型ベース領域104’とn型ドリフト領域102’とのpn接合で形成される寄生pnダイオード動作を抑制することが難しいという問題が生じる。 Also, in Patent Document 1, the width (= 2 × L101 ′) of the lowermost part 107 ′ of the p-type base region 104 ′ is determined by the p + -type contact region 106 ′, the n + -type source region 105 ′, and the channel region 104a. 'Depends on the width. Therefore, similarly to the conventional vertical MOSFET shown in FIG. 14, there is a problem that it is difficult to suppress a parasitic pn diode operation formed at a pn junction between the p-type base region 104 'and the n-type drift region 102'. Occurs.

チャネル領域104a’は、p型ベース領域104’の、n+型ソース領域105’とJFET領域103a’とに挟まれた部分である。図15において、符号101’は、n+型ドレイン領域であるn+型出発基板である。符号108’〜113’は、それぞれゲート絶縁膜、ゲート電極、層間絶縁膜、半導体基板とオーミック接触する導電層、ソース電極、およびドレイン電極である。 The channel region 104a 'is a portion of the p-type base region 104' between the n + -type source region 105 'and the JFET region 103a'. In FIG. 15, reference numeral 101 ′ denotes an n + -type starting substrate that is an n + -type drain region. Reference numerals 108 'to 113' denote a gate insulating film, a gate electrode, an interlayer insulating film, a conductive layer in ohmic contact with a semiconductor substrate, a source electrode, and a drain electrode, respectively.

この発明は、上述した従来技術による問題点を解消するため、同一の半導体基板にSBDを内蔵したMOS型半導体装置であって、寄生pinダイオード動作を抑制することができる半導体装置を提供することを目的とする。   An object of the present invention is to provide a MOS-type semiconductor device having a built-in SBD on the same semiconductor substrate and capable of suppressing the operation of a parasitic pin diode, in order to solve the above-described problems of the related art. Aim.

上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、トランジスタおよびショットキーバリアダイオードを備え、次の特徴を有する。シリコンよりもバンドギャップの広い半導体からなる半導体基板のおもて面に、シリコンよりもバンドギャップの広い半導体からなる第1導電型の第1半導体層が設けられている。前記第1半導体層の、前記半導体基板側に対して反対側の表面層に、前記第1半導体層よりも不純物濃度の高い第1導電型の第1半導体領域が設けられている。前記第1半導体層の、前記半導体基板側に対して反対側に、シリコンよりもバンドギャップの広い半導体からなる第2導電型の第2半導体層が設けられている。前記第2半導体層は、前記第1半導体領域を覆う。第1導電型の第2半導体領域は、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する。   In order to solve the above-described problems and achieve the object of the present invention, a semiconductor device according to the present invention includes a transistor and a Schottky barrier diode, and has the following features. A first conductive first semiconductor layer made of a semiconductor having a wider band gap than silicon is provided on a front surface of a semiconductor substrate made of a semiconductor having a wider band gap than silicon. A first conductivity type first semiconductor region having a higher impurity concentration than the first semiconductor layer is provided on a surface layer of the first semiconductor layer opposite to the semiconductor substrate. On the opposite side of the first semiconductor layer with respect to the semiconductor substrate side, a second conductivity type second semiconductor layer made of a semiconductor having a wider band gap than silicon is provided. The second semiconductor layer covers the first semiconductor region. The second semiconductor region of the first conductivity type penetrates the second semiconductor layer in the depth direction and reaches the first semiconductor layer.

第1導電型の第3半導体領域は、前記第2半導体層に前記第2半導体領域と離して選択的に設けられている。前記第3半導体領域は、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達して前記第1半導体領域の一部をなす。前記第3半導体領域は、前記第1半導体層よりも不純物濃度が高い。第2導電型の第4半導体領域は、前記第2半導体層の、前記第2半導体領域および前記第3半導体領域以外の部分である。前記第4半導体領域の、前記第2半導体領域と前記第3半導体領域とに挟まれた部分の表面上に、ゲート絶縁膜を介してゲート電極が設けられている。第1電極は、前記第2半導体領域および前記第4半導体領域に電気的に接続されている。第2電極は、前記半導体基板の裏面に設けられている。   The third semiconductor region of the first conductivity type is selectively provided in the second semiconductor layer separately from the second semiconductor region. The third semiconductor region penetrates the second semiconductor layer in a depth direction, reaches the first semiconductor layer, and forms a part of the first semiconductor region. The third semiconductor region has a higher impurity concentration than the first semiconductor layer. The fourth semiconductor region of the second conductivity type is a portion of the second semiconductor layer other than the second semiconductor region and the third semiconductor region. A gate electrode is provided on a surface of a portion of the fourth semiconductor region interposed between the second semiconductor region and the third semiconductor region via a gate insulating film. The first electrode is electrically connected to the second semiconductor region and the fourth semiconductor region. The second electrode is provided on a back surface of the semiconductor substrate.

前記トランジスタは、前記第1,2半導体層、前記第1〜4半導体領域、前記ゲート電極および前記第1,2電極を有する。前記ショットキーバリアダイオードは、前記第3半導体領域と、前記第3半導体領域にショットキー接触し、かつ前記第1電極に電気的に接続された導電層と、からなる。前記第1半導体領域の内部には、前記第4半導体領域よりも不純物濃度の高い、第2導電型の第5半導体領域および第2導電型の第1〜3埋め込み領域がそれぞれ選択的に設けられている。前記第5半導体領域は、深さ方向に前記第2半導体領域および前記第4半導体領域と対向して配置され、かつ前記第2半導体領域および前記第4半導体領域の前記第2電極側の面を覆う。前記第1埋め込み領域は、前記第5半導体領域よりも前記第2電極側に2つ以上配置されている。   The transistor has the first and second semiconductor layers, the first to fourth semiconductor regions, the gate electrode, and the first and second electrodes. The Schottky barrier diode includes the third semiconductor region and a conductive layer that is in Schottky contact with the third semiconductor region and is electrically connected to the first electrode. A fifth semiconductor region of a second conductivity type and a first to third buried regions of a second conductivity type, each having a higher impurity concentration than the fourth semiconductor region, are selectively provided inside the first semiconductor region. ing. The fifth semiconductor region is arranged to face the second semiconductor region and the fourth semiconductor region in a depth direction, and a surface of the second semiconductor region and the fourth semiconductor region on the second electrode side is arranged. cover. Two or more first buried regions are arranged closer to the second electrode than the fifth semiconductor region.

2つ以上の前記第1埋め込み領域は、深さ方向に前記第5半導体領域に対向し、かつ前記第1電極側から前記第2電極側へ向かって多段に積層されて互いに接し積層構造をなす。前記第2埋め込み領域は、前記第5半導体領域および前記第1埋め込み領域と離して配置され、かつ深さ方向に前記第3半導体領域に対向する。前記第3埋め込み領域は、前記第1埋め込み領域のうちの最も前記第2電極側に配置された最下部埋め込み領域と、前記第2埋め込み領域と、の間に配置され、前記最下部埋め込み領域と前記第2埋め込み領域とを連結する。前記第1埋め込み領域のうちの最も前記第1電極側に配置された最上部埋め込み領域は、前記第5半導体領域に接する。前記最下部埋め込み領域の幅は、前記第5半導体領域の幅よりも狭い。   The two or more first buried regions are opposed to the fifth semiconductor region in a depth direction, and are stacked in multiple stages from the first electrode side to the second electrode side to be in contact with each other to form a stacked structure. . The second buried region is disposed apart from the fifth semiconductor region and the first buried region, and faces the third semiconductor region in a depth direction. The third buried region is disposed between a lowermost buried region of the first buried region closest to the second electrode and the second buried region. The second buried region is connected. The uppermost buried region of the first buried region that is arranged closest to the first electrode is in contact with the fifth semiconductor region. The width of the lowermost buried region is smaller than the width of the fifth semiconductor region.

また、この発明にかかる半導体装置は、上述した発明において、前記第4半導体領域、前記第5半導体領域、前記第1埋め込み領域、前記第3半導体領域、前記第1半導体層および前記半導体基板からなる寄生ダイオードの臨界電流密度は3000A/cm2以上である。前記トランジスタのセルピッチは10μmである。前記最下部埋め込み領域の幅は8μm以下であることを特徴とする。 Further, a semiconductor device according to the present invention, in the above-described invention, comprises the fourth semiconductor region, the fifth semiconductor region, the first buried region, the third semiconductor region, the first semiconductor layer, and the semiconductor substrate. The critical current density of the parasitic diode is 3000 A / cm 2 or more. The cell pitch of the transistor is 10 μm. The width of the lowermost buried region is 8 μm or less.

また、この発明にかかる半導体装置は、上述した発明において、前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置されている。前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置されている。前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域と十字状のレイアウトをなす。前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分の対角線の長さは8μm以下であることを特徴とする。   Further, in the semiconductor device according to the present invention, in the above-described invention, the gate electrode is arranged in a linear layout extending in a first direction parallel to a front surface of the semiconductor substrate. The first buried region and the second buried region are arranged in a linear layout extending in the first direction. The third buried region is arranged in a linear layout extending in a second direction parallel to the front surface of the semiconductor substrate and orthogonal to the lowermost buried region. Make a layout. A diagonal length of a rectangular planar portion of the lowermost buried region facing the third buried region in the second direction is 8 μm or less.

また、この発明にかかる半導体装置は、上述した発明において、前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置されている。前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置されている。前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域とT字状のレイアウトをなす。前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分を前記第2方向に平行な中心線で分割した矩形状の分割部分の対角線の長さは8μm以下であることを特徴とする。   Further, in the semiconductor device according to the present invention, in the above-described invention, the gate electrode is arranged in a linear layout extending in a first direction parallel to a front surface of the semiconductor substrate. The first buried region and the second buried region are arranged in a linear layout extending in the first direction. The third buried region is arranged in a linear layout extending in a second direction parallel to the front surface of the semiconductor substrate and orthogonal to the lowermost buried region. Make a layout. The diagonal length of a rectangular divided portion obtained by dividing a rectangular planar portion facing the third embedded region in the second direction by a center line parallel to the second direction in the lowermost embedded region is It is characterized by being 8 μm or less.

また、この発明にかかる半導体装置は、上述した発明において、前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する前記矩形状の平面形状部分は、当該矩形状の平面形状部分の頂点を、当該矩形状の平面形状部分の中心側に凹むように切欠いた切欠き部を有する平面形状を有することを特徴とする。   Further, in the semiconductor device according to the present invention, in the above-described invention, the rectangular planar shape portion of the lowermost buried region facing the third buried region in the second direction is the rectangular planar shape. It is characterized in that it has a planar shape having a cutout portion in which the vertex of the portion is cut out so as to be recessed toward the center of the rectangular planar shape portion.

また、この発明にかかる半導体装置は、上述した発明において、前記第1半導体領域の内部に、前記第1半導体領域よりも不純物濃度の高い第1導電型の第6半導体領域をさらに備えることを特徴とする。   Further, the semiconductor device according to the present invention is characterized in that, in the above-described invention, a sixth semiconductor region of a first conductivity type having a higher impurity concentration than the first semiconductor region is further provided inside the first semiconductor region. And

また、この発明にかかる半導体装置は、上述した発明において、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達し、前記第2半導体領域に対して前記第3半導体領域と反対側に、前記第2半導体領域に接して配置された、前記第2半導体層よりも不純物濃度の高い第2導電型の第7半導体領域をさらに備える。前記第4半導体領域は、前記第2半導体層の、前記第2半導体領域、前記第3半導体領域および前記第7半導体領域以外の部分である。前記第5半導体領域は、深さ方向に前記第2半導体領域、前記第4半導体領域および前記第7半導体領域と対向して選択的に設けられ、かつ前記第2半導体領域、前記第4半導体領域および前記第7半導体領域の前記第2電極側の面を覆うことを特徴とする。   Further, in the semiconductor device according to the present invention, in the above-described invention, the first semiconductor layer reaches the first semiconductor layer by penetrating the second semiconductor layer in a depth direction, and the third semiconductor region is formed with respect to the second semiconductor region. On the opposite side, a seventh semiconductor region of a second conductivity type, which is disposed in contact with the second semiconductor region and has a higher impurity concentration than the second semiconductor layer, is further provided. The fourth semiconductor region is a portion of the second semiconductor layer other than the second semiconductor region, the third semiconductor region, and the seventh semiconductor region. The fifth semiconductor region is selectively provided to face the second semiconductor region, the fourth semiconductor region, and the seventh semiconductor region in a depth direction, and further includes the second semiconductor region, the fourth semiconductor region. And covering a surface of the seventh semiconductor region on the second electrode side.

上述した発明によれば、第5半導体領域の直下(第2電極側)に第1埋め込み領域を多段に配置し、単位セル内のドリフト領域に接する寄生JFETの数を2つ以上に増やすことで、寄生pinダイオードの順方向動作時における第3半導体領域のキャリアの広がり抵抗が、最も第2電極側に配置された第1埋め込み領域(最下部埋め込み領域)の幅で決まる。かつ、最下部埋め込み領域の幅は、第3,4,7半導体領域の条件に依存しないため、第5半導体領域の幅よりも狭い例えば8μm以下程度にすることができる。このため、寄生pinダイオードの順方向動作時における第3半導体領域のキャリアの広がり抵抗を抑制することができる。   According to the above-described invention, the first buried region is arranged in multiple stages immediately below the fifth semiconductor region (on the second electrode side), and the number of parasitic JFETs in contact with the drift region in the unit cell is increased to two or more. The spread resistance of carriers in the third semiconductor region during the forward operation of the parasitic pin diode is determined by the width of the first buried region (lowest buried region) disposed closest to the second electrode. In addition, since the width of the lowermost buried region does not depend on the conditions of the third, fourth, and seventh semiconductor regions, the width can be set to, for example, about 8 μm or less, which is smaller than the width of the fifth semiconductor region. For this reason, the spreading resistance of the carriers in the third semiconductor region during the forward operation of the parasitic pin diode can be suppressed.

本発明にかかる半導体装置によれば、同一の半導体基板にSBDを内蔵したMOS型半導体装置であって、寄生pinダイオード動作を抑制することができるという効果を奏する。   ADVANTAGE OF THE INVENTION According to the semiconductor device concerning this invention, it is a MOS type semiconductor device which built-in SBD in the same semiconductor substrate, and has the effect that a parasitic pin diode operation can be suppressed.

実施の形態1にかかる半導体装置の構造を示す断面図である。FIG. 2 is a cross-sectional view illustrating a structure of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state during the manufacture of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state during the manufacture of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state during the manufacture of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state during the manufacture of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state during the manufacture of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state during the manufacture of the semiconductor device according to the first embodiment; 実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトを示す平面図である。FIG. 2 is a plan view showing a layout of a part of the semiconductor device according to the first embodiment as viewed from the front side of the semiconductor substrate; 実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトの別の一例を示す平面図である。FIG. 4 is a plan view showing another example of the layout of a part of the semiconductor device according to the first embodiment as viewed from the front side of the semiconductor substrate; 実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトの別の一例を示す平面図である。FIG. 4 is a plan view showing another example of the layout of a part of the semiconductor device according to the first embodiment as viewed from the front side of the semiconductor substrate; 実施の形態2にかかる半導体装置の構造を示す断面図である。FIG. 5 is a cross-sectional view illustrating a structure of a semiconductor device according to a second embodiment; 同一の半導体基板に配置されたpinダイオードおよびユニポーラ素子間の距離とバイポーラ電流との関係を示す特性図である。FIG. 4 is a characteristic diagram showing a relationship between a distance between a pin diode and a unipolar element arranged on the same semiconductor substrate and a bipolar current. 図12の検証に用いた試料の断面構造を示す断面図である。FIG. 13 is a cross-sectional view illustrating a cross-sectional structure of a sample used for verification in FIG. 従来の半導体装置の構造を示す断面図である。FIG. 11 is a cross-sectional view illustrating a structure of a conventional semiconductor device. 従来の半導体装置の別の一例を示す断面図である。FIG. 11 is a cross-sectional view illustrating another example of a conventional semiconductor device.

以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. In the present specification and the accompanying drawings, a layer or a region entitled with n or p means that electrons or holes are majority carriers, respectively. Further, + and-attached to n and p mean that the impurity concentration is higher and lower than that of the layer or region to which they are not added. In the following description of the embodiments and the accompanying drawings, the same components are denoted by the same reference numerals, and redundant description will be omitted.

(実施の形態1)
実施の形態1にかかる半導体装置は、シリコン(Si)よりもバンドギャップが広い半導体(ワイドバンドギャップ半導体とする)を用いて構成される。この実施の形態1にかかる半導体装置の構造について、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いた場合を例に説明する。図1は、実施の形態1にかかる半導体装置の構造を示す断面図である。図1には、MOSFETの1つの単位セル(素子の構成単位)の断面構造と、当該単位セルの両側にそれぞれ隣接する他の単位セルの1/2の断面構造と、を示す(図2〜8においても同様)。
(Embodiment 1)
The semiconductor device according to the first embodiment is configured using a semiconductor having a wider band gap than silicon (Si) (referred to as a wide band gap semiconductor). The structure of the semiconductor device according to the first embodiment will be described using a case where, for example, silicon carbide (SiC) is used as a wide band gap semiconductor. FIG. 1 is a cross-sectional view illustrating the structure of the semiconductor device according to the first embodiment. FIG. 1 shows a cross-sectional structure of one unit cell (element unit) of a MOSFET and a half of another unit cell adjacent to both sides of the unit cell (FIGS. 2 to 2). 8).

また、図1には、活性領域に配置された一部の単位セルのみを図示し、活性領域の周囲を囲むエッジ終端領域を図示省略する(図11においても同様)。活性領域とは、MOSFETの主電流が流れる領域である。エッジ終端領域は、活性領域と半導体基板(半導体チップ)30の側面との間の領域であり、半導体基板30のおもて面側の電界を緩和して耐圧(耐電圧)を保持する領域である。エッジ終端領域には、例えばガードリングやフィールドプレート、リサーフ等の一般的な耐圧構造が配置される。耐圧とは、半導体装置が誤動作や破壊を起こさない限界の電圧である。   FIG. 1 shows only a part of the unit cells arranged in the active region, and does not show an edge termination region surrounding the periphery of the active region (the same applies to FIG. 11). The active region is a region where the main current of the MOSFET flows. The edge termination region is a region between the active region and the side surface of the semiconductor substrate (semiconductor chip) 30, and is a region that relaxes an electric field on the front surface side of the semiconductor substrate 30 and maintains a withstand voltage (withstand voltage). is there. A general withstand voltage structure such as a guard ring, a field plate, or RESURF is arranged in the edge termination region. The withstand voltage is a limit voltage at which the semiconductor device does not malfunction or break down.

図1に示す実施の形態1にかかる半導体装置は、炭化珪素からなる半導体基板30のおもて面上に平板状にゲート電極9を設けたプレーナゲート構造の縦型MOSFETであり、同一の半導体基板30のおもて面上に平板状に配置したSBD(平面SBD)20を内蔵する。半導体基板30は、炭化珪素からなるn+型出発基板1のおもて面上にn-型ドリフト領域2およびp型ベース領域(第4半導体領域)4となる各炭化珪素層31,32を順にエピタキシャル成長させたエピタキシャル基板である。 The semiconductor device according to the first embodiment shown in FIG. 1 is a vertical MOSFET having a planar gate structure in which a gate electrode 9 is provided in a flat plate shape on a front surface of a semiconductor substrate 30 made of silicon carbide. An SBD (planar SBD) 20 arranged in a flat plate shape on the front surface of the substrate 30 is incorporated. Semiconductor substrate 30 includes n -type drift substrate 2 and p-type base region (fourth semiconductor region) 4 each having silicon carbide layers 31 and 32 on front surface of n + -type starting substrate 1 made of silicon carbide. This is an epitaxial substrate that has been epitaxially grown.

-型炭化珪素層31の、n+型出発基板1側に対して反対側の表面層には、n型電流拡散領域(第1半導体領域)3が設けられている。n型電流拡散領域3は、キャリアの広がり抵抗を低減させる、いわゆる電流拡散層(Current Spreading Layer:CSL)である。このn型電流拡散領域3は、例えば、n-型炭化珪素層31へのn型不純物のイオン注入により、半導体基板30のおもて面に平行な方向(横方向:後述する第1,2方向X,Y)に一様に設けられている。n-型炭化珪素層31の、n型電流拡散領域3以外の部分がn-型ドリフト領域2である。 An n-type current diffusion region (first semiconductor region) 3 is provided on a surface layer of n -type silicon carbide layer 31 opposite to n + -type starting substrate 1. The n-type current diffusion region 3 is a so-called current spreading layer (CSL) that reduces the spreading resistance of carriers. The n-type current diffusion region 3 is formed by, for example, ion implantation of n-type impurities into the n -type silicon carbide layer 31 in a direction parallel to the front surface of the semiconductor substrate 30 (lateral direction: first and second (Directions X, Y). The portion of n -type silicon carbide layer 31 other than n-type current diffusion region 3 is n -type drift region 2.

n型電流拡散領域3の表面領域には、第1p+型領域(第5半導体領域)7が選択的に設けられている。第1p+型領域7は、p型ベース領域4とともに、MOSFETのp型ベース領域として機能する。また、n型電流拡散領域3の内部には、第1p+型領域7よりもドレイン側(ドレイン電極(第2電極)13側)に深い位置に、第2〜4p+型領域41〜43がそれぞれ選択的に設けられている。第1p+型領域7および第2〜4p+型領域41〜43は、後述するp++型コンタクト領域6を介してソース電極(第1電極)12の電位(ソース電位)に固定されている。第2,3p+型領域(第1埋め込み領域)41,42は、寄生pinダイオードの順方向動作時に、第3p+型領域42の直下(ドレイン側)におけるn型電流拡散領域3のキャリアの広がり抵抗Rspを低減する機能を有する。 A first p + -type region (fifth semiconductor region) 7 is selectively provided in a surface region of the n-type current diffusion region 3. The first p + -type region 7 functions as the p-type base region of the MOSFET together with the p-type base region 4. Further, inside the n-type current diffusion region 3, the second to fourth p + -type regions 41 to 43 are located deeper on the drain side (drain electrode (second electrode) 13 side) than the first p + -type region 7. Each is selectively provided. The 1p + -type region 7 and the 2~4P + -type region 41 to 43 is fixed to the source electrode (first electrode) 12 of the voltage (source potential) via a p ++ type contact region 6 to be described later . The second and third p + -type regions (first buried regions) 41 and 42 spread the carriers in the n-type current diffusion region 3 immediately below the third p + -type region 42 (drain side) during the forward operation of the parasitic pin diode. It has a function of reducing the resistance Rsp.

p型炭化珪素層32は、例えば活性領域においてn-型炭化珪素層31の、n+型出発基板1側に対して反対側の全面に設けられ、第1p+型領域7を覆う。すなわち、エッジ終端領域においては、半導体基板30のおもて面は、炭化珪素層31の、n+型出発基板1側に対して反対側の表面である(不図示)。p型炭化珪素層32には、深さ方向Zに第1p+型領域7に対向する位置に、n+型ソース領域(第2半導体領域)5およびp++型コンタクト領域(第7半導体領域)6がそれぞれ選択的に設けられている。n+型ソース領域5およびp++型コンタクト領域6は、炭化珪素層32を深さ方向Zに貫通して、第1p+型領域7に達する。深さ方向Zとは、半導体基板30のおもて面から裏面へ向かう方向(縦方向)である。 P-type silicon carbide layer 32 is provided, for example, on the entire surface of n -type silicon carbide layer 31 opposite to n + -type starting substrate 1 in the active region, and covers first p + -type region 7. That is, in the edge termination region, the front surface of semiconductor substrate 30 is the surface of silicon carbide layer 31 opposite to n + type starting substrate 1 (not shown). In the p-type silicon carbide layer 32, an n + -type source region (second semiconductor region) 5 and a p ++ -type contact region (seventh semiconductor region) are provided at positions facing the first p + -type region 7 in the depth direction Z. ) 6 are selectively provided. N + -type source region 5 and p ++ -type contact region 6 penetrate silicon carbide layer 32 in depth direction Z to reach first p + -type region 7. The depth direction Z is a direction (vertical direction) from the front surface to the back surface of the semiconductor substrate 30.

また、p型炭化珪素層32には、n+型ソース領域5およびp++型コンタクト領域6と離して、p型炭化珪素層32をイオン注入により打ち返してなるn型領域(以下、n型打ち返し領域(第3半導体領域)とする)が設けられている。このn型打ち返し領域は、p型炭化珪素層32を深さ方向Zに貫通して、n型電流拡散領域3の、隣り合う第1p+型領域7間に挟まれた部分に接し、当該n型電流拡散領域3(JFET領域3a)の一部をなす。p型炭化珪素層32の、n+型ソース領域5、p++型コンタクト領域6およびn型打ち返し領域(JFET領域3a)以外の部分がp型ベース領域4である。 Further, p-type silicon carbide layer 32 is separated from n + -type source region 5 and p ++ -type contact region 6 and is an n-type region (hereinafter referred to as an n-type) formed by ion-implanting p-type silicon carbide layer 32. A return region (a third semiconductor region) is provided. The n-type repetition region penetrates the p-type silicon carbide layer 32 in the depth direction Z and contacts the portion of the n-type current diffusion region 3 sandwiched between the adjacent first p + -type regions 7. And a part of the current diffusion region 3 (JFET region 3a). A portion of the p-type silicon carbide layer 32 other than the n + -type source region 5, the p + + -type contact region 6 and the n-type counter region (JFET region 3 a) is a p-type base region 4.

これらJFET領域3a、p型ベース領域4、n+型ソース領域5、p++型コンタクト領域6および第1〜4p+型領域7,41〜43は、半導体基板30のおもて面側から見て半導体基板30のおもて面に平行な方向(第1方向)Xに延びる直線状のレイアウトに配置されている。n型電流拡散領域3の、隣り合うp型ベース領域(p型ベース領域4および第1p+型領域7)間に挟まれた部分がJFET領域3aである。n+型ソース領域5は、半導体基板30のおもて面に平行で、かつ第1方向Xと直交する方向(第2方向)Yに、p型ベース領域4を挟んでJFET領域3aに対向する。 The JFET region 3a, the p-type base region 4, the n + -type source region 5, the p ++ -type contact region 6, and the first to fourth p + -type regions 7, 41 to 43 are formed from the front side of the semiconductor substrate 30. When viewed, they are arranged in a linear layout extending in a direction (first direction) X parallel to the front surface of the semiconductor substrate 30. The portion of the n-type current diffusion region 3 sandwiched between adjacent p-type base regions (the p-type base region 4 and the first p + -type region 7) is the JFET region 3a. The n + -type source region 5 is opposed to the JFET region 3a with the p-type base region 4 interposed therebetween in a direction (second direction) Y parallel to the front surface of the semiconductor substrate 30 and orthogonal to the first direction X. I do.

++型コンタクト領域6は、n+型ソース領域5の、JFET領域3a側に対して反対側に、当該n+型ソース領域5に接して配置されている。具体的には、p++型コンタクト領域6の第2方向Yの両側にn+型ソース領域5が配置され、n+型ソース領域5の、p++型コンタクト領域6側に対して反対側にp型ベース領域4が配置されている。かつp型ベース領域4の、n+型ソース領域5側に対して反対側にJFET領域3aが配置されている。すなわち、p++型コンタクト領域6の第2方向Yの両側に、n+型ソース領域5、p型ベース領域4およびJFET領域3aが対称に配置されている。 p ++ -type contact region 6, the n + -type source region 5, on the opposite side of the JFET region 3a side, are arranged in contact with the n + -type source regions 5. Specifically, n + -type source region 5 are arranged on both sides of the second direction Y of the p ++ type contact region 6, the n + -type source region 5, opposite to that p ++ -type contact region 6 side A p-type base region 4 is arranged on the side. JFET region 3a is arranged on the opposite side of p-type base region 4 from n + -type source region 5 side. That is, the n + -type source region 5, the p-type base region 4, and the JFET region 3a are symmetrically arranged on both sides of the p ++ -type contact region 6 in the second direction Y.

第1p+型領域7は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6のドレイン側において、これらの領域に深さ方向に対向する。かつ、第1p+型領域7は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6のドレイン側に接し、これらの領域のドレイン側の全面を覆う。すなわち、第1p+型領域7の幅(第2方向Yの幅)L11は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6の各幅に依存して設定される。具体的には、第1p+型領域7の幅L11は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6の各幅の略総和である。 The first p + -type region 7 is opposed to the p-type base region 4, the n + -type source region 5, and the p ++ -type contact region 6 in the depth direction on the drain side of these regions. Further, the first p + -type region 7 is in contact with the drain side of the p-type base region 4, the n + -type source region 5, and the p ++- type contact region 6, and covers the entire surface of these regions on the drain side. That is, the width (width in the second direction Y) L11 of the first p + -type region 7 is set depending on each width of the p-type base region 4, the n + -type source region 5, and the p ++- type contact region 6. You. Specifically, the width L11 of the first p + -type region 7 is substantially the sum of the widths of the p-type base region 4, the n + -type source region 5, and the p ++- type contact region 6.

第2,3p+型領域41,42は、深さ方向Zに第1p+型領域7に対向する位置に配置され、かつソース側(ソース電極12側)からドレイン側へ向かって多段に積層された積層構造をなす。具体的には、第2p+型領域(最上部埋め込み領域)41は、第1p+型領域7の直下で、かつ深さ方向Zにp++型コンタクト領域6に対向する位置に、第1p+型領域7に接して配置されている。隣り合う第2p+型領域41間に挟まれた部分は、深さ方向ZにJFET領域3aに対向して配置され、当該JFET領域3aに接し、JFET領域3bとして機能する。 The second and third p + -type regions 41 and 42 are arranged at positions facing the first p + -type region 7 in the depth direction Z, and are stacked in multiple stages from the source side (source electrode 12 side) to the drain side. A laminated structure. Specifically, the second p + -type region (uppermost buried region) 41 is located immediately below the first p + -type region 7 and at a position facing the p ++ -type contact region 6 in the depth direction Z. It is arranged in contact with the + type region 7. The portion sandwiched between the adjacent second p + -type regions 41 is disposed facing the JFET region 3a in the depth direction Z, contacts the JFET region 3a, and functions as the JFET region 3b.

第3p+型領域(最下部埋め込み領域)42は、第2p+型領域41の直下で、かつ深さ方向Zにp++型コンタクト領域6に対向する位置に、第2p+型領域41に接して配置されている。隣り合う第3p+型領域42間に挟まれた部分は、深さ方向ZにJFET領域3bに対向して配置され、当該JFET領域3bに接し、JFET領域3cとして機能する。第3p+型領域42は、n-型ドリフト領域2とn型電流拡散領域3との界面よりもソース側に位置する。第2,3p+型領域41,42を設けることで、単位セル当たりのJFET領域の個数(JFET領域3a〜3c)を増やすことができる。 The third p + -type region (lowest buried region) 42 is formed in the second p + -type region 41 immediately below the second p + -type region 41 and at a position facing the p ++ -type contact region 6 in the depth direction Z. It is arranged in contact. The portion sandwiched between the adjacent third p + -type regions 42 is arranged to face the JFET region 3b in the depth direction Z, contacts the JFET region 3b, and functions as the JFET region 3c. The third p + type region 42 is located closer to the source than the interface between n type drift region 2 and n type current diffusion region 3. By providing the second and third p + -type regions 41 and 42, the number of JFET regions per unit cell (JFET regions 3a to 3c) can be increased.

第2,3p+型領域41,42の幅(第2方向Yの幅)L1,L2は、p型ベース領域4、n+型ソース領域5およびp++型コンタクト領域6の各幅に依らず設定可能である。このため、単位セル当たりのJFET領域の個数を深さ方向Zに積層されるように増やすことで、平面SBD20の順方向電流の電流経路に対して最下部p+型領域の幅を第1p+型領域7の幅L11よりも狭くすることができる。最下部p+型領域とは、n型電流拡散領域3の内部において深さ方向Zにp++型コンタクト領域6に対向する第1〜3p+型領域7,41,42のうち、最もドレイン側に配置されたp+型領域(すなわち第3p+型領域42)である。最下部p+型領域の幅とは、n型電流拡散領域3からn+型出発基板1へ向かって流れる平面SBD20の順方向電流の電流経路から第2方向Yへの最下部p+型領域の長さであり、具体的には第3p+型領域42の幅L2である。 The widths L1 and L2 of the second and third p + -type regions 41 and 42 (the widths in the second direction Y) depend on the respective widths of the p-type base region 4, the n + -type source region 5 and the p ++- type contact region 6. Can be set. For this reason, by increasing the number of JFET regions per unit cell so as to be stacked in the depth direction Z, the width of the lowermost p + -type region with respect to the current path of the forward current in the plane SBD 20 is set to the first p + The width can be smaller than the width L11 of the mold region 7. The lowermost p + -type region is the most drain region among the first to third p + -type regions 7, 41, and 42 facing the p ++ -type contact region 6 in the depth direction Z inside the n-type current diffusion region 3. The p + -type region (ie, the third p + -type region 42) arranged on the side. The width of the lowermost p + -type region refers to the lowermost p + -type region in the second direction Y from the current path of the forward current in the plane SBD 20 flowing from the n-type current diffusion region 3 toward the n + -type starting substrate 1. , Specifically, the width L2 of the third p + -type region 42.

第2,3p+型領域41,42の幅L1,L2は、第1p+型領域7の幅L11よりも狭い。第2,3p+型領域41,42の幅L1,L2は、p++型コンタクト領域6の幅L12よりも広くてもよい。第3p+型領域42の幅L2は狭いほどよい。その理由は、最下部p+型領域である第3p+型領域42の幅L2を狭くするほど、後述する寄生pinダイオードの順方向動作時におけるn型電流拡散領域3のキャリアの広がり抵抗Rspを低くすることができるからである。具体的には、第3p+型領域42の幅L2は、MOSFETのセルピッチ(単位セルの第2方向Yの幅)L10が10μmである場合、例えば8μm以下程度である。また、第3p+型領域42の幅L2は、第2p+型領域41の幅L1と同じであってもよいし、第2p+型領域41の幅L1よりも狭くてもよい。 The widths L1 and L2 of the second and third p + -type regions 41 and 42 are smaller than the width L11 of the first p + -type region 7. The widths L1 and L2 of the second and third p + -type regions 41 and 42 may be larger than the width L12 of the p ++ -type contact region 6. The smaller the width L2 of the third p + -type region 42, the better. The reason is that as the width L2 of the third p + -type region 42, which is the lowermost p + -type region, is reduced, the spreading resistance Rsp of the carrier in the n-type current diffusion region 3 during the forward operation of the parasitic pin diode described later increases. This is because it can be lowered. Specifically, when the cell pitch (width of the unit cell in the second direction Y) L10 of the MOSFET is 10 μm, the width L2 of the third p + type region 42 is, for example, about 8 μm or less. The width L2 of the 3p + -type region 42 may be the same as the width L1 of the 2p + -type region 41 may be narrower than the width L1 of the 2p + -type region 41.

第4p+型領域(第2埋め込み領域)43は、隣り合う第3p+型領域42間に挟まれた部分(すなわちJFET領域3c)に、第2,3p+型領域41,42および第1p+型領域7と離して配置されている。第4p+型領域43は、p+型領域42の間において、第2方向Yにn型電流拡散領域3を挟んで複数個配置してもよい。また、第4p+型領域43は、図示省略する部分で第3p+型領域42に連結されている。第3p+型領域42と第4p+型領域43との連結部(第5p+型領域(第3埋め込み領域)44:図8〜10参照)を半導体基板30のおもて面側から見たレイアウトについては、後述する実施の形態3で説明する。第4p+型領域43の幅(第2方向Yの幅)L3は、第3p+型領域42の幅L2と同じであってもよい。 The 4p + -type region (second buried region) 43, the sandwiched between the 3p + -type region 42 adjacent portion (i.e. JFET region 3c), the 2, 3P + -type regions 41 and 42 and the 1p + It is arranged apart from the mold region 7. A plurality of fourth p + -type regions 43 may be arranged between the p + -type regions 42 in the second direction Y with the n-type current diffusion region 3 interposed therebetween. The fourth p + -type region 43 is connected to the third p + -type region 42 at a portion not shown. A connection portion between the third p + -type region 42 and the fourth p + -type region 43 (fifth p + -type region (third buried region) 44: see FIGS. 8 to 10) is viewed from the front side of the semiconductor substrate 30. The layout will be described in a third embodiment described later. The width (width in the second direction Y) L3 of the fourth p + type region 43 may be the same as the width L2 of the third p + type region 42.

p型ベース領域4の、n+型ソース領域5とJFET領域3a(n型電流拡散領域3)との間の表面上に、ゲート絶縁膜8を介してゲート電極9が設けられている。ゲート電極9は、半導体基板30のおもて面側から見て第1方向Xに延びるストライプ状のレイアウトに配置されている。半導体基板30のおもて面の全面に、ゲート電極9を覆うように層間絶縁膜10が設けられている。層間絶縁膜10には、隣り合うゲート電極9間において、層間絶縁膜10およびゲート絶縁膜8を深さ方向Zに貫通して半導体基板30のおもて面に達する第1,2コンタクトホール10a,10bが設けられている。 A gate electrode 9 is provided on a surface of the p-type base region 4 between the n + -type source region 5 and the JFET region 3a (the n-type current diffusion region 3) with a gate insulating film 8 interposed therebetween. The gate electrodes 9 are arranged in a stripe layout extending in the first direction X when viewed from the front surface side of the semiconductor substrate 30. An interlayer insulating film 10 is provided on the entire front surface of the semiconductor substrate 30 so as to cover the gate electrode 9. In the interlayer insulating film 10, first and second contact holes 10 a reaching the front surface of the semiconductor substrate 30 through the interlayer insulating film 10 and the gate insulating film 8 in the depth direction Z between the adjacent gate electrodes 9. , 10b are provided.

各第1,2コンタクトホール10a,10bは、例えば半導体基板30のおもて面側から見て第1方向Xに延びる直線状のレイアウトに配置されている。また、第1コンタクトホール10aと第2コンタクトホール10bとは、第2方向Yに交互に繰り返し配置されている。第1コンタクトホール10aには、n+型ソース領域5およびp++型コンタクト領域6が露出されている。第1コンタクトホール10aの内部において、n+型ソース領域5は第2方向Yの両側に配置された各ゲート電極9側にそれぞれ露出され、例えばこれらn+型ソース領域5の間にp++型コンタクト領域6が露出されている。 The first and second contact holes 10a and 10b are arranged in a linear layout extending in the first direction X when viewed from the front side of the semiconductor substrate 30, for example. In addition, the first contact holes 10a and the second contact holes 10b are alternately arranged in the second direction Y. The n + type source region 5 and the p ++ type contact region 6 are exposed in the first contact hole 10a. Inside the first contact hole 10a, the n + -type source regions 5 are exposed to the respective gate electrodes 9 arranged on both sides in the second direction Y. For example, p ++ is provided between these n + -type source regions 5. The mold contact region 6 is exposed.

第1コンタクトホール10aの内部において、半導体基板30のおもて面(n+型ソース領域5およびp++型コンタクト領域6の表面)上には、半導体基板30とオーミック(ohomic)接触する導電層11が設けられている。第2コンタクトホール10bには、JFET領域3a(n型電流拡散領域3)が露出されている。第2コンタクトホール10bの内部において、半導体基板30のおもて面(JFET領域3aの表面)上には、半導体基板30とショットキー(schottky)接触する導電層21が設けられている。このように導電層11,21を配置することで、MOSFETの各単位セルAにそれぞれ1つの平面SBD20が配置される。 Inside the first contact hole 10a, on the front surface of the semiconductor substrate 30 (the surface of the n + -type source region 5 and the p + + -type contact region 6), a conductive material that makes ohmic contact with the semiconductor substrate 30 is provided. A layer 11 is provided. The JFET region 3a (the n-type current diffusion region 3) is exposed in the second contact hole 10b. Inside the second contact hole 10b, on the front surface of the semiconductor substrate 30 (the surface of the JFET region 3a), a conductive layer 21 that makes Schottky contact with the semiconductor substrate 30 is provided. By arranging the conductive layers 11 and 21 in this manner, one plane SBD 20 is arranged in each unit cell A of the MOSFET.

具体的には、JFET領域3aを挟んで隣り合うゲート電極9間に、JFET領域3aと導電層21とのショットキー接触による整流作用を示す平面SBD20が配置される。平面SBD20は、MOSFETのp++型コンタクト領域6、第1〜3p+型領域7,41,42、n型電流拡散領域3、n-型ドリフト領域2およびn+型出発基板1(n+型ドレイン領域)からなる寄生pinダイオードの順方向バイアス時に、当該寄生pinダイオードよりも低い電圧で、当該寄生pinダイオードよりも早くオンする。したがって、ゲート電極9間においてJFET領域3a上に平面SBD20を設けることで、MOSFETの当該寄生pinダイオード動作が抑制される。 Specifically, a plane SBD 20 exhibiting a rectifying action by Schottky contact between the JFET region 3a and the conductive layer 21 is arranged between the gate electrodes 9 adjacent to each other across the JFET region 3a. The plane SBD 20 includes a p ++ -type contact region 6, first to third p + -type regions 7, 41, 42, an n-type current spreading region 3, an n -type drift region 2, and an n + -type starting substrate 1 (n + ) of the MOSFET. When a forward bias is applied to the parasitic pin diode including the drain region, the transistor is turned on at a lower voltage than the parasitic pin diode and earlier than the parasitic pin diode. Therefore, by providing the planar SBD 20 on the JFET region 3a between the gate electrodes 9, the parasitic pin diode operation of the MOSFET is suppressed.

平面SBD20を挟んで隣り合う2つのゲート電極9と、これらのゲート電極9の、平面SBD20側に対して反対側の各オーミックコンタクト(半導体部と導電層11との電気的接触部)と、でMOSFETの1つの単位セルAが構成される。図1には、半導体基板30とオーミック接触する導電層11と、半導体基板30とショットキー接触する導電層21と、をそれぞれ異なるハッチングで示す(図11においても同様)。図1において、符号RJFET,RDは、それぞれMOSFETのJFET抵抗(JFET領域3a〜3cの抵抗)、および、MOSFETのドリフト抵抗(n-型ドリフト領域2の抵抗)である。 Two gate electrodes 9 adjacent to each other with the plane SBD 20 interposed therebetween, and ohmic contacts (electrical contact parts between the semiconductor unit and the conductive layer 11) of the gate electrodes 9 on the opposite side to the plane SBD 20 side. One unit cell A of the MOSFET is configured. In FIG. 1, the conductive layer 11 in ohmic contact with the semiconductor substrate 30 and the conductive layer 21 in Schottky contact with the semiconductor substrate 30 are indicated by different hatchings (the same applies to FIG. 11). In FIG. 1, reference characters R JFET and R D denote a MOSFET JFET resistance (resistance of the JFET regions 3a to 3c) and a MOSFET drift resistance (resistance of the n -type drift region 2), respectively.

ソース電極12は、第1,2コンタクトホール10a,10bの内部に埋め込むように、半導体基板30のおもて面上に設けられている。ソース電極12は、導電層11に接し、当該導電層11を介してn+型ソース領域5およびp++型コンタクト領域6に電気的に接続されている。また、ソース電極12は、導電層21に接し、当該導電層21を介してJFET領域3aに電気的に接続されている。ソース電極12および導電層11,21は、層間絶縁膜10によりゲート電極9と電気的に絶縁されている。n+型ドレイン領域であるn+型出発基板1の裏面(半導体基板30の裏面)には、ドレイン電極13が設けられている。 The source electrode 12 is provided on the front surface of the semiconductor substrate 30 so as to be embedded in the first and second contact holes 10a and 10b. Source electrode 12 is in contact with conductive layer 11, and is electrically connected to n + -type source region 5 and p ++ -type contact region 6 via conductive layer 11. The source electrode 12 is in contact with the conductive layer 21 and is electrically connected to the JFET region 3a via the conductive layer 21. Source electrode 12 and conductive layers 11 and 21 are electrically insulated from gate electrode 9 by interlayer insulating film 10. A drain electrode 13 is provided on the back surface of the n + type starting substrate 1 (the back surface of the semiconductor substrate 30), which is an n + type drain region.

次に、実施の形態1にかかる半導体装置の製造方法について説明する。図2〜7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。まず、図2に示すように、n+型ドレイン領域となるn+型出発基板(出発ウエハ)1を用意する。次に、n+型出発基板1のおもて面に、n-型炭化珪素層31をエピタキシャル成長させる。次に、図3に示すように、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の表面層に、第3,4p+型領域42,43をそれぞれ選択的に形成する。 Next, a method for manufacturing the semiconductor device according to the first embodiment will be described. 2 to 7 are cross-sectional views illustrating the semiconductor device according to the first embodiment in a state in which the semiconductor device is being manufactured. First, as shown in FIG. 2, an n + type starting substrate (starting wafer) 1 serving as an n + type drain region is prepared. Next, n -type silicon carbide layer 31 is epitaxially grown on the front surface of n + -type starting substrate 1. Next, as shown in FIG. 3, third and fourth p + -type regions 42 and 43 are selectively formed in the surface layer of n -type silicon carbide layer 31 by photolithography and ion implantation of p-type impurities. .

次に、フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層31の表面層に、例えば活性領域の全域にわたって、n型電流拡散領域3の一部となるn型領域(以下、n型部分領域とする)51を形成する。このとき、n型部分領域51の深さは第3,4p+型領域42,43の深さよりも深いほうが好ましい、第3,4p+型領域42,43のドレイン側(n+型出発基板1側)全体をn型部分領域51で覆う。n-型炭化珪素層31の、n型部分領域51よりもドレイン側の部分がn-型ドリフト領域2となる。n型部分領域51と第3,4p+型領域42,43との形成順序を入れ替えてもよい。 Next, by photolithography and ion implantation of an n-type impurity, an n-type region (hereinafter, referred to as a part of the n-type current diffusion region 3) is formed in the surface layer of the n -type silicon carbide layer 31 over the entire active region, for example. An n-type partial region 51 is formed. At this time, the depth of the n-type portion region 51 is preferably more deeper than the depth of the 3,4P + -type region 43, the drain side of the 3,4P + -type region 42, 43 (n + -type starting substrate 1 Side) The whole is covered with an n-type partial region 51. The portion of n -type silicon carbide layer 31 closer to the drain than n-type partial region 51 becomes n -type drift region 2. The order of forming the n-type partial region 51 and the third and fourth p + -type regions 42 and 43 may be interchanged.

次に、図4に示すように、n-型炭化珪素層31上にさらにn-型炭化珪素層をエピタキシャル成長させて、n-型炭化珪素層31の厚さを厚くする。次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31aにおいて、下層の第3p+型領域42に深さ方向Zに対向する部分に、第3p+型領域42に達する深さで、第2p+型領域41を選択的に形成する。 Next, as shown in FIG. 4, n - further n on the -type silicon carbide layer 31 - -type silicon carbide layer is epitaxially grown, n - the thickness of the -type silicon carbide layer 31. Next, in a portion 31a where the thickness of the n -type silicon carbide layer 31 is increased by photolithography and ion implantation of a p-type impurity, a portion facing the lower third p + -type region 42 in the depth direction Z is in depth reaching the first 3p + -type region 42 is selectively formed a first 2p + -type region 41.

次に、フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31aに、例えば活性領域の全域にわたって、下層のn型部分領域51に達する深さで、n型電流拡散領域3の一部となるn型部分領域52を形成する。n型部分領域52の不純物濃度は、n型部分領域51と略同じである。n型部分領域52と第2p+型領域41との形成順序を入れ替えてもよい。 Next, by photolithography and ion implantation of an n-type impurity, the n -type silicon carbide layer 31 is increased in thickness to a portion 31 a, for example, over the entire active region at a depth reaching the lower n-type partial region 51. , An n-type partial region 52 to be a part of the n-type current diffusion region 3 is formed. The impurity concentration of n-type partial region 52 is substantially the same as that of n-type partial region 51. The order of forming the n-type partial region 52 and the second p + -type region 41 may be interchanged.

次に、図5に示すように、n-型炭化珪素層31上に、さらにn-型炭化珪素層をエピタキシャル成長させて、n-型炭化珪素層31の厚さを厚くする。次に、フォトリソグラフィおよびp型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31bにおいて、下層の第2p+型領域41に深さ方向Zに対向する部分に、第2p+型領域41に達する深さで、第1p+型領域7を選択的に形成する。 Next, as shown in FIG. 5, n - on type silicon carbide layer 31, further the n - -type silicon carbide layer is epitaxially grown, n - the thickness of the -type silicon carbide layer 31. Next, in the portion 31b where the thickness of the n -type silicon carbide layer 31 is increased by photolithography and ion implantation of a p-type impurity, a portion facing the lower second p + -type region 41 in the depth direction Z is The first p + -type region 7 is selectively formed at a depth reaching the second p + -type region 41.

次に、フォトリソグラフィおよびn型不純物のイオン注入により、n-型炭化珪素層31の厚さを増した部分31bに、例えば活性領域の全域にわたって、下層のn型部分領域52に達する深さで、n型電流拡散領域3の一部となるn型部分領域53を形成する。n型部分領域53の不純物濃度は、n型部分領域51,52と略同じである。n型部分領域53と第1p+型領域7との形成順序を入れ替えてもよい。 Next, by photolithography and ion implantation of n-type impurities, the n -type silicon carbide layer 31 is increased in thickness to a portion 31 b, for example, over the entire active region at a depth reaching the lower n-type partial region 52. , An n-type partial region 53 which becomes a part of the n-type current diffusion region 3 is formed. The impurity concentration of n-type partial region 53 is substantially the same as n-type partial regions 51 and 52. The order of forming the n-type partial region 53 and the first p + -type region 7 may be interchanged.

上述したn-型炭化珪素層31の厚さを増すことに代えて、n-型炭化珪素層31上にn型電流拡散領域3と同じ不純物濃度の2つのn型炭化珪素層をエピタキシャル成長させてもよい。この場合、n型部分領域52,53を形成するためのイオン注入を省略可能であり、各n型炭化珪素層をエピタキシャル成長させるごとにそれぞれ第1,2p+型領域7,41を形成すればよい。 Instead of increasing the thickness of the -type silicon carbide layer 31, n - - n described above with the two n-type silicon carbide layer having the same impurity concentration as the n-type current diffusion region 3 on the -type silicon carbide layer 31 is epitaxially grown Is also good. In this case, ion implantation for forming n-type partial regions 52 and 53 can be omitted, and first and second p + -type regions 7 and 41 may be formed each time each n-type silicon carbide layer is epitaxially grown. .

次に、図6に示すように、n-型炭化珪素層31上に、n型またはp型の炭化珪素層32を所定の厚さでエピタキシャル成長させる。ここでは、p型の炭化珪素層32をエピタキシャル成長させた場合を例に説明する。これにより、n+型出発基板1のおもて面上にn-型炭化珪素層31および炭化珪素層32を順に堆積してなる半導体基板(半導体ウエハ)30が形成される。半導体基板30のn-型炭化珪素層31の内部には、イオン注入により形成された第1〜4p+型領域7,41〜43が選択的に埋め込まれる。 Next, as shown in FIG. 6, an n-type or p-type silicon carbide layer 32 is epitaxially grown to a predetermined thickness on n -type silicon carbide layer 31. Here, a case where p-type silicon carbide layer 32 is epitaxially grown will be described as an example. Thus, semiconductor substrate (semiconductor wafer) 30 is formed by sequentially depositing n -type silicon carbide layer 31 and silicon carbide layer 32 on the front surface of n + -type starting substrate 1. First to fourth p + -type regions 7, 41 to 43 formed by ion implantation are selectively embedded in n -type silicon carbide layer 31 of semiconductor substrate 30.

次に、図7に示すように、フォトリソグラフィおよびイオン注入を一組とする工程を異なる条件で繰り返し行い、p型炭化珪素層32の表面層に、n+型ソース領域5、p++型コンタクト領域6およびn型部分領域54をそれぞれ選択的に形成する。n型部分領域54は、n型電流拡散領域3の一部となる。n+型ソース領域5、p++型コンタクト領域6およびn型部分領域54の形成順序を入れ替えてもよい。 Next, as shown in FIG. 7 repeats the process for a set of photolithography and ion implantation under different conditions, the surface layer of the p-type silicon carbide layer 32, n + -type source region 5, p ++ type Contact region 6 and n-type partial region 54 are selectively formed. The n-type partial region 54 becomes a part of the n-type current diffusion region 3. The order of forming the n + type source region 5, the p ++ type contact region 6, and the n type partial region 54 may be changed.

このとき、n+型ソース領域5およびp++型コンタクト領域6は、下層の第1p+型領域7に達する深さで形成する。n型部分領域54は、下層のn型部分領域53に達する深さで形成する。p型炭化珪素層32の、n+型ソース領域5、p++型コンタクト領域6およびn型部分領域54以外の部分がp型ベース領域4となる。n型部分領域51〜54が深さ方向Zに連結されて、n型電流拡散領域3が形成される。 At this time, the n + type source region 5 and the p + + type contact region 6 are formed at a depth reaching the first lower p + type region 7. The n-type partial region 54 is formed at a depth reaching the lower n-type partial region 53. A portion of the p-type silicon carbide layer 32 other than the n + -type source region 5, the p + + -type contact region 6 and the n-type partial region 54 becomes the p-type base region 4. The n-type partial regions 51 to 54 are connected in the depth direction Z to form an n-type current diffusion region 3.

次に、イオン注入で形成したすべての領域について、不純物を活性化させるための熱処理(活性化アニール)を行う。次に、例えば半導体基板30のおもて面を熱酸化して、ゲート絶縁膜8を形成する。次に、ゲート絶縁膜8上にポリシリコン層を堆積(形成)してパターニングして、ポリシリコン層のゲート電極9となる部分を、p型ベース領域4の、n+型ソース領域5とn型電流拡散領域3との挟まれた部分の表面上にのみ残す。 Next, heat treatment (activation annealing) for activating impurities is performed on all regions formed by ion implantation. Next, for example, the front surface of the semiconductor substrate 30 is thermally oxidized to form the gate insulating film 8. Next, a polysilicon layer is deposited (formed) on the gate insulating film 8 and patterned, and a portion of the polysilicon layer to be the gate electrode 9 is replaced with the n + -type source region 5 and the n + -type source region 5 of the p-type base region 4. It is left only on the surface of the portion sandwiched with the mold current diffusion region 3.

次に、半導体基板30のおもて面の全面に、ゲート電極9を覆うように層間絶縁膜10を堆積(形成)する。次に、フォトリソグラフィおよびエッチングにより層間絶縁膜10およびゲート絶縁膜8を部分的に除去し、層間絶縁膜10およびゲート絶縁膜8を深さ方向Zに貫通して半導体基板30に達する第1,2コンタクトホール10a,10bを形成する。第1コンタクトホール10aにはn+型ソース領域5およびp++型コンタクト領域6が露出され、第2コンタクトホール10bにはn型電流拡散領域3(JFET領域3a)が露出される。 Next, an interlayer insulating film 10 is deposited (formed) on the entire front surface of the semiconductor substrate 30 so as to cover the gate electrode 9. Next, the interlayer insulating film 10 and the gate insulating film 8 are partially removed by photolithography and etching, and the first and the first layers reaching the semiconductor substrate 30 through the interlayer insulating film 10 and the gate insulating film 8 in the depth direction Z. Two contact holes 10a and 10b are formed. The n + -type source region 5 and the p + + -type contact region 6 are exposed in the first contact hole 10a, and the n-type current diffusion region 3 (JFET region 3a) is exposed in the second contact hole 10b.

次に、第1コンタクトホール10aの内部に、半導体基板30とオーミック接触する導電層11を形成する。第2コンタクトホール10bの内部に、半導体基板30とショットキー接触する導電層21を形成する。次に、第1,2コンタクトホール10a,10bの内部に埋め込むように、活性領域において半導体基板30のおもて面上にソース電極12を形成する。半導体基板30の裏面全面にドレイン電極13を形成する。その後、半導体ウエハをダイシング(切断)して個々のチップ状に個片化することで、図1に示すMOSFETが完成する。   Next, a conductive layer 11 that is in ohmic contact with the semiconductor substrate 30 is formed inside the first contact hole 10a. A conductive layer 21 that is in Schottky contact with the semiconductor substrate 30 is formed inside the second contact hole 10b. Next, the source electrode 12 is formed on the front surface of the semiconductor substrate 30 in the active region so as to be embedded in the first and second contact holes 10a and 10b. The drain electrode 13 is formed on the entire back surface of the semiconductor substrate 30. Thereafter, the semiconductor wafer is diced (cut) into individual chips to complete the MOSFET shown in FIG.

次に、第3p+型領域42と第4p+型領域43との連結部(第5p+型領域44)を半導体基板30のおもて面側から見たレイアウトについて説明する。図8は、実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトを示す平面図である。図9,10は、実施の形態1にかかる半導体装置の一部を半導体基板のおもて面側から見たレイアウトの別の一例を示す平面図である。図8〜10には、第3p+型領域42と第4p+型領域43とを連結する第5p+型領域44のレイアウトを示す。 Next, a layout of a connection portion (fifth p + type region 44) between the third p + type region 42 and the fourth p + type region 43 when viewed from the front surface side of the semiconductor substrate 30 will be described. FIG. 8 is a plan view showing a layout of a part of the semiconductor device according to the first embodiment as viewed from the front side of the semiconductor substrate. 9 and 10 are plan views illustrating another example of the layout of a part of the semiconductor device according to the first embodiment as viewed from the front side of the semiconductor substrate. 8 to 10 show a layout of a fifth p + -type region 44 connecting the third p + -type region 42 and the fourth p + -type region 43.

上述したように、第3,4p+型領域42,43は、第1方向Xに延びる直線状のレイアウトに配置されている。かつ、第4p+型領域43は、隣り合う第3p+型領域42間に挟まれた部分(JFET領域3c)に配置されている。すなわち、第3,4p+型領域42,43は、第2方向Yに交互に繰り返し配置され、かつ第1方向Xに延びるストライプ状のレイアウトに配置されている。第3p+型領域42と第4p+型領域43とは、第5p+型領域44により連結されている。 As described above, the third and fourth p + -type regions 42 and 43 are arranged in a linear layout extending in the first direction X. Further, the fourth p + -type region 43 is arranged in a portion (JFET region 3c) sandwiched between the adjacent third p + -type regions 42. That is, the third and fourth p + -type regions 42 and 43 are alternately and repeatedly arranged in the second direction Y and arranged in a striped layout extending in the first direction X. The third p + -type region 42 and the fourth p + -type region 43 are connected by a fifth p + -type region 44.

第5p+型領域44は、隣り合う第3p+型領域42と第4p+型領域43との間において第2方向Yに延びる直線状のレイアウトに配置され、当該第3,4p+型領域42,43とに接する。第5p+型領域44は、同一の隣り合う第3p+型領域42と第4p+型領域43との間に、互いに離して複数設けられていてもよい。第5p+型領域44の幅(第1方向の幅)L4は、例えば、第3p+型領域42の幅L2と同じであってもよい。図8〜10には、第3〜5p+型領域42〜44をハッチングで示す。図8〜10においてハッチング以外の部分は、n型電流拡散領域3(JFET領域3c)である。 The fifth p + -type region 44 is arranged in a linear layout extending in the second direction Y between the adjacent third p + -type region 42 and fourth p + -type region 43, and the third 3, 4 p + -type region 42 , 43. A plurality of fifth p + -type regions 44 may be provided separately from each other between the same adjacent third p + -type region 42 and fourth p + -type region 43. The width (width in the first direction) L4 of the fifth p + type region 44 may be, for example, the same as the width L2 of the third p + type region 42. 8 to 10, the third to fifth p + -type regions 42 to 44 are shown by hatching. 8 to 10, the portion other than the hatching is the n-type current diffusion region 3 (JFET region 3c).

第5p+型領域44の配置は種々変更可能である。例えば、図8に示すように、第5p+型領域44同士が第3p+型領域42を挟んで第2方向Yに隣り合っていてもよい。この場合、n型電流拡散領域3の、深さ方向Zに第1p+型領域7(図1参照)に対向する部分に、第3p+型領域42と、当該第3p+型領域42と直交し、かつ当該第3p+型領域42を挟んで隣り合う第5p+型領域44と、が十字状のレイアウトに配置される。第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分(十字状の中心部分)42aの対角線の長さL5が8μm以下程度に設定される。 The arrangement of the fifth p + type region 44 can be variously changed. For example, as shown in FIG. 8, the fifth p + -type regions 44 may be adjacent to each other in the second direction Y with the third p + -type region 42 interposed therebetween. In this case, a portion of the n-type current diffusion region 3 that faces the first p + -type region 7 in the depth direction Z (see FIG. 1) has a third p + -type region 42 and a region orthogonal to the third p + -type region 42. The fifth p + -type region 44 adjacent to the third p + -type region 42 is arranged in a cross-shaped layout. The diagonal length L5 of the rectangular planar shape portion (cross-shaped central portion) 42a of the third p + type region 42 facing the fifth p + type region 44 in the second direction Y is set to about 8 μm or less. .

また、図9に示すように、第5p+型領域44同士が第3p+型領域42を挟んで第2方向Yに隣り合わないように配置されてもよい。この場合、n型電流拡散領域3の、深さ方向Zに第1p+型領域7(図1参照)に対向する部分に、第3p+型領域42と、当該第3p+型領域42と直交する第5p+型領域44と、がT字状のレイアウトに配置される。第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分42bを第2方向Yに平行な中心線Y’で分割した矩形状の分割部分42cの対角線の長さL6が8μm以下程度に設定される。 Further, as shown in FIG. 9, the fifth p + -type regions 44 may be arranged so as not to be adjacent to each other in the second direction Y with the third p + -type region 42 interposed therebetween. In this case, a portion of the n-type current diffusion region 3 that faces the first p + -type region 7 in the depth direction Z (see FIG. 1) has a third p + -type region 42 and a region orthogonal to the third p + -type region 42. And the fifth p + -type region 44 is arranged in a T-shaped layout. A rectangular divided portion 42c of the third p + -type region 42, which is obtained by dividing a rectangular planar shape portion 42b facing the fifth p + -type region 44 in the second direction Y by a center line Y 'parallel to the second direction Y. Is set to about 8 μm or less.

また、第3p+型領域42と第5p+型領域44とを十字状のレイアウトに配置した場合に(図8参照)、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する略矩形状の平面形状部分42a’は、当該略矩形状の平面形状部分42a’の各頂点を、当該略矩形状の平面形状部分42a’の中心側に凹むように切欠いた(えぐる)切欠部45を有する平面形状としてもよい。これにより、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する略矩形状の平面形状部分42a’の対角線の長さ(当該略矩形状の平面形状部分42a’の対角線上に位置する切欠部45間の距離)L5’を、第3,5p+型領域42,44の幅L2,L4よりも短くすることができる。 Also, when placed between the 3p + -type region 42 and a second 5p + -type region 44 to the cross-shaped layout (see FIG. 8), of the 3p + -type region 42, the 5p + -type region in a second direction Y The substantially rectangular planar shape portion 42a 'facing the 44 is notched so that each vertex of the substantially rectangular planar shape portion 42a' is recessed toward the center of the substantially rectangular planar shape portion 42a '( A planar shape having a notch 45 may be used. Accordingly, the diagonal length of the substantially rectangular planar shape portion 42a 'of the third p + type region 42 facing the fifth p + type region 44 in the second direction Y (the substantially rectangular planar shape portion 42a') The distance L5 ′ between the cutouts 45 located on the diagonal lines of the third and fifth p + -type regions 42 and 44 can be shorter than the widths L2 and L4 of the third and fifth p + -type regions 42 and 44.

第3p+型領域42と第5p+型領域44とをT字状のレイアウトに配置(図9参照)した場合においても、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分42a’を、第5p+型領域44と接触する各頂点に切欠部45を有する平面形状としてもよい。この場合、第3p+型領域42の、第2方向Yに第5p+型領域44と対向する矩形状の平面形状部分42bを第2方向Yに平行な中心線Y’で分割した矩形状の分割部分42cの対角線の長さL6を、第3,5p+型領域42,44の幅L2,L4よりも短くすることができる。図10には、切欠部45の平面形状を円形状とした場合を示すが、切欠部45の平面形状は種々変更可能である。 Even when the first 3p + -type region 42 and a second 5p + -type region 44 is arranged (see FIG. 9) to the T-shaped layout, of the 3p + -type region 42, the 5p + -type region in a second direction Y The rectangular planar shape portion 42 a ′ facing the 44 may have a planar shape having a cutout 45 at each vertex in contact with the fifth p + type region 44. In this case, a rectangular planar portion 42b of the third p + -type region 42 facing the fifth p + -type region 44 in the second direction Y is divided by a center line Y 'parallel to the second direction Y. The length L6 of the diagonal line of the divided portion 42c can be shorter than the widths L2 and L4 of the third and fifth p + -type regions 42 and 44. FIG. 10 shows a case where the planar shape of the notch 45 is circular, but the planar shape of the notch 45 can be variously changed.

以上、説明したように、実施の形態1によれば、n型電流拡散領域の内部において、p型ベース領域、n+型ソース領域およびp++型コンタクト領域の直下にこれらの領域に接して配置され、これらの領域の条件(不純物濃度及び幅)に依存してその幅が決まる第1p+型領域の直下に、第2,3p+型領域が深さ方向に多段に積層して配置されている。第1p+型領域の直下に第2,3p+型領域を多段に配置し、単位セル内のドリフト領域に接する寄生JFET(n型電流拡散領域の、第2p+型領域と第4p+型領域との間や、第2p+型領域と第4p+型領域との間、に挟まれた領域)の数を2つ以上に増やすことで、寄生pinダイオードの順方向動作時におけるn型電流拡散領域のキャリアの広がり抵抗が最下部p+型領域(第3p+型領域)の幅で決まる。また、最下部p+型領域の幅は、p型ベース領域、n+型ソース領域およびp++型コンタクト領域の条件に依存しないため、第1p+型領域の幅よりも狭い8μm以下程度にすることができる。このため、寄生pinダイオードの順方向動作時におけるn型電流拡散領域のキャリアの広がり抵抗を抑制することができ、寄生pinダイオードに大電流(例えば3000A/cm2以上程度の動作電流)が流れた場合であっても、寄生pinダイオード動作を抑制することができる。 As described above, according to the first embodiment, in the n-type current diffusion region, the p-type base region, the n + -type source region, and the p + + -type contact region are directly in contact with these regions. is disposed immediately below the first 1p + -type region whose width is determined depending on the conditions of these regions (impurity concentration and width), is arranged a 2, 3P + -type region is stacked in multiple stages in the depth direction ing. The first 2, 3P + -type regions arranged in multiple stages immediately below the first 1p + -type region, the parasitic JFET (n-type current diffusion region in contact with the drift region in the unit cell, the 2p + -type region and the 4p + -type region , Or between the second p + -type region and the fourth p + -type region), the number of regions is increased to two or more, so that the n-type current diffusion during the forward operation of the parasitic pin diode is increased. The spreading resistance of carriers in the region is determined by the width of the lowermost p + -type region (third p + -type region). Further, the width of the lowermost p + -type region does not depend on the conditions of the p-type base region, the n + -type source region, and the p + + -type contact region, and is therefore about 8 μm or less, which is smaller than the width of the first p + -type region. can do. Therefore, the spreading resistance of carriers in the n-type current diffusion region during forward operation of the parasitic pin diode can be suppressed, and a large current (for example, an operating current of about 3000 A / cm 2 or more) flows through the parasitic pin diode. Even in this case, the operation of the parasitic pin diode can be suppressed.

(実施の形態2)
次に、実施の形態2にかかる半導体装置の構造について説明する。図11は、実施の形態2にかかる半導体装置の構造を示す断面図である。実施の形態2にかかる半導体装置が実施の形態1にかかる半導体装置と異なる点は、n型電流拡散領域3の内部に、n型電流拡散領域3よりも不純物濃度の高いn+型領域(第6半導体領域)61を設けた点である。
(Embodiment 2)
Next, the structure of the semiconductor device according to the second embodiment will be described. FIG. 11 is a cross-sectional view illustrating the structure of the semiconductor device according to the second embodiment. The semiconductor device according to the second embodiment is different from the semiconductor device according to the first embodiment in that an n + -type region having a higher impurity concentration than the n-type current diffusion region 3 (the (Six semiconductor regions) 61 are provided.

+型領域61は、n型電流拡散領域3の内部において、半導体基板30のおもて面から、最下部p+型領域(第3p+型領域42)のドレイン側の面までの深さに、半導体基板30のおもて面に平行な方向(横方向)に一様に配置される。例えば、n+型領域61は深さ方向Zに例えばJFET領域3a,3bにわたる厚さtで配置されてもよく、この場合、n+型領域61は第1,2p+型領域7,41に接する。 The n + -type region 61 has a depth from the front surface of the semiconductor substrate 30 to the drain-side surface of the lowermost p + -type region (the third p + -type region 42) inside the n-type current diffusion region 3. The semiconductor substrate 30 is uniformly arranged in a direction (lateral direction) parallel to the front surface of the semiconductor substrate 30. For example, the n + -type region 61 may be arranged in the depth direction Z with a thickness t over, for example, the JFET regions 3a and 3b. In this case, the n + -type region 61 is formed in the first and second p + -type regions 7 and 41. Touch

以上、説明したように、実施の形態2によれば、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、n型電流拡散領域の内部に、n型電流拡散領域よりも不純物濃度の高いn+型領域を設けることで、JFET抵抗(JFET領域の抵抗)を低減させることができる。 As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained. According to the second embodiment, the JFET resistance (the resistance of the JFET region) is reduced by providing the n + -type region having a higher impurity concentration than the n-type current diffusion region inside the n-type current diffusion region. be able to.

(実施例)
次に、第3p+型領域42の幅L2の上限値について検証した。図12は、同一の半導体基板に配置されたpinダイオードおよびユニポーラ素子間の距離とバイポーラ電流との関係を示す特性図である。図12の横軸は、図13のpinダイオード70aおよびユニポーラ素子70b間の距離Cである。図12の縦軸は、ユニポーラ素子70bの電流量に対する半導体基板75に配置されたバイポーラ素子(不図示)の電流量の割合(=バイポーラ素子の電流量/ユニポーラ素子の電流量)である。
(Example)
Next, the upper limit value of the width L2 of the third p + type region 42 was verified. FIG. 12 is a characteristic diagram showing a relationship between a distance between a pin diode and a unipolar element arranged on the same semiconductor substrate and a bipolar current. The horizontal axis in FIG. 12 is the distance C between the pin diode 70a and the unipolar element 70b in FIG. The vertical axis in FIG. 12 represents the ratio of the current amount of the bipolar element (not shown) arranged on the semiconductor substrate 75 to the current amount of the unipolar element 70b (= current amount of the bipolar element / current amount of the unipolar element).

ユニポーラ素子70bの電流量に対する半導体基板75に配置されたバイポーラ素子の電流量の割合(以下、バイポーラ電流比とする)が10%未満の範囲B1であれば、pinダイオード動作による順方向劣化が生じない、または、製品の推奨仕様(使用年数等)に耐え得る特性が得られる程度にバイポーラ電流の電流量が少ないことが発明者により確認されている。したがって、バイポーラ電流比が1×10-1以上の範囲B2である場合(すなわちユニポーラ素子70bの電流量よりもバイポーラ素子の電流量が10%以上多い場合)に、バイポーラ素子にpinダイオード動作による順方向劣化が生じているとする。 If the ratio of the current amount of the bipolar element disposed on the semiconductor substrate 75 to the current amount of the unipolar element 70b (hereinafter, referred to as bipolar current ratio) is less than 10% in the range B1, the forward deterioration due to the pin diode operation occurs. It has been confirmed by the inventor that there is no bipolar current or the amount of bipolar current is small enough to obtain characteristics that can withstand the recommended specifications (such as years of use) of the product. Therefore, when the bipolar current ratio is in the range B2 of 1 × 10 −1 or more (that is, when the current amount of the bipolar element is 10% or more larger than the current amount of the unipolar element 70b), the bipolar element is sequentially operated by the pin diode operation. It is assumed that direction degradation has occurred.

図13は、図12の検証に用いた試料の断面構造を示す断面図である。図13に示す試料は、バイポーラ素子(不図示)と同一の半導体基板75にユニポーラ素子70bを内蔵する。半導体基板75は、炭化珪素からなるn+型出発基板71にn-型層72をエピタキシャル成長させた炭化珪素エピタキシャル基板である。n-型層72の、n+型出発基板71側に対して反対側の表面層(半導体基板75のおもて面の表面層)に、2つのp型領域73を互いに離して選択的に形成した。n-型層72の、2つのp型領域73に挟まれた部分(以下、JFET領域とする)74の幅wJFETを1.0μmとした。 FIG. 13 is a cross-sectional view showing a cross-sectional structure of a sample used for verification in FIG. The sample shown in FIG. 13 has a unipolar element 70b built in the same semiconductor substrate 75 as a bipolar element (not shown). Semiconductor substrate 75 is a silicon carbide epitaxial substrate obtained by epitaxially growing n -type layer 72 on n + -type starting substrate 71 made of silicon carbide. In the surface layer of the n type layer 72 opposite to the n + type starting substrate 71 side (surface layer on the front surface of the semiconductor substrate 75), two p-type regions 73 are selectively separated from each other. Formed. The width w JFET of a portion (hereinafter referred to as a JFET region) 74 of the n -type layer 72 sandwiched between the two p-type regions 73 was set to 1.0 μm.

同一の半導体基板75に配置された図示省略するバイポーラ素子を、本発明にかかるMOSFET(図1参照)のn型電流拡散領域3、p型ベース領域4およびn+型ソース領域5からなる縦型の寄生npnバイポーラトランジスタ(ボディーダイオード)と仮定する。p型領域73とn-型層72およびn+型出発基板71とのpn接合で形成されるpinダイオード70aを、本発明にかかるMOSFET(図1参照)のp型ベース領域4および第1〜3p+型領域7,41,42とn型電流拡散領域3とのpn接合で形成される寄生pnダイオードと仮定する。JFET領域74と導電層(不図示)とからなるユニポーラ素子70bを、図1の平面SBD20と仮定する。 A bipolar element, not shown, disposed on the same semiconductor substrate 75 is a vertical element comprising an n-type current diffusion region 3, a p-type base region 4, and an n + -type source region 5 of a MOSFET according to the present invention (see FIG. 1). Is assumed to be a parasitic npn bipolar transistor (body diode). The pin diode 70a formed by the pn junction of the p-type region 73 with the n -type layer 72 and the n + -type starting substrate 71 is connected to the p-type base region 4 and the first to the first of the MOSFET (see FIG. 1) according to the present invention. It is assumed that this is a parasitic pn diode formed by a pn junction between the 3p + -type regions 7, 41, and 42 and the n-type current diffusion region 3. It is assumed that the unipolar element 70b including the JFET region 74 and the conductive layer (not shown) is the plane SBD 20 in FIG.

図13に示す試料においてバイポーラ素子をオンしたときにおける、バイポーラ電流比(ユニポーラ素子70bの電流量に対する半導体基板75に配置されたバイポーラ素子の電流量の割合)と、pinダイオード70aとユニポーラ素子70bとの距離Cと、の関係を図12に示す。pinダイオード70aとユニポーラ素子70bとの距離Cは、本発明にかかるMOSFET(図1参照)の第3p+型領域42の幅L2に相当する。図12には、バイポーラ素子の臨界電流密度Jcを種々変更して測定した複数の結果を示す。図13において、符号76を付した矢印の向きは、pinダイオード70aがユニポーラ素子70bから離れる方向(すなわちpinダイオード70aとユニポーラ素子70bとの距離Cが長くなる方向)である。 When the bipolar element is turned on in the sample shown in FIG. 13, the bipolar current ratio (the ratio of the amount of current of the bipolar element arranged on the semiconductor substrate 75 to the amount of current of the unipolar element 70b), the pin diode 70a and the unipolar element 70b, Is shown in FIG. The distance C between the pin diode 70a and the unipolar element 70b corresponds to the width L2 of the third p + -type region 42 of the MOSFET according to the present invention (see FIG. 1). FIG. 12 shows a plurality of results obtained by variously changing the critical current density Jc of the bipolar element. In FIG. 13, the direction of the arrow denoted by reference numeral 76 is the direction in which the pin diode 70a moves away from the unipolar element 70b (that is, the direction in which the distance C between the pin diode 70a and the unipolar element 70b increases).

図12に示す結果より、pinダイオード70aとユニポーラ素子70bとの距離Cが長くなるほど、バイポーラ電流が流れやすいことが確認された。その理由は、当該距離Cの長さ分だけn-型層72が抵抗となり、ユニポーラ素子70bのオン抵抗が増加するからである。この結果はバイポーラ素子の臨界電流密度Jcを大きくするほど顕著にあらわれるが、バイポーラ素子の臨界電流密度Jcを例えば3000A/cm2以上程度と高くした場合であっても、pinダイオード70aとユニポーラ素子70bとの距離Cが8μm以下であれば、バイポーラ電流が流れない、または、pinダイオード70aの動作による順方向劣化が生じていないと言える程度にバイポーラ電流の電流量が少ないことが確認された。 From the results shown in FIG. 12, it was confirmed that the longer the distance C between the pin diode 70a and the unipolar element 70b, the easier the bipolar current flows. The reason is that the n -type layer 72 becomes a resistance by the length of the distance C, and the on-resistance of the unipolar element 70b increases. This result becomes more conspicuous as the critical current density Jc of the bipolar element is increased. However, even when the critical current density Jc of the bipolar element is increased to, for example, about 3000 A / cm 2 or more, the pin diode 70a and the unipolar element 70b If the distance C from the substrate is 8 μm or less, it is confirmed that the bipolar current does not flow or the amount of the bipolar current is small enough to say that the forward deterioration due to the operation of the pin diode 70a has not occurred.

したがって、本発明においては、プレーナゲート構造のMOSFETの最下部p+型領域である第3p+型領域42の幅L2が8μm以下程度であれば、バイポーラ電流が流れない、または、製品の推奨仕様(使用年数等)に耐え得る特性が得られる程度にバイポーラ電流の電流量が少ないことがわかる。 Therefore, in the present invention, if the width L2 of the third p + -type region 42, which is the lowermost p + -type region of the MOSFET having the planar gate structure, is about 8 μm or less, no bipolar current flows, or the recommended product specifications It can be seen that the current amount of the bipolar current is small enough to obtain characteristics that can withstand (eg, years of use).

以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、上述した各実施の形態では、単位セルのMOSゲートを半導体基板のおもて面に平行な方向に直線状に配置(すなわち複数配置されるすべての単位セルのMOSゲートをストライプ状のレイアウトに配置)した場合を例に説明しているが、これに限らず、半導体基板のおもて面上から見て、複数のMOSゲートをマトリクス状のレイアウトに配置してもよい。   In the above, the present invention can be variously modified without departing from the spirit of the present invention. In each of the above-described embodiments, for example, the dimensions of each part, the impurity concentration, and the like are variously set according to required specifications and the like. Further, in each of the above-described embodiments, the MOS gates of the unit cells are linearly arranged in a direction parallel to the front surface of the semiconductor substrate (that is, the MOS gates of all the unit cells arranged are arranged in a striped layout). This is described as an example, but the present invention is not limited to this, and a plurality of MOS gates may be arranged in a matrix layout when viewed from the front surface of the semiconductor substrate.

すなわち、複数のMOSゲートをマトリクス状のレイアウトに配置した場合、n型電流拡散領域の内部において深さ方向にp++型コンタクト領域に対向するp+型領域(第1〜3p+型領域)は、JFET領域の周囲を囲む環状に配置される。このため、上述した各実施の形態と同様に、最下部p+型領域の幅を8μm以下程度にすれば同様の効果が得られる。また、複数の単位セルの各MOSゲートをマトリクス状のレイアウトに配置した場合、複数のMOSゲートをストライプ状のレイアウトに配置した場合よりも、平面SBDの表面積を狭くしてもよい。 That is, when arranging a plurality of MOS gate in a matrix layout, p + -type region opposed to the p ++ -type contact region in the depth direction inside the n-type current diffusion region (first 1~3P + -type region) Are arranged in a ring surrounding the periphery of the JFET region. Therefore, similar to the above embodiments, the same effect can be obtained if the width of the lowermost p + -type region is set to about 8 μm or less. Further, when the MOS gates of the plurality of unit cells are arranged in a matrix layout, the surface area of the plane SBD may be smaller than when the plurality of MOS gates are arranged in a stripe layout.

また、上述した各実施の形態では、MOSFETの各部(p型ベース領域、n+型ソース領域およびp++型コンタクト領域)の条件に依存してその幅が決まるp+型領域(第1p+型領域)のドレイン側に、MOSFETの各部の条件に依存しない2つのp+型領域(第2,3p+型領域)を多段に配置するとした場合を例に説明しているが、これに限らず、MOSFETの各部の条件に依存しない3つ以上のp+型領域を多段に配置した場合においても、これら3つ以上のp+型領域のうちの最もドレイン側に配置されたp+型領域(最下部p+型領域)の幅を8μm以下程度にすることで同様の効果が得られる。 In each embodiment described above, MOSFET of each unit depending on the conditions of the (p-type base region, n + -type source regions and the p ++ -type contact region) width is determined by the p + -type region (second 1p + In the example described above, two p + -type regions (second and third p + -type regions) independent of the conditions of each part of the MOSFET are arranged in multiple stages on the drain side of the MOSFET region). Even when three or more p + -type regions that do not depend on the conditions of each part of the MOSFET are arranged in multiple stages, the p + -type region located at the most drain side of the three or more p + -type regions The same effect can be obtained by setting the width of the (lowest p + type region) to about 8 μm or less.

また、上述した各実施の形態では、炭化珪素からなる出発基板に炭化珪素層をエピタキシャル成長させてなる炭化珪素エピタキシャル基板を用いた場合を例に説明しているが、本発明にかかる半導体装置を構成する各領域を例えばイオン注入等により炭化珪素基板に形成してもよい。また、本発明は、炭化珪素以外のワイドバンドギャップ半導体(例えばガリウム(Ga)など)に適用した場合においても同様の効果を奏する。また、本発明は、導電型(n型、p型)を反転させても同様に成り立つ。   Further, in each of the above-described embodiments, an example is described in which a silicon carbide epitaxial substrate obtained by epitaxially growing a silicon carbide layer on a starting substrate made of silicon carbide is used. Each region to be formed may be formed on the silicon carbide substrate by, for example, ion implantation or the like. Further, the present invention has a similar effect when applied to a wide band gap semiconductor (for example, gallium (Ga) or the like) other than silicon carbide. Further, the present invention can be similarly established even when the conductivity types (n-type and p-type) are reversed.

以上のように、本発明にかかる半導体装置は、同一の半導体基板に平面SBDを内蔵したプレーナゲート構造のMOS型半導体装置に有用であり、特に、MOSFETに適している。   As described above, the semiconductor device according to the present invention is useful for a MOS type semiconductor device having a planar gate structure in which a planar SBD is built in the same semiconductor substrate, and is particularly suitable for a MOSFET.

1 n+型出発基板
2 n-型ドリフト領域
3 n型電流拡散領域
3a〜3c JFET領域
4 p型ベース領域
5 n+型ソース領域
6 p++型コンタクト領域
7,41〜44 n型電流拡散領域にイオン注入により形成された(埋め込んだ)p+型領域
8 ゲート絶縁膜
9 ゲート電極
10 層間絶縁膜
10a,10b コンタクトホール
11,21 導電層
12 ソース電極
13 ドレイン電極
20 平面SBD
30 半導体基板
31 n-型炭化珪素層
31a,31b n-型炭化珪素層の厚さを増した部分
32 p型炭化珪素層
42a,42a',42b 最下部p+型領域の、第2方向に連結部(第5p+型領域)と対向する矩形状の平面形状部分
42c 最下部p+型領域の、第2方向に連結部と対向する矩形状の平面形状部分の矩形状の分割部分
45 最下部p+型領域の、第2方向に連結部と対向する矩形状の平面形状部分の切欠部
51〜54 n型部分領域
61 n+型領域
A MOSFETの単位セル
L1〜L4,L11 n型電流拡散領域にイオン注入により形成された(埋め込んだ)p+型領域の幅
L5,L5’,L6 最下部p+型領域の、第2方向Yに連結部に対向する矩形状の平面形状の部分の対角線の長さ
L10 MOSFETのセルピッチ
X MOSゲートを構成する各領域およびゲート電極が半導体基板のおもて面に平行な方向に直線状に延在する方向(第1方向)
Y 半導体基板のおもて面に平行な方向で、かつ第1方向と直交する方向(第2方向)
Y’ 最下部p+型領域の、第2方向に連結部と対向する矩形状の平面形状部分の、第2方向に平行な中心線
Z 深さ方向
Reference Signs List 1 n + type starting substrate 2 n type drift region 3 n type current diffusion region 3 a to 3 c JFET region 4 p type base region 5 n + type source region 6 p ++ type contact region 7, 41 to 44 n type current diffusion P + -type region formed (embedded) by ion implantation in the region 8 gate insulating film 9 gate electrode 10 interlayer insulating film 10a, 10b contact hole 11, 21 conductive layer 12 source electrode 13 drain electrode 20 planar SBD
Reference Signs List 30 semiconductor substrate 31 n -type silicon carbide layer 31a, 31b Increased thickness of n -type silicon carbide layer 32 p-type silicon carbide layer 42a, 42a ′, 42b Lower second p + -type region in second direction A rectangular planar portion facing the connecting portion (fifth p + type region) 42c A rectangular divided portion of the rectangular planar portion facing the connecting portion in the second direction of the lowermost p + type region 45 the lower p + -type region, the notch of the rectangular planar shape portion facing the connecting portion in the second direction 51 to 54 n-type partial regions 61 n + -type region a unit cell of a MOSFET L1 to L4, L11 n-type current formed by ion implantation into the diffusion region (buried) width of the p + -type region L5, L5 ', L6 of the bottom p + -type region, the portion of the rectangular plane shape which faces the connecting portion in the second direction Y Length of diagonal line of cell pitch of L10 MOSFET A direction (first direction) in which each region and the gate electrode constituting the XMOS gate extend linearly in a direction parallel to the front surface of the semiconductor substrate
Y A direction parallel to the front surface of the semiconductor substrate and perpendicular to the first direction (second direction)
Y 'A center line parallel to the second direction of the lowermost p + -type region of the rectangular planar shape facing the connecting portion in the second direction Z Depth direction

Claims (7)

シリコンよりもバンドギャップの広い半導体からなる半導体基板と、
前記半導体基板のおもて面に設けられた、シリコンよりもバンドギャップの広い半導体からなる第1導電型の第1半導体層と、
前記第1半導体層の、前記半導体基板側に対して反対側の表面層に設けられた、前記第1半導体層よりも不純物濃度の高い第1導電型の第1半導体領域と、
前記第1半導体層の、前記半導体基板側に対して反対側に設けられ、前記第1半導体領域を覆う、シリコンよりもバンドギャップの広い半導体からなる第2導電型の第2半導体層と、
前記第2半導体層を深さ方向に貫通して前記第1半導体層に達する第1導電型の第2半導体領域と、
前記第2半導体層に前記第2半導体領域と離して選択的に設けられ、前記第2半導体層を深さ方向に貫通して前記第1半導体層に達して前記第1半導体領域の一部をなす、前記第1半導体層よりも不純物濃度の高い第1導電型の第3半導体領域と、
前記第2半導体層の、前記第2半導体領域および前記第3半導体領域以外の部分である第2導電型の第4半導体領域と、
前記第4半導体領域の、前記第2半導体領域と前記第3半導体領域とに挟まれた部分の表面上に、ゲート絶縁膜を介して設けられたゲート電極と、
前記第2半導体領域および前記第4半導体領域に電気的に接続された第1電極と、
前記半導体基板の裏面に設けられた第2電極と、を有するトランジスタと、
前記第3半導体領域と、前記第3半導体領域にショットキー接触し、かつ前記第1電極に電気的に接続された導電層と、からなるショットキーバリアダイオードと、
を備え、
前記第1半導体領域の内部には、
深さ方向に前記第2半導体領域および前記第4半導体領域と対向し、かつ前記第2半導体領域および前記第4半導体領域の前記第2電極側の面を覆う、前記第4半導体領域よりも不純物濃度の高い第2導電型の第5半導体領域と、
前記第5半導体領域よりも前記第2電極側に配置され、深さ方向に前記第5半導体領域に対向し、かつ前記第1電極側から前記第2電極側へ向かって多段に積層されて互いに接し積層構造をなす、前記第4半導体領域よりも不純物濃度の高い第2導電型の2つ以上の第1埋め込み領域と、
前記第5半導体領域および前記第1埋め込み領域と離して配置され、かつ深さ方向に前記第3半導体領域に対向する、前記第4半導体領域よりも不純物濃度の高い第2導電型の第2埋め込み領域と、
前記第1埋め込み領域のうちの最も前記第2電極側に配置された最下部埋め込み領域と、前記第2埋め込み領域と、の間に配置され、前記最下部埋め込み領域と前記第2埋め込み領域とを連結する、前記第4半導体領域よりも不純物濃度の高い第2導電型の第3埋め込み領域と、がそれぞれ選択的に設けられており、
前記第1埋め込み領域のうちの最も前記第1電極側に配置された最上部埋め込み領域は、前記第5半導体領域に接し、
前記最下部埋め込み領域の幅は、前記第5半導体領域の幅よりも狭いことを特徴とする半導体装置。
A semiconductor substrate made of a semiconductor having a wider band gap than silicon;
A first semiconductor layer of a first conductivity type, which is provided on the front surface of the semiconductor substrate and is made of a semiconductor having a wider band gap than silicon;
A first conductivity type first semiconductor region having a higher impurity concentration than the first semiconductor layer, provided on a surface layer of the first semiconductor layer opposite to the semiconductor substrate side;
A second conductivity-type second semiconductor layer made of a semiconductor having a wider band gap than silicon, provided on the first semiconductor layer on a side opposite to the semiconductor substrate side and covering the first semiconductor region;
A second semiconductor region of a first conductivity type that penetrates the second semiconductor layer in a depth direction and reaches the first semiconductor layer;
The second semiconductor layer is selectively provided separately from the second semiconductor region, and penetrates the second semiconductor layer in a depth direction to reach the first semiconductor layer, and a part of the first semiconductor region is formed. A third semiconductor region of a first conductivity type having an impurity concentration higher than that of the first semiconductor layer;
A second semiconductor type fourth semiconductor region which is a portion of the second semiconductor layer other than the second semiconductor region and the third semiconductor region;
A gate electrode provided on a surface of a portion of the fourth semiconductor region interposed between the second semiconductor region and the third semiconductor region via a gate insulating film;
A first electrode electrically connected to the second semiconductor region and the fourth semiconductor region;
A transistor having a second electrode provided on the back surface of the semiconductor substrate;
A Schottky barrier diode including: the third semiconductor region; and a conductive layer that is in Schottky contact with the third semiconductor region and is electrically connected to the first electrode.
With
Inside the first semiconductor region,
An impurity, which is opposed to the second semiconductor region and the fourth semiconductor region in a depth direction and covers surfaces of the second semiconductor region and the fourth semiconductor region on the side of the second electrode, which are more impurity than the fourth semiconductor region; A fifth semiconductor region of a second conductivity type having a high concentration;
It is arranged closer to the second electrode than the fifth semiconductor region, is opposed to the fifth semiconductor region in the depth direction, and is stacked in multiple stages from the first electrode side to the second electrode side. Two or more first buried regions of a second conductivity type having an impurity concentration higher than that of the fourth semiconductor region and in contact with each other to form a laminated structure;
A second buried of a second conductivity type having a higher impurity concentration than the fourth semiconductor region, which is arranged apart from the fifth semiconductor region and the first buried region and faces the third semiconductor region in a depth direction. Area and
The lowermost buried region and the second buried region, which are disposed between the lowermost buried region of the first buried region closest to the second electrode and the second buried region, And a third buried region of the second conductivity type having a higher impurity concentration than the fourth semiconductor region, which are connected to each other, are selectively provided, respectively.
An uppermost buried region of the first buried region, which is disposed closest to the first electrode, is in contact with the fifth semiconductor region,
The width of the lowermost buried region is smaller than the width of the fifth semiconductor region.
前記第4半導体領域、前記第5半導体領域、前記第1埋め込み領域、前記第3半導体領域、前記第1半導体層および前記半導体基板からなる寄生ダイオードの臨界電流密度は3000A/cm2以上であり、
前記トランジスタのセルピッチは10μmであり、
前記最下部埋め込み領域の幅は8μm以下であることを特徴とする請求項1に記載の半導体装置。
The critical current density of the parasitic diode including the fourth semiconductor region, the fifth semiconductor region, the first buried region, the third semiconductor region, the first semiconductor layer, and the semiconductor substrate is 3000 A / cm 2 or more;
The cell pitch of the transistor is 10 μm,
2. The semiconductor device according to claim 1, wherein the width of the lowermost buried region is 8 μm or less.
前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置され、
前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置され、
前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域と十字状のレイアウトをなし、
前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分の対角線の長さは8μm以下であることを特徴とする請求項1または2に記載の半導体装置。
The gate electrode is arranged in a linear layout extending in a first direction parallel to a front surface of the semiconductor substrate;
The first buried region and the second buried region are arranged in a linear layout extending in the first direction.
The third buried region is arranged in a linear layout extending in a second direction parallel to the front surface of the semiconductor substrate and orthogonal to the lowermost buried region. Make a layout,
3. The semiconductor according to claim 1, wherein a length of a diagonal line of a rectangular planar portion of the lowermost buried region facing the third buried region in the second direction is 8 μm or less. 4. apparatus.
前記ゲート電極は、前記半導体基板のおもて面に平行な第1方向に延びる直線状のレイアウトに配置され、
前記第1埋め込み領域および前記第2埋め込み領域は、前記第1方向に延びる直線状のレイアウトに配置され、
前記第3埋め込み領域は、前記半導体基板のおもて面に平行で、かつ前記最下部埋め込み領域と直交する第2方向に延びる直線状のレイアウトに配置され、前記最下部埋め込み領域とT字状のレイアウトをなし、
前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する矩形状の平面形状部分を前記第2方向に平行な中心線で分割した矩形状の分割部分の対角線の長さは8μm以下であることを特徴とする請求項1または2に記載の半導体装置。
The gate electrode is arranged in a linear layout extending in a first direction parallel to a front surface of the semiconductor substrate;
The first buried region and the second buried region are arranged in a linear layout extending in the first direction.
The third buried region is arranged in a linear layout extending in a second direction parallel to the front surface of the semiconductor substrate and orthogonal to the lowermost buried region. Of the layout,
A diagonal length of a rectangular divided portion obtained by dividing a rectangular planar shape portion of the lowermost embedded region facing the third embedded region in the second direction by a center line parallel to the second direction is: The semiconductor device according to claim 1, wherein the thickness is 8 μm or less.
前記最下部埋め込み領域の、前記第2方向に前記第3埋め込み領域と対向する前記矩形状の平面形状部分は、当該矩形状の平面形状部分の頂点を、当該矩形状の平面形状部分の中心側に凹むように切欠いた切欠き部を有する平面形状を有することを特徴とする請求項3または4に記載の半導体装置。   The rectangular planar shape portion of the lowermost buried region facing the third buried region in the second direction is formed by setting a vertex of the rectangular planar shape portion to a center side of the rectangular planar shape portion. 5. The semiconductor device according to claim 3, wherein the semiconductor device has a planar shape having a notched portion cut out so as to be concave. 前記第1半導体領域の内部に、前記第1半導体領域よりも不純物濃度の高い第1導電型の第6半導体領域をさらに備えることを特徴とする請求項1〜5のいずれか一つに記載の半導体装置。   6. The semiconductor device according to claim 1, further comprising a sixth semiconductor region of a first conductivity type having a higher impurity concentration than the first semiconductor region inside the first semiconductor region. 7. Semiconductor device. 前記第2半導体層を深さ方向に貫通して前記第1半導体層に達し、前記第2半導体領域に対して前記第3半導体領域と反対側に、前記第2半導体領域に接して配置された、前記第2半導体層よりも不純物濃度の高い第2導電型の第7半導体領域をさらに備え、
前記第4半導体領域は、前記第2半導体層の、前記第2半導体領域、前記第3半導体領域および前記第7半導体領域以外の部分であり、
前記第5半導体領域は、深さ方向に前記第2半導体領域、前記第4半導体領域および前記第7半導体領域と対向して選択的に設けられ、かつ前記第2半導体領域、前記第4半導体領域および前記第7半導体領域の前記第2電極側の面を覆うことを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
The second semiconductor region is disposed in contact with the second semiconductor region on the side opposite to the third semiconductor region with respect to the second semiconductor region, reaching the first semiconductor layer through the second semiconductor layer in the depth direction. A seventh semiconductor region of a second conductivity type having an impurity concentration higher than that of the second semiconductor layer;
The fourth semiconductor region is a portion of the second semiconductor layer other than the second semiconductor region, the third semiconductor region, and the seventh semiconductor region,
The fifth semiconductor region is selectively provided to face the second semiconductor region, the fourth semiconductor region, and the seventh semiconductor region in a depth direction, and further includes the second semiconductor region, the fourth semiconductor region. 7. The semiconductor device according to claim 1, wherein the semiconductor device covers a surface of the seventh semiconductor region on the second electrode side. 8.
JP2018135632A 2018-07-19 2018-07-19 Semiconductor device Active JP7078226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135632A JP7078226B2 (en) 2018-07-19 2018-07-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135632A JP7078226B2 (en) 2018-07-19 2018-07-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2020013916A true JP2020013916A (en) 2020-01-23
JP7078226B2 JP7078226B2 (en) 2022-05-31

Family

ID=69170733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135632A Active JP7078226B2 (en) 2018-07-19 2018-07-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JP7078226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763259A (en) * 2023-02-13 2023-03-07 泰科天润半导体科技(北京)有限公司 Manufacturing method of crossed planar gate silicon carbide VDMOSFET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529115A (en) * 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション Power semiconductor device and manufacturing method thereof
JP2011258635A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Semiconductor device
WO2014038110A1 (en) * 2012-09-06 2014-03-13 三菱電機株式会社 Semiconductor device
WO2014125586A1 (en) * 2013-02-13 2014-08-21 富士電機株式会社 Semiconductor device
JP2018064047A (en) * 2016-10-13 2018-04-19 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529115A (en) * 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション Power semiconductor device and manufacturing method thereof
JP2011258635A (en) * 2010-06-07 2011-12-22 Mitsubishi Electric Corp Semiconductor device
WO2014038110A1 (en) * 2012-09-06 2014-03-13 三菱電機株式会社 Semiconductor device
WO2014125586A1 (en) * 2013-02-13 2014-08-21 富士電機株式会社 Semiconductor device
JP2018064047A (en) * 2016-10-13 2018-04-19 富士電機株式会社 Semiconductor device and semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115763259A (en) * 2023-02-13 2023-03-07 泰科天润半导体科技(北京)有限公司 Manufacturing method of crossed planar gate silicon carbide VDMOSFET

Also Published As

Publication number Publication date
JP7078226B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
JP6835241B2 (en) Semiconductor device
JP7052330B2 (en) Insulated gate type semiconductor device and its manufacturing method
US7700971B2 (en) Insulated gate silicon carbide semiconductor device
JP5992094B2 (en) Semiconductor device
JP7059555B2 (en) Semiconductor device
US10522673B2 (en) Semiconductor device having a schottky barrier diode
WO2016052261A1 (en) Semiconductor device
US11888057B2 (en) Semiconductor device
US11139376B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JPWO2017047286A1 (en) Semiconductor device
US11322607B2 (en) Semiconductor device
US11489047B2 (en) Semiconductor device and method of manufacturing the same
JP2019207957A (en) Semiconductor device
US20230253491A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US10707301B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP7155641B2 (en) semiconductor equipment
JP7196403B2 (en) semiconductor equipment
JP4844371B2 (en) Vertical superjunction semiconductor device
JP7078226B2 (en) Semiconductor device
US11569376B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
US11557674B2 (en) Semiconductor device and method for manufacturing the same
WO2023112547A1 (en) Semiconductor device
US20240063269A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
KR102394547B1 (en) Semiconductor device
JP2024091085A (en) Semiconductor Device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7078226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150