JP2011236873A - 回転構造体及び流体機械 - Google Patents

回転構造体及び流体機械 Download PDF

Info

Publication number
JP2011236873A
JP2011236873A JP2010111209A JP2010111209A JP2011236873A JP 2011236873 A JP2011236873 A JP 2011236873A JP 2010111209 A JP2010111209 A JP 2010111209A JP 2010111209 A JP2010111209 A JP 2010111209A JP 2011236873 A JP2011236873 A JP 2011236873A
Authority
JP
Japan
Prior art keywords
axial direction
rotating
tip
runner
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010111209A
Other languages
English (en)
Inventor
Masatake Maekawa
真丈 前川
Hiroki Nakamura
裕樹 中村
Nobuhide Fukuda
暢英 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010111209A priority Critical patent/JP2011236873A/ja
Publication of JP2011236873A publication Critical patent/JP2011236873A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

【課題】大流量運転時における効率の低下を抑制することができる。
【解決手段】回転中心軸Pが延びる軸方向の一方に進むに従って径を漸減させる外周部11aを有する回転盤11と、回転盤11の外周部11aにおいて周方向に間隔を空けて設けられた複数の回転翼12とを備え、回転盤11と複数の回転翼12との間に、径方向外方側から回転中心軸Pに向かって流入した作動流体を前記軸方向の一方側に流出させる流路14が構成された回転構造体10であって、回転翼12の下流縁12aにおける回転盤側の一端12bから軸方向一方側の他端12cまでの軸方向寸法である回転翼高さをh、回転翼12の下流縁12aにおける一端12bから回転盤12の前記軸方向一方側の先端部11bまでの軸方向寸法である先端部高さをh*とすると、以下の条件式(1)を満足することを特徴とする。
0≦h*≦0.3h…(1)
【選択図】図3

Description

本発明は、回転構造体及び流体機械に関するものである。
例えば、流体機械の一種である水車やポンプ水車においては、回転シャフトと、この回転シャフトの軸方向の一方の端部に設けられ、軸方向の一方に進むに従って径を漸減させる外周部を有する円盤状のクラウンと、このクラウンの外周部に設けられた複数のランナベーンとを備えるランナを有するものがある。このランナは、クラウンとランナベーンとの間に流路が構成されており、径方向外方から流入した作動流体を軸方向の一方に流出させるようになっている。
上記ランナには、軸方向の流体出口からの流れを下流側にスムーズにガイドさせるために、案内部材として機能するランナコーンをクラウンの流体出口側における端部に取り付けたものがある(例えば、特許文献1)。
特開平8−28426号公報
ところで、従来の技術においては、ランナにおける流量が適正な設計点流量に対して過大であると(以下、「大流量運転時」という。)、クラウン側近くを流れる作動流体の流速が増加してクラウン側に流線が寄ってしまうが、ランナコーンによって流体出口の流れが閉塞傾向となる。一方、ランナコーンの軸方向一方側においては、作動流体の流速が減少して死水コア領域が形成されるが、この死水コア領域と、流速が増加したクラウン側寄りとで作動流体の流速差が大きくなって径方向の流速分布が不均一になる。このため、せん断層での混合損失が増加して水車効率が低下してしまうという問題があった。
本発明は、このような事情を考慮してなされたもので、大流量運転時における効率の低下を抑制することを課題とする。
上記目的を達成するために、本発明は以下の手段を採用している。
すなわち、本発明に係る回転構造体は、回転中心軸が延びる軸方向の一方に進むに従って径を漸減させる外周部を有する回転盤と、前記回転盤の外周部において周方向に間隔を空けて設けられた複数の回転翼とを備え、前記回転盤と前記複数の回転翼との間に、径方向外方側から前記回転中心軸に向かって流入した作動流体を前記軸方向の一方側に流出させる流路が構成された回転構造体であって、前記回転翼の下流縁における前記回転盤側の一端から前記軸方向一方側の他端までの軸方向寸法である回転翼高さをh、前記回転翼の下流縁における一端から前記回転盤の前記軸方向一方側の先端部までの軸方向寸法である先端部高さをh*とすると、以下の条件式(1)を満足することを特徴とする。
0≦h*≦0.3h…(1)
この構成によれば、条件式(1)を満足するので、流体出口において作動流体が径方向内方側に流れ易くなり、大流量運転時において径方向の流速分布が均一的になる。これにより、大流量運転時におけるせん断層での混合損失を低減して効率の低下を抑制することができる。
また、以下の条件式(2)を満足することを特徴とする。
h*≦0.2h…(2)
この構成によれば、条件式(2)を満足するので、流体出口において作動流体が径方向内方側にさらに流れ易くなり、大流量運転時において径方向の流速分布がより均一的になる。これにより、大流量運転時におけるせん断層での混合損失をさらに低減して効率の低下をさらに抑制することができる。
また、前記回転盤は、前記外周部と前記先端部との間に前記軸方向の一方に進むに従って径方向内方に進む傾斜部を有することを特徴とする。
この構成によれば、傾斜部を有するので、外周部と先端部との間において回転盤の表面(外周部および傾斜部)に沿って流れる作動流体に流れの剥離が生じ難くなる。より具体的には、傾斜部を有しない場合に比べて流れ方向に流路が穏やかに拡大するので、外周部および傾斜部において流れの剥離が生じ難くなる。これにより、作動流体の流れの剥離によって引き起こされる効率低下を抑制することができる。
また、前記回転盤は、前記外周部と前記先端部との間に角部を有し、前記角部は、前記軸方向に切断した断面において円弧状に形成されていること特徴とする。
この構成によれば、軸方向に切断した断面において角部が円弧状に形成されているので、外周部と先端部との間において回転盤の表面(外周部および角部)に沿って流れる作動流体に流れの剥離が生じ難くなる。より具体的には、角部を円弧状とすることで流路が滑らかに連続することとなるので、外周部および角部において流れの剥離が生じ難くなる。これにより、作動流体の流れの剥離によって引き起こされる効率低下を抑制することができる。
また、前記回転盤は、少なくとも前記先端部側に内部空間が形成され、該内部空間を閉塞させる蓋体を備えることを特徴とする。
この構成によれば、回転盤が内部空間を閉塞させる蓋体を備えるので、回転構造体における流量が適正な設計点流量に対して過小である場合において、流体出口よりも下流側に発生する螺旋渦の渦芯の付け根部分に蓋体が位置することとなる。すなわち、蓋体を設けずに内部空間を開放した状態においては、螺旋渦の起点が内部空間の軸方向他方側の奥部となって、螺旋渦の起点から先端部までの長さ分だけ螺旋渦の全長が長くなる。このため、コーン内外の旋回する流れの影響により螺旋渦の起点が不安定となって脈動や振動・騒音が増加すると考えられる。これに対して、蓋体で内部空間を閉塞させた状態においては、蓋体によって螺旋渦の起点が安定するので脈動や振動・騒音を抑制することができる。
また、前記回転盤は、前記回転中心軸上に配置されて前記軸方向一方側の先端が前記先端部を構成するコーンと、前記回転中心軸上に前記コーンを収容可能な収容穴を有すると共に前記回転翼が設けられた外周が前記外周部の少なくとも一部を構成するクラウンとを備え、前記コーンは、前記軸方向に変位可能に構成され、前記コーンが前記収容穴に収容された場合に条件式(1)を満足することを特徴とする。
この構成によれば、作動流体が設計点流量に対して過小である場合の小流量運転時に収容穴から軸方向一方側にコーンを突出させることにより、作動流体を流路の流体出口からコーンに沿わせて下流側に導くと共に、作動流体が設計点流量に対して過大である場合の大流量運転時には収容穴にコーンを収容することにより、作動流体を流路の流体出口から径方向内方側に流れ易くすることができる。これにより、小流量運転時及び大流量運転時の場合において水車効率を高効率に維持することができ、性能を向上させることができる。
また、本発明に係る流体機械は、上記のうちいずれかの回転構造体と、該回転構造体が軸方向の一方の端部に設けられた回転シャフトとを具備することを特徴とする。
この構成によれば、上記いずれかの回転構造体を具備するので、大流量運転時における効率の低下を抑制することができる。
本発明に係る回転構造体によれば、大流量運転時における効率の低下を抑制することができる。
また、本発明に係る流体機械によれば、大流量運転時における効率の低下を抑制することができる。
本発明の第一実施形態に係るフランシス水車1の概略構成を示す概略構成断面図である。 本発明の第一実施形態に係るフランシス水車1の要部拡大図である。 本発明の第一実施形態に係るランナ10の詳細図である。 本発明の実施例に係る試験結果を示すグラフである。 本発明の第一実施形態に係るフランシス水車1及びランナ10の作用説明図である。 本発明の第一実施形態に係るフランシス水車1及びランナ10の比較例であるフランシス水車50及びランナ60の作用説明図である。 本発明の第一実施形態に係るフランシス水車1の第一変形例である。 本発明の第一実施形態に係るフランシス水車1の第二変形例である。 本発明の第二実施形態に係るフランシス水車31の概略構成を示す要部拡大断面図である。
以下、図面を参照し、本発明の実施形態について説明する。
(第一実施形態)
図1は、本発明の第一実施形態に係るフランシス水車(流体機械)1の概略構成を示す概略構成断面図である。
フランシス水車1は、図1に示すように、回転中心軸Pを重力方向に向けた回転シャフト2と、回転シャフト2の下端部(端部)に設けられたランナ(回転構造体)10と、ランナ10の径方向外方側に設けられて作動流体である用水Wを送り込むスパイラルケーシング3と、スパイラルケーシング3とランナ10とを接続するスピードリング4と、ランナ10に流入する用水Wの流量を調整するガイドベーン7と、ランナ10の下方に配置されてランナ10から放出された用水Wを放水するドラフトチューブ5とを備えている。
なお、本明細書における説明においては、特に言及しない限り、「物の位置を特定する際の上・下」は「重力方向における上・下」をいうものとする。
回転シャフト2は、フランシス水車1の主軸として機能するものである。この回転シャフト2は、図1に示すように、下端部にランナ10が固定されており、上端部に発電機(不図示)が連結されている。
スパイラルケーシング3は、平面視で渦巻き状に配設されており、図1に示すように、軸方向に切断した断面において略円管状に形成されている。このスパイラルケーシング3は、その内部が、用水Wが流れる案内流路3aとなっており、周方向下流側へ向かうにつれて案内流路3aの断面積が小さくなるように形成されている。
スパイラルケーシング3には、外部と接続された図示しない用水取込口が設けられていると共に、径方向内方側において環状に開口してスピードリング4と接続された用水送出口3bが設けられている。すなわち、案内流路3aに流入した用水Wは、スパイラルケーシング3内を一周する間に、用水送出口3bからランナ10(スピードリング4)へ向けて送り出される。
スピードリング4は、略環状で、内部を案内流路4aとしており、流通する用水Wを整流するためのステーベーン6が設けられている。これら複数のステーベーン6は、放射状に等ピッチで配設され、流入する用水Wの流れ角度に合わせて旋回方向に傾くように配設されている。
ガイドベーン7は、スピードリング4と、径方向内方側のランナ10との間において、周方向に沿って複数枚配列されている。各ガイドベーン7は、当該ガイドベーン7に設けられた回転軸7aを中心として開放位置と閉塞位置との間で回動可能に構成されている。すなわち、各ガイドベーン7が回動することで、スパイラルケーシング3の内部から(スピードリング4を介して)ランナ10に流入する用水Wの流量を調整することが可能となっている。
ドラフトチューブ5は、流路断面を徐々に大きくすることで用水Wの流速を減少させつつ整流し、用水Wを外部の放水路に放水する。
図2は、フランシス水車1の要部拡大図である。
図1及び図2に示すように、ランナ10は、回転盤11と、ランナベーン(回転翼)12と、シュラウド13とを備えている。以下の説明においては、ランナ10の概略構成について説明をした後に、細部の構成について説明をする。
回転盤11は、略円盤状に構成されており、回転シャフト2と同軸に回転シャフト2の下方端部に固定されている。回転盤11は、下方に進むに従って径を漸減させる外周部11aと、回転中心軸Pを囲繞する先端部11bと、外周部11aと先端部11bとの間に形成され、下方に進むに従って径方向内方に進む傾斜部11cとを有している。この回転盤11は先端部11b側まで無垢の中実構造の場合もあるが、内部における先端部11b側において下方に開放された内部空間(不図示)が形成される場合も多い。
このような回転盤11は、具体的には、上方側に配置されたクラウンと、クラウンの下端部に固定された円錐台状のコーンとで構成されているが、クラウン単体のみでこれを構成しても構わない。
外周部11aは、回転中心軸Pに沿った断面において、下方に進むに従って回転中心軸Pに漸近する輪郭となっている。換言すれば、径方向外方側において回転中心軸Pに直交する仮想平面に概略沿うように形成されていると共に、径方向内方側に向かうに従って次第に回転中心軸Pに沿うように湾曲形成されている。
傾斜部11cは、角部11dを介して外周部11aに連続している。この傾斜部11cは、回転中心軸Pに直交する仮想平面に対する傾斜角が、外周部11aの下流側よりも小さくなっている。換言すれば、外周部11aと先端部11bとが傾斜部11cを介して緩やかに接続されている。
先端部11bは、回転中心軸Pを中心とした円環平面状に形成されており、角部11eを介して傾斜部11cに連続している。この先端部11bは、内部空間の開口を構成しているか、若しくは中実のコーンの底壁面を構成している。
複数のランナベーン12は、外周部11aにおいて回転中心軸P周りに等ピッチに配設されて、軸方向に見て放射状に配設されている。これら複数のランナベーン12は、ランナ10に流入する用水Wの流れ角度に合わせて径方向外方側で旋回方向に傾くように配設されていると共に、径方向内方側に向かうに従って次第に旋回方向への傾きが強くなるように配設されている。
シュラウド13は、略環状に形成されており、回転盤11と対向配置されて複数のランナベーン12と接続されている。
このような構成により、ランナ10には、回転盤11と、隣り合う二つのランナベーン12と、シュラウド13によって画定された流路14を複数有している。各流路14は、径方向外方側の開口が流体入口14a、径方向内方側の開口が流体出口14bとされ、外方側から径方向内方側に向かうに従って次第に旋回方向に傾くように形成されている。
流路14において、用水Wは流体入口14aに流入すると、回転中心軸P側かつ下方側に流れながらランナベーン12に圧力を作用させてランナ10を回転させる。そして、流体出口14bから下方に放出されてドラフトチューブ(図1参照)5へと流入する。
次に、ランナ10の形状の詳細について説明する。図3はランナ10の詳細図である。なお、図3中において従来の構成を破線で示す。
図3に示すように、ランナ10は、ランナベーン12の下流縁12aにおいて回転盤11側の一端12bから反対側であるシュラウド13側の他端12cまでの軸方向寸法であるランナベーン高さをh、ランナベーン12の下流縁12aの一端12bから回転盤11の先端部11bまでの軸方向寸法である先端部高さをh*とすると、以下の条件式(1)を満足する。
0≦h*≦0.3h…(1)
但し、以下の条件式(2)を満足することが望ましい。
h*≦0.2h…(2)
続いて、上記ランナ10の作用効果について説明する。本実施例においては、上記ランナ10の作用効果について確認をするために、本発明に係るランナ10と比較例のランナ60とについて模型試験を行った。
ランナ60は、ランナ10と同様の構成となっているが、ランナ10がh*=0.198hであるのに対して、ランナ60が図3の破線に示すように、h*=0.433hとなっている。
本模型試験においては、このランナ60をフランシス水車1と同様のフランシス水車50に組み込んだものを比較例としている。
フランシス水車1及びフランシス水車50の実機仕様条件は、以下の通りである。
有効落差…57.9m、出力…177.7MW、回転数…94.7rpm、比速度(Ns)…250〔m・kW・rpm〕=94.7・(177700)1/2/(57.95/4)、模型比…0.0541
模型試験水車の代表寸法を例示すると、以下の通りである。
Figure 2011236873
なお、図3中、L1が12.81mm、L2が12.99mmになっている。
図4は、本実施例の試験結果を示すグラフであって、横軸が流量係数Q11、縦軸が水車効率ηとなっており、等差目盛となった縦軸横軸のそれぞれにおいて数値を相対表示している。なお、流量係数Q11は、Q11=Q/(D1・√He)の関係式から求めている。ここで、D1:ランナ入口径,He:有効落差,Q:流量である。
図4に示すように、実施例のランナ10では、比較例のランナ60と比較して、水車効率が0.5〜1.5%程度向上していることがわかった。
以上のように、ランナ10によれば、条件式(1)を満足するので、用水Wが流路14の流体出口14bにおいて径方向内方側に流れ易くなり、適正な設計点流量よりも流量が過大(大流量運転時)であっても径方向の流速分布が均一的になる。これにより、死水コア領域とのせん断層における混合損失を低減して大流量運転時における水車効率の低下を抑制することができる。すなわち、適正な設計点流量よりも流量を過大に設定して運転を継続する場合に効率向上、最大出力アップ(リパワリング)をすることが可能となる。
例えば、古くなった既設水力プラントの改修工事等において、最大流量の見直しを図ると共に既設水車のケーシング等を流用して古いコーンを、変更する又は除去してランナが条件式(1)を満足するようにすることで、最大出力点での効率向上及び最大出力アップが可能となる。
図5は、ランナ10の作用説明図であり、図6は、ランナ60の比較説明図である。
図6に示すように、ランナ60の場合には、大流量運転時において回転盤(11)側に沿った流れが先端部(11b)において下向きに転向されコーン(15)の外側付近の流速が増加、コーン(15)真下の流速が低下して速度分布に偏りができ損失増加(効率低下)が生じた。このため、流体出口(14b)の流れが閉塞傾向となって水車効率ηが低下してしまう。
これに対して、ランナ10の場合には、小型コーン等とすることにより、条件式(1)を満足するので、大流量運転時において回転盤11側近くを流れる用水Wが回転中心軸P側に流れ易くなり半径方向の流速分布が均一化し損失が減少(効率向上)する。
また、軸方向の一方に進むに従って径方向内方に進む傾斜部11cを有するので、径方向内方側に流れた用水Wに流れの剥離が生じ難くなる。より具体的には、傾斜部11cを有しない場合に比べて流れ方向に流路が穏やかに拡大するので、外周部11aおよび傾斜部11cにおいて流れの剥離が生じ難くなる。これにより、流れの剥離によって引き起こされる水車効率低下を抑制することができる。
また、フランシス水車1によれば、ランナ10を具備するので、大流量運転時における水車効率の低下を抑制することができる。
なお、本実施形態においては、図3に示すように、軸方向に切断した断面において角部11dを角張らせたが、図7に示すように、軸方向に切断した断面において円弧状に形成した角部11d´を用いてもよい。このように構成することで、流体出口14bにおいて用水Wが径方向内方側に流れる際に流れの剥離が生じ難くなる。より具体的には、角部11d´を円弧状とすることで流路が滑らかに連続することとなるので、外周部11aおよび角部11d´において流れの剥離が生じ難くなる。これにより、流れの剥離によって引き起こされる効率低下を抑制することができる。
同様に、角部11e´を、軸方向に切断した断面において円弧状に形成してもよい。
また、本実施形態においては、回転盤11の先端部11b側に形成した内部空間を下方に開放した構成としたが、図8に示すように、先端部11bを被覆する蓋体25を設けて内部空間Sを閉塞する構成としてもよい。このように構成することで、ランナ10における流量が適正な設計点流量に対して過小である場合において、流体出口14bよりも下流側に発生する螺旋渦の渦芯の付け根部分に蓋体25が位置することとなる。これにより、蓋体25によって渦芯が安定するので、螺旋渦の発生、振れ回りに伴う圧力変動、振動、騒音を有効に抑制することができる。
なお、この場合には、蓋体25が回転盤11の先端部を構成することとなる。
また、本実施形態においては、先端部11bを円環平面状に形成したが、円平面状に形成してもよいし、先鋭状あるいは球状に形成した頂点を先端部としてもよい。また、回転盤11における最下端部分が分断されていてもよい。つまり、回転盤11における最下端部分であればよい。
また、本実施形態においては、傾斜部11cを設けたが、傾斜部11cを設けずに、外周部11aが先端部11bに直接的に連続する構成でもよい。
(第二実施形態)
続いて、本発明に係る第二実施形態について説明する。
図9は、本発明の第二実施形態に係るフランシス水車(流体機械)31の概略構成を示す要部拡大断面図である。なお、図9において、図1から図8と同様の構成要素については、同一の符号を付して説明を省略する。
図9に示すように、フランシス水車31は、上述した第一実施形態に係るフランシス水車1と同様の構成を備えているが、フランシス水車1が回転シャフト2と回転盤11とを備えているのに対して、フランシス水車31が回転シャフト32と回転盤41を有するランナ(回転構造体)40とを備えている点で大きく異なる。
図9に示すように、回転シャフト32は、回転中心軸P上に延在する可動軸32Aと、可動軸32Aと同軸に配設されて可動軸32Aを囲繞する中空軸32Bとを備えており、可動軸32Aが軸方向に変位可能に構成される一方、中空軸32Bが軸方向の変位を拘束されている。そして、可動軸32Aと中空軸32Bとが同期回転するようになっている。
回転盤41は、図9に示すように、コーン41Aとクラウン41Bとを備えている。
コーン41Aは、円錐台状に形成されており、下方に進むに従って外径を漸減させるように回転中心軸P上に配置されている。このコーン41Aの下方側における先端は、ランナ40の先端部41bを構成している。なお、この先端部41bは、上述した回転盤11の先端部11bに相当している。
このコーン41Aは、可動軸32Aの下端部(端部)に固定されて、可動軸32Aと共に回転可能かつ軸方向に変位可能になっている。
クラウン41Bは、図9に示すように、回転中心軸P上にコーン41Aを収容可能な収容穴41dを有している。このクラウン41Bの外周は、回転中心軸Pに沿った断面において下方に進むに従って回転中心軸Pに漸近する輪郭となっており、ランナベーン14が配設されている。このクラウン41Bの外周は、ランナ40の外周部41aを構成している。なお、この外周部41aは、上述した回転盤11の先端部11bに相当している。
このコーン41Aは、中空軸32Bの下端部(端部)に固定されて、中空軸32Bと共に回転可能になっており、コーン41Aと同期回転するようになっている。
制御装置31aは、設計点流量よりも用水Wの流量が過小である小流量運転時と判断した場合に、コーン41Aを軸方向に変位させて突出位置X1に位置させる一方、用水Wの流量が過大である大流量運転時と判断した場合に、コーン41Aを軸方向に変位させて収容穴41dに収容して収容位置X2に位置させる。
なお、設計点流量は、各フランシス水車に応じて適宜最適な値が設定され、この値に基づいて大流量運転時を判断する際の閾値及び小流量運転時を判断する際の閾値が規定される。
ここで、ランナ40は、ランナベーン高さをh(図3参照)、ランナベーン12の下流縁12aの一端12bから回転盤41の先端部41bまでの軸方向寸法である先端部高さをh*とすると、突出位置X1においては、h*≧0.3hを満足するように形成されており、収容位置X2においては上記条件式(1)及び(2)を満足するように形成されている。
次に、フランシス水車31及びランナ40の作用について説明する。
小流量運転時である場合には、制御装置31aは、コーン41Aを突出位置X1(下方側)に位置させることにより、流体出口14bにおいてコーン41Aに用水Wを沿わせて下流側に導く(図9において用水Wの流線を二点鎖線で示す。)。
一方、大流量運転時である場合には、制御装置31aは、コーン41Aを軸方向に変位させて収容穴41dに収容し、突出位置X1から収容位置X2(上方側)に位置させる。これにより、死水コア領域とのせん断層における混合損失を低減して用水Wが流路14の流体出口14bにおいて径方向内方側に流し(図9において用水Wの流線を実線で示す。)、径方向の流速分布が均一的になる。
以上のように、フランシス水車31によれば、設計点流量よりも用水Wの流量が過小である場合には突出位置X1にコーン41Aを位置させるので、流路14の流体出口14bからコーン41Aに用水Wを沿わせて下流側に導く。これにより、用水Wの流れがスムーズになり、小流量運転時において水車効率を向上することができる。
一方、大流量運転時である場合には収容位置X2にコーン41Aを位置させるので、流路14の流体出口14bにおいて径方向内方側に流れ易くなり、径方向の流速分布が均一的になる。これにより、大流量運転時において、せん断層での混合損失を低減して水車効率の低下を抑制することができる。
すなわち、設計点流量に対して用水Wの流量が過小であっても過大であっても、双方の場合において水車効率を維持することができ、性能を向上することができる。
なお、本実施形態においては、制御装置31aを設けて、用水Wの流量に応じてコーン41Aを自動的に変位させる構成としたが、制御装置31aを省略すると共に人を介在させてコーン41Aを変位させる構成としてもよい。
また、本実施形態においては、傾斜部(11c)を設けない構成としたが、傾斜部(11c)を設ける構成としてもよい。この場合には、コーン41A側及びクラウン41B側の少なくとも一方に設ければよい。なお、この場合には、コーン41Aが突出位置X1に位置する際にコーン41A及びクラウン41Bの外周が滑らかに接続されるように形成することが望ましい。
また、本実施形態においては、可動軸32A及び中空軸32Bを同期回転させる構成としたが、必ずしも同期回転をさせなくてもよく、可動軸32Aを回転させない構成にしてもよい。
なお、上述した第一実施形態及び第二実施形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上述した第一実施形態及び第二実施形態においては、フランシス水車1,31に本発明を適用した場合を説明したが、他のポンプ水車や水車など様々な流体機械に適用可能である。
また、上述した第一実施形態及び第二実施形態においては、回転中心軸Pを重力方向に向けた縦軸機に本発明を適用したが、回転中心軸Pを水平方向に向けた横軸機に本発明を適用してもよい。
1,31…フランシス水車(流体機械)
2,32…回転シャフト
10,40…ランナ(回転構造体)
11,41…回転盤
11a,41a…外周部
11b,41b…先端部
11c…傾斜部
11d,11d´,11e,11e´…角部
12…ランナベーン(回転翼)
12a…下流縁
12b…一端
12c…他端
14…流路
25…蓋体
P…回転中心軸
S…内部空間
W…用水(作動流体)

Claims (7)

  1. 回転中心軸が延びる軸方向の一方に進むに従って径を漸減させる外周部を有する回転盤と、
    前記回転盤の外周部において周方向に間隔を空けて設けられた複数の回転翼とを備え、
    前記回転盤と前記複数の回転翼との間に、径方向外方側から前記回転中心軸に向かって流入した作動流体を前記軸方向の一方側に流出させる流路が構成された回転構造体であって、
    前記回転翼の下流縁における前記回転盤側の一端から前記軸方向一方側の他端までの軸方向寸法である回転翼高さをh、前記回転翼の下流縁における一端から前記回転盤の前記軸方向一方側の先端部までの軸方向寸法である先端部高さをh*とすると、以下の条件式(1)を満足することを特徴とする回転構造体。
    0≦h*≦0.3h…(1)
  2. 以下の条件式(2)を満足することを特徴とする請求項1に記載の回転構造体。
    h*≦0.2h…(2)
  3. 前記回転盤は、前記外周部と前記先端部との間に前記軸方向の一方に進むに従って径方向内方に進む傾斜部を有することを特徴とする請求項1又は2に記載の回転構造体。
  4. 前記回転盤は、前記外周部と前記先端部との間に角部を有し、
    前記角部は、前記軸方向に切断した断面において円弧状に形成されていることを特徴とする請求項1から3のうちいずれか一項に記載の回転構造体。
  5. 前記回転盤は、少なくとも前記先端部側に内部空間が形成され、
    該内部空間を閉塞させる蓋体を備えることを特徴とする請求項1から4のうちいずれか一項に記載の回転構造体。
  6. 前記回転盤は、前記回転中心軸上に配置されて前記軸方向一方側の先端が前記先端部を構成するコーンと、
    前記回転中心軸上に前記コーンを収容可能な収容穴を有すると共に前記回転翼が設けられた外周が前記外周部の少なくとも一部を構成するクラウンとを備え、
    前記コーンは、前記軸方向に変位可能に構成され、前記コーンが前記収容穴に収容された場合に条件式(1)を満足することを特徴とする請求項1に記載の回転構造体。
  7. 請求項1から6のうちいずれか一項に記載の回転構造体と、
    該回転構造体が軸方向の一方の端部に設けられた回転シャフトとを具備することを特徴とする流体機械。
JP2010111209A 2010-05-13 2010-05-13 回転構造体及び流体機械 Pending JP2011236873A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111209A JP2011236873A (ja) 2010-05-13 2010-05-13 回転構造体及び流体機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111209A JP2011236873A (ja) 2010-05-13 2010-05-13 回転構造体及び流体機械

Publications (1)

Publication Number Publication Date
JP2011236873A true JP2011236873A (ja) 2011-11-24

Family

ID=45325121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111209A Pending JP2011236873A (ja) 2010-05-13 2010-05-13 回転構造体及び流体機械

Country Status (1)

Country Link
JP (1) JP2011236873A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730666Y1 (ja) * 1968-05-06 1972-09-13
JPS6456970A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Guide vane for hydraulic machine
JPH01224477A (ja) * 1988-03-03 1989-09-07 Toshiba Corp 水車
JPH0472468A (ja) * 1990-07-11 1992-03-06 Hitachi Ltd フランシス水車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4730666Y1 (ja) * 1968-05-06 1972-09-13
JPS6456970A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Guide vane for hydraulic machine
JPH01224477A (ja) * 1988-03-03 1989-09-07 Toshiba Corp 水車
JPH0472468A (ja) * 1990-07-11 1992-03-06 Hitachi Ltd フランシス水車

Similar Documents

Publication Publication Date Title
JP5693242B2 (ja) 先端部形成部材を備えたフランシス型水力タービンホイール及び該ホイールを使用して変動を低減する方法
JP2012140900A (ja) 遠心圧縮機のスクロール構造
CN102465912B (zh) 用于高速离心泵的流动矢量控制
EP2853694B1 (en) Steam turbine
JP5495947B2 (ja) コーン、回転構造体及び流体機械
JP2005009321A (ja) フランシス形ランナ
JP6389123B2 (ja) フランシスタービンのランナーのためのコンパクトブレード、及びランナーを構成するための方法
JP3841391B2 (ja) ターボ機械
JP5135033B2 (ja) 軸流水力機械のランナベーン
JP4576414B2 (ja) コーンおよび水車
JP5230568B2 (ja) ランナ及び流体機械
JP4280127B2 (ja) フランシス形ランナ
JP4703578B2 (ja) フランシス型水車
JP2011236873A (ja) 回転構造体及び流体機械
JPH10318117A (ja) 流体機械の羽根車
CN214577785U (zh) 离心风机
JP2013234621A (ja) フランシス水車のランナ、フランシス水車
CN109763928B (zh) 导流叶片以及流体机械
JP2003269109A (ja) 蒸気タービン
JP2013142356A (ja) 軸流水車
CN111271205A (zh) 一种具有抑制漩涡作用的水轮机转轮及使用方法
JP2006029227A (ja) 水力機械およびそのランナ
JP7360357B2 (ja) ランナコーンおよび水力機械
JP7280839B2 (ja) 軸流水車発電装置のディフューザおよび軸流水車発電装置
JP2007162648A (ja) 高比速度ポンプ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520