JP2011245507A - 連続鋳造における鋳型内状態の推定方法、装置及びプログラム - Google Patents

連続鋳造における鋳型内状態の推定方法、装置及びプログラム Download PDF

Info

Publication number
JP2011245507A
JP2011245507A JP2010120874A JP2010120874A JP2011245507A JP 2011245507 A JP2011245507 A JP 2011245507A JP 2010120874 A JP2010120874 A JP 2010120874A JP 2010120874 A JP2010120874 A JP 2010120874A JP 2011245507 A JP2011245507 A JP 2011245507A
Authority
JP
Japan
Prior art keywords
mold
solidified shell
transfer coefficient
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010120874A
Other languages
English (en)
Other versions
JP5505086B2 (ja
Inventor
Junichi Nakagawa
淳一 中川
Satoshi Kosugi
聡史 小杉
Yuji Hiramoto
祐二 平本
Tomoya Takeuchi
知哉 竹内
Kazufumi Ito
一文 伊東
Masahiro Yamamoto
昌宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010120874A priority Critical patent/JP5505086B2/ja
Publication of JP2011245507A publication Critical patent/JP2011245507A/ja
Application granted granted Critical
Publication of JP5505086B2 publication Critical patent/JP5505086B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】鋳型内状態を支配する主要因である凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを同時に決定できるようにする。
【解決手段】溶鋼1から鋳型用の冷却水までの間に凝固シェル2、モールドパウダー層3、鋳型4の各熱伝導体が存在する連続鋳造において、凝固シェル2と鋳型4との間の熱伝達係数α、及び、溶鋼1と凝固シェル2との間の熱伝達係数βを求めて鋳型内状態を推定する鋳型内状態の推定方法であって、鋳型4内に鋳造方向に位置をずらして埋設された複数の熱電対5を用いて、鋳型を通過する熱流束を取得し、その熱流束と、熱伝達係数α及び熱伝達係数βを含み、鋳型を通過する熱流束を表わす式とを用いて、熱伝達係数α及び熱伝達係数βを同時に決定する。
【選択図】図1

Description

本発明は、溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、鋳型内状態を支配する主要因である伝達係数を決定するのに好適な鋳型内状態の推定方法、装置及びプログラムに関する。
鋼の連続鋳造においては、鋳型内の溶鋼流動状態や凝固状態が鋳片の性状に影響することから、欠陥のない鋳片を製造するためには、鋳型内状態をオンラインで推定し、制御することが必要である。
特許文献1には、鋳型銅板の溶鋼側表面の法線上の1点で鋳型銅板に埋設された測温素子にて鋳型鋼板内温度を測定し、この測温値から凝固シェルに沿った溶鋼の流速を求める手法が開示されている。
具体的には、測温値から鋳型銅板を通過する熱流束を求め、その熱流束から総括熱抵抗(溶鋼から冷却水までの熱伝導体の熱抵抗を合成したもの)Rを決定して、下式(101)より、溶鋼と凝固シェルとの間の対流熱伝達係数βを求める。なお、λsは凝固シェルの熱伝導率、λpはモールドパウダー層の熱伝導率、λmは鋳型銅板の熱伝導率、hmはモールドパウダー層と鋳型銅板との間の熱伝達係数、hwは鋳型銅板と冷却水との間の熱伝達係数、dsは凝固シェル厚み、dpはモールドパウダー層厚み、dmは鋳型銅板厚みである。
R=(1/β)+(ds/λs)+(dp/λp)+(1/hm)+(dm/λm)+(1/hw)・・・(101)
式(101)から求めた熱伝達係数βを用いて、下式(102)より、ヌッセルト数Nuを求め、このヌッセルト数Nuを下式(103)又は(104)に代入してレイノルズ数Reを求める。そして、レイノルズ数Reを下式(105)に代入して溶鋼流速Uを求める。なお、λ1は溶鋼の熱伝導率、X1は伝熱代表長さ、Prはプラントル数、νは溶鋼の動粘性係数、X2は溶鋼流代表長さである。
β=Nu×λ1×X1・・・(102)
Nu=0.664×Pr1/3×Re4/5(U<U0)・・・(103)
Nu=0.036×Pr1/3×Re1/2(U≧U0)・・・(104)
Re=U×X2/ν・・・(105)
特許第3230513号公報 特開平10−277716号公報 特開2008−260046号公報(段落[0020]) 特開平08−276257号公報(段落[0008]) 特開2000−317594号公報 特開2001−239353号公報
ここで、凝固シェルと鋳型銅板との間の熱伝達係数αは、下式(106)で記述できる(式(101)の右辺第3項及び第4項)。特許文献1では、モールドパウダー層厚みdpは、モールドパウダーの種類と鋳型振動の振幅、周波数、及び振動波形と、鋳造速度が決まれば一定に決まる数値であり、また、モールドパウダー層の熱伝導率λpは、モールドパウダーの種類によらず、ほぼ一定であることが知られており、また、モールドパウダー層と鋳型銅板との間の熱伝達係数hmも、モールドパウダーの種類が決まればほぼ一定の値に決まるとしている。
1/α=(dp/λp)+(1/hm)・・・(106)
つまり、特許文献1の手法において、凝固シェルと鋳型銅板との間の熱伝達係数αは、時間的に変化しない一定値として取り扱うことが前提条件となっている。
しかしながら、エアーギャップの発生等の報告事例から判るように、モールドパウダー層の厚みは時間的に大きく変動する可能性が高く、凝固シェルと鋳型銅板との間の熱伝達係数αを一定値として取り扱うことは、実用上、同手法の適用領域を、平均的な正常操業領域に限定したものにしている。
本発明は上記の点に鑑みてなされたものであり、鋳型内状態を支配する主要因である凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを同時に決定できるようにすることを目的とする。
本発明の鋳型内状態の推定方法は、溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを求めて鋳型内状態を推定する鋳型内状態の推定方法であって、鋳型内に鋳造方向に位置をずらして埋設された複数の測温手段を用いて、鋳型を通過する熱流束を取得する熱流束取得手順と、前記熱伝達係数α及び前記熱伝達係数βを含み、鋳型を通過する熱流束を表わす式と、前記熱流束取得手順で取得した熱流束とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定する熱伝達係数決定手順とを有することを特徴とする。
また、本発明の鋳型内状態の推定方法の他の特徴とするところは、前記熱伝達係数決定手順では、Tを凝固シェルの温度、T0を溶鋼の温度、Tsを溶鋼と凝固シェルとの界面温度、uを鋳造速度、λsを凝固シェルの熱伝導率、csを凝固シェルの比熱、ρsを凝固シェルの密度、Lを凝固シェルの潜熱、dを鋳型の凝固シェル側の表面から測温手段までの距離、λmを鋳型の熱伝導率として、鋳造方向をz軸、鋳造方向に直交する方向をx軸とする2次元座標上で、凝固シェルの厚みs(z,t)及び凝固シェルの鋳型側の表面温度T(0,z,t)を表わす式(A)、(B)と、凝固シェルの鋳型側の表面−モールドパウダー層−熱電対間の熱収支に基づいて、鋳型を通過する熱流束qm(z,t)を表わす式(C)とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定し、凝固シェルの厚みs(z,t)を計算する点にある。
Figure 2011245507
また、本発明の鋳型内状態の推定方法の他の特徴とするところは、前記熱流束取得手順では、dwを測温手段から水冷位置までの距離、hwを鋳型と冷却水との間の熱伝達係数、Twを冷却水温度、λmを鋳型の熱伝導率として、前記複数の測温手段の温度計測値Tm_obs(z,t)に基づいて、式(D)より、鋳型を通過する熱流束qm(z,t)を計算する点にある。
Figure 2011245507
本発明の鋳型内状態の推定装置は、溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを求めて鋳型内状態を推定する鋳型内状態の推定装置であって、鋳型内に鋳造方向に位置をずらして埋設された複数の測温手段を用いて、鋳型を通過する熱流束を取得する熱流束取得手段と、前記熱伝達係数α及び前記熱伝達係数βを含み、鋳型を通過する熱流束を表わす式と、前記熱流束取得手段で取得した熱流束とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定する熱伝達係数決定手段とを備えることを特徴とする。
本発明のプログラムは、溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを求めて鋳型内状態を推定するためのプログラムであって、鋳型内に鋳造方向に位置をずらして埋設された複数の測温手段を用いて、鋳型を通過する熱流束を取得する熱流束取得処理と、前記熱伝達係数α及び前記熱伝達係数βを含み、鋳型を通過する熱流束を表わす式と、前記熱流束取得処理で取得した熱流束とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定する熱伝達係数決定処理とをコンピュータに実行させる。
本発明によれば、鋳型内状態を支配する2つの主要因である凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを同時に決定できるので、これらの要因が鋳型内鋳片の凝固厚みに及ぼす影響を定量的に評価することができる。これにより、パウダー流入状態や溶鋼偏流が鋳片凝固厚みに及ぼす影響を見積もることができ、連続鋳造の鋳片品質及び操業性向上に寄与する。
連続鋳造設備の鋳型の断面の一部を示す図である。 凝固シェルの外表面−モールドパウダー層−熱電対間の熱収支の概念を示す図である。 本発明の鋳型内状態の推定装置として機能しうる情報処理装置のハードウェアの概略構成の一例を示すブロック図である。 実施例での各熱電対の温度計測値及び各熱電対位置での熱流束を示す特性図である。 実施例での鋳造速度の変化を示す特性図である。 実施例での溶鋼温度の変化を示す特性図である。 実施例において本発明を適用して求めたモールドパウダー層の総括熱伝達係数α及び溶鋼側熱伝達係数βを示す特性図である。 本発明を適用して求めた凝固シェルの厚み、時間、z方向位置を軸とする特性図である。
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
図1は、鋳型内凝固状態を示す概念図であり、連続鋳造設備の鋳型の断面の一部を示す。図1において、1は溶鋼である。2は鋳片たる凝固シェル(凝固層)である。3はモールドパウダー層である。4は鋳型銅板であり、冷却水を流すための水冷溝が形成されている。図1に示すように、溶鋼1から鋳型用の冷却水までの間に凝固シェル2、モールドパウダー層3、鋳型銅板4の各熱伝導体が存在する。
また、鋳型銅板4には複数の熱電対5が鋳造方向に位置をずらして埋設されている。熱電対5は、鋳造方向(図1に示すz軸方向)に一列に並べるのが好ましいが、鋳造方向に直交する方向(図1に示すx軸方向)にずれている場合でも、以下に説明する演算の際に補間演算等を行って位置補正すればよい。
鋳型銅板4に接する溶鋼1の湯面を座標軸の原点(0,0)にとり、鋳造方向をz軸、鋳造方向に直交する凝固層成長方向をx軸とする2次元座標上で、凝固層成長を記述する偏微分方程式を下式(1)〜(4)のように設定する。Tは凝固シェル2の温度、T0は溶鋼1の温度、Tsは溶鋼1と凝固シェル2との界面温度(凝固温度)である。s(z,t)は凝固シェル2の厚みである。β(z,t)は溶鋼1と凝固シェル2との間の対流熱伝達係数(「溶鋼側熱伝達係数」と称する)、α(z,t)は凝固シェル2と鋳型銅板4との間の熱伝達係数(「モールドパウダー層の総括熱伝達係数」と称する)である。uは鋳造速度である。λs、cs、ρs、Lは凝固シェル2の物性値であり、熱伝導率、比熱、密度、潜熱である。Tm(0,z,t)は鋳型銅板4の凝固シェル2側の表面(鋳型銅板4の内表面)の温度である。
Figure 2011245507
すなわち、式(1)は凝固シェル2内での熱収支を表わす。式(2)は凝固シェル2と溶鋼1との境界条件を表わす。式(3)は凝固シェル2と溶鋼1との界面での熱収支を表わす。式(4)は凝固シェル2とモールドパウダー層3との界面での熱収支を表わす。
ここで、凝固シェル2の温度Tがxの2次式で記述できると仮定し、下式(5)で近似する。
Figure 2011245507
式(5)を式(1)〜式(4)に代入し、係数a(z,t)と係数b(z,t)を決定する。
Figure 2011245507
係数a(z,t)と係数b(z,t)から、凝固シェル2の厚みs(z,t)と、凝固シェル2の鋳型銅板4側の表面(凝固シェル2の外表面)の温度T(0,z,t)は、下式(6)、(7)で記述することができる。
Figure 2011245507
ここで、基準となる時刻t0を任意に固定し、新変数η(≧0)を導入し、z=u・η、t=t0+ηとおく。これにより、式(6)は、下式(8)、(9)のように変形することができる。
Figure 2011245507
また、式(7)は、下式(10)のように変形することができる。
Figure 2011245507
式(8)の差分近似式は、下式(11)のようになる。
Figure 2011245507
一方、式(10)を離散化すると、下式(12)のようになる。
Figure 2011245507
更に、式(12)を下式(13)のように変形する。
Figure 2011245507
以下の記号で定義し、式(13)を式(14)のように書き換える。
Figure 2011245507
式(14)は、下式(15)のように、yに関する2次方程式に書き換えることができる。
Figure 2011245507
以下に、凝固シェル2の厚みs(ηk)を計算する手順を記す。熱伝達係数α(ηk)、β(ηk)が与えられたとする。溶鋼1の湯面上では、s(η1)=0である。これを式(15)に代入して2次方程式を解き、T(0,η1)を得る。次に、s(η1)、T(0,η1)を式(11)に代入して、Ψ(η2)を求める。(9)式の左辺にΨ(η2)を代入、右辺にT(0,η1)を代入して、s(η2)を求め、それを式(15)に代入して2次方程式を解き、T(0,η2)を得る。以下、同様の操作を繰り返すことにより、凝固シェル2の厚みの時間履歴s(ηk)を計算することができる。
また、特許文献2に示されているように、式(1)〜(4)を差分法等の数値計算手法を用いて計算することも可能であるが、上述した手法を用いることにより格段に演算速度が速くなるので、オンラインで凝固シェル2の凝固状態を推定することが可能になる。
次に、熱伝達係数α(ηk)、β(ηk)の決定方法について述べる。図2に示すように、凝固シェル2の鋳型銅板4側の表面(凝固シェル2の外表面)−モールドパウダー層3−熱電対5間の熱収支を擬定常状態と仮定して、下式(16)で記述する。図2において、点線は温度の変化の関係を示す。qmは鋳型銅板4をx軸方向に通過する熱流束である。dは鋳型銅板4の凝固シェル2側の表面(鋳型銅板4の内表面)から熱電対5までの距離である。λmは鋳型銅板4の熱伝導率である。式(7)に示すように、T(0,zk,t)にはβ(zk,t)を含んでおり、式(16)は熱伝達係数α、βを未知数とする式となっている。
Figure 2011245507
ここで、鋳型銅板4をx軸方向に通過する熱流束qm(zi,t)は、鋳型銅板4の鋳造方向に埋設した複数の熱電対5の温度計測値Tm_obs(zi,t)に基づいて、鋳造方向に対し、下式(17)より計算する(iは熱電対を表わす添え字である)。熱流束qm(zi,t)を補間計算(内外挿計算)することにより、任意の鋳造方向において鋳型銅板4をx軸方向に通過する熱流束qmを求めることができる。dwは熱電対5から水冷位置までの距離である。hwは鋳型銅板4と冷却水との間の熱伝達係数である。Twは冷却水温度である。
Figure 2011245507
式(16)を、式(8)〜式(15)に合わせるために、前に定義した変数ηを用い、下式(18)のように書き換える。
Figure 2011245507
熱伝達係数α(ηk)、β(ηk)は、式(18)より、下式(19)で表される最小二乗法による最小化問題として同時に決定されるとともに、凝固シェル2の厚みの時間履歴s(ηk)も計算される。
Figure 2011245507
以上述べたように、凝固シェル2と鋳型銅板4との間の熱伝達係数α、及び、溶鋼1と凝固シェル2との間の熱伝達係数βを同時に決定し、凝固シェル2の厚みを計算することができる。凝固シェル2と鋳型銅板4との間の熱伝達係数α、及び、溶鋼1と凝固シェル2との間の熱伝達係数βは鋳型内凝固状態を支配する主要因であり、それを同時に決定できるので、これらの要因が鋳型内鋳片の凝固厚みに及ぼす影響を定量的に評価することができる。これにより、パウダー流入状態や溶鋼偏流が鋳片凝固厚みに及ぼす影響を見積もることができ、連続鋳造の鋳片品質及び操業性向上に寄与する。
なお、特許文献5には、鋳造方向に複数点配置された鋳型温度検出手段より伝熱逆問題手法を使って予測した熱流束値を境界条件にした熱伝導方程式を解き、溶融金属の凝固厚みと凝固シェル温度プロフィールを得て、更には鋳造方向に複数点配置された鋳型温度検出手段より伝熱逆問題手法を使って計算した熱流束値と鋳型内面表面温度及び前記凝固シェル温度プロフィール計算結果から、熱伝導方程式を解きパウダー流入厚みを得る構成が開示されている。また、特許文献6には、鋳造方向に間隔をおいて鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づいて鋳型内面での熱流束を伝熱逆問題手法を用いて推定し、熱流束推定値に基づき鋳片内部の熱流束より溶融金属流動起因の対流熱伝達量を推定し、対流熱伝達量推定値により鋳型内溶融金属流動の異常を検出する構成が開示されている。しかしながら、いずれの先行技術も、上述したように凝固シェル2と鋳型銅板4との間の熱伝達係数α、及び、溶鋼1と凝固シェル2との間の熱伝達係数βを同時に決定し、凝固シェル2の厚みを計算するものではない。
図3は、本発明の鋳型内状態の推定装置として機能しうる情報処理装置100のハードウェアの概略構成の一例を示すブロック図である。この情報処理装置100は、上述した演算処理を実行する中央処理装置であるCPU101、各種入力条件や演算結果等を表示する表示部102、演算結果等を保存するハードディスク等の記憶部103を有する。また、演算プログラム、各種アプリケーションプログラム、データ等を記憶するROM(リードオンリーメモリ)104を有する。また、演算プログラムに基づいてCPU101が処理を行うときに用いる作業領域であるRAM(ランダムアクセスメモリ)105、及びキーボード、マウス等の入力部106等を有する。
また、コンピュータ装置を鋳型内状態の推定装置として機能させるためのプログラムは本発明を構成する。プログラムを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。
図4(a)は各熱電対L1〜L7の温度計測値を示す特性図、図4(b)は各熱電対L1〜L7の温度計測値から得られた各熱電対L1〜L7位置での熱流束を示す特性図である。熱電対L1〜L7は、各々、湯面から10mm、30mm、40mm、70mm、100mm、160mm、270mmの位置に設置されている。また、鋳型銅板の内表面か各熱電対L1〜L7までの距離dは10mm、各熱電対から水冷位置までの距離dwは5mmである。図4(b)に示す熱流束は、式(17)により求めたものである。
凝固シェルの熱伝導率λsは29W/m・K、比熱csは0.670kJ/kg・K、密度ρsは7650kg/m3は、潜熱Lは268kJ/kgである。また、鋳型銅板の熱伝導率λmは251W/m・Kである。また、鋳型銅板と冷却水との間の熱伝達係数hwは30000kcal/m3・Hr・℃である。また、凝固温度Tsは1497度である。
図5は鋳造速度uの変化を示す特性図、図6は溶鋼温度T0の変化を示す特性図である。
図7(a)は本発明を適用した求めたモールドパウダー層の総括熱伝達係数αを示す特性図、図7(b)は本発明を適用して求めた溶鋼側熱伝達係数βを示す特性図である。本実施例では、鋳造方向において湯面〜90mm、90mm〜180mm、180mm〜270mmに3分割して、それぞれでモールドパウダー層の総括熱伝達係数αと溶鋼側熱伝達係数βを求めている。
また、図8は本発明を適用して求めた凝固シェル2の厚み、時間、z方向位置を軸とする特性図である。100sピッチで演算を行い、その結果をドットで示すとともに、内挿計算を行っている。同図に示すように、凝固シェル2の厚みは鋳造方向に向かうに従って成長していることがわかる。
以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。例えば上記実施形態では測温手段として熱電対を用いているが、例えば特許文献3にあるような光ファイバーグレーティングセンサー(FBG:Fiber Bragg Grating)や特許文献4にあるようなラマン散乱型光ファイバ式分布型温度計測器等を用いてもよい。
1:溶鋼
2:凝固シェル
3:モールドパウダー層
4:鋳型銅板
5:熱電対

Claims (5)

  1. 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを求めて鋳型内状態を推定する鋳型内状態の推定方法であって、
    鋳型内に鋳造方向に位置をずらして埋設された複数の測温手段を用いて、鋳型を通過する熱流束を取得する熱流束取得手順と、
    前記熱伝達係数α及び前記熱伝達係数βを含み、鋳型を通過する熱流束を表わす式と、前記熱流束取得手順で取得した熱流束とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定する熱伝達係数決定手順とを有することを特徴とする鋳型内状態の推定方法。
  2. 前記熱伝達係数決定手順では、
    Tを凝固シェルの温度、T0を溶鋼の温度、Tsを溶鋼と凝固シェルとの界面温度、uを鋳造速度、λsを凝固シェルの熱伝導率、csを凝固シェルの比熱、ρsを凝固シェルの密度、Lを凝固シェルの潜熱、dを鋳型の凝固シェル側の表面から測温手段までの距離、λmを鋳型の熱伝導率として、
    鋳造方向をz軸、鋳造方向に直交する方向をx軸とする2次元座標上で、凝固シェルの厚みs(z,t)及び凝固シェルの鋳型側の表面温度T(0,z,t)を表わす式(A)、(B)と、凝固シェルの鋳型側の表面−モールドパウダー層−熱電対間の熱収支に基づいて、鋳型を通過する熱流束qm(z,t)を表わす式(C)とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定し、凝固シェルの厚みs(z,t)を計算することを特徴とする請求項1に記載の鋳型内状態の推定方法。
    Figure 2011245507
  3. 前記熱流束取得手順では、
    wを測温手段から水冷位置までの距離、hwを鋳型と冷却水との間の熱伝達係数、Twを冷却水温度、λmを鋳型の熱伝導率として、
    前記複数の測温手段の温度計測値Tm_obs(z,t)に基づいて、式(D)より、鋳型を通過する熱流束qm(z,t)を計算することを特徴とする請求項1又は2に記載の鋳型内状態の推定方法。
    Figure 2011245507
  4. 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを求めて鋳型内状態を推定する鋳型内状態の推定装置であって、
    鋳型内に鋳造方向に位置をずらして埋設された複数の測温手段を用いて、鋳型を通過する熱流束を取得する熱流束取得手段と、
    前記熱伝達係数α及び前記熱伝達係数βを含み、鋳型を通過する熱流束を表わす式と、前記熱流束取得手段で取得した熱流束とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定する熱伝達係数決定手段とを備えることを特徴とする鋳型内状態の推定装置。
  5. 溶鋼から鋳型用の冷却水までの間に凝固シェル、モールドパウダー層、鋳型の各熱伝導体が存在する連続鋳造において、凝固シェルと鋳型との間の熱伝達係数α、及び、溶鋼と凝固シェルとの間の熱伝達係数βを求めて鋳型内状態を推定するためのプログラムであって、
    鋳型内に鋳造方向に位置をずらして埋設された複数の測温手段を用いて、鋳型を通過する熱流束を取得する熱流束取得処理と、
    前記熱伝達係数α及び前記熱伝達係数βを含み、鋳型を通過する熱流束を表わす式と、前記熱流束取得処理で取得した熱流束とを用いて、前記熱伝達係数α及び前記熱伝達係数βを同時に決定する熱伝達係数決定処理とをコンピュータに実行させるためのプログラム。
JP2010120874A 2010-05-26 2010-05-26 連続鋳造における鋳型内状態の推定方法、装置及びプログラム Expired - Fee Related JP5505086B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120874A JP5505086B2 (ja) 2010-05-26 2010-05-26 連続鋳造における鋳型内状態の推定方法、装置及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120874A JP5505086B2 (ja) 2010-05-26 2010-05-26 連続鋳造における鋳型内状態の推定方法、装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2011245507A true JP2011245507A (ja) 2011-12-08
JP5505086B2 JP5505086B2 (ja) 2014-05-28

Family

ID=45411413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120874A Expired - Fee Related JP5505086B2 (ja) 2010-05-26 2010-05-26 連続鋳造における鋳型内状態の推定方法、装置及びプログラム

Country Status (1)

Country Link
JP (1) JP5505086B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251305A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251303A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251309A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251302A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251307A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
CN103115938A (zh) * 2012-12-26 2013-05-22 内蒙古科技大学 一种测量交变磁场作用下凝固界面换热系数的测量装置
WO2015115651A1 (ja) 2014-01-31 2015-08-06 新日鐵住金株式会社 連続鋳造における鋳造状態の判定方法、装置及びプログラム
CN106794513A (zh) * 2014-10-15 2017-05-31 新日铁住金株式会社 连续铸造铸模内的熔液面水平检测装置、方法及程序
CN112935213A (zh) * 2019-12-11 2021-06-11 中冶京诚工程技术有限公司 结晶器、结晶器内钢水液面高度测量方法及相关装置
CN113695539A (zh) * 2021-08-29 2021-11-26 攀钢集团攀枝花钢铁研究院有限公司 一种确定高钛钢的结晶器冷却液通量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317594A (ja) * 1999-05-10 2000-11-21 Nippon Steel Corp 溶融金属鋳型内の凝固シェル厚み及びパウダー流入厚み予測方法
JP2009226480A (ja) * 2008-02-28 2009-10-08 Jfe Steel Corp 連続鋳造におけるブレークアウト検出方法及び装置、該装置を用いた鋼の連続鋳造方法、ブレークアウト防止装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317594A (ja) * 1999-05-10 2000-11-21 Nippon Steel Corp 溶融金属鋳型内の凝固シェル厚み及びパウダー流入厚み予測方法
JP2009226480A (ja) * 2008-02-28 2009-10-08 Jfe Steel Corp 連続鋳造におけるブレークアウト検出方法及び装置、該装置を用いた鋼の連続鋳造方法、ブレークアウト防止装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251305A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251303A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251309A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251302A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251307A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
CN103115938A (zh) * 2012-12-26 2013-05-22 内蒙古科技大学 一种测量交变磁场作用下凝固界面换热系数的测量装置
KR20160102043A (ko) 2014-01-31 2016-08-26 신닛테츠스미킨 카부시키카이샤 연속 주조에서의 주조 상태의 판정 방법, 장치 및 프로그램
WO2015115651A1 (ja) 2014-01-31 2015-08-06 新日鐵住金株式会社 連続鋳造における鋳造状態の判定方法、装置及びプログラム
CN106413942A (zh) * 2014-01-31 2017-02-15 新日铁住金株式会社 连续铸造的铸造状态的判定方法、装置以及程序
US10286447B2 (en) 2014-01-31 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Method, apparatus, and program for determining casting state in continuous casting
KR20190105670A (ko) 2014-01-31 2019-09-17 닛폰세이테츠 가부시키가이샤 연속 주조에서의 주조 상태의 판정 방법, 장치 및 프로그램
CN106794513A (zh) * 2014-10-15 2017-05-31 新日铁住金株式会社 连续铸造铸模内的熔液面水平检测装置、方法及程序
EP3208014A4 (en) * 2014-10-15 2018-05-16 Nippon Steel & Sumitomo Metal Corporation Device, method, and program for detecting molten-metal surface level in continuous casting mold
CN106794513B (zh) * 2014-10-15 2018-11-27 新日铁住金株式会社 连续铸造铸模内的熔液面水平检测装置、方法
US10583477B2 (en) 2014-10-15 2020-03-10 Nippon Steel Corporation Apparatus, method, and program for detecting molten metal surface level in continuous casting mold
CN112935213A (zh) * 2019-12-11 2021-06-11 中冶京诚工程技术有限公司 结晶器、结晶器内钢水液面高度测量方法及相关装置
CN112935213B (zh) * 2019-12-11 2022-10-28 中冶京诚工程技术有限公司 结晶器内钢水液面高度测量方法及相关装置
CN113695539A (zh) * 2021-08-29 2021-11-26 攀钢集团攀枝花钢铁研究院有限公司 一种确定高钛钢的结晶器冷却液通量的方法

Also Published As

Publication number Publication date
JP5505086B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5505086B2 (ja) 連続鋳造における鋳型内状態の推定方法、装置及びプログラム
JP5387508B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP4579820B2 (ja) 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。
JP2020011255A (ja) 鋳造状態判定装置、鋳造状態判定方法、およびプログラム
JP4105839B2 (ja) 連続鋳造における鋳型内鋳造異常検出方法
JP4753374B2 (ja) 容器壁の厚み推定方法、装置、コンピュータプログラム
JP5387507B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP5408040B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP4743781B2 (ja) 容器の内壁面の温度及び熱流束の推定方法、装置、並びにコンピュータプログラム
JP5418411B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2020157333A (ja) 学習モデル作成装置、鋳片品質推定装置、学習モデル作成方法、鋳片品質推定方法、およびプログラム
JP5387505B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP3896026B2 (ja) 連続鋳造鋳型内における溶鋼流動状態の診断装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体
JP2019217510A (ja) 連続鋳造鋳型内可視化装置、方法、およびプログラム
JP5387506B2 (ja) 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP3607882B2 (ja) 連続鋳造鋳型内全域の凝固シェル厚、溶鋼流速、鋳片品質センシング方法及びその装置。
JP7016706B2 (ja) 設備監視装置、設備監視方法、およびプログラム
JP4828366B2 (ja) 鋳型の熱流束に基づく縦割検知方法及び連続鋳造方法
JP2005134383A (ja) 加熱又は冷却特性評価方法及び装置、反応容器の操業管理方法及び装置、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体
JP4850803B2 (ja) 材料内部の温度推定方法、熱流束の推定方法、装置、及びコンピュータプログラム
JP6688942B2 (ja) 金属製造プロセス用の型板における温度分布を特定するための方法およびデバイス
JP2021041452A (ja) 連続鋳造鋳型内可視化装置、方法、およびプログラム
JP2021102221A (ja) 連続鋳造鋳型内可視化装置、方法、およびプログラム
JP2017080771A (ja) 連続鋳造用鋳型
Woolley et al. Aluminum Sand Casting Interfacial Heat Flux Estimation Based on Corrected Temperature Measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5505086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees