JP2011245788A - 多層フィルムおよびそれを用いた偏光板 - Google Patents

多層フィルムおよびそれを用いた偏光板 Download PDF

Info

Publication number
JP2011245788A
JP2011245788A JP2010122751A JP2010122751A JP2011245788A JP 2011245788 A JP2011245788 A JP 2011245788A JP 2010122751 A JP2010122751 A JP 2010122751A JP 2010122751 A JP2010122751 A JP 2010122751A JP 2011245788 A JP2011245788 A JP 2011245788A
Authority
JP
Japan
Prior art keywords
group
layer
multilayer film
carbon atoms
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010122751A
Other languages
English (en)
Inventor
Akihiko Uchiyama
昭彦 内山
Yuhei Ono
雄平 小野
Taro Oya
太郎 大宅
Shinichiro Shoji
信一郎 庄司
Kohei Endo
浩平 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010122751A priority Critical patent/JP2011245788A/ja
Priority to US13/575,327 priority patent/US20120302676A1/en
Priority to CN201180017628.7A priority patent/CN102812072B/zh
Priority to CA2786665A priority patent/CA2786665A1/en
Priority to PCT/JP2011/051843 priority patent/WO2011093478A1/ja
Priority to KR1020127022097A priority patent/KR101859237B1/ko
Priority to EP11737187.2A priority patent/EP2530111A4/en
Priority to SG2012053203A priority patent/SG182593A1/en
Priority to RU2012136467/04A priority patent/RU2012136467A/ru
Priority to AU2011211260A priority patent/AU2011211260A1/en
Priority to BR112012018682A priority patent/BR112012018682A2/pt
Priority to TW100102885A priority patent/TWI596146B/zh
Publication of JP2011245788A publication Critical patent/JP2011245788A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polarising Elements (AREA)

Abstract

【課題】透明性、位相差制御性、耐湿熱性に優れ、かつ環境にも配慮した多層フィルムおよびそれを用いた偏光板を提供する。
【解決手段】ポリ乳酸(A成分)とカルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(C成分)とを含む光学的に正である層5(P層)と、光学的に負である樹脂(D成分)からなる層6(N層)を少なくともそれぞれ1層ずつ含み、当該ポリ乳酸(A成分)が、ポリD−乳酸成分及びポリL−乳酸成分を含むポリ乳酸であり、且つステレオコンプレックス結晶化度(S)が90%以上である多層フィルム7およびそれを用いた偏光板。
【選択図】図2

Description

本発明は特に光学用途において用いられる多層フィルムおよびそれを用いた偏光板に関する。
液晶表示装置はテレビやパソコンモニター、携帯情報端末等の表示デバイスとして広く使用されている。液晶表示装置には通常、偏光板が用いられているが、これは一般の液晶表示装置では偏光を利用しているためである。偏光板は、光源の自然偏光を直線偏光に変換するため、また、液晶セル等によって制御された偏光情報を透過率情報に変換するための偏光変換素子として使用されている。この偏光板には各種の提案があるが、もっとも一般的に利用されている偏光板の形態は、2枚の保護フィルムの間に偏光変換を行う偏光膜が挟持された構造を有するものである。偏光膜としては主としてポリビニルアルコール延伸フィルム中に2色性色素が配向状態で存在しているものが好適に利用されている。一方、保護フィルムはこの偏光膜が、単体では耐熱、耐湿熱試験における寸法安定性や、耐光性、耐磨耗性等の特性を満足できないために使用される。
偏光板用保護フィルムとしてはいくつか提案があるが、トリアセチルセルロース(以下、「TAC」と略記することがある。)フィルムが最も広く利用されている。最近では保護フィルムに偏光変換素子の一種である位相差フィルムを兼ねさせる例も提案され、実用に供されている。TACは半合成樹脂であり、樹脂に関しては部分的ではあるが植物由来原料を使用しているという点において環境に配慮した材料であるといえる。しかし、そのポリマーの物性上、フィルム製造方法として溶液キャスト法を用いることが必要であり、製造時に大量のハロゲン溶媒を使用するため、環境負荷が大きく、そのフィルムは真に環境に配慮した材料とは言い難い。
ポリ乳酸は植物由来材料として石油系樹脂の代替と成りうる可能性をもつだけではなく、溶媒を用いない溶融押出法にてフィルム化が可能であるために環境配慮型の材料としては好適であり、さらに、結晶性であるにも関わらず高い透明性を保有するなど光学特性に特長があり、それを活かした用途展開が期待されている。実際に、ポリ乳酸を偏光板の保護フィルムとして用いようとする発明が提案されている(例えば、特許文献1、2、3等参照)。
しかしながら、ポリ乳酸は現時点において偏光板の保護フィルムとしては利用されていない。技術的課題の1つは、機械的強度を得ようとして延伸をすると、ポリ乳酸は結晶性高分子であるがゆえに光学的な異方性が無視できないほどに大きくなる点である。
さらにポリ乳酸は、生分解性であることが知られていることからも、分解しやすいといった特徴を有する。特に加水分解が生じやすいといった問題がある。この加水分解を抑制する手法は既に提案されている(特許文献4)。この提案において用いられているカルボジイミド化合物は、線状のカルボジイミド化合物である。線状カルボジイミド化合物を高分子化合物の末端封止剤として用いると、線状カルボジイミド化合物が高分子化合物の末端に結合する反応に伴いイソシアネート基を有する化合物が遊離し、イソシアネート化合物の独特の臭いを発生し、作業環境を悪化させることが問題となっている。
特開2002−82223号公報 特開2001−337201号公報 特開2004−252263号公報 特開2001−261797号公報
本発明の目的は、上記した従来技術の問題を解決することにあり、透明性に優れ、光学異方性が小さく、かつ環境にも配慮した光学用途に最適な多層フィルムおよびそれを用いた偏光板を提供することにある。
本発明は、上記従来技術に鑑み、鋭意検討を重ねた結果、本発明に到達した。
即ち、本発明の第1の目的は、
1.ポリ乳酸(A成分)とカルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(C成分)とを含む光学的に正である層(P層)と、光学的に負である樹脂(D成分)からなる層(N層)を少なくともそれぞれ1層ずつ含み、当該ポリ乳酸(A成分)が、ポリD−乳酸成分及びポリL−乳酸成分を含むポリ乳酸であり、且つステレオコンプレックス結晶化度(S)が90%以上である多層フィルムによって達成される。
{ステレオコンプレックス結晶化度(S)は示差走査熱量計(DSC)測定で、190℃未満に観測されるポリ乳酸ホモ結晶融解熱(△Hm)、190℃以上に観測されるポリ乳酸ステレオコンプレックス結晶融解熱(△Hmsc)より次式(I)により求める。
(S)=〔△Hmsc / (△Hm +△Hmsc)〕×100 (I)}
上記の発明には、以下も包含される。
2.P層が、さらにアクリル系樹脂(B成分)を含む、前記1記載の多層フィルム。
3.C成分が下記式(1)で表される前記1または2記載の多層フィルム。
Figure 2011245788
(式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2〜4価の結合基であり、ヘテロ原子を含有していてもよい。)
4.Qは、下記式(1−1)、(1−2)または(1−3)で表される2〜4価の結合基である前記3記載の多層フィルム。
Figure 2011245788
(式中、ArおよびArは各々独立に、2〜4価の炭素数5〜15の芳香族基である。RおよびRは各々独立に、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基またはこれらの組み合わせ、またはこれら脂肪族基、脂環族基と2〜4価の炭素数5〜15の芳香族基の組み合わせである。XおよびXは各々独立に、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。sは0〜10の整数である。kは0〜10の整数である。なお、sまたはkが2以上であるとき、繰り返し単位としてのX、あるいはXが、他のX、あるいはXと異なっていてもよい。Xは、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。但し、Ar、Ar、R、R、X、XおよびXはヘテロ原子を含有していてもよい、また、Qが2価の結合基であるときは、Ar、Ar、R、R、X、XおよびXは全て2価の基である。Qが3価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが3価の基である。Qが4価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが4価の基であるか、二つが3価の基である。)
5.C成分が、下記式(2)で表される前記3記載の多層フィルム。
Figure 2011245788
(式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2価の結合基であり、ヘテロ原子を含有していてもよい。)
6.Qは、下記式(2−1)、(2−2)または(2−3)で表される2価の結合基である前記5記載の多層フィルム。
Figure 2011245788
(式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)中のAr、Ar、R、R、X、X、X、sおよびkと同じである。)
7.C成分が、下記式(3)で表される前記3記載の多層フィルム。
Figure 2011245788
(式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである3価の結合基であり、ヘテロ原子を含有していてもよい。Yは、環状構造を担持する担体である。)
8.Qは、下記式(3−1)、(3−2)または(3−3)で表される3価の結合基である前記7記載の多層フィルム。
Figure 2011245788
(式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)のAr、Ar、R、R、X、X、X、sおよびkと同じである。但しこれらの内の一つは3価の基である。)
9.Yは、単結合、二重結合、原子、原子団またはポリマーである前記7または8記載の多層フィルム。
10.C成分が、下記式(4)で表される前記3記載の多層フィルム。
Figure 2011245788
(式中、Qは、脂肪族基、芳香族基、脂環族基またはこれらの組み合わせである4価の結合基であり、ヘテロ原子を保有していてもよい。ZおよびZは、環状構造を担持する担体である。)
11.Qは、下記式(4−1)、(4−2)または(4−3)で表される4価の結合基である前記10記載の多層フィルム。
Figure 2011245788
(式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)の、Ar、Ar、R、R、X、X、X、sおよびkと同じである。但し、これらの内の一つが4価の基であるか、二つが3価の基である。)
12.ZおよびZは各々独立に、単結合、二重結合、原子、原子団またはポリマーである前記10または11記載の多層フィルム。
13.D成分がポリメチルメタクリレートまたはポリメチルメタクリレート/ポリスチレン共重合体を含む、前記1〜12のいずれか記載の多層フィルム。
14.多層フィルムの積層構成がP層/N層/P層またはN層/P層/N層の3層構成である、前記1〜13のいずれか記載の多層フィルム。
15.3層構成における中間層が紫外線吸収剤を含有する、前記14記載の多層フィルム。
16.略光学等方である、前記1〜15のいずれか記載の多層フィルム。
また、本発明の第3の目的は、
17.前記1〜16のいずれか記載の多層フィルムを用いたことを特徴とする偏光板、によって達成することができる。
本発明によれば、透明性に優れ、光学的異方性が小さく、かつ環境にも配慮した光学用途に適した多層フィルムおよびそれを用いた偏光板を提供することが可能となる。
本発明における多層フィルムの一態様を示す模式図である。 本発明における多層フィルムの一態様を示す模式図である。 本発明における偏光板の一態様を示す模式図である。 本発明における偏光板の一態様を示す模式図である。
以下、本発明を詳細に説明する。
<多層フィルム>
本発明における多層フィルムは、ポリ乳酸(A成分)と、カルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(C成分)とを含む光学的に正である樹脂層(P層)と、光学的に負である樹脂(D成分)層(N層)を少なくともそれぞれ1層ずつ含み、当該ポリ乳酸(A成分)が、ポリD−乳酸成分及びポリL−乳酸成分を含むポリ乳酸であり、且つステレオコンプレックス結晶化度(S)が90%以上であることを特徴とする。
{ステレオコンプレックス結晶化度(S)は示差走査熱量計(DSC)測定で、190℃未満に観測されるポリ乳酸ホモ結晶融解熱(△Hm)、190℃以上に観測されるポリ乳酸ステレオコンプレックス結晶融解熱(△Hmsc)より次式(I)により求める。
(S)=〔△Hmsc / (△Hm +△Hmsc)〕×100 (I)}
本発明で言う光学的に正または負である樹脂層とは、それぞれ単独に縦一軸延伸した際に、層面内の屈折率の最大方位が延伸方向となるものを正である樹脂層(P層)、層面内の屈折率の最大方位が延伸方向と直交する方向となるものを負である樹脂層(N層)と定義する。なお、延伸条件は当該各樹脂層のガラス転移点温度(Tg)−10℃からTg+20℃の範囲で延伸し、屈折率異方性の評価はエリプソメータによって測定波長550nmで行うものとする。
本発明の多層フィルムは、少なくともP層とN層の1層ずつを含むことが必要である。好ましくは3層以上であり、より好ましくは3層で、N/P/N,P/N/Pのような対称構造を取ることが多層フィルムのカール防止の点で好ましい。光学異方性が互いに逆の特性を有するN層、P層が積層されることにより光学的異方性は打ち消され、異方性の小さい多層フィルムを得ることが可能となる。
最適な光学異方性は多層フィルムの用途によって異なるが、偏光板の保護フィルムに位相差フィルム機能を付与しない場合においては、当該保護フィルムは光学的に等方であることが好ましく、この用途に本発明の多層フィルムを用いる場合には、好ましい光学的異方性は下記式により表される。
R0 < 10nm (40)
Rth < 70nm (41)
(ここで、R0,Rthはそれぞれ、
R0 = (n−n) × d (42)
Rth = {(n+n)/2−n}×d (43)
で表され、dは多層フィルムの膜厚、n、n、nは多層フィルムの三次元屈折率であり、nはフィルム面内の最大屈折率方位の屈折率、nはフィルム面内でnに直交する方位の屈折率、nはフィルム表面に垂直な方向の屈折率と定義する。R0、Rthはエリプソメータ等の公知の方法により評価できるが、本発明においては、特に断りが無ければ測定波長は550nmとする。)
より好ましくは、
R0 < 7nm (44)
Rth < 50nm (45)
さらに好ましくは、
R0 < 5nm (46)
Rth < 30nm (47)
である。
透明性の点でヘーズは3%以下であることが好ましく、より好ましくは1%以下、さらに好ましくは0.5%以下である。
<多層フィルムの製造>
本発明の多層フィルムを得るには、押出成形、キャスト成形等の公知の成形手法を用いることができる。例えば、Tダイ、Iダイ、円形ダイ等が装着された押出機等を用いて、製膜することができる。好ましくは、マルチマニュホールドダイかフィードブロック、ダブリング設備等多層化のための設備を接続したTダイまたはIダイによる多層押出成形を用いることが好ましい。これらは層数や樹脂の物性等により最適な方法が選択される。
多層押出成形により多層フィルムを得る場合、例えば、P層の場合、事前にポリ乳酸(A成分)および他の成分を溶融混練した材料を用いることもできれば、押し出し成形時に溶融混練を経て成形することもできる。N層も同様にかつ同時に成形し多層フィルムを形成することが可能である。多層フィルム成形において問題となるシャークスキンや層厚のばらつきを抑制するには、各層に用いる樹脂の溶融粘度が近いほうが好ましい。具体的にはP層とN層の樹脂の同温度におけるメルトフローレートの差が20(g/10min)以下であることが好ましく、より好ましくは10以下である。このメルトフローレートはISO1133の方法で測定される。
また、溶融粘度の観点からも融点が近い方が好ましく、各層の融点の温度差は30℃以下であることが好ましく、より好ましくは20℃以下、さらに好ましくは10℃以下である。本発明においては、特に断りが無ければ、本発明におけるTg、Tmおよび結晶化温度(Tc)は、示差走査熱量計(DSC)測定で、昇温速度20℃/分で求めた第一回昇温時の値であるとする。
P層の樹脂は結晶性高分子であるが、N層の樹脂は結晶性または非晶性高分子のいずれであってもよい。N層を結晶性とした場合には、N層の樹脂はP層の樹脂とガラス転移点温度(Tg)、融点(Tm)が近いことが好ましい。Tgの差は30℃以下であることが好ましく、20℃以下がより好ましく、さらに好ましくは10℃以下である。Tmの差も同様に、30℃以下であることが好ましく、20℃以下がより好ましく、さらに好ましくは10℃以下である。両者のTmの差が30℃を超えた場合には、多層溶融押出工程において、層厚のムラ等の問題が発生する場合があり、また、Tgの差が30℃を超えた場合には、延伸工程において延伸ムラ等の問題が発生する場合がある。
一方、N層の樹脂を非晶性高分子とした場合には、P層の樹脂の結晶化温度(Tpc)はN層のガラス転移点温度(Tng)よりも高いことが好ましい。TpcはTngよりも5℃以上高いことが好ましく、さらに好ましくは10℃以上である。TpcがTngよりも低い場合には、延伸工程においては各層のTg近傍以上で延伸が行われることから、P層の結晶化が延伸時に発生し、クレーズの発生等により透明性を確保できない場合がある。
多層フィルムは、溶融フィルムを冷却ドラム上に押出しついで該フィルムを回転する冷却ドラムに密着させ冷却することによって製造することができる。このとき溶融フィルムにはスルホン酸四級ホスホニウム塩等の静電密着剤を配合し、電極よりフィルム溶融面に非接触的に電荷を容易に印加し、それによってフィルムを、回転する冷却ドラムに密着させることにより表面欠陥の少ない多層フィルムを得てもよい。その際、押出し用ダイのリップ開度と冷却ドラム上に押出されたシートとの厚みとの比(ドラフト比)が2以上、80以下であることが好ましい。ドラフト比が2より小さくなると押出しダイリップからの引取り速度が遅くなり過ぎ、ダイリップからのポリマーの離れ速度が遅いため、ダイリップスジ欠点などの欠点が多くなり好ましくない場合がある。この観点からドラフト比は3以上が好ましく、5以上がより好ましく、9以上が更に好ましく、15以上が特に好ましい。また、ドラフト比が80より大きくなるとポリマーがダイリップから離れる時の変形が大きすぎるためか流動が不安定となり厚み変動(厚み斑)が悪くなり、好ましくない場合がある。この観点からはドラフト比は60以下であることが好ましく、40以下であることがより好ましく、30以下であることが特に好ましい。
溶融押出フィルムを得るためには、ダイから出された溶融状態にある樹脂は急冷されることが好ましい。したがって、冷却ドラムの温度は各層樹脂のガラス転移点温度+20℃以下であることが好ましいが、多層フィルムのうちの冷却ドラムに接する層のガラス転移点温度+20℃以下であることがより好ましい。P層を冷却ドラムに接する層とした場合には、冷却ドラムは10℃〜70℃に設定されることが好ましく、より好ましくは20℃〜60℃、最も好ましくは30℃〜50℃である。冷却ドラムの温度が10℃未満では冷却ドラムとの密着性が悪くなる場合があり、また、70℃より高い温度の場合には、冷却不足による結晶化等のため透明性に問題が発生する場合がある。
多層フィルムの延伸は、公知の縦一軸延伸、横一軸延伸、同時二軸延伸等により行うことができ、該フィルムは、結晶性を高めるため、また、熱収縮性などの抑制のため延伸後、熱固定処理を行ってもよい。
延伸倍率は目的や樹脂の種類等によって適宜決定される。多層フィルムは、面積延伸倍率(縦倍率×横倍率)は、好ましくは6.0倍以下、より好ましくは4.0倍以下、さらに好ましくは3倍以下の範囲であり、好ましくは1.05倍以上、さらに好ましくは1.1倍以上の範囲である。面積延伸倍率を6.0倍以上とした場合には、延伸性が悪くなり延伸中に破断が発生する頻度が上昇する等の問題が生じる場合がある。倍率が1.05倍未満では、機械的強度が不十分となる場合がある。
延伸温度は、多層フィルムを構成する樹脂のガラス転移点温度(Tg)から結晶化温度(Tc)の範囲が好適に選択される。
Tgより低い温度では分子鎖が固定されているので、延伸加工を好適に進めることが困難であるとともに、またTc以上では延伸時に結晶化が進み、この場合も延伸工程を良好に進行させることが困難となる場合がある。
従って延伸温度としては、各層を構成する樹脂のうち、最も高いTgを有する樹脂のTg−10℃以上がより好ましく、Tg−5℃以上がさらに好ましく、最も低いTcを有する樹脂のTc+10℃以下がより好ましく、Tc+5℃以下がさらに好ましく、最も好ましくはTc以下である。
熱固定処理については、多層フィルムを構成する樹脂のうち最もTcの高い結晶性樹脂の結晶化温度(Tc)から、各層を構成する樹脂のうち最も低い融点(Tm)の温度範囲で熱固定処理することが好ましい。この熱固定処理をすることにより、ステレオコンプレックスポリ乳酸を含む各層の結晶性高分子の結晶化を進め、熱収縮率を好適に低下させることができる。
熱固定処理は1秒間から30分間の範囲で実施することが好ましい。熱処理温度が高いときは相対的に短い時間で、熱固定処理温度が低いときは相対的に長い時間の熱処理を要する。
<P層>
P層の樹脂としては、後述するポリ乳酸(A成分)とカルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(C成分)を含むことが必須であるが、それ以外の成分を含んでいてもよい。
P層樹脂中のポリ乳酸(A成分)成分の含有量は40重量%以上であることが好ましく、さらに好ましくは50重量%以上、より好ましくは60重量%以上、特に好ましくは70%重量以上、最も好ましくは75重量%以上である。ポリ乳酸(A成分)の含有量が40重量%未満であると、ポリ乳酸(A成分)の結晶化が生じにくくなり、耐熱性に問題が生じる場合等がある。ポリ乳酸(A成分)以外の樹脂を含有させる場合には、多層フィルム成形性の観点から熱可塑性樹脂を用いることが好ましい。
ポリ乳酸以外の熱可塑性樹脂としては、たとえばポリ乳酸樹脂以外のポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエチレン樹脂およびポリプロピレン樹脂等のポリオレフィン系樹脂、ポリスチレン樹脂、アクリル樹脂、ポリウレタン樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、芳香族ポリケトン樹脂、脂肪族ポリケトン樹脂、フッソ樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルケトン樹脂、ポリイミド樹脂、熱可塑性澱粉樹脂、AS樹脂、ABS樹脂、AES樹脂、ACS樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ビニルエステル系樹脂、MS樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、フェノキシ樹脂、ポリフェニレンオキサイド樹脂、ポリ−4−メチルペンテン−1、ポリエーテルイミド樹脂、ポリビニルアルコール樹脂等の熱可塑性樹脂を挙げることができる。
特に好ましくは、ポリ乳酸(A成分)との相溶性が良く、また屈折率が近いという観点からアクリル系樹脂(B成分)、とりわけ、ポリメチルメタクリレート(以下、PMMAと略記することがある。)である。多層フィルムのP層におけるアクリル系樹脂(B成分)含有量としては、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下である。アクリル系樹脂(B成分)が50重量%より多い場合においてはポリ乳酸(A成分)を結晶化させることが困難であり、耐熱性等に問題が生じる場合がある。アクリル系樹脂(B成分)については後述する。
<ポリ乳酸(A成分)>
本発明において、P層樹脂は、ポリ乳酸(A成分)を含む。ポリ乳酸(A成分)は、ポリD−乳酸成分及びポリL−乳酸成分を含み、ステレオコンプレックス結晶化度(S)が90%以上である。
ステレオコンプレックス結晶化度(S)は示差走査熱量計(DSC)測定で、190℃
未満に観測されるポリ乳酸ホモ結晶融解熱(ΔHm)、190℃以上に観測されるポリ乳酸ステレオコンプレックス結晶融解熱(ΔHmsc)より次式(I)により求められる値である。
(S)=〔ΔHmsc / (ΔHm + ΔHmsc)〕×100 (I)
ステレオコンプレックス結晶化度(S)は好ましくは93%から100%、より好ましくは95%から100%の範囲が選択される。特に好ましくはステレオコンプレックス結晶化度(S)は100%である。
ステレオコンプレックス結晶化度(S)が90%以上であるポリ乳酸をP層樹脂として用いると、多層フィルムの透明性を高く保つことが可能である。また、耐熱性も高いものとなる。
上述のステレオコンプレックス結晶化度を好適に満たすために、ポリ乳酸(A成分)において、ポリD−乳酸成分とポリL−乳酸成分との重量比は90/10から10/90であることが好ましい。
より好ましくは80/20から20/80、さらに好ましくは30/70から70/30、とりわけ好ましくは40/60から60/40の範囲であり、理論的には1/1にできるだけ近い方が好ましく選択される。
多層フィルムにおけるポリ乳酸(A成分)の結晶化の度合いとしては、広角X線回折(XRD)測定による回折ピークの強度比によって、式(II)で定義されるステレオコンプレックス結晶化率(Sc)が50%以上を有することがより好ましく、好ましくは50から100%、さらに好ましくは70から100%、とりわけ好ましくは90から100%の範囲が選択される。すなわちポリ乳酸(A成分)が上記(Sc)を有することにより、フィルムの透明性、耐熱性、耐湿熱性をより好適に満たすことができる。特に透明性に関しては、ステレオコンプレックス結晶を有しないポリ乳酸に比べて、著しくヘーズを低減することが可能であり、光学用途に用いられるフィルムとしてはより好適である。
Sc(%)=〔ΣISCi/(ΣISCi+IHM)〕×100 (II)
[ここで、ΣISCi=ISC1+ISC2+ISC3、ISCi(i=1から3)はそれぞれ2θ=12.0°, 20.7°, 24.0°付近の各回折ピークの積分強度、IHMは2θ=16.5°付近に現れるホモ結晶に由来する回折ピークの積分強度IHMを表す。]
さらにポリ乳酸ステレオコンプレックス結晶の融点は190から250℃、より好ましくは200から230℃の範囲が好適に選択され、DSC測定による結晶融解エンタルピーは、20J/g以上、好ましくは20から80J/g、より好ましくは30から80J/gの範囲が選択される。
また、本発明におけるポリL‐乳酸成分およびポリD‐乳酸成分の重量平均分子量は、フィルムの機械物性及び成形性を両立させるため、好ましくは10万から50万、より好ましくは11万から35万、さらに好ましくは12から25万の範囲が選択される。
ポリL‐乳酸成分およびポリD‐乳酸成分は、従来公知の方法で製造することができる。
例えば、L‐ラクチドまたはD‐ラクチドを金属含有触媒の存在下、開環重合することにより製造することができる。また金属含有触媒を含有する低分子量のポリ乳酸を、所望により結晶化させた後、あるいは結晶化させることなく、減圧下または常圧から加圧下、不活性ガス気流の存在下、あるいは非存在下、固相重合させ製造することもできる。さらに有機溶媒の存在または非存在下、乳酸を脱水縮合させる直接重合法により製造することができる。
重合反応は、従来公知の反応容器で実施可能であり、例えば開環重合あるいは直接重合法においてはヘリカルリボン翼等、高粘度用撹拌翼を備えた縦型反応器あるいは横型反応器を単独、または並列して使用することができる。また、回分式あるいは連続式あるいは半回分式のいずれでも良いし、これらを組み合わせてもよい。
重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エチレングリコール、トリメチロールプロパン、ペンタエリスルトールなどを好適に用いることができる。
固相重合法で使用するポリ乳酸プレポリマーは、予め結晶化させることが、樹脂ペレット融着防止の面から好ましい実施形態と言える。プレポリマーは固定された縦型或いは横型反応容器、またはタンブラーやキルンの様に容器自身が回転する反応容器(ロータリーキルン等)中、プレポリマーのガラス転移点温度から融点未満の温度範囲において固体状態で重合される。
金属含有触媒としては、アルカリ金属、アルカリ土類金属、希土類、遷移金属類、アルミニウム、ゲルマニウム、スズ、アンチモン、チタン等の脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、アルコラート等が例示される。
なかでもスズ、アルミニウム、亜鉛、カルシウム、チタン、ゲルマニウム、マンガン、マグネシウムおよび稀土類元素より選択される少なくとも一種の金属を含有する脂肪酸塩、炭酸塩、硫酸塩、リン酸塩、酸化物、水酸化物、ハロゲン化物、アルコラートが好ましい。
触媒活性、副反応の少なさからスズ化合物、具体的には塩化第一スズ、臭化第一スズ、ヨウ化第一スズ、硫酸第一スズ、酸化第二スズ、ミリスチン酸スズ、オクチル酸スズ、ステアリン酸スズ、テトラフェニルスズ等のスズ含有化合物が好ましい触媒として例示でされる。
なかでも、スズ(II)化合物、具体的にはジエトキシスズ、ジノニルオキシスズ、ミリスチン酸スズ(II)、オクチル酸スズ(II)、ステアリン酸スズ(II)、塩化スズ(II)などが好適に例示される。
触媒の使用量は、ラクチド1kg当たり0.42×10−4から100×10−4(モル)でありさらに反応性、得られるポリラクチド類の色調、安定性を考慮すると1.68×10−4から42.1×10−4(モル)、特に好ましくは2.53×10−4から16.8×10−4(モル)使用される。
ポリ乳酸重合に使用された金属含有触媒は、ポリ乳酸使用に先立ち、従来公知の失活剤で不活性化しておくのが好ましい。
かかる失活剤としては例えばイミノ基を有し且つ重合金属触媒に配位し得るキレート配位子の群からなる有機リガンド及びジヒドリドオキソリン(I)酸、ジヒドリドテトラオキソ二リン(II,II)酸、ヒドリドトリオキソリン(III)酸、ジヒドリドペンタオキソ二リン(III)酸、ヒドリドペンタオキソ二(II,IV)酸、ドデカオキソ六リン(III)酸、ヒドリドオクタオキソ三リン(III,IV,IV)酸、オクタオキソ三リン(IV,III,IV)酸、ヒドリドヘキサオキソ二リン(III,V)酸、ヘキサオキソ二リン(IV)酸、デカオキソ四リン(IV)酸、ヘンデカオキソ四リン(IV)酸、エネアオキソ三リン(V,IV,IV)酸等の酸価数5以下の低酸化数リン酸、式 xHO・yPで表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸及びこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタリン酸系化合物と呼ぶことがある。)、及びこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステル、完全エスエテル、ホスホノ置換低級脂肪族カルボン酸誘導体などが例示される。
触媒失活能から、式xHO・yPで表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸及びこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタリン酸系化合物と呼ぶことがある。)、及びこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステルリンオキソ酸あるいはこれらの酸性エステル類、ホスホノ置換低級脂肪族カルボン酸誘導体及び上記のメタリン酸系化合物が好適に使用される。
本発明で使用するメタリン酸系化合物は、3から200程度のリン酸単位が縮合した環状のメタリン酸あるいは立体網目状構造を有するウルトラ領域メタリン酸あるいはそれらの(アルカル金属塩、アルカリ土類金属塩、オニウム塩)を包含する。なかでも環状メタリン酸ナトリウムやウルトラ領域メタリン酸ナトリウム、ホスホノ置換低級脂肪族カルボン酸誘導体のジヘキシルホスホノエチルアセテート(以下、DHPAと略称することがある)などが好適に使用される。
本発明で使用するポリ乳酸は、含有ラクチド量が1から5000ppmのものが好ましい。ポリ乳酸中に含有するラクチドは溶融加工時、樹脂を劣化させ、色調を悪化させ、場合によっては製品として使用不可能にする場合がある。
溶融開環重合された直後のポリL−乳酸および/またはポリD−乳酸は通常1から5重量%のラクチドを含有するが、ポリL−乳酸および/またはポリD−乳酸重合終了の時点からポリ乳酸成形までの間の任意の段階において、従来公知のラクチド減量法により、即ち一軸あるいは多軸押出機での真空脱揮法、あるいは重合装置内での高真空処理等を単独であるいは組み合わせて実施することにラクチドを好適な範囲に低減することができる。
ラクチド含有量は少ないほど、樹脂の溶融安定性、耐湿熱安定性は向上するが、樹脂溶融粘度を低下させる利点もあり、所望の目的に合致した含有量にするのが合理的、経済的である。すなわち、実用的な溶融安定性が達成される1から1000ppmに設定するのが合理的である。さらに好ましくは1から700ppm、より好ましくは2から500ppm、特に好ましくは5から100ppmの範囲が選択される。
ポリ乳酸成分がかかる範囲のラクチド含有量を有することにより、本発明の多層フィルムの溶融製膜時の樹脂の安定性を向上せしめ、フィルムの製造を効率よく実施できる利点及びフィルムの耐湿熱安定性、低ガス性を高めることが出来る。
本発明に使用されるポリ乳酸の重量平均分子量は、成形加工性と得られる成形品の機械的、熱的物性との関係を考察して選択される。即ち、組成物の強度、伸度、耐熱性等の機械的、熱的物性を発揮させるためには重量平均分子量は好ましくは8万以上、より好ましくは10万以上、さらに好ましくは13万以上である。
しかし、重量平均分子量の上昇とともに、ポリ乳酸の溶融粘度は指数関数的に上昇し、押出成形等の溶融成形を行うとき、樹脂粘度を成形可能範囲にするため、成形温度をポリ乳酸の耐熱温度以上に高く設定しなければならない場合が発生する。
具体的には、ポリ乳酸は、300℃を超える温度で成形を行うと樹脂の熱分解のためフィルム品が着色し、商品としての価値が低いものとなってしまう可能性が高い。
したがってポリ乳酸組成物の重量平均分子量は、好ましくは50万以下、より好ましくは40万以下、さらに好ましくは30万以下である。従ってポリ乳酸の重量平均分子量は、好ましくは8万から50万、より好ましくは10万から40万、さらに好ましくは13万から30万である。
重量平均分子量(Mw)と数平均分子量(Mn)との比を分子量分散(Mw/Mn)という。分子量分散が大きいことは、平均分子量に比較し、大きな分子や小さな分子の割合が多いことを意味する。
即ち、例えば重量平均分子量が25万程度で、分子量分散の3以上のポリ乳酸は、分子量が25万より大きい分子の割合が大きくなる場合があり、この場合、溶融粘度が大きくなり、上記の意味で成形上好ましくない。また8万程度の比較的小さい重量平均分子量で分子量分散の大きなポリ乳酸組成物では、分子量が8万より小さい分子の割合が大きくなる場合があり、この場合、成形品の機械的物性の耐久性が小さくなり、使用上好ましくない。かかる観点より分子量分散の範囲は、好ましくは1.5から2.4、より好ましくは1.6から2.4、さらに好ましくは1.6から2.3の範囲である。
本発明の多層フィルムで用いられるポリ乳酸は、前述したようにポリL−乳酸成分とポリD−乳酸成分とを重量比で10/90から90/10の範囲で接触させることにより、好ましくは溶融接触させることにより、より好ましくは溶融混練接触させることにより得ることができる。
このポリL−乳酸成分とポリD−乳酸成分との接触温度はポリ乳酸の溶融時の安定性及びステレオコンプレックス結晶化度の向上の観点より220から290℃、好ましくは220から280℃、さらに好ましくは225から275℃の範囲が選択される。
溶融混練方法は特に限定されるものではないが、従来公知のバッチ式或いは連続式の溶融混合装置が好適に使用される。たとえば、溶融撹拌槽、一軸、二軸の押出し機、ニーダー、無軸籠型撹拌槽、住友重機械工業(株)製「バイボラック」、三菱重工業(株)製N−SCR,(株)日立製作所製めがね翼、格子翼あるいはケニックス式撹拌機、あるいはズルツァー式SMLXタイプスタチックミキサー具備管型重合装置などを使用できるが、生産性、ポリ乳酸の品質とりわけ色調の点でセルフクリーニング式の重合装置である無軸籠型撹拌槽、N−SCR、2軸押し出しルーダーなどが好適に使用される。
本発明で用いるポリ乳酸には、本発明の主旨に反しない範囲において、ステレオコンプレックスポリ乳酸結晶の形成を安定的且つ高度に進めるために特定の添加物を配合する手法が好ましく適用される。
すなわち、例えば、ステレオコンプレックス結晶化促進剤として下記式(22)または(23)で表されるリン酸金属塩を添加する手法が挙げられる。
Figure 2011245788
式(22)中、R11は水素原子または炭素原子数1〜4のアルキル基を表し、R12、R13はそれぞれ独立に、水素原子、または炭素原子数1〜12のアルキル基を表し、Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子を表し、pは1または2を表し、qはMがアルカリ金属原子、アルカリ土類金属原子、亜鉛原子のときは0を、アルミニウム原子の時は1または2を表す。
Figure 2011245788
式(23)中R14、R15およびR16は各々独立に、水素原子または炭素原子数1〜12のアルキル基を表し、Mはアルカリ金属原子、アルカリ土類金属原子、亜鉛原子またはアルミニウム原子を表し、pは1または2を表し、qはMがアルカリ金属原子、アルカリ土類金属原子、亜鉛原子のときは0を、アルミニウム原子の時は1または2を表す。
式(22)または(23)で表されるリン酸金属塩のM、Mは、Na、K、Al、Mg、Ca、Liが好ましく、特に、K、Na、Al、LiなかでもLi、Alが最も好適に用いることができる。
これらのリン酸金属塩は、(株)ADEKA製の商品名、「アデカスタブ」NA−11、NA−71等が好適な剤として例示される。ポリ乳酸に対して、リン酸金属塩は0.001から2wt%、好ましくは0.005から1wt%、より好ましくは0.01から0.5wt%さらに好ましくは0.02から0.3wt%用いることが好ましい。少なすぎる場合には、ステレオコンプレックス結晶化度(S)を向上する効果が小さく、多すぎるとステレオコンプレックス結晶融点を低下させるので好ましくない。
さらに所望により、リン酸金属塩の作用を強化するため、以下記載する公知の結晶化核剤を併用することができる。なかでも珪酸カルシウム、タルク、カオリナイト、モンモリロナイトが好ましくは選択される。
結晶化核剤の使用量はポリ乳酸に対し0.05から5wt%、より好ましくは0.06から2wt%、さらに好ましくは0.06から1wt%の範囲が選択される。
また、ステレオコンプレックス結晶化助剤[(エポキシ基、オキサゾリン基、オキサジン基、イソシアネート基、ケテン基及びカルボジイミド基)(以下特定官能基と略称することがある)の群より選択される官能基を分子中に少なくとも1個有する化合物]を添加する手法が挙げられる。
本発明においてステレオコンプレックス結晶化助剤とは、特定官能基がポリ乳酸の分子末端と反応して、部分的にポリL−乳酸ユニットとポリD−乳酸ユニットとを連結し、ステレオコンプレックス結晶形成を促進させているものと本発明者らが推察する剤である。
ステレオコンプレックス結晶化助剤としては以下に記載する従来ポリエステルのカルボキシル末端基封鎖剤として公知の剤を好適に適用することができる。なかでも、ステレオコンプレックス結晶形成促進効果よりカルボジイミド化合物が好適に選択される。
しかしながらステレオコンプレックス結晶化助剤とりわけ、窒素を含有するステレオコンプレックス結晶化助剤は、ステレオコンプレックス結晶形成時、剤の熱分解のため悪臭による作業環境悪化、ポリ乳酸の色調悪化を引き起こす危険性が大きいため、使用しないことが好ましく、使用する場合には、ステレオコンプレックス結晶の高度形成に重点を置く場合に限定し、可能な限り少量に抑制して使用することが好ましい。
ステレオコンプレックス結晶化助剤の使用量は上記と同じ基準において1wt%以下、好ましくは、0から0.5wt%、より好ましくは0から0.3wt%、さらに好ましくは0から0.1wt%の範囲が選択される。
すなわち上記ステレオコンプレックス結晶化促進剤の手法は単独に適用することが好ましく、ステレオコンプレックス結晶形成により重点をおく場合にステレオコンプレックス結晶化助剤の手法と組み合わせて適用することが好ましく選択される。
本発明においては、ポリ乳酸のカルボキシル末端基濃度は0.01から10(当量/10g)、{以下(当量/10g)を(当量/ton)と略称することがある。}が好ましい。より好ましくは0.02から2(当量/ton)、さらに好ましくは0.02から1(当量/ton)の範囲が好適に選択される。
カルボキシル末端基濃度がこの範囲内にある時には、溶融安定性、湿熱安定性を良好なものとすることができる。ポリ乳酸のカルボキシル末端基濃度を10(当量/ton)以下にするには、ポリエステル組成物で従来公知のカルボキシル末端基濃度の低減方法を好適に適用することができ、例えばアルコール、アミンによってエステルまたはアミド化することもできるが、後述のC成分を用いることが好ましい。
<アクリル系樹脂(B成分)>
上述のアクリル系樹脂(B成分)は、シクロヘキシルメタクリレート、4−tert−ブチルシクロへキシルメタクリレート、メチルメタクリレート等のメタクリル酸エステル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸イソプロピル、アクリル酸−2−エチルヘキシル等のアクリル酸エステルより選ばれる1種以上の単量体を重合したものである。これらの単量体は、単独でまたは2種以上混合して用いることができる。なかでも、メタクリル酸メチルの単独重合体または他の単量体との共重合体が好ましい。
メタクリル酸メチルと共重合可能な単量体としては、他のメタリル酸アルキルエステル類、アクリル酸アルキルエステル類、スチレン、ビニルトルエン、α−メチルスチレン等の芳香族ビニル化合物類、アクリロニトリル、メタクリルニトリル等のシアン化ビニル類、N−フェニルマレイミド、N−シクロへキシルマレイミド等のマレイミド類、無水マレイン酸等の不飽和カルボン酸無水物類、アクリル酸、メタクリル酸、マレイン酸等の不飽和酸類が挙げられる。これらメタクリル酸メチルと共重合可能な単量体の中でも、特にアクリル酸アルキルエステル類は耐熱分解性に優れる。またアクリル酸アルキルエステル類を共重合させて得られるメタクリル系樹脂は成形加工時の流動性が高く好ましい。
メタクリル酸メチルにアクリル酸アルキルエステル類を共重合させる場合のアクリル酸アルキルエステル類の使用量は、耐熱分解性の観点から0.1重量%以上であることが好ましく、耐熱性の観点から15重量%以下であることが好ましい。0.2重量%以上14重量%以下であることがさらに好ましく、1重量%以上12重量%以下であることがとりわけ好ましい。
このアクリル酸アルキルエステル類の中でも、特にアクリル酸メチルおよびアクリル酸エチルは、それを少量メタクリル酸メチルと共重合させても上記改良効果は著しく最も好ましい。上記メタクリル酸メチルと共重合可能な単量体は一種または二種以上組み合わせて使用することもできる。
アクリル系樹脂(B成分)の重量平均分子量は、好ましくは5万〜20万である。重量平均分子量は成形品の強度の観点から5万以上が好ましく、成形加工性、流動性の観点から20万以下が好ましい。さらに好ましい範囲は7万〜15万である。また、本発明においてはアイソタクチックポリメタクリル酸エステルとシンジオタクチックポリメタクリル酸エステルを同時に用いることもできる。
アクリル系樹脂(B成分)を製造する方法として、例えばキャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、アニオン重合等の一般に行われている重合方法を用いることができるが、光学用途において用いられる多層フィルムとするにあたり、微小異物の混入は極力避けることが好ましく、この観点からは懸濁剤や乳化剤を用いない塊状重合や溶液重合が望ましい。溶液重合を行う場合には、単量体の混合物をトルエン、エチルベンゼン、キシレン等の芳香族炭化水素の溶媒に溶解して調整した溶液を用いることができる。塊状重合により重合させる場合には、通常行われるように加熱により生じる遊離ラジカルや電離性放射線照射により重合を開始させることができる。
重合反応に用いられる開始剤としては、一般にラジカル重合において用いられる任意の開始剤を使用することができ、例えばアゾビスイソブチルニトリル等のアゾ化合物、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、tert−ブチルパーオキシ−2−エチルヘキサノエート等の有機過酸化物が用いられる。また、特に90℃以上の高温下で重合を行わせる場合には、溶液重合が一般的であるので、10時間半減期温度が80℃以上でかつ用いる有機溶媒に可溶である過酸化物、アゾビス開始剤等が好ましい。具体的には1,1−ビス(tert−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、シクロヘキサンパーオキシド、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、1,1−アゾビス(1−シクロヘキサンカルボニトリル)、2−(カルバモイルアゾ)イソプチロニトリル等を挙げることができる。これらの開始剤は0.005〜5重量%の範囲で用いられる。
重合反応に必要に応じて用いられる分子量調節剤は、一般的なラジカル重合において用いる任意のものが使用される。例えば、ブチルメルカプタン、オクチルメルカプタン、ドデシルメルカプタン、チオグリコール酸2−エチルヘキシル等のメルカプタン化合物が特に好ましいものとして挙げられる。これらの分子量調節剤は、重合度が上記の範囲内に制御されるような濃度範囲で添加される。
<C成分>
本発明において、P層樹脂において主としてポリ乳酸の加水分解を抑制するために添加される、カルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(C成分)について説明する。C成分は環状構造を有する(以下、C成分を環状カルボジイミド化合物と略記することがある。)。環状カルボジイミド化合物は、環状構造を複数有していてもよい。
ここで環状構造は、カルボジイミド基(−N=C=N−)を1個有しその第一窒素と第二窒素とが結合基により結合されて形成している。一つの環状構造中には、1個のカルボジイミド基のみを有するが、例えば、スピロ環など、分子中に複数の環状構造を有する場合にはスピロ原子に結合するそれぞれの環状構造中に1個のカルボジイミド基を有していれば、化合物として複数のカルボジイミド基を有していてよいことはいうまでもない。環状構造中の原子数は、好ましくは8〜50、より好ましくは10〜30、さらに好ましくは10〜20、特に、10〜15が好ましい。
ここで、環状構造中の原子数とは、環状構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合があるためである。また反応性の観点よりは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生するためである。かかる観点より環状構造中の原子数は好ましくは、10〜30、より好ましくは10〜20、特に好ましくは10〜15の範囲が選択される。
環状構造は、下記式(1)で表される構造であることが好ましい。
Figure 2011245788
式中、Qは、それぞれヘテロ原子ならびに置換基を含んでいてもよい、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2〜4価の結合基である。ヘテロ原子とはこの場合、O、N、S、Pを指す。この結合基の価のうち2つの価は環状構造を形成するために使用される。Qが3価あるいは4価の結合基である場合、単結合、二重結合、原子、原子団を介して、ポリマーあるいは他の環状構造と結合している。
結合基は、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基またはこれらの組み合わせであり、上記で規定される環状構造を形成するための必要炭素数を有する結合基が選択される。組み合わせの例としては、アルキレン基とアリーレン基が結合した、アルキレン−アリーレン基のような構造などが挙げられる。
結合基(Q)は、下記式(1−1)、(1−2)または(1−3)で表される2〜4価の結合基であることが好ましい。
Figure 2011245788
式中、ArおよびArは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数5〜15の芳香族基である。
芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基(2価)として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
およびRは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、およびこれらの組み合わせ、またはこれら脂肪族基、脂環族基と2〜4価の炭素数5〜15の芳香族基の組み合わせである。
脂肪族基として、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基などが挙げられる。アルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられる。アルカントリイル基として、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられる。これらの脂肪族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
脂環族基として、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。アルカントリイル基として、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これらの脂環族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これら芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
上記式(1−1)、(1−2)においてXおよびXは各々独立に、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。
脂肪族基として、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基などが挙げられる。アルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられる。アルカントリイル基として、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられる。これらの脂肪族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
脂環族基として、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。アルカントリイル基として、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これらの脂環族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
上記式(1−1)、(1−2)においてs、kは0〜10の整数、好ましくは0〜3の整数、より好ましくは0〜1の整数である。s及びkが10を超えると、環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生するためである。かかる観点より整数は好ましくは0〜3の範囲が選択される。なお、sまたはkが2以上であるとき、繰り返し単位としてのX、あるいはXが、他のX、あるいはXと異なっていてもよい。
上記式(1−3)においてXは、それぞれヘテロ原子ならびに置換基を含んでいてもよい、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。
脂肪族基として、炭素数1〜20のアルキレン基、炭素数1〜20のアルカントリイル基、炭素数1〜20のアルカンテトライル基などが挙げられる。アルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられる。アルカントリイル基として、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基、ヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられる。これら脂肪族基は置換基を含んでいてもよく、置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
脂環族基として、炭素数3〜20のシクロアルキレン基、炭素数3〜20のシクロアルカントリイル基、炭素数3〜20のシクロアルカンテトライル基が挙げられる。シクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。アルカントリイル基として、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基、シクロヘキサデカントリイル基などが挙げられる。アルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これら脂環族基は置換基を含んでいてもよく、置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリーレン基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
芳香族基として、それぞれへテロ原子を含んで複素環構造を持っていてもよい、炭素数5〜15のアリーレン基、炭素数5〜15のアレーントリイル基、炭素数5〜15のアレーンテトライル基が挙げられる。アリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)として、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていても良い。置換基として、炭素数1〜20のアルキル基、炭素数6〜15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
また、Ar、Ar、R、R、X、XおよびXはヘテロ原子を含有していてもよい、また、Qが2価の結合基であるときは、Ar、Ar、R、R、X、XおよびXは全て2価の基である。Qが3価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが3価の基である。Qが4価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが4価の基であるか、二つが3価の基である。
本発明で用いる環状カルボジイミド化合物として、以下(a)〜(c)で表される化合物が挙げられる。
<環状カルボジイミド化合物(a)>
本発明で用いる環状カルボジイミド化合物として下記式(2)で表される化合物(以下、「環状カルボジイミド化合物(a)」ということがある。)を挙げることができる。
Figure 2011245788
式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2価の結合基であり、ヘテロ原子を含有していてもよい。脂肪族基、脂環族基、芳香族基は、式(1)で説明したものと同じである。但し、式(2)の化合物においては、脂肪族基、脂環族基、芳香族基は全て2価である。Qは、下記式(2−1)、(2−2)または(2−3)で表される2価の結合基であることが好ましい。
Figure 2011245788
式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)中のAr、Ar、R、R、X、X、X、sおよびkと同じである。但し、これらは全て2価である。
かかる環状カルボジイミド化合物(a)としては、以下の化合物が挙げられる。
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
<環状カルボジイミド化合物(b)>
さらに、本発明で用いる環状カルボジイミド化合物として下記式(3)で表される化合物(以下、「環状カルボジイミド化合物(b)」ということがある。)を挙げることができる。
Figure 2011245788
式中、Qは、脂肪族基、脂環族基、芳香族基、またはこれらの組み合わせである3価の結合基であり、ヘテロ原子を含有していてもよい。Yは、環状構造を担持する担体である。脂肪族基、脂環族基、芳香族基は、式(1)で説明したものと同じである。但し、式(3)の化合物においては、Qを構成する基の内一つは3価である。
は、下記式(3−1)、(3−2)または(3−3)で表される3価の結合基であることが好ましい。
Figure 2011245788
式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)のAr、Ar、R、R、X、X、X、sおよびkと同じである。但しこれらの内の一つは3価の基である。
Yは、単結合、二重結合、原子、原子団またはポリマーであることが好ましい。Yは結合部であり、複数の環状構造がYを介して結合し、式(3)で表される構造を形成している。
かかる環状カルボジイミド化合物(b)としては、下記化合物が挙げられる。
Figure 2011245788
Figure 2011245788
Figure 2011245788
Figure 2011245788
<環状カルボジイミド化合物(c)>
本発明で用いる環状カルボジイミド化合物として下記式(4)で表される化合物(以下、「環状カルボジイミド化合物(c)」ということがある。)を挙げることができる。
Figure 2011245788
式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである4価の結合基であり、ヘテロ原子を保有していてもよい。ZおよびZは、環状構造を担持する担体である。ZおよびZは、互いに結合して環状構造を形成していてもよい。
脂肪族基、脂環族基、芳香族基は、式(1)で説明したものと同じである。但し、式(4)の化合物において、Qは4価である。従って、これらの基の内の一つが4価の基であるか、二つが3価の基である。
は、下記式(4−1)、(4−2)または(4−3)で表される4価の結合基であることが好ましい。
Figure 2011245788
Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)の、Ar、Ar、R、R、X、X、X、sおよびkと同じである。但し、Ar 、Ar 、R 、R 、X 、X およびX は、これらの内の一つが4価の基であるか、二つが3価の基である。ZおよびZは各々独立に、単結合、二重結合、原子、原子団またはポリマーであることが好ましい。ZおよびZは結合部であり、複数の環状構造がZおよびZを介して結合し、式(4)で表される構造を形成している。
かかる環状カルボジイミド化合物(c)としては、下記化合物を挙げることができる。
Figure 2011245788
Figure 2011245788
Figure 2011245788
本発明における、多層フィルムP層中の環状カルボジイミド化合物(C成分)の割合は、ポリ乳酸(A成分)100重量部と基準にして環状カルボジイミド化合物(C成分)が0.001〜5重量部含有されることが好ましい。C成分の量がこの範囲にあれば、水分に対する安定性、耐加水分解安定性を好適に高めることができる。
かかる観点より環状カルボジイミド化合物(C成分)の含有割合はより好ましくは、ポリ乳酸(A成分)100重量部あたり0.01〜5重量部、さらに好ましくは0.1〜4重量部の範囲が選択される。この範囲より少量であると環状カルボジイミド化合物(C成分)の効果が有効に認められないことがあり、また、この範囲を超えて多量に適用しても、耐加水分解安定性の更なる向上は期待されない。
前述のように、P層樹脂にアクリル系樹脂(B成分)を含む場合には、樹脂中の環状カルボジイミド化合物(C成分)の割合は、上述の”ポリ乳酸(A成分)100重量部”を”ポリ乳酸(A成分)とアクリル系樹脂(B成分)との合計量100重量部”と読み代えればよい。
本発明において、環状カルボジイミド化合物の製造方法は特に限定無く、従来公知の方法により製造することができる。例として、アミン体からイソシアネート体を経由して製造する方法、アミン体からイソチオシアネート体を経由して製造する方法、アミン体からトリフェニルホスフィン体を経由して製造する方法、アミン体から尿素体を経由して製造する方法、アミン体からチオ尿素体を経由して製造する方法、カルボン酸体からイソシアネート体を経由して製造する方法、ラクタム体を誘導して製造する方法などが挙げられる。
また、本発明の環状カルボジイミド化合物は、以下の文献に記載された方法を組み合わせ、あるいは目的とする化合物に応じて適切に改変、組み合わせすることにより製造することができる。
Tetrahedron Letters,Vol.34,No.32,515−5158,1993.
Medium−and Large−Membered Rings from Bis(iminophosphoranes):An Efficient Preparation of Cyclic Carbodiimides, Pedro Molina etal.
Journal of Organic Chemistry,Vol.61,No.13,4289−4299,1996.
New Models for the Study of the Racemization Mechanism of Carbodiimides.Synthesis and Structure(X−ray Crystallography and 1H NMR) of Cyclic Carbodiimides, Pedro Molina etal.
Journal of Organic Chemistry,Vol.43,No8,1944−1946,1978.
Macrocyclic Ureas as Masked Isocyanates, Henri Ulrich etal.
Journal of Organic Chemistry,Vol.48,No.10,1694−1700,1983.
Synthesis and Reactions of Cyclic Carbodiimides,R.Richteretal.
Journal of Organic Chemistry,Vol.59,No.24,7306−7315,1994.
A New and Efficient Preparation of Cyclic Carbodiimides from Bis(iminophosphoranea)and the System BocO/DMAP,Pedro Molina etal.
製造する化合物に応じて、適切な製法を採用すればよいが、例えば、(1)下記式(a−1)で表されるニトロフェノール類、下記式(a−2)で表されるニトロフェノール類および下記式(b)で表される化合物を反応させ、下記式(c)で表されるニトロ体を得る工程、
Figure 2011245788
Figure 2011245788
(2)得られたニトロ体を還元して下記式(d)で表わされるアミン体を得る工程、
Figure 2011245788
(3)得られたアミン体とトリフェニルホスフィンジブロミドを反応させ下記式(e)で表されるトリフェニルホスフィン体を得る工程、および
Figure 2011245788
(4)得られたトリフェニルホスフィン体を反応系中でイソシアネート化した後、直接脱炭酸させることによって製造したものは、本願発明に用いる環状カルボジイミド化合物として好適に用いることができる。
(上記式中、ArおよびArは各々独立に、炭素数1〜6のアルキル基またはフェニル基で置換されていてもよい芳香族基である。EおよびEは各々独立に、ハロゲン原子、トルエンスルホニルオキシ基およびメタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p−ブロモベンゼンスルホニルオキシ基からなる群から選ばれる基である。Arは、フェニル基である。Xは、下記式(i−1)から(i−3)の結合基である。)
Figure 2011245788
Figure 2011245788
Figure 2011245788
なお、環状カルボジイミド化合物は、高分子化合物の酸性基を有効に封止することができるが、本発明の主旨に反しない範囲において、所望により、例えば、従来公知のポリマーのカルボキシル基封止剤を併用することができる。かかる従来公知のカルボキシル基封止剤としては、特開2005−2174号公報記載の剤、例えば、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、などが例示される。
<D成分>
N層の樹脂としては、光学的に負であれば良く、特に限定は無い。ポリメチルメタクリレート、ポリメチルメタクリレートとポリスチレンの共重合体、アタクチックポリスチレン、シンジオタクチックポリスチレン、オレフィンマレイミド樹脂、フルオレン骨格を有するポリカーボネート、それらのブレンド体等が好適に用いられる。ポリ乳酸を含有するP層との接着性や屈折率の差が小さいことによる界面反射の少なさの点で、より好ましくは、ポリメチルメタクリレートまたはポリメチルメタクリレート/ポリスチレン共重合体である。
<A,B,C、D成分以外>
本発明のP層、N層には、前記したA,B,C、D成分以外の熱可塑性樹脂、安定剤、紫外線吸収剤、結晶化促進剤、充填剤、離型剤、帯電防止剤、可塑剤および耐衝撃性安定剤からなる群より選ばれる少なくとも一種を含有することができる。本発明に用いられるポリ乳酸は、安定剤を含有することが好ましい。安定剤としては通常の熱可塑性樹脂の安定剤に使用されるものを用いることができる。例えば酸化防止剤、光安定剤等を挙げることができる。これらの剤を配合することで機械的特性、成形性、耐熱性および耐久性に優れた多層フィルムを得ることができる。
酸化防止剤としてはヒンダードフェノール系化合物、ヒンダードアミン系化合物、ホスファイト系化合物、チオエーテル系化合物等を挙げることができる。
ヒンダードフェノール系化合物としては、n−オクタデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−オクタデシル−3−(3’−メチル−5’−tert−ブチル−4’−ヒドロキシフェニル)−プロピオネート、n−テトラデシル−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)−プロピオネート、1,6−ヘキサンジオ−ル−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオネート]、1,4−ブタンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオネート]、2,2’−メチレン−ビス(4−メチル−tert−ブチルフェノール)、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、テトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等が挙げられる。ヒンダードアミン系化合物として、N,N’−ビス−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオニルヘキサメチレンジアミン、N,N’−テトラメチレン−ビス[3−(3’−メチル−5’−tert−ブチル−4’−ヒドロキシフェニル)プロピオニル]ジアミン、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)−プロピオニル]ヒドラジン、N−サリチロイル−N’−サリチリデンヒドラジン、3−(N−サリチロイル)アミノ−1,2,4―トリアゾール、N,N’−ビス[2−{3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]オキシアミド等を挙げることができる。好ましくは、トリエチレングリコール−ビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)−プロピオネート]、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン等が挙げられる。
ホスファイト系化合物としては、少なくとも1つのP−O結合が芳香族基に結合しているものが好ましく、具体的には、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、テトラキス(2,6−ジ−tert−ブチルフェニル)4,4’−ビフェニレンホスファイト、ビス(2,6―ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、4,4’−ブチリデン−ビス(3−メチル−6−tert−ブチルフェニル−ジ−トリデシル)ホスファイト、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−tert−ブチルフェニル)ブタン、トリス(ミックスドモノおよびジ−ノニルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、4,4’−イソプロピリデンビス(フェニル−ジアルキルホスファイト)等が挙げられる。
なかでもトリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−ホスファイト、テトラキス(2,6―ジ−tert−ブチルフェニル)4,4’−ビフェニレンホスファイト等が好ましく使用できる。
チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。
光安定剤としては、例えばオキシベンゾフェノン系化合物、環状イミノエステル系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ヒンダードアミン系化合物、ニッケル錯塩系化合物等を挙げることが出来る。光安定剤としては、紫外線吸収剤と光酸化で生成するラジカルを捕捉するものの組み合わせにて用いても良い。
紫外線吸収剤としては、環状イミノエステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物が可視光における吸収を最小化できる点で好ましい。また、偏光膜や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ液晶表示性能の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。紫外線吸収剤のブリードアウト抑制の観点からは、多層フィルムをP/N/P層またはN/P/N層の3層構成とし、中間の層(前者ではN層、後者ではP層)に紫外線吸収剤を含有させることが好ましい。
有用なベンゾトリアゾール系紫外線吸収剤の具体例として、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3’’,4’’,5’’,6’’−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物等を挙げることが出来るが、これらに限定されない。また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)326、チヌビン(TINUVIN)328(何れもチバ・スペシャリティ・ケミカルズ社製)を好ましく使用出来る。
環状イミノエステル系化合物の具体例としては、2,2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−メチル−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−ニトロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2−クロロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。なかでも2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)が好適であり、特に2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)が好適である。環状イミノエステルは単独であるいは2種以上を併用して用いることができる。
当該環状イミノエステルは、国際公開WO03/035735号パンフレットに開示された各種の方法によって製造することができる。すなわち原料として無水イサト酸を利用する方法(殊に再結晶化された無水イサト酸を利用する方法)、並びにアントラニル酸を利用する方法のいずれも利用可能である。これらの酸化合物とカルボン酸クロライド化合物とを反応させて、環状イミノエステル化合物を得ることができる。これらは特公昭62−31027号公報に開示された如く、生成後に再結晶化処理を行ってもよい。かかる化合物は竹本油脂(株)からCEi−P(商品名)、およびCYTEC社からCYASORB UV−3638(商品名)として市販されており、容易に利用できる。
ベンゾフェノン系化合物としては、ベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシベンゾフェノン、2,2’4,4’−テトラヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、5−クロロ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メチル−アクリロキシイソプロポキシ)ベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸水和物、2−ヒドロキシ−4−オクチロキシベンゾフェノン、4−ベンジロキシ−2−ハイドロキシベンゾフェノン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノキシ)−ブタン等が挙げられる。
本発明におけるポリ乳酸には、有機若しくは無機の結晶化促進剤を含有することができる。結晶化促進剤を含有することで、ステレオコンプレックス結晶促進剤の作用を一層増強することができ、機械的特性、耐熱性、および成形性に優れた成形品を得ることができる。
本発明で使用する結晶化促進剤は一般に結晶性樹脂の結晶核剤として用いられるものを用いることができ、無機系の結晶核剤および有機系の結晶核剤のいずれをも使用することができる。
無機系の結晶核剤として、タルク、カオリン、シリカ、合成マイカ、クレイ、ゼオライト、グラファイト、カーボンブラック、酸化亜鉛、酸化マグネシウム、酸化チタン、炭酸カルシウム、硫酸カルシウム、硫酸バリウム、硫化カルシウム、窒化ホウ素、モンモリロナイト、酸化ネオジム、酸化アルミニウム、フェニルフォスフォネート金属塩等が挙げられる。
これらの無機系の結晶核剤は組成物中での分散性およびその効果を高めるために、各種分散助剤で処理され、一次粒子径が0.01から0.5μm程度の高度に分散状態にあるものが好ましい。
有機系の結晶核剤としては、安息香酸カルシウム、安息香酸ナトリウム、安息香酸リチウム、安息香酸カリウム、安息香酸マグネシウム、安息香酸バリウム、蓚酸カルシウム、テレフタル酸ジナトリウム、テレフタル酸ジリチウム、テレフタル酸ジカリウム、ラウリン酸ナトリウム、ラウリン酸カリウム、ミリスチン酸ナトリウム、ミリスチン酸カリウム、ミリスチン酸カルシウム、ミリスチン酸バリウム、オクタコ酸ナトリウム、オクタコ酸カルシウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、モンタン酸ナトリウム、モンタン酸カルシウム、トルイル酸ナトリウム、サリチル酸ナトリウム、サリチル酸カリウム、サリチル酸亜鉛、アルミニウムジベンゾエート、β−ナフトエ酸ナトリウム、β−ナフトエ酸カリウム、シクロヘキサンカルボン酸ナトリウム等の有機カルボン酸金属塩、p−トルエンスルホン酸ナトリウム、スルホイソフタル酸ナトリウム等の有機スルホン酸金属塩が挙げられる。
また、ステアリン酸アミド、エチレンビスラウリン酸アミド、パルミチン酸アミド、ヒドロキシステアリン酸アミド、エルカ酸アミド、トリメシン酸トリス(tert−ブチルアミド)等の有機カルボン酸アミド、低密度ポリエチレン、高密度ポリエチレン、ポリイソプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリ−3−メチルブテン−1、ポリビニルシクロアルカン、ポリビニルトリアルキルシラン、高融点ポリ乳酸、エチレン−アクリル酸コポマーのナトリウム塩、スチレン−無水マレイン酸コポリマーのナトリウム塩(いわゆるアイオノマー)、ベンジリデンソルビトールおよびその誘導体、例えばジベンジリデンソルビトール等が挙げられる。
これらのなかでタルク、および有機カルボン酸金属塩から選択された少なくとも1種が好ましく使用される。本発明のポリ乳酸で使用する結晶核剤は1種のみでもよく、2種以上を併用しても良い。
結晶化促進剤の含有量は、ポリ乳酸100重量部当たり、好ましくは0.01から30重量部、より好ましくは0.05から20重量部である。
本発明で使用される帯電防止剤として、(β−ラウラミドプロピオニル)トリメチルアンモニウムスルフェート、ドデシルベンゼンスルホン酸ナトリウム等の第4級アンモニウム塩系、スルホン酸塩系化合物、アルキルホスフェート系化合物等が挙げられる。
本発明の多層フィルムにおいて帯電防止剤は1種類で用いても良いし2種以上を組み合わせて用いても良い。帯電防止剤の含有量は、ポリ乳酸100重量部に対し、好ましくは0.05から5重量部、より好ましくは0.1から5重量部である。
本発明で使用する可塑剤としては一般に公知のものを使用することができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、リン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤、およびエポキシ系可塑剤、等が挙げられる。
ポリエステル系可塑剤として、アジピン酸、セバシン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等の酸成分とエチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール等のジオール成分からなるポリエステルやポリカプロラクトン等のヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸または単官能アルコールで末端封止されていても良い。
グリセリン系可塑剤として、グリセリンモノステアレート、グリセリンジステアレート、グリセリンモノアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート、グリセリンモノアセトモノモンタネート等が挙げられる。
多価カルボン酸系可塑剤として、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジル等のフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシル等のトリメリット酸エステル、アジピン酸イソデシル、アジピン酸−n−デシル−n−オクチル等のアジピン酸エステル、アセチルクエン酸トリブチル等のクエン酸エステル、アゼライン酸ビス(2−エチルヘキシル)等のアゼライン酸エステル、セバシン酸ジブチル、セバシン酸ビス(2−エチルヘキシル)等のセバシン酸エステルが挙げられる。
リン酸エステル系可塑剤として、リン酸トリブチル、リン酸トリス(2−エチルヘキシル)、リン酸トリオクチル、リン酸トリフェニル、リン酸トリクレジル、リン酸ジフェニル−2−エチルヘキシル等が挙げられる。
ポリアルキレングリコール系可塑剤として、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリ(エチレンオキシド.プロピレンオキシド)ブロックおよびまたはランダム共重合体、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体等のポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物および末端エーテル変性化合物等の末端封鎖剤化合物等が挙げられる。
エポキシ系可塑剤として、エポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリド、およびビスフェノールAとエピクロルヒドリンを原料とするエポキシ樹脂が挙げられる。
その他の可塑剤の具体的な例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコール−ビス(2−エチルブチレート)等の脂肪族ポリオールの安息香酸エステル、ステアリン酸アミド等の脂肪酸アミド、オレイン酸ブチル等の脂肪酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチル等のオキシ酸エステル、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイル、およびパラフィン類等が挙げられる。
可塑剤として、特にポリエステル系可塑剤およびポリアルキレン系可塑剤から選択された少なくとも1種よりなるものが好ましく使用でき、1種のみでも良くまた2種以上を併用することもできる。
可塑剤の含有量は、多層フィルム各層100重量部当たり、好ましくは0.01から30重量部、より好ましくは0.05から20重量部、さらに好ましくは0.1から10重量部である。本発明においては結晶核剤と可塑剤を各々単独で使用してもよいし、両者を併用して使用することがさらに好ましい。
<偏光板およびその製造方法>
偏光板は、一般に一対の保護フィルムの間に偏光膜が挟持された構成を有する。保護フィルムとして、偏光膜の偏光特性に影響を与えないように出来るだけ光学等方にしたものや、逆に液晶表示装置の画質向上を狙って制御された位相差特性を有するいわゆる位相差フィルムを保護フィルムとして利用する場合がある。本発明では、保護フィルムと言った場合には、断りが無い限り光学等方性、光学異方性フィルムのいずれも含むものとする。
本発明の偏光板は、本発明の多層フィルムを用いてあればよいが、好ましくは、上記の保護フィルムとして本発明の多層フィルムが少なくとも1枚使用される。
偏光膜は、公知の方法により作製することができる。偏光膜は主としてポリビニルアルコール系樹脂から形成される。偏光膜は、ポリビニルアルコール樹脂フィルムを二色性物質(代表的には、ヨウ素、二色性染料)で染色して一軸延伸したものが用いられる。ポリビニルアルコール系樹脂フィルムを構成するポリビニルアルコール系樹脂の重合度は、好ましくは100〜5000、さらに好ましくは1400〜4000である。重合度が低すぎると、所定の延伸を行う際に延伸切れしやすく、また重合度が高すぎると、延伸する際に張力が異常に必要となり、機械的に延伸できなくなるおそれがある。
偏光膜を構成するポリビニルアルコール系樹脂フィルムは、任意の適切な方法(例えば樹脂を水または有機溶剤に溶解した溶液を流延製膜する流延法、キャスト法、押出法)で成形され得る。偏光膜の厚みは偏光板が用いられる液晶表示装置の目的や用途に応じて適宜設定されるが、通常、5〜80μm程度である。
偏光膜の製造方法としては、目的、使用材料および条件などに応じて任意の適切な方法が採用される。例えば、上記ポリビニルアルコール系樹脂フィルムを、通常、膨潤、染色、架橋、延伸、水洗および乾燥工程を含む一連の製造工程に供する方式が採用される。乾燥工程を除く各処理工程においては、それぞれの工程に用いられる溶液を含む液中にポリビニルアルコール系樹脂フィルムを浸漬することにより処理を行う。膨潤、染色、架橋、延伸、水洗および乾燥の各処理の順番、回数および実施の有無は、目的、使用材料および条件などに応じて適亘設定されえる。例えば、いくつかの処理を1つの工程で同時に行ってもよく、膨潤処理、染色処理および架橋処理を同時に行ってもよい。また例えば、架橋処理を延伸処理の前後に行うことが、好適に採用され得る。また例えば、水洗処理は、全ての処理の後に行ってもよく、特定の処理の後のみに行ってもよい。
膨潤工程は、代表的には、上記ポリビニルアルコール系樹脂フィルムを水で満たした処理浴中に浸漬することより行われる。この処理により、ポリビニルアルコール系樹脂フィルム表面の汚れやブロッキング防止剤を洗浄すると共に、ポリビニルアルコール系樹脂フィルムを膨潤させることで染色ムラ等の不均一性を防止できる。膨潤浴には、グリセリンやヨウ化カリウム等が適宜に添加される。膨潤浴の温度は、通常20〜60℃程度であり、膨潤浴への浸漬時間は、通常0.1〜10分間程度である。
染色工程は、代表的には、上記ポリビニルアルコール系樹脂フィルムを、ヨウ素等の二色性物質を含む処理浴中に浸漬することにより行われる。染色浴の溶液に用いられる溶媒は、水が一般的に使用されるが、水と相溶性を有する有機溶媒が適量添加されていてもよい。二色性物質は、溶媒100重量部に対して、通常、0.1〜1重量部の割合で用いられる。二色性物質としてヨウ素を用いる場合は、染色浴の溶液はヨウ化物等の助剤をさらに含有することが好ましい。染色効率が改善されるからである。助剤は、溶媒100重量部に対して、好ましくは0.02〜20重量部、さらに好ましくは2〜10重量部の割合で用いられる。ヨウ化物の具体例としては、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンなどがあげられる。染色浴の温度は、通常、20〜70℃程度であり、染色浴への浸漬時間は、通常、1〜20分間程度である。
架橋工程は、代表的には、上記染色されたポリビニルアルコール系樹脂フィルムを、架橋剤を含む処理欲中に浸漬することによって行われる。架橋割としては任意の適切な架橋剤が採用される。架橋剤の具体例としては、ホウ酸、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等があげられる。これらは、単独で、または組み合わせて使用される。架橋浴の溶液に用いられる溶媒は、水が一般的に使用されるが、水と相溶性を有する有機溶媒が適量添加されていてもよい。架橋剤は、溶媒100重量部に対して、通常、1〜10重量部の割合で用いられる。架橋剤の濃度が1重量部未満の場合は、十分な光学特性を得ることができない。架橋剤の濃度が10重量部を超える場合は、延伸時にフィルムに発生する応力が大きくなり、得られる偏光板が収縮してしまう可能性がある。架橋浴の溶液は、ヨウ化物等の助剤をさらに含有することが望ましい。面内に均一な特性が得られやすいからである。助剤の濃度は好ましくは0.05〜15重量%、さらに好ましくは0.5〜8重量%である。ヨウ化物の具体例は、染色工程の場合と同様である。架橋浴の温度は、通常、20〜70℃程度、好ましく40〜60℃である。架橋浴への浸漬時間は、通常、1秒間〜15分間程度、好ましくは5秒間〜10分間である。
偏光膜の延伸工程は、上記のようにいずれの段階で行ってもよい。具体的には、染色処理の後に行ってもよく、染色処理の前に行ってもよく、膨潤処理、染色処理および架橋処理と同時に行ってもよく、架橋処理の後に行ってもよい。ポリビニルアルコール系樹脂フィルムの累積延伸倍率は、通常、5倍以上にする。好ましくは5〜7倍、さらに好ましくは5〜6.5倍である。累積延伸倍率が5倍未満の場合には、高偏光度の偏光板を得ることが困難となる。累積延伸倍率が7倍を超える場合はポリビニルアルコール系樹脂フィルムが破断しやすくなる場合がある。延伸の具体的な方法としては、任意の適切な方法が採用される。例えば、湿式延伸法を採用した場合には、ポリビニルアルコール系樹脂フィルムを処理浴中で所定の倍率に延伸する。延伸浴の溶液としては、水または有機溶媒(例えばエタノール)などの溶媒中に、各種金属塩、ヨウ素、ホウ素または亜鉛の化合物を添加した溶液が好適に用いられる。
水洗工程は、代表的には、上記各種処理を施されたポリビニルアルコール系樹脂フィルムを処理浴中に浸漬することによって行われる。水洗工程によりポリビニルアルコール系樹脂フィルムの不要残存物を洗い流すことができる。水洗浴は、純水であってもよく、ヨウ化物(例えば、ヨウ化カリウム、ヨウ化ナトリウム等)の水溶液であってもよい。ヨウ化物水溶液の濃度は、好ましくは0.1〜10重量%である。ヨウ化物水溶液には硫酸亜鉛、塩化亜鉛などの助剤を添加してもよい。水洗浴の温度は好ましくは10〜60℃、さらに好ましくは30〜40℃である。浸漬時間は1秒間〜1分間である。水洗工程は1回だけでもよく、必要に応じて複数回行ってもよい。複数回実施される場合は、各処理に用いられる水洗浴に含まれる添加剤の種類や濃度は適宜に調整される。例えば、水洗工程は上記各種処理を施されたポリビニルアルコール系樹脂フィルムをヨウ化カリウム水溶液(0.1〜10重量%、10〜60℃)に1秒間〜1分間程度浸漬する工程と、純水ですすぐ工程とを含む。また、水洗工程において、偏光膜の表面改質や、偏光膜の乾燥効率を上げるために、水と相溶性を有する有機溶媒(例えば、エタノ−ルなど)を適宜添加してもよい。
乾燥工程は、任意の適切な方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用されうる。例えば、加熱乾燥の場合の乾燥温度は、通常、20〜80℃程度であり、乾燥時間は、通常、1〜10分間程度である。以上のようにして偏光膜が得られる。
本発明において用いる偏光膜は、水分率が好ましくは15重量%以下、より好ましくは0〜14重量%、さらに好ましくは1〜14重量%である。水分率が15重量%より大きいいと、得られた偏光板の寸法変化が大きくなり、高温下あるいは高温高湿下における寸法変化が大きくなってしまうという問題が生じるおそれがある。
本発明の、偏光膜の水分率は、任意の適切な方法で調整すればよい。例えば偏光膜の製工程における乾燥工程の条件を調整することにより制御する方法があげられる。
偏光膜と保護フィルムの接着に関しては、公知の方法が用いられる。接着剤としては、放射線硬化型接着剤、水溶性接着剤、水系エマルジョン接着剤等用いてもよいが、好ましくは、放射線硬化型接着剤用組成物を用いることである。
接着剤の塗工方式は、接着剤の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーターなどがあげられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。
上記のように塗工した接着剤を介して、偏光膜と本発明の多層フィルムとを貼り合わせる。偏光膜と本発明の多層フィルムの貼り合わせは、ロールラミネーター等により行う事ができる。
偏光膜と本発明の多層フィルムを貼り合わせた後に、放射線を照射して、接着剤を硬化させても良い。放射線としては紫外線および/または電子線が好ましく用いられるが、好ましくは紫外線である。
放射線硬化型接着剤組成物の粘度としては、0.1〜5000mPa・sであることが好ましく、より好ましくは0.5〜1000mPa・s、さらに好ましくは1〜500mPa・sである。
硬化後の接着剤の厚みとしては、0.1〜10μmが好ましく、より好ましくは0.3〜7μm、さらに好ましくは0.5〜5μmである。接着剤の厚みが0.1μmより薄い場合では十分な接着強度が得られない場合があり、また、10μmより大きい場合には均質に塗布することが困難で、偏光板の外観不良が発生する場合がある。
紫外線を用いる場合の光源としては、公知の低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、メタルハライドランプ、エキシマランプ、発光ダイオード等が好適に用いられる。ポリ乳酸は波長250nm以下において光吸収を生じるが、この波長領域において強度の強い光を照射した場合、分解が生じる場合がある。したがって、好ましくは270nm以下の紫外光はカットして放射線硬化型接着剤用組成物を硬化させることが好ましい。より好ましくは280nm以下、さらに好ましくは280nm以下、最も好ましくは300nm以下をカットすることである。紫外線のカットは公知の方法で達成可能であり、例えば紫外線光源の適切な選択や紫外線カットフィルターを用いることができる。
紫外光の強度としては、10〜1000mW/cmが好ましく、より好ましくは20〜700mW/cm、さらに好ましくは30〜500mW/cmである。10mW/cm未満では硬化させるのに時間がかかり過ぎ、生産性が良くなく、また1000mW/cmより大きい場合には、熱により偏光膜の偏光性能が劣化する場合がある。また、積算光量としては、100〜10000mJ/cmが好ましく、より好ましくは200〜5000mJ/cm、さらに好ましくは300〜3000mJ/cmである。100mJ/cm未満では硬化不十分となる場合があり、また10000mJ/cmより大きい場合には、熱により偏光膜の偏光性能が劣化する場合がある。紫外光の照射方向は偏光板の片側からでも、両側からでも良い。
放射線硬化型接着剤用組成物を紫外線等の光により硬化させる場合において、本発明の多層フィルムに紫外線吸収剤を含有し、かつ、当該多層フィルム側から紫外線を照射する場合においては、放射線硬化型接着剤用組成物の光開始剤の光開始反応波長は、多層フィルムの紫外線吸収波長領域よりも長波長側にあるものを適宜選択することが好ましい。すなわち、放射線硬化型接着剤用組成物において380nm以上の光により開始反応を行う光開始剤を含有することが好ましい。これは前記したように多層フィルムに紫外線吸収剤を加える必要がある場合の好ましい光線透過率が、波長380nmにおいて20%以下であり、波長375nmでの光線透過率が1%以下であるからである。例えば、前述の光開始剤のうち、波長405nmにおける吸光係数(ml/g・cm)が1以上、好ましくは10以上、さらに好ましくは100以上あるものを好ましく用いることができる。この吸光係数は例えばメタノール溶媒等に光開始剤を溶解させ、分光器により測定することができる。このような光開始剤として好ましくは、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイドと1−ヒドロキシシクロヘキシルフェニルケトンの混合物、2,4,6−トリメチルベンゾイル−ジフェニル−ホスフィンオキシドと2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンの混合物等である。
放射線として電子線を用いる場合の電子線の照射方向は、任意の適切な方向から照射することができる。好ましくは、多層フィルム側から照射する。偏光膜側から照射すると、偏光膜が電子線によって劣化するおそれがある。
電子線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV〜300kVであり、さらに好ましくは10kV〜250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、多層フィルムや偏光膜にダメージを与えるおそれがある。照射線量としては、5〜100kGy、さらに好ましくは10〜75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、多層フィルムや偏光膜にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。
前記製造方法を連続ラインで行う場合、ライン速度は、接着剤の硬化時間にもよるが、好ましくは1〜500m/min、より好ましくは5〜300m/min、さらに好ましくは10〜100m/minである。ライン速度が小さすぎる場合は、生産性が乏しい。ライン速度が大きすぎる場合は、接着剤の硬化が不十分となり、目的とする接着性が得られない場合がある。
接着工程後に熱処理工程を設けても良いが、熱処理温度としては40〜100℃が好ましく、より好ましくは50〜85℃である。40℃未満では熱処理工程としては効果が少なく、100℃を超えると偏光膜が劣化する可能性がある。熱処理時間としては5秒間から10分間程度が好ましい。5秒間未満では熱処理の効果が期待できず、10分間を超えると生産性に問題が生じる場合がある。
偏光膜と多層フィルムの接着剥離強度はJIS K6854に記される剥離試験で2N/25mm以上であることが好ましく、より好ましくは3N/25mm以上、さらに好ましくは4N/25mm以上、最も好ましくは5N/25mm以上である。剥離強度が2N/25mm未満では、偏光板の実使用上問題が生じる場合がある。本発明では特に断りの無い限り剥離強度評価における剥離速度は200mm/分、フィルムの幅を25mmとして評価した。
次いで、本発明の多層フィルム、偏光板を図面を以って具体的に説明する。図1、2は本発明の多層フィルムの一態様を示す模式図である。
図1で1はN層、2はP層、3はN層、4は本発明の多層フィルムである。図2で5はP層、6はN層、7は本発明の多層フィルムである。
図3、4は本発明の偏光板である。図3の8、10は本発明の多層フィルム、9は偏光膜、11は本発明の偏光板である。図4の12は本発明の多層フィルム、14は本発明の多層フィルム以外の保護フィルム、13は偏光膜、15は本発明の偏光板である。
図3,4の本発明の偏光板において、偏光膜と保護フィルム、偏光膜と本発明の多層フィルムとの間には接着剤があってもよい。また、当該偏光板の最表面には、反射防止膜、ハードコート膜、防汚染膜等があってもよい。さらに、液晶表示装置との貼合のために、当該偏光板の片面に粘着剤が設けられていてもよい。
以下、本発明を実施例により更に具体的に説明するが、本発明は、これにより何ら限定を受けるものではない。
<評価方法>
(1)ヘーズ評価:
日本電色工業(株)の商品名『COH−300A』を用いてヘーズ値(%)を評価した。
(2)ポリマーの重量平均分子量(Mw)および数平均分子量(Mn):
ポリマーの重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定、標準ポリスチレンに換算した。GPC測定機器は、検出器;示差屈折計((株)島津製作所製)RID−6Aカラム;東ソ−(株)TSKgelG3000HXL、TSKgelG4000HXL,TSKgelG5000HXLとTSKguardcokumnHXL−Lを直列に接続したもの、あるいは東ソ−(株)TSKgelG2000HXL、TSKgelG3000HXLとTSKguardcokumnHXL−Lを直列に接続したものを使用した。
クロロホルムを溶離液とし温度40℃、流速1.0ml/minにて、濃度1mg/ml(1%ヘキサフルオロイソプロパノールを含むクロロホルム)の試料を10μl注入し測定した。
(3)ステレオコンプレックス結晶化度〔S(%)〕,結晶融解温度などのDSC測定:
DSC(TAインストルメント社製,商品名『Q10』)を用いて試料を、第一サイクルにおいて、窒素気流下、20℃/分で260℃まで昇温し、ガラス転移点温度(Tg)、ステレオコンプレックス相ポリ乳酸結晶融点(Tmsc)、ステレオコンプレックス相ポリ乳酸結晶化温度(Tcsc)、ステレオコンプレックス相ポリ乳酸結晶融解エンタルピー(ΔHmsc)、ホモ相ポリ乳酸結晶融解エンタルピー(ΔHm)および結晶化熱量(ΔHc)を測定した。
ステレオコンプレックス結晶化度は上記測定で得られたステレオコンプレックス相およびホモ相ポリ乳酸結晶融解エンタルピーより、下記式(II)により求めた値である。
S=[ΔHmsc / (ΔHm +ΔHmsc)] × 100 (II)
(但し、ΔHmscはステレオコンプレックス相結晶の融解エンタルピー、ΔHmはホモ相ポリ乳酸結晶の融解エンタルピー)
(4)厚み測定:
アンリツ社製の電子マイクロで測定した。
(5)環状カルボジイミド構造の核磁気共鳴法(NMR)による同定およびポリエステル組成物中の環状カルボジイミドの定量:
合成した環状カルボジイミド化合物はH−NMR、13C−NMRによって確認した。NMRは日本電子(株)製の商品名『JNR−EX270』を使用した。溶媒は重クロロホルムを用いた。
(6)環状カルボジイミドのカルボジイミド骨格の赤外分光法(IR)による同定:
合成した環状カルボジイミド化合物のカルボジイミド骨格の有無は、FT−IRによりカルボジイミドに特徴的な2100〜2200cm−1の確認を行った。FT−IRはサーモニコレー(株)製の商品名『Magna−750』を使用した。
(7)位相差測定:
複屈折Δnと膜厚dの積である位相差R0及びRth値は、分光エリプソメータである日本分光(株)製の商品名『M150』により測定した。R0値は入射光線とフィルム表面が直交する状態で測定した。また、Rth値(nm)は入射光線とフィルム表面の角度を変えることにより、各角度での位相差値を測定し、公知の屈折率楕円体の式でカーブフィッチングすることにより三次元屈折率であるnx,ny,nzを求めた。測定波長は550nmとした。
(8)偏光板の偏光度および全光線透過率測定:
偏光板を2枚(3cm×4cm)切り出し、2枚の偏光板の平行透過率Y//、直交透過率Yを分光器である(株)日立製作所製の商品名『U−4000』にて測定し、下記式(50)を用いて偏光度(P(%))を求めた。なお、ここで言う透過率は平行光線透過率であり、2°視野C光源におけるCIE XYZ表色系のY値を用いた。
Figure 2011245788
また、偏光板の単体の全光線透過率は同装置を用いて測定した。
(9)フィルム機械強度:
測定装置としてインストロン引張試験機を用い、サンプルフィルムを幅10mm、長さ100mmに切り出し、チャック間50mmにサンプルを装着し、JIS−C2151に従って引張速度50mm/min、室温の条件で引張試験を行って求めた。なお、サンプルの切り出し方向は、フィルム流れ方向であるMD方向、およびそれと直交する幅方向をTD方向として、それぞれMD、TDに平行な方向を長さ方向としてサンプリングし、MD、TD方向の引張り測定値を評価した。当該評価では、破断伸度、破断強度を耐久試験前後で測定し、その物性変化を確認した。
<ポリ乳酸(A成分)の製造>
(1)ポリL−乳酸(PLLA1)の製造:
L−ラクチド((株)武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、撹拌翼のついた反応機にて180℃で2時間反応させ、オクチル酸スズに対し1.2倍当量のリン酸を添加しその後、13.3Paで残存するラクチドを減圧除去し、チップ化し、ポリL−乳酸(PLLA1)を得た。得られたポリL−乳酸(PLLA1)の重量平均分子量は15.2万、ガラス転移点温度(Tg)は55℃、融点は175℃であった。
(2)ポリD−乳酸(PDLA1)の製造:
PLLA1の製造において、L−ラクチドをD−ラクチド((株)武蔵野化学研究所製、光学純度100%)に変更したこと以外は同じ条件で重合を行い、ポリD−乳酸(PDLA1)を得た。得られたポリD−乳酸(PDLA1)の重量平均分子量(Mw)は15.1万、ガラス転移点温度(Tg)は55℃、融点は175℃であった。
(3)ステレオコンプレックスポリ乳酸(SCPLA1)の製造:
上記操作で得られたPLLA1とPDLA1とを各50重量部およびリン酸金属塩((株)ADEKA製「アデカスタブ」NA−71:0.1重量部)を、2軸混練装置の第一供給口より供給、シリンダー温度250℃で溶融混練し、ステレオコンプレックスポリ乳酸(SCPLA1)を得た。ガラス転移点温度(Tg)は55℃、融点は216℃であり、ステレオコンプレックス結晶化度S=100%であった。
<カルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(成分C)の製造>
o−ニトロフェノール(0.11mol)とペンタエリトリチルテトラブロミド(0.025mol)、炭酸カリウム(0.33mol)、N,N−ジメチルホルムアミド(DMF)200mlを撹拌装置及び加熱装置を設置した反応装置にN雰囲気下仕込み、130℃で12時間反応後、DMFを減圧により除去し、得られた固形物をジクロロメタン200mlに溶かし、水100mlで3回分液を行った。有機層を硫酸ナトリウム5gで脱水し、ジクロロメタンを減圧により除去し、中間生成物D(ニトロ体)を得た。
次に中間生成物D(0.1mol)と5%パラジウムカーボン(Pd/C)(2g)、エタノール/ジクロロメタン(70/30)400mlを、撹拌装置を設置した反応装置に仕込み、水素置換を5回行い、25℃で水素を常に供給した状態で反応させ、水素の減少がなくなったら反応を終了した。Pd/Cを回収し、混合溶媒を除去すると中間生成物E(アミン体)が得られた。
次に撹拌装置及び加熱装置、滴下ロートを設置した反応装置に、N雰囲気下、トリフェニルホスフィンジブロミド(0.11mol)と1,2−ジクロロエタン150mlを仕込み撹拌させた。そこに中間生成物E(0.025mol)とトリエチルアミン(0.25mol)を1,2−ジクロロエタン50mlに溶かした溶液を25℃で徐々に滴下した。滴下終了後、70℃で5時間反応させる。その後、反応溶液をろ過し、ろ液を水100mlで5回分液を行った。有機層を硫酸ナトリウム5gで脱水し、1,2−ジクロロエタンを減圧により除去し、中間生成物F(トリフェニルホスフィン体)が得られた。
次に、撹拌装置及び滴下ロートを設置した反応装置に、N雰囲気下、ジ−tert−ブチルジカーボネート(0.11mol)とN,N−ジメチル−4−アミノピリジン(0.055mol)、ジクロロメタン150mlを仕込み撹拌させる。そこに、25℃で中間生成物F(0.025mol)を溶かしたジクロロメタン100mlをゆっくりと滴下させた。滴下後、12時間反応させる。その後、ジクロロメタンを除去し得られた固形物を、精製することで、下記に示す構造を有するC成分(以降、TX1と略記することがある。)、(分子量:516)を得た。TX1の構造はNMR、IRにより確認した。
Figure 2011245788
<多層フィルム用材料の製造>
(1)C1:ステレオコンプレックスポリ乳酸(TX1含有);
SCPLA1、100重量部、TX1、1.0重量部、シプロ化成(株)製の商品名「シーソーブ107」である紫外線吸収剤2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2.5重量部をブレンダーで混合、110℃、5時間真空乾燥した後、混練機の第一供給口より供給し、シリンダー温度230℃、ベント圧13.3Paで真空排気しながら溶融混練し、水槽中にストランド押し出し、チップカッターにてチップ化して組成物(C1)を得た。ガラス転移点温度(Tg)は56℃、結晶化温度は115℃、融点は215℃であった。
(2)C2:ステレオコンプレックスポリ乳酸とPMMA(ポリメチルメタクリレート)とを含む組成物(TX1含有);
上記操作で得られたSCPLA1、70重量部、三菱レイヨン(株)製のポリメチルメタクリレート、商品名「アクリペットVH001」30重量部、TX1、1.0重量部をブレンダーで混合、110℃、5時間真空乾燥した後、混練機の第一供給口より供給し、シリンダー温度230℃、ベント圧13.3Paで真空排気しながら溶融混練し、水槽中にストランド押し出し、チップカッターにてチップ化してブレンド組成物(C2)を得た。ガラス転移点温度(Tg)は65℃、結晶化温度は127℃、融点は216℃であった。
(3)C3:ステレオコンプレックスポリ乳酸、PMMA、紫外線吸収剤とを含む組成物(TX1含有);
上記操作で得られたSCPLA1、70重量部、三菱レイヨン(株)製のポリメチルメタクリレート、商品名「アクリペットVH001」30重量部、TX1、1.0重量部、商品名「シーソーブ107」3重量部をブレンダーで混合、110℃、5時間真空乾燥した後、混練機の第一供給口より供給し、シリンダー温度230℃、ベント圧13.3Paで真空排気しながら溶融混練し、水槽中にストランド押し出し、チップカッターにてチップ化してブレンド組成物(C3)を得た。ガラス転移点温度(Tg)は64℃、結晶化温度は129℃、融点は211℃であった。
(4)C4:ポリ乳酸;
上記操作で得られたPLLA1と同じである。
(5)C5:ステレオコンプレックスポリ乳酸(線状ポリカルボジイミド含有);
scPLA1、100重量部、日清紡ケミカル(株)製「カルボジライト」LA−1、1.0重量部をブレンダーで混合、110℃、5時間真空乾燥した後、混練機の第一供給口より供給し、シリンダー温度230℃、ベント圧13.3Paで真空排気しながら溶融混練し、水槽中にストランド押し出し、チップカッターにてチップ化して組成物(C5)を得た。ガラス転移点温度(Tg)は56℃、結晶化温度は135℃、融点は168℃であった。
(6)C6:ポリメチルメタクリレート;
(株)クラレ製「パラペットGF」を80℃で5時間乾燥し、C6を得た。ガラス転移点温度は105℃であった。
(7)C7:MS樹脂
電気化学工業(株)製のPMMAとポリスチレンの共重合樹脂(MS樹脂)である「KT−80」を80℃5時間乾燥し、C7を得た。ガラス転移点温度は110℃であった。
なお、上記C1〜C5を溶融押出してフィルム化し、Tg+10℃にて縦一軸延伸した場合、延伸方向に屈折率が大きくなり、一方、C6、C7材料については、同条件で評価すると、延伸方向に垂直な方向に面内の屈折率が大きくなることを確認した。したがって、C1〜C5についてはP層材料として適当であり、一方、C6、C7はN層材料として適している。
<多層フィルムの製造>
以下に記す多層フィルムの評価結果は表1に記す。
[実施例1]
樹脂C1を100℃で5時間乾燥させた後、2種3層押出機の押出機Bのホッパーに投入し225℃で溶融押出した。一方、樹脂C6は押出機Aのホッパーに投入して、230℃で溶融押出し、ダイ温度225℃でTダイよりフィルム状に溶融押し出し、60℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。溶融押出工程においてイソシアネート由来の悪臭発生はなく作業環境に優れるものであった。当該2種3層押出機は押出機Aが外側の2層、押出機Bが内側の1層となるように設定されている。膜厚は100μmであった。三層の厚みの比はほぼ1:1:1であった。その後、この未延伸フィルムを縦一軸延伸機にて105℃にて1.3倍延伸後、テンター横一軸延伸機により延伸温度107℃、倍率1.2倍にて延伸した後、同設備にて120℃にて熱固定を実施し、P層の結晶化を略完了することにより、厚み70μmのフィルム(F1)を得た。なお、P層の結晶化完了はDSCにおける結晶化ピーク消失により確認した。P層のステレオコンプレックス結晶化度S=100%であった。
このフィルムは樹脂C1がP層、樹脂C6がN層であり、N/P/Nの3層構成からなる。層構成および初期光学特性を表1に記載する。
このフィルムに対して、80℃1000時間、60℃90%RH1000時間の耐久試験を実施し、位相差値、ヘーズ、機械強度の変化を評価したが、ほとんど変化がなかった。
[実施例2]
樹脂C2を90℃で5時間乾燥させた後、2種3層押出機の押出機Bのホッパーに投入し225℃で溶融押出した。一方、樹脂C6は押出機Aのホッパーに投入して、230℃で溶融押出し、ダイ温度225℃でTダイよりフィルム状に溶融押し出し、60℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。溶融押出工程においてイソシアネート由来の悪臭発生はなく作業環境に優れるものであった。当該2種3層押出機は押出機Aが外側の2層、押出機Bが内側の1層となるように設定されている。膜厚は100μmであった。3層の厚みの比はほぼ0.7:1:0.7であった。その後、この未延伸フィルムを縦一軸延伸機にて105℃にて1.3倍延伸後、テンター横一軸延伸機により延伸温度107℃、倍率1.2倍にて延伸した後、同設備にて130℃にて熱固定を実施しP層の結晶化を略完了することにより、厚み70μmのフィルム(F2)を得た。P層のステレオコンプレックス結晶化度S=100%であった。このフィルムは樹脂C1がP層、樹脂C6がN層であり、N/P/Nの3層構成からなる。層構成および初期光学特性を表1に記載する。
このフィルムに対して、80℃1000時間、60℃90%RH1000時間の耐久試験を実施し、位相差値、ヘーズ、機械強度の変化を評価したが、ほとんど変化がなかった。
[実施例3]
樹脂C3を90℃で5時間乾燥させた後、2種3層押出機の押出機Bのホッパーに投入し225℃で溶融押出した。一方、樹脂C6は押出機Aのホッパーに投入して、230℃で溶融押出し、ダイ温度225℃でTダイよりフィルム状に溶融押し出し、60℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。溶融押出工程においてイソシアネート由来の悪臭発生はなく作業環境に優れるものであった。当該2種3層押出機は押出機Aが外側の2層、押出機Bが内側の1層となるように設定されている。膜厚は100μmであった。三層の厚みの比はほぼ0.7:1:0.7であった。その後、この未延伸フィルムを縦一軸延伸機にて105℃にて1.3倍延伸後、テンター横一軸延伸機により延伸温度107℃、倍率1.2倍にて延伸した後、同設備にて130℃にて熱固定を実施しP層の結晶化を略完了させることにより、厚み70μmのフィルム(F2)を得た。P層のステレオコンプレックス結晶化度S=100%であった。このフィルムは樹脂C1がP層、樹脂C6がN層であり、N/P/Nの3層構成からなる。層構成および初期光学特性を表1に記載する。
このフィルムに対して、80℃1000時間、60℃90%RH1000時間の耐久試験を実施し、位相差値、ヘーズ、機械強度の変化を評価したが、ほとんど変化がなかった。また、紫外線吸収剤のブリードアウトも当該耐久テスト実施後に確認したが、見られなかった。
[実施例4]
樹脂C2を90℃で5時間乾燥させた後、2種3層押出機の押出機Aのホッパーに投入し225℃で溶融押出した。一方、樹脂C6は押出機Bのホッパーに投入して、230℃で溶融押出し、ダイ温度225℃でTダイよりフィルム状に溶融押し出し、45℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。溶融押出工程においてイソシアネート由来の悪臭発生はなく作業環境に優れるものであった。当該2種3層押出機は押出機Aが外側の2層、押出機Bが内側の1層となるように設定されている。膜厚は100μmであった。三層の厚みの比はほぼ0.3:1:0.3であった。その後、この未延伸フィルムを縦一軸延伸機にて105℃にて1.3倍延伸後、テンター横一軸延伸機により延伸温度107℃、倍率1.2倍にて延伸した後、同設備にて130℃にて熱固定を実施しP層の結晶化を略完了させることにより、厚み70μmのフィルム(F2)を得た。P層のステレオコンプレックス結晶化度S=100%であった。このフィルムは樹脂C2がP層、樹脂C6がN層であり、P/N/Pの3層構成からなる。層構成および初期光学特性を表1に記載する。
このフィルムに対して、80℃1000時間、60℃90%RH1000時間の耐久試験を実施し、位相差値、ヘーズ、機械強度の変化を評価したが、ほとんど変化がなかった。
[実施例5]
樹脂C2を90℃で5時間乾燥させた後、2種2層押出機の押出機Bのホッパーに投入し225℃で溶融押出した。一方、樹脂C7は押出機Aのホッパーに投入して、230℃で溶融押出し、ダイ温度225℃でTダイよりフィルム状に溶融押し出し、60℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。溶融押出工程においてイソシアネート由来の悪臭発生はなく作業環境に優れるものであった。当該2種2層押出機は押出機Aが冷却ドラム側の1層、押出機Bがその反対側の1層となるように設定されている。膜厚は100μmであった。2層の厚みの比はほぼ1:1であった。その後、この未延伸フィルムを縦一軸延伸機にて110℃にて1.3倍延伸後、テンター横一軸延伸機により延伸温度111℃、倍率1.2倍にて延伸した後、同設備にて130℃にて熱固定を実施しP層の結晶化を略完了させることにより、厚み70μmのフィルム(F2)を得た。P層のステレオコンプレックス結晶化度S=100%であった。このフィルムは樹脂C2がP層、樹脂C7がN層であり、N/Pの2層構成からなる。層構成および初期光学特性を表1に記載する。
このフィルムに対して、80℃1000時間、60℃90%RH1000時間の耐久試験を実施し、位相差値、ヘーズ、機械強度の変化を評価したが、ほとんど変化がなかった。
[実施例6]
厚さ80μmのポリビニルアルコールフィルムを、5重量%(重量比:ヨウ素/ヨウ化カリウム=1/10)の30℃のヨウ素溶液中で1分間染色した。次いで、3重量%のホウ酸および2重量%の30℃のヨウ化カリウムを含む水溶液中に1分間浸漬し、さらに4重量%のホウ酸および3重量%のヨウ化カリウムを含む60℃の水溶液中で1分間浸漬しながら6倍まで延伸した後、30℃の5重量%のヨウ化カリウム水溶液に1分間浸漬した。その後、80℃のオーブンで3分間乾燥を行い、厚さ30μmの偏光膜を得た。
次に実施例2で作製した多層フィルムを偏光板の保護フィルムとして用いるために、片面の表面処理は紫外線オゾン処理を実施した。紫外線オゾン処理はアイグラフィックス(株)製の商品名『アイオゾン洗浄装置OC−2506』を用い、処理時間は30秒とした。
偏光膜と保護フィルムとの接着は、硬化前には液状の紫外線硬化型接着剤を用いることとし、保護フィルムの紫外線オゾン処理をした面にバーコーターで塗布し、偏光膜とラミネートさせた後、保護フィルム側から低圧水銀ランプを用いて紫外線硬化させて接着させた。紫外線硬化型接着剤としては、2−ヒドロキシプロピルアクリレートを主成分とする共栄社化学(株)製の商品名『ライトエステルHOP−A』100重量部と光開始剤としてチバガイギー社製の商品名『イルガキュア184』1重量部を混合させたものを用いた。
得られた偏光板の全光線透過率は42%、偏光度は99.9%であった。
[比較例1]
樹脂C4を100℃で5時間乾燥させた後、単層押出機のホッパーに投入し190℃でTダイよりフィルム状に溶融押し出し、40℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。膜厚は100μmであった。この未延伸フィルムを縦一軸延伸機にて85℃にて1.3倍延伸後、テンター横一軸延伸機により延伸温度90℃、倍率1.2倍にて延伸した後、同設備にて140℃にて熱固定を実施することにより、厚み70μmのフィルム(F1)を得た。表1から分かるように、ヘーズが高く、また、位相差も大きくかつテンター横一軸延伸機におけるボーイング現象等によりフィルム面内の位相差値ばらつきも大きいため、光学フィルムとしては不適であることがわかった。
[比較例2]
樹脂C5を90℃で5時間乾燥させた後、2種3層押出機の押出機Aのホッパーに投入し225℃で溶融押出した。一方、樹脂C6は押出機Bのホッパーに投入して、229℃で溶融押出し、ダイ温度225℃でTダイよりフィルム状に溶融押し出し、45℃の冷却ドラム表面に密着、固化させ未延伸フィルムを得た。当該2種3層押出機は押出機Aが外側の2層、押出機Bが内側の1層となるように設定されている。溶融押出工程においてイソシアネート由来の悪臭発生があり、作業環境が悪化したため、これ以降のテストを中止した。
Figure 2011245788
1 N層
2 P層
3 N層
4 本発明の多層フィルム
5 P層
6 N層
7 本発明の多層フィルム
8 本発明の多層フィルム
9 偏光膜
10 本発明の多層フィルム
11 本発明の偏光板
12 本発明の多層フィルム
13 偏光膜
14 保護フィルム(本発明の多層フィルム以外のフィルム)
15 本発明の偏光板

Claims (17)

  1. ポリ乳酸(A成分)とカルボジイミド基を1個有しその第一窒素と第二窒素とが結合基により結合されている環状構造を少なくとも含む化合物(C成分)とを含む光学的に正である層(P層)と、光学的に負である樹脂(D成分)からなる層(N層)を少なくともそれぞれ1層ずつ含み、当該ポリ乳酸(A成分)が、ポリD−乳酸成分及びポリL−乳酸成分を含むポリ乳酸であり、且つステレオコンプレックス結晶化度(S)が90%以上である、多層フィルム。
    {ステレオコンプレックス結晶化度(S)は示差走査熱量計(DSC)測定で、190℃未満に観測されるポリ乳酸ホモ結晶融解熱(△Hm)、190℃以上に観測されるポリ乳酸ステレオコンプレックス結晶融解熱(△Hmsc)より次式(I)により求める。
    (S)=〔△Hmsc / (△Hm +△Hmsc)〕×100 (I)}
  2. P層が、さらにアクリル系樹脂(B成分)を含む、請求項1記載の多層フィルム。
  3. C成分が下記式(1)で表される請求項1または2記載の多層フィルム。
    Figure 2011245788
    (式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2〜4価の結合基であり、ヘテロ原子を含有していてもよい。)
  4. Qは、下記式(1−1)、(1−2)または(1−3)で表される2〜4価の結合基である請求項3記載の多層フィルム。
    Figure 2011245788
    (式中、ArおよびArは各々独立に、2〜4価の炭素数5〜15の芳香族基である。RおよびRは各々独立に、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基またはこれらの組み合わせ、またはこれら脂肪族基、脂環族基と2〜4価の炭素数5〜15の芳香族基の組み合わせである。XおよびXは各々独立に、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。sは0〜10の整数である。kは0〜10の整数である。なお、sまたはkが2以上であるとき、繰り返し単位としてのX、あるいはXが、他のX、あるいはXと異なっていてもよい。Xは、2〜4価の炭素数1〜20の脂肪族基、2〜4価の炭素数3〜20の脂環族基、2〜4価の炭素数5〜15の芳香族基、またはこれらの組み合わせである。但し、Ar、Ar、R、R、X、XおよびXはヘテロ原子を含有していてもよい、また、Qが2価の結合基であるときは、Ar、Ar、R、R、X、XおよびXは全て2価の基である。Qが3価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが3価の基である。Qが4価の結合基であるときは、Ar、Ar、R、R、X、XおよびXの内の一つが4価の基であるか、二つが3価の基である。)
  5. C成分が、下記式(2)で表される請求項3記載の多層フィルム。
    Figure 2011245788
    (式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである2価の結合基であり、ヘテロ原子を含有していてもよい。)
  6. は、下記式(2−1)、(2−2)または(2−3)で表される2価の結合基である請求項5記載の多層フィルム。
    Figure 2011245788
    (式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)中のAr、Ar、R、R、X、X、X、sおよびkと同じである。)
  7. C成分が、下記式(3)で表される請求項3記載の多層フィルム。
    Figure 2011245788
    (式中、Qは、脂肪族基、脂環族基、芳香族基またはこれらの組み合わせである3価の結合基であり、ヘテロ原子を含有していてもよい。Yは、環状構造を担持する担体である。)
  8. は、下記式(3−1)、(3−2)または(3−3)で表される3価の結合基である請求項7記載の多層フィルム。
    Figure 2011245788
    (式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)のAr、Ar、R、R、X、X、X、sおよびkと同じである。但しこれらの内の一つは3価の基である。)
  9. Yは、単結合、二重結合、原子、原子団またはポリマーである請求項7または8記載の多層フィルム。
  10. C成分が、下記式(4)で表される請求項3記載の多層フィルム。
    Figure 2011245788
    (式中、Qは、脂肪族基、芳香族基、脂環族基またはこれらの組み合わせである4価の結合基であり、ヘテロ原子を保有していてもよい。ZおよびZは、環状構造を担持する担体である。)
  11. は、下記式(4−1)、(4−2)または(4−3)で表される4価の結合基である請求項10記載の多層フィルム。
    Figure 2011245788
    (式中、Ar 、Ar 、R 、R 、X 、X 、X 、sおよびkは、各々式(1−1)〜(1−3)の、Ar、Ar、R、R、X、X、X、sおよびkと同じである。但し、これらの内の一つが4価の基であるか、二つが3価の基である。)
  12. およびZは各々独立に、単結合、二重結合、原子、原子団またはポリマーである請求項10または11記載の多層フィルム。
  13. D成分がポリメチルメタクリレートまたはポリメチルメタクリレート/ポリスチレン共重合体を含む、請求項1〜12のいずれか記載の多層フィルム。
  14. 多層フィルムの積層構成がP層/N層/P層またはN層/P層/N層の3層構成である、請求項1〜13のいずれか記載の多層フィルム。
  15. 3層構成における中間層が紫外線吸収剤を含有する、請求項14記載の多層フィルム。
  16. 略光学等方である、請求項1〜15のいずれか記載の多層フィルム。
  17. 請求項1〜16のいずれか記載の多層フィルムを用いたことを特徴とする偏光板。
JP2010122751A 2010-01-27 2010-05-28 多層フィルムおよびそれを用いた偏光板 Pending JP2011245788A (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2010122751A JP2011245788A (ja) 2010-05-28 2010-05-28 多層フィルムおよびそれを用いた偏光板
US13/575,327 US20120302676A1 (en) 2010-01-27 2011-01-25 Film
CN201180017628.7A CN102812072B (zh) 2010-01-27 2011-01-25
CA2786665A CA2786665A1 (en) 2010-01-27 2011-01-25 Film
PCT/JP2011/051843 WO2011093478A1 (ja) 2010-01-27 2011-01-25 フィルム
KR1020127022097A KR101859237B1 (ko) 2010-01-27 2011-01-25 필름
EP11737187.2A EP2530111A4 (en) 2010-01-27 2011-01-25 MOVIE
SG2012053203A SG182593A1 (en) 2010-01-27 2011-01-25 Film
RU2012136467/04A RU2012136467A (ru) 2010-01-27 2011-01-25 Пленка
AU2011211260A AU2011211260A1 (en) 2010-01-27 2011-01-25 Film
BR112012018682A BR112012018682A2 (pt) 2010-01-27 2011-01-25 película.
TW100102885A TWI596146B (zh) 2010-01-27 2011-01-26 film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122751A JP2011245788A (ja) 2010-05-28 2010-05-28 多層フィルムおよびそれを用いた偏光板

Publications (1)

Publication Number Publication Date
JP2011245788A true JP2011245788A (ja) 2011-12-08

Family

ID=45411649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122751A Pending JP2011245788A (ja) 2010-01-27 2010-05-28 多層フィルムおよびそれを用いた偏光板

Country Status (1)

Country Link
JP (1) JP2011245788A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216016A (ja) * 2012-04-10 2013-10-24 Teijin Ltd 多層フィルム
WO2014106934A1 (ja) * 2013-01-07 2014-07-10 東レ株式会社 ポリ乳酸系シート、及びその製造方法
JP5719089B2 (ja) * 2012-09-24 2015-05-13 帝人株式会社 1軸延伸多層積層フィルム、それからなる偏光板、液晶表示装置用光学部材及び液晶表示装置
WO2015182750A1 (ja) * 2014-05-30 2015-12-03 株式会社クラレ メタクリル樹脂組成物
WO2016140077A1 (ja) * 2015-03-03 2016-09-09 日本ゼオン株式会社 位相差板及び位相差板の製造方法
KR20180099690A (ko) * 2015-12-28 2018-09-05 니폰 제온 가부시키가이샤 광학 적층체 및 그 제조 방법, 편광판 및 표시 장치

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216016A (ja) * 2012-04-10 2013-10-24 Teijin Ltd 多層フィルム
JP5719089B2 (ja) * 2012-09-24 2015-05-13 帝人株式会社 1軸延伸多層積層フィルム、それからなる偏光板、液晶表示装置用光学部材及び液晶表示装置
JPWO2014046225A1 (ja) * 2012-09-24 2016-08-18 帝人株式会社 1軸延伸多層積層フィルム、それからなる偏光板、液晶表示装置用光学部材及び液晶表示装置
WO2014106934A1 (ja) * 2013-01-07 2014-07-10 東レ株式会社 ポリ乳酸系シート、及びその製造方法
WO2015182750A1 (ja) * 2014-05-30 2015-12-03 株式会社クラレ メタクリル樹脂組成物
JPWO2015182750A1 (ja) * 2014-05-30 2017-04-20 株式会社クラレ メタクリル樹脂組成物
WO2016140077A1 (ja) * 2015-03-03 2016-09-09 日本ゼオン株式会社 位相差板及び位相差板の製造方法
JPWO2016140077A1 (ja) * 2015-03-03 2017-12-07 日本ゼオン株式会社 位相差板及び位相差板の製造方法
KR20180099690A (ko) * 2015-12-28 2018-09-05 니폰 제온 가부시키가이샤 광학 적층체 및 그 제조 방법, 편광판 및 표시 장치
JP2019086792A (ja) * 2015-12-28 2019-06-06 日本ゼオン株式会社 光学積層体及びその製造方法、偏光板及び表示装置
US10603878B2 (en) 2015-12-28 2020-03-31 Zeon Corporation Optical laminate, method for producing same, polarizing plate, and display device
KR102593983B1 (ko) * 2015-12-28 2023-10-24 니폰 제온 가부시키가이샤 광학 적층체 및 그 제조 방법, 편광판 및 표시 장치

Similar Documents

Publication Publication Date Title
KR101859237B1 (ko) 필름
JP2011033798A (ja) 偏光板、その製造方法、およびそれを用いた液晶表示装置
KR101693052B1 (ko) 고리형 카르보디이미드를 함유하는 수지 조성물
JP5492561B2 (ja) フィルム
JP2011245788A (ja) 多層フィルムおよびそれを用いた偏光板
EP2980157A1 (en) Resin composition
EP2615138A1 (en) Stereocomplex polylactic acid film and resin composition
JP5563328B2 (ja) ポリ乳酸樹脂組成物およびそれよりなるフィルム
WO2008047836A1 (fr) Composition de résine thermoplastique
JP5654258B2 (ja) 樹脂フィルム、それよりなる加飾フィルム並びに加飾成形品
JP5529456B2 (ja) ポリ乳酸フィルムおよびその製造方法
JP5679691B2 (ja) 樹脂フィルム、それよりなる加飾フィルム並びに加飾成形品
JP2009191248A (ja) 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP2009249583A (ja) ポリ乳酸組成物および成形品
JP2012101449A (ja) ポリ乳酸フィルム
JP5829382B2 (ja) 多層フィルム
JP2013216016A (ja) 多層フィルム
JP5679700B2 (ja) 光学用脂肪族ポリエステルフィルム
JP2011162713A (ja) 白色二軸延伸ポリ乳酸フィルム
JP2010181561A (ja) 光学用ポリ乳酸フィルムおよびその製造方法
JP5662004B2 (ja) 光学用ポリ乳酸フィルムおよびその製造方法
JP5567366B2 (ja) 樹脂組成物およびフィルム
JP5710896B2 (ja) 透明導電性積層体
JP2010181560A (ja) 光学用ポリ乳酸フィルムおよびその製造方法
JP2012001616A (ja) 脂肪族ポリエステル系樹脂白色フィルムおよびそれを用いた反射板