JP2011258371A - リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池 - Google Patents

リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池 Download PDF

Info

Publication number
JP2011258371A
JP2011258371A JP2010130980A JP2010130980A JP2011258371A JP 2011258371 A JP2011258371 A JP 2011258371A JP 2010130980 A JP2010130980 A JP 2010130980A JP 2010130980 A JP2010130980 A JP 2010130980A JP 2011258371 A JP2011258371 A JP 2011258371A
Authority
JP
Japan
Prior art keywords
lithium
ion battery
hydrogen fluoride
lithium ion
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010130980A
Other languages
English (en)
Other versions
JP5609283B2 (ja
Inventor
Shu Oe
周 大江
Keiji Sato
敬二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2010130980A priority Critical patent/JP5609283B2/ja
Priority to PCT/JP2011/059700 priority patent/WO2011155267A1/ja
Priority to KR1020137000392A priority patent/KR101435486B1/ko
Priority to CN201180028380.4A priority patent/CN102934276B/zh
Priority to EP11792225.2A priority patent/EP2581980B1/en
Priority to US13/697,471 priority patent/US20130071760A1/en
Publication of JP2011258371A publication Critical patent/JP2011258371A/ja
Application granted granted Critical
Publication of JP5609283B2 publication Critical patent/JP5609283B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】 ヘキサフルオロリン酸リチウムを電解質として含むリチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池を提供する。
【解決手段】 非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液を製造する方法において、未反応のフッ化水素と塩化リチウムを反応させた後、さらに濾過液と固体残留物に濾別し、該濾過液をリチウムイオン電池用電解液として得、該固体残留物を非水性有機溶媒中で、三塩化リンと塩素と反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることによりリチウムイオン電池用電解液を製造することを特徴とする、リチウムイオン電池用電解液の製造方法。
【選択図】 なし

Description

本発明は、ヘキサフルオロリン酸リチウムを電解質として用いたリチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池に関する。
リチウムイオン電池等に有用な電解質であるヘキサフルオロリン酸リチウムの製造方法は、種々提案されており、溶媒を用いたヘキサフルオロリン酸リチウムの製造方法では、無水フッ化水素を溶媒として溶解させたフッ化リチウムにガス状の五フッ化リンを反応させ、生成したヘキサフルオロリン酸リチウムを結晶化させ、取り出すという方法(非特許文献1)がある。
この方法ではヘキサフルオロリン酸リチウムの反応率は高いが、蒸気圧が高く、また毒性、腐食性を有する無水フッ化水素を溶媒として大量に使用しなければならず、ハンドリングが容易ではない。さらに原料の一つである五フッ化リンを別プロセスで製造する必要があることや、ヘキサフルオロリン酸リチウムの結晶化プロセスが必要であることなど、コストアップにつながる要素が多い。
一般的な電解液製造は、まずヘキサフルオロリン酸リチウムを製造し、所定のリチウム電池用溶媒に溶解させて電解液とする方法が行われている。ヘキサフルオロリン酸リチウムの製造方法については、例えば、無溶媒で固体のフッ化リチウムと気体の五フッ化リンを反応させる方法(特許文献1)がある。この方法においては、フッ化リチウムの表面に反応生成物の被膜が形成され、反応が完全に進行せず未反応のフッ化リチウムが残存する恐れがある。また、同じく無溶媒で五塩化リンとフッ化リチウムに無水フッ化水素を加えて反応させる方法(特許文献2)もある。これは反応の制御が容易ではなく、氷点下数十℃までの冷却が必要である。
一方、有機溶媒中でフッ化リチウムと五フッ化リンと反応させる方法(特許文献3)がある。この方法では反応の制御および純度の点で利点は大きいが、前述したように別プロセスで原料の一つである五フッ化リンガスを製造し、取り扱う必要があるためコストの課題が残る。
さらに、溶媒として無水フッ化水素または極性有機溶媒であるCHCNを用い、三塩化リンと塩素、フッ化水素を反応させて五フッ化リンを得て、さらに同一の反応器にフッ化リチウムを加えて、五フッ化リンと反応させてヘキサフルオロリン酸リチウムを製造する方法(特許文献4)もある。
この方法では五フッ化リンの製造も同一反応器内で行うため効率的であるが、蒸気圧の高い五フッ化リンの生成を経由するため、加圧反応器などの高価な設備と複雑な操作が必要であり、また基本的に結晶化プロセスが必要であるために電解液製造に対して根本的なコストダウンは難しいなど多くの課題が残っている。
また、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、再度、塩化リチウムを添加することで過剰のフッ化水素を除去することによりリチウムイオン電池用電解液を製造する方法(特許文献5)もある。
この方法では高純度のヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液を得ることができる。
特開昭64−72901号公報 特開平10−72207号公報 特開平9−165210号公報 特開平10−81505号公報 特開2007−184246号公報
J.Chem.Soc.Part4、4408(1963)
上記の特許文献5の方法において、再度、塩化リチウムを添加した後、固形物の残渣が生じる場合がある。
本発明は、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質に用いたリチウムイオン電池用電解液製造おいて、生じた残渣を有効利用し、より安価にヘキサフルオロリン酸リチウムを電解質に用いた電解液を製造し、リチウムイオン電池用に使用することにある。
本発明者らは、かかる課題に鑑み、鋭意研究した結果、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質に用いたリチウムイオン電池用電解液の製造において、生じる残渣が未反応の塩化リチウムと反応で生成したフッ化リチウムの混合物であることが分かり、この混合物を分離することなく原料である塩化リチウムとして用いることにより、さらにヘキサフルオロリン酸リチウムを電解質に用いたリチウムイオン電池用電解液を製造できることを見出し、本発明に到ったものである。 すなわち本発明は、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液の製造において、未反応のフッ化水素と塩化リチウムを反応させた後、さらに濾過液と固体残留物に濾別し、該濾過液をリチウムイオン電池用電解液として得、該固体残留物を非水性有機溶媒中で、三塩化リンと塩素と反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることによりリチウムイオン電池用電解液を製造することを特徴とするリチウムイオン電池用電解液の製造方法を提供するものである。
さらには、該非水性有機溶媒が、鎖状又は環状の炭酸エステル、または2つ以上の酸素原子を有するエーテル化合物であること、または該炭酸エステルが、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、又はプロピレンカーボネートのみから成る群から選択される少なくとも1つであること、または該エーテル化合物が、1,2−ジメトキシエタンであることを特徴とするリチウムイオン電池用電解液の製造方法を提供するものである。または、上記の製造方法で得られた電解液を用いたリチウムイオン電池を提供するものである。
本発明により、非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質に用いたリチウムイオン電池用電解液製造おいて、生じた残渣を製造原料として利用でき、製造コストを下げることができる。
本発明は非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液を製造する方法において、未反応のフッ化水素と塩化リチウムを反応させた後、さらに濾過液と固体残留物に濾別し、該濾過液をリチウムイオン電池用電解液として得、該固体残留物を非水性有機溶媒中で、三塩化リンと塩素と反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることによりリチウムイオン電池用電解液を製造することを特徴とする、リチウムイオン電池用電解液の製造方法を提供するものである。
以下、本発明について詳細に説明する。
使用される非水性有機溶媒は、化学的安定性が高く、しかもヘキサフルオロリン酸リチウムの溶解度が高い鎖状又は環状の炭酸エステル化合物、または2つ以上の酸素原子を有するエーテル化合物が望ましい。このような溶媒としては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状の炭酸エステル化合物、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状の炭酸エステル化合物、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、ジエチルエーテル等の鎖状のエーテル化合物、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン等の環状のエーテル化合物などが挙げられる。高誘電率または高耐酸性の理由で、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、1,2−ジメトキシエタンが好ましい。
上記リチウム非水性有機溶媒は、一種類、もしくは数種類を混合して用いることができる。
本発明の製造方法は、まず非水性有機溶媒に原料である三塩化リンと塩化リチウムを仕込み、これに塩素ガスを吹き込むことで、該非水性有機溶媒中で反応が実施され、その後、該反応生成物を含む溶媒中にフッ化水素を導入し、反応生成物と反応させ、さらに塩化リチウムを再添加して残留するフッ化水素と反応させた後、濾別して得られる固体残留物を塩化リチウムの原料として再度利用するものである。
本発明において、塩化リチウム、塩素、三塩化リンのそれぞれのモル比は、1〜1.1:1:1〜2であり、三塩化リンの量は、塩素ガスと同量もしくは塩素ガスよりも多く仕込む必要がある。塩素ガスの量が三塩化リンよりも多いと、過剰の塩素ガスが溶媒と反応して不純物が生成するためである。このため三塩化リンの量を、塩素ガスよりも1〜2倍molの範囲で多く仕込む必要がある。また、塩化リチウムの量は、原料コストの点で、塩素ガスの1〜1.1倍molが好ましい。より好ましくは、1.0〜1.1倍molである。
次に、非水性有機溶媒に対する原料の仕込量は、非水性有機溶媒1リットルに対して塩化リチウムが400g以下、好ましくは100g以下にする必要がある。塩化リチウムの量が非水性有機溶媒1リットルに対して400gを超えると生成物が飽和となり、未反応の塩化リチウムが生じ反応が進行できなくなる。
この反応を行う際の温度は、下限が−40℃、好ましくは5℃で、上限は100℃、好ましくは50℃である。反応温度が−40℃未満では、非水性有機溶媒が凝固してしまうため反応が進行しない。また100℃よりも高い場合、着色や副反応の原因となるため好ましくない。
上記反応時の圧力は特に限定しないが、生成するガス成分はなく、大気圧で反応は迅速に100%進行するため、特別な耐圧反応器を必要とせず、基本的に大気圧付近で行う。
また反応時に光が照射されると、非水性有機溶媒と塩素の反応が生じる恐れがあるため、反応時には遮光した条件下で行うことが望ましい。
一方、塩素ガス吹き込み完了後、反応器内に仕込んだ塩化リチウム粉末は、下記反応式(1)により全部もしくは一部溶解して、ヘキサクロロリン酸リチウムと推定される中間体化合物となる。
LiCl + PCl + Cl → LiPCl (1)
次に、生成したヘキサクロロリン酸リチウムのフッ素化を行うため、無水フッ化水素を反応器内に導入する。この時、無水フッ化水素は、ガス状でも液状でも構わない。下記反応式(2)によって目的生成物のヘキサフルオロリン酸リチウムが得られる。
LiPCl + 6HF → LiPF + 6HCl (2)
無水フッ化水素の導入量は、中間生成物であるヘキサクロロリン酸リチウムと前反応での過剰分の三塩化リンを合わせた量に対して、モル比で6.01倍mol以上必要である。無水フッ化水素の量が、ヘキサクロロリン酸リチウムと過剰分の三塩化リンの合わせた量と同量もしくは少ないと、ヘキサクロロリン酸リチウムのフッ素化が十分進行せず、部分フッ素化塩素化リン酸リチウムおよび三塩化リンが残存してしまうため、液中の塩素濃度が高くなり、リチウム電池特性に悪影響を及ぼす恐れがある。無水フッ化水素の量がヘキサクロロリン酸リチウムと過剰分の三塩化リンを合わせた量に対してモル比で6.01倍mol以上であると、ヘキサクロロリン酸リチウムは完全にヘキサフルオロリン酸リチウムに反応するばかりではなく、過剰分の三塩化リンも、蒸気圧の高い三フッ化リンへと反応し、後の減圧処理等で容易に除去することが可能となる。このため、無水フッ化水素の量は、ヘキサクロロリン酸リチウムと過剰分の三塩化リンを合わせた量以上導入する必要がある。なお、無水フッ化水素の導入量は原料コストの点から、ヘキサクロロリン酸リチウムと過剰分の三塩化リンを合わせた量の6.01〜7.20倍molの範囲が好ましい。
この反応を行う際の温度は、下限が−40℃、好ましくは5℃で、上限は100℃、好ましくは50℃である。反応温度が−40℃未満では、非水性有機溶媒が凝固してしまうため反応が進行しない。また100℃よりも高い場合、着色や副反応の原因となるため好ましくない。
この反応時の圧力は特に限定しないが、副生成する塩化水素を取り除くため、一般的に大気圧付近で行なわれる。
得られたヘキサフルオロリン酸リチウム非水性有機溶液において、液中に存在する副生成した塩化水素、三フッ化リン、過剰導入分のフッ化水素は減圧処理、バブリング処理、蒸留などによって除去可能である。
過剰に加えたフッ化水素は塩化リチウムの再添加により下記反応式(3)により蒸気圧の高い塩化水素に転化させて減圧処理、バブリング処理、蒸留などによって除去する。再添加する塩化リチウムの量は、除去したいフッ化水素と等mol量、または、次反応に必要な量を添加すれば良い。
HF + LiCl → LiF + HCl (3)
塩化水素を除去した後、処理液を濾過することで濾過液と固体残留物とに濾別できる。濾別した濾過液は、リチウムイオン電池に使用可能な、高純度のヘキサフルオロリン酸リチウムが溶解した電解液が得られる。
濾別した固体残留物は、非水性有機溶媒に三塩化リンとともに仕込み、これに塩素ガスを吹き込むことで該非水性有機溶媒中で反応が実施され、その後、フッ化水素を導入して溶媒中に生成した反応生成物とフッ化水素とを反応させることでヘキサフルオロリン酸リチウムが溶解した電解液が得られる。
濾別する方法としては、固体部分と液体部分に分離できれば良く特に方法は限定されず、減圧吸引濾過、加圧濾過、またはクロスフロー濾過などの濾過、あるいは遠心分離などの一般的な手段を用いることにより、濾過液と固体残留物とに分離でき、いずれの方法でも良い。
以上のようにして得られたヘキサフルオロリン酸リチウム溶液から冷却や濃縮という結晶化プロセスにより、ヘキサフルオロリン酸リチウム結晶を得ることも可能であるが、本発明では反応に用いた非水性有機溶媒としてリチウムイオン電池用溶媒を使用しているため、反応により得られた溶液からヘキサフルオロリン酸リチウムを結晶化プロセスで固体として取り出すことなしに、直接リチウムイオン電池用電解液原料として使用することが可能である。さらに精製剤として塩化リチウムを再添加することで、電解液を高純度化するだけでなく、未反応の塩化リチウムおよび反応生成物は、原料として利用できることでコストダウンを図ることができる製造方法である。
次ぎに、本発明のリチウムイオン電池の構成について説明する。本発明のリチウムイオン電池は、上記の本発明の製造方法で得られるリチウムイオン電池用電解液を用いることが特徴であり、その他の構成部材には一般のリチウムイオン電池に使用されているものが用いられる。即ち、リチウムの吸蔵及び放出が可能な正極及び負極、セパレータ、容器等から成る。
負極は、負極材料と集電体を、正極は、正極材料と集電体を、少なくともそれぞれ具備する。
集電体は、正極材料や負極材料と電子のやり取りをする導電性のシートで、金属、カーボン材料、または導電性高分子を使用できる。例えば、正極用としてアルミニウム箔、負極用として銅箔が使用される。
負極材料としては、特に限定されないが、リチウムを吸蔵・放出できるリチウム金属、リチウムと他の金属との合金及び金属間化合物や種々のカーボン材料、人造黒鉛、天然黒鉛、金属酸化物、金属窒化物、活性炭、または導電性ポリマー等が用いられる。
正極材料としては、特に限定されないが、例えば、LiCoO、LiNiO、LiMnO、またはLiMn等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の金属に置換されたもの、LiFePOまたはLiMnPO等のリチウム含有遷移金属リン酸塩、それらのリチウム含有遷移金属リン酸塩の遷移金属が複数混合したもの、それらのリチウム含有遷移金属リン酸塩の遷移金属の一部が他の金属に置換されたもの、TiO、V、またはMoO等の酸化物、TiSまたはFeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、およびポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、またはカーボン材料等が使用される。
正極材料や負極材料に、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、または黒鉛、結着剤としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、またはSBR樹脂等を加えることにより、容易にシート状に成型できる。
正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、またはガラス繊維等で作られた不織布や多孔質シートが使用される。
以上の各要素からコイン状、円筒状、角形、またはアルミラミネートシート型等の形状のリチウムイオン電池が組み立てられる。
以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
ポリテトラフルオロエチレン製反応器中に500gのメチルエチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、21gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、メチルエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
加圧濾過を行ない濾別したところ、濾過液はリチウム電池特性に悪影響を及ぼす酸性不純物濃度は15ppmであり、ヘキサフルオロリン酸リチウム固体換算で105ppmであった。濾過残留物全量をポリテトラフルオロエチレン製反応器中に500gのメチルエチルカーボネート、72gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
得られた溶液をNMRで分析したところ、メチルエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
ポリテトラフルオロエチレン製反応器中に500gのジメチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、21gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、ジメチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
加圧濾過を行ない濾別したところ、濾過液はリチウム電池特性に悪影響を及ぼす酸性不純物濃度は15ppmであり、ヘキサフルオロリン酸リチウム固体換算で105ppmであった。濾過残留物全量をポリテトラフルオロエチレン製反応器中に500gのジメチルカーボネート、72gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
得られた溶液をNMRで分析したところ、ジメチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
ポリテトラフルオロエチレン製反応器中に200gのジメチルカーボネート、300gのジエチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、21gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、ジメチルカーボネート、ジエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
加圧濾過を行ない濾別したところ、濾過液はリチウム電池特性に悪影響を及ぼす酸性不純物濃度は15ppmであり、ヘキサフルオロリン酸リチウム固体換算で105ppmであった。濾過残留物全量をポリテトラフルオロエチレン製反応器中に500gのジメチルカーボネート、72gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
得られた溶液をNMRで分析したところ、ジメチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
ポリテトラフルオロエチレン製反応器中に500gのジエチルカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、21gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、ジエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
減圧濾過を行ない濾別したところ、濾過液はリチウム電池特性に悪影響を及ぼす酸性不純物濃度は15ppmであり、ヘキサフルオロリン酸リチウム固体換算で105ppmであった。濾過残留物全量をポリテトラフルオロエチレン製反応器中に500gのジメチルカーボネート、72gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
得られた溶液をNMRで分析したところ、ジエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
ポリテトラフルオロエチレン製反応器中に500gの1,2ジメトキシエンタン、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、21gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、1,2ジメトキシエタンの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
減圧濾過を行ない濾別したところ、濾過液はリチウム電池特性に悪影響を及ぼす酸性不純物濃度は10ppmであり、ヘキサフルオロリン酸リチウム固体換算で80ppmであった。
濾過残留物全量をポリテトラフルオロエチレン製反応器中に500gの1,2ジメトキシエタン、72gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
得られた溶液をNMRで分析したところ、1,2ジメトキシエタンの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
ポリテトラフルオロエチレン製反応器中に500gのプロピレンカーボネート、72gの三塩化リン、21gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、21gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、プロピレンカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
減圧濾過を行ない濾別したところ、濾過液はリチウム電池特性に悪影響を及ぼす酸性不純物濃度は20ppmであり、ヘキサフルオロリン酸リチウム固体換算で145ppmであった。
濾過残留物全量をポリテトラフルオロエチレン製反応器中に500gのプロピレンカーボネート、72gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを35.5g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に66gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
得られた溶液をNMRで分析したところ、プロピレンカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は75gであり、収率はほぼ100%であることを確認した。
ポリテトラフルオロエチレン製反応器中に1000gのメチルエチルカーボネート、144gの三塩化リン、42gの塩化リチウムを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを71.0g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に132gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、42gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、メチルエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は150gであり、収率はほぼ100%であることを確認した。
加圧濾過を行ない濾別したところ、濾過液について、リチウム電池特性に悪影響を及ぼす酸性不純物濃度は12ppmであり、ヘキサフルオロリン酸リチウム固体換算で84ppmであった。濾過残留物全量をポリテトラフルオロエチレン製反応器中に1000gのジメチルカーボネート、144gの三塩化リンを仕込み撹拌分散した。この時ポリテトラフルオロエチレン製反応器は遮光処理したものを使用した。この分散液を10℃に維持しながら塩素ガスを71.0g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に140gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、塩化リチウムの再添加により塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、ジメチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は150gであり、収率はほぼ100%であることを確認した。さらにこの溶液について、リチウム電池特性に悪影響を及ぼす酸性不純物濃度は15ppmであり、ヘキサフルオロリン酸リチウム固体換算で112ppmであった。
PFAコーティングしたSUS製反応器中に5000gのメチルエチルカーボネート、1334gの三塩化リン、424gの塩化リチウムを仕込み撹拌分散した。この分散液を10℃に維持しながら塩素ガスを710g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に1320gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、424gの塩化リチウムを再添加し塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、メチルエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は1510gであり、収率はほぼ100%であることを確認した。
クロスフロー濾過器を用いて濾別を行ない、濾過液はポリテトラフルオロエチレン製反応器中に移液した。濾過液中にはリチウム電池特性に悪影響を及ぼす酸性不純物濃度は16ppmであり、ヘキサフルオロリン酸リチウム固体換算で110ppmであった。濾過残留物全量はPFAコーティングを施したSUS製反応器に残り、その反応器中へ5000gのメチルエチルカーボネート、1334gの三塩化リンを仕込み撹拌分散した。この分散液を10℃に維持しながら塩素ガスを710g導入した。導入完了後の液は固形分が溶解し淡黄色の溶液となっており、反応が進行してヘキサクロロリン酸リチウムが生成した。得られた溶液に1340gの無水フッ化水素を10℃に維持しながら導入した。導入完了後の液は淡黄色から無色へと変化し、ヘキサフルオロリン酸リチウムが生成した。
次に得られた溶液中の過剰のフッ化水素を、塩化リチウムの再添加により塩化水素とフッ化リチウムに転化させ、反応中の副生成物である塩化水素および三フッ化リンとともに減圧処理により除去した。
得られた溶液をNMRで分析したところ、メチルエチルカーボネートの分解等は見られず、生成物はヘキサフルオロリン酸リチウムのみであった。また、NMRより求めた溶液中のヘキサフルオロリン酸リチウムの量は1510gであり、収率はほぼ100%であることを確認した。さらにこの溶液について、リチウム電池特性に悪影響を及ぼす酸性不純物濃度は15ppmであり、ヘキサフルオロリン酸リチウム固体換算で105ppmであった。
次にこの溶液を用いてテストセルを作製し、充放電試験により電解液としての性能を評価した。まず濾別により得られた濾過液であるヘキサフルオロリン酸リチウム/メチルエチルカーボネート溶液を2倍程度濃縮し、そこにエチレンカーボネートを体積比でメチルエチルカーボネート:エチレンカーボネート=2:1になるように添加して1mol/Lのヘキサフルオロリン酸リチウム/(メチルエチルカーボネート、エチレンカーボネート混合溶媒)電解液を調合した。
この電解液を用いて負極に黒鉛、正極にコバルト酸リチウムを用いたテストセルを組み立てた。具体的には、天然黒鉛粉末95質量部に、バインダーとして5質量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをニッケルメッシュ上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。また、コバルト酸リチウム85質量部に、黒煙粉末10質量部およびPVDF5質量部を混合し、さらに、N,N−ジメチルホルムアミドを添加し、スラリー状にした。このスラリーをアルミニウム箔上に塗布して、150℃で12時間乾燥させることにより、試験用正極体とした。ポリプロピレン不織布をセパレータとして、本実施例の反応溶液を電解液とし、上記負極体および正極体とを用いてテストセルを組み立てた。続いて定電流充放電試験を、充電、放電ともに0.35mA/cmで、充電4.2V、放電2.5Vまでのサイクルを繰り返し行い容量維持率の変化を観察した。
その結果、充放電効率ほぼ100%で、100サイクル終了後の容量維持率は全く変化しなかった。
また、濾別により得られた濾過残留物を用いて作製したヘキサフルオロリン酸リチウム/メチルエチルカーボネート溶液を2倍程度濃縮し、そこにエチレンカーボネートを体積比でメチルエチルカーボネート:エチレンカーボネート=2:1になるように添加して1mol/Lのヘキサフルオロリン酸リチウム/(メチルエチルカーボネート、エチレンカーボネート混合溶媒)電解液を調合した。前記と同様にしてテストセルを作製し、充放電試験により電解液としての性能を評価した。
その結果、充放電効率はほぼ100%で、100サイクル終了後の容量維持率は全く変化しなかった。

Claims (5)

  1. 非水性有機溶媒中で、三塩化リンと塩素、および塩化リチウムとを反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることにより、ヘキサフルオロリン酸リチウムを電解質としたリチウムイオン電池用電解液を製造する方法において、未反応のフッ化水素と塩化リチウムを反応させた後、さらに濾過液と固体残留物に濾別し、該濾過液をリチウムイオン電池用電解液として得、該固体残留物を非水性有機溶媒中で、三塩化リンと塩素と反応させ、その後、該溶媒中に生成した反応生成物とフッ化水素とを反応させ、さらにその後、未反応のフッ化水素と塩化リチウムを反応させることによりリチウムイオン電池用電解液を製造することを特徴とする、リチウムイオン電池用電解液の製造方法。
  2. 請求項1に記載の非水性有機溶媒が、鎖状又は環状の炭酸エステル、または2つ以上の酸素原子を有するエーテル化合物であることを特徴とする、請求項1に記載のリチウムイオン電池用電解液の製造方法。
  3. 該炭酸エステルが、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、及びプロピレンカーボネートのみから成る群から選択される少なくとも1つであることを特徴とする、請求項2に記載のリチウムイオン電池用電解液の製造方法。
  4. 該エーテル化合物が、1,2−ジメトキシエタンであることを特徴とする、請求項2に記載のリチウムイオン電池用電解液の製造方法。
  5. 請求項1〜4のいずれか1項に記載の製造方法で得られた電解液を用いたリチウムイオン電池。
JP2010130980A 2010-06-08 2010-06-08 リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池 Active JP5609283B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010130980A JP5609283B2 (ja) 2010-06-08 2010-06-08 リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
PCT/JP2011/059700 WO2011155267A1 (ja) 2010-06-08 2011-04-20 リチウムイオン電池用電解液の製造方法およびその電解液を用いたリチウムイオン電池
KR1020137000392A KR101435486B1 (ko) 2010-06-08 2011-04-20 리튬 이온 전지용 전해액의 제조 방법
CN201180028380.4A CN102934276B (zh) 2010-06-08 2011-04-20 锂离子电池用电解液的制造方法和使用该电解液的锂离子电池
EP11792225.2A EP2581980B1 (en) 2010-06-08 2011-04-20 Method for producing electrolyte solution for lithium ion battery, and lithium ion battery using the electrolyte solution
US13/697,471 US20130071760A1 (en) 2010-06-08 2011-04-20 Method for Producing Electrolyte Solution for Lithium Ion Battery, and Lithium Ion Battery Using the Electrolyte Solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010130980A JP5609283B2 (ja) 2010-06-08 2010-06-08 リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池

Publications (2)

Publication Number Publication Date
JP2011258371A true JP2011258371A (ja) 2011-12-22
JP5609283B2 JP5609283B2 (ja) 2014-10-22

Family

ID=45097881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010130980A Active JP5609283B2 (ja) 2010-06-08 2010-06-08 リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池

Country Status (6)

Country Link
US (1) US20130071760A1 (ja)
EP (1) EP2581980B1 (ja)
JP (1) JP5609283B2 (ja)
KR (1) KR101435486B1 (ja)
CN (1) CN102934276B (ja)
WO (1) WO2011155267A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862094B2 (ja) * 2010-08-17 2016-02-16 セントラル硝子株式会社 ヘキサフルオロリン酸リチウム濃縮液の製造方法
JP5845955B2 (ja) * 2012-02-17 2016-01-20 セントラル硝子株式会社 ヘキサフルオロリン酸リチウム濃縮液の製造方法
JP6945192B2 (ja) * 2017-03-29 2021-10-06 パナソニックIpマネジメント株式会社 非水電解質及び非水電解質二次電池
CN115650260B (zh) * 2022-12-13 2023-04-18 深圳新宙邦科技股份有限公司 一种六氟磷酸锂的制备方法、电解液及锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081505A (ja) * 1996-06-26 1998-03-31 Solvay Fluor & Derivate Gmbh ヘキサフルオロ燐酸リチウム又はヘキサフルオロ砒酸リチウムの製法
JPH1092468A (ja) * 1996-09-19 1998-04-10 Central Glass Co Ltd リチウム電池用電解液及びその精製方法並びにそれを用いたリチウム電池
JPH11154519A (ja) * 1997-11-19 1999-06-08 Central Glass Co Ltd テトラフルオロホウ酸リチウムの精製方法
JP2000211907A (ja) * 1998-12-31 2000-08-02 Ulsan Chemical Co Ltd 六フッ化リン酸リチウムの製造方法
JP2002539059A (ja) * 1998-08-21 2002-11-19 アトフィナ 六フッ化燐酸リチウムの製造方法
JP2004175659A (ja) * 2002-11-12 2004-06-24 Santoku Corp フッ素含有リチウム化合物の製造方法
JP2007184246A (ja) * 2005-12-06 2007-07-19 Central Glass Co Ltd リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472901A (en) 1987-09-14 1989-03-17 Central Glass Co Ltd Production of lithium fluoride complex salt
CA2104718C (en) * 1993-08-24 1999-11-16 Huanyu Mao Simplified preparation of lipf6 based electrolyte for non-aqueous batteries
JP3726163B2 (ja) * 1994-10-27 2005-12-14 宇部興産株式会社 非水二次電池とその製造方法
JP2987397B2 (ja) 1995-12-14 1999-12-06 セントラル硝子株式会社 ヘキサフルオロリン酸リチウムの製造方法
DE19625448A1 (de) 1996-06-26 1998-01-02 Solvay Fluor & Derivate Verfahren zur Herstellung von LiPF¶6¶
DE19632543C1 (de) * 1996-08-13 1998-04-02 Metallgesellschaft Ag Verfahren zur Herstellung von LiPF¶6¶
KR101068065B1 (ko) * 2002-11-12 2011-09-28 가부시키가이샤 산도쿠 불소 함유 리튬 화합물의 제조 방법
JP4810867B2 (ja) * 2005-04-19 2011-11-09 セントラル硝子株式会社 リチウムイオン電池用電解液の製造方法
CN101310407B (zh) * 2005-12-06 2010-12-08 中央硝子株式会社 用于制备锂离子电池用电解质溶液的方法和使用该电解质溶液的锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081505A (ja) * 1996-06-26 1998-03-31 Solvay Fluor & Derivate Gmbh ヘキサフルオロ燐酸リチウム又はヘキサフルオロ砒酸リチウムの製法
JPH1092468A (ja) * 1996-09-19 1998-04-10 Central Glass Co Ltd リチウム電池用電解液及びその精製方法並びにそれを用いたリチウム電池
JPH11154519A (ja) * 1997-11-19 1999-06-08 Central Glass Co Ltd テトラフルオロホウ酸リチウムの精製方法
JP2002539059A (ja) * 1998-08-21 2002-11-19 アトフィナ 六フッ化燐酸リチウムの製造方法
JP2000211907A (ja) * 1998-12-31 2000-08-02 Ulsan Chemical Co Ltd 六フッ化リン酸リチウムの製造方法
JP2004175659A (ja) * 2002-11-12 2004-06-24 Santoku Corp フッ素含有リチウム化合物の製造方法
JP2007184246A (ja) * 2005-12-06 2007-07-19 Central Glass Co Ltd リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池

Also Published As

Publication number Publication date
KR101435486B1 (ko) 2014-08-28
CN102934276A (zh) 2013-02-13
US20130071760A1 (en) 2013-03-21
CN102934276B (zh) 2015-04-08
JP5609283B2 (ja) 2014-10-22
EP2581980A1 (en) 2013-04-17
WO2011155267A1 (ja) 2011-12-15
KR20130030802A (ko) 2013-03-27
EP2581980A4 (en) 2014-07-09
EP2581980B1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP4810867B2 (ja) リチウムイオン電池用電解液の製造方法
KR102036924B1 (ko) 육불화인산알칼리금속염 제조방법, 육불화인산알칼리금속염, 육불화인산알칼리금속염 함유 전해농축액 제조방법, 및 이차전지 제조방법
US10717650B2 (en) Method for purifying difluorophosphate
JP5845955B2 (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
WO2011016212A1 (ja) 非水電解液用の非対称型および/または低対称型含フッ素リン酸エステル
JP5862094B2 (ja) ヘキサフルオロリン酸リチウム濃縮液の製造方法
KR20090118117A (ko) 디플루오로인산리튬의 제조방법 및 이를 사용한 비수전해액 전지
CN109422252B (zh) 一种氟磺酰二氟磷酰亚胺锂的制备方法及其产品和应用
KR100971065B1 (ko) 리튬이온전지용 전해액의 제조방법 및 이를 사용한리튬이온전지
JP5609283B2 (ja) リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
JP5151121B2 (ja) リチウムイオン電池用電解液の製造方法およびそれを用いたリチウムイオン電池
KR20200110127A (ko) 육불화인산알칼리금속염 제조방법, 육불화인산알칼리금속염, 육불화인산알칼리금속염 함유 전해농축액 제조방법, 및 이차전지 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250